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14 Abstract: Detecting the object with external occlusion has always been a hot topic in 

15 computer version, while its accuracy is always limited due to the loss of original 

16 object information and increase of new occlusion noise. In this paper, we propose a

17 occluded object detection algorithm named GC-FRCN (Generative feature completing

18 Faster RCNN), which consists of the OSGM (Occlusion Sample Generation Module)

19 and OSIM (Occlusion Sample Inpainting Module). Specifically, the OSGM mines and

20 discards the feature points with high category response on the feature map to enhance

21 the richness of occlusion scenes in the training data set. OSIM learns an implicit

22 mapping relationship from occluded feature map to real feature map adversarially,

23 which aims at improving feature quality by repair the noisy object feature. Extensive 
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24 experiments and ablation studies have been conducted on four different datasets. All

25 the experiments demonstrate the GC-FRCN can effectively detect objects with local

26 external occlusion and has good robustness for occlusion at different scales. 

27 Keywords：Occlusion；Object detection；Feature completing；Generative Adversarial 

28 Networks； 

1 Introduction29

Object detection has always been an active field in computer vision research. Its30

goal is to learn a visual model for several kinds of objects and then use the model to31

predict the category and position of objects in the image. In recent years, thanks to the32

development of the convolutional neural network, related researches (Ren et al., 2016;33

Cai et al., 2016; He et al., 2017; Law et al., 2018; Lu et al., 2018; Zhou et al., 2019;34

Duan et al., 2019) on object detection have made a tremendous breakthrough in35

detection accuracy and speed, but the detection accuracy of objects which are in some36

complex scenes still needs to be further improved. The complexity is usually37

manifested by the presence of disturbing objects in the scene that are unrelated to the38

object to be detected. A typical example is that the detector may confuse trees with39

pedestrians at certain moments in the automatic drive. However, compared with the40

distinction between trees and pedestrians, the more difficult scene is to detect41

pedestrians blocked by trees, that is, to achieve accurate detection of blocked objects.42

For occluded objects, the loss of original object information and the mixing of43

irrelevant information increases the difficulty of feature learning. The low feature44

quality makes the detection results often contain a large number of False Negative45



samples. Therefore, how to realize the effective detection of the occluded objects has46

become the most important challenge of the detection algorithm in practical47

application.48

Occlusion is a complex problem of optics and geometry. According to the causes,49

occlusion can be divided into two categories: intra-class occlusion and inter-class50

occlusion (Wang et al., 2018). In-class occlusion appears when the objects to be51

detected blocked by other objects in the same category, and studies have shown that52

(Ouyang et al., 2013; Tian et al., 2015) it mainly affects the positioning accuracy. That53

is, the detector can easily move the prediction box of object A to object B, which54

overlaps with object A. In recent work, Wang (Wang et al., 2018) designed a new55

constraint named Repulsion loss to promote each prediction box close to its ground56

truth box, while away from the ground truth box of other objects as far as possible.57

Zhang proposed a new detection algorithm named Occlusion Aware R-CNN, which58

designed the aggregation loss and PORoI to train several local detectors for the59

sub-area of the occluded object. By calculating the category probability and prediction60

frame coordinates, it finally fuses the results of every local detector, which improved61

the detection accuracy of the crowded pedestrians with the intra-class occlusion.62

Here, we keep the point on the inter-class occlusion. Inter-class occlusion refers63

to the external occlusion caused by the coverage of different kinds of objects, whose64

difficulty lies in the poor feature representation of objects when detecting. Compared65

with conventional objects, it is harder to obtain high-quality features of inter-class66

occluded objects. Firstly, occlusion from other objects results in the loss of significant67



information of the object to be detected. On this basis, the features learnt cannot fully68

represent the object even if using the convolution neural network. Besides, occlusion69

means the original object data space will be mixed with noise. Furthermore, these70

local noises can be gradually transferred to the global feature with high-semantic71

information in the process of feature learning. Therefore, for the inter-class occlusion72

objects, how to achieve high-quality representation of object features is the key to73

improve the detection accuracy.74

Different from Bell (Bell et al., 2016) and Lin (Lin et al., 2017) who fuse multiple75

convolution features to improve the feature quality of conventional objects, existing76

studies on occlusion detection (Pepik et al., 2013; Mathias et al., 2013; Tang et al.,77

2014; Gidaris et al., 2015; Zhou et al., 2017; Noh et al., 2018) pay more attention to78

mining the visible part. The core solution is: learning a series of local detectors for79

each part of the blocking object and using a specific strategy to fuse the results of80

local detectors to infer the final detection results of the whole object. Recently, Zhou81

(Zhou et al., 2017) proposed an occlusion detection method based on analyzing local82

occlusion and multi-label learning. By combining multiple local detectors, the83

correlation between local detectors is enhanced, which reduces the calculation cost84

and improves the detection accuracy of shielded objects. Noh (Noh et al., 2018)85

calculated the confidence of different regions of the occluded object and used the86

detection results of these visible regions to correct the final detection results of the87

whole object. Further analysis, we find that while exert visible region information88

fully may be effective to reduce the block noise, but to some extent also split the89



structure information between different parts, which caused a massive change on the90

results when combining different local regions to test. So, in this case, some specific91

prior knowledge of the occluded object is needed when designing the local detectors,92

which limit the generalization ability.93

When it comes to improving the feature quality of the occluded object, the94 

95 existing researches entirely mine the visible information of the unshaded area to 

96 suppress the occluded noise. Our solution is to complete the occlusion noise in the 

97 global feature map as we regard the inter-class occluded objects as the superposition 

98 of occlusion noise and original object information. We design a detection algorithm 

99 named GC-FRCN by introducing generative adversarial network to the Faster-RCNN

100 [Ren et al., 2015], which mainly includes the OSGM and OSIM. The OSGM can

101 simulate occlusion scenes by discarding the feature points with high category

102 response on the feature map, aiming to construct training data that covers as many

103 occlusion scenarios as possible to improve model’s occlusion detection capability. The

104 OSIM learns the implicit mapping relationship from occluded feature to real feature,

105 and finally remove occlusion noise from the object’s feature map. To ensure the

106 mapping effectiveness, we make most use of the richer image information and

107 constrain the mapping relation by keep the occluded images as similar as the real

108 scene in both local details and global structure. The main contributions of this paper

109 are as follows: 

110 (1) We address the occluded object detection problem by expanding the richness of

111 the occlusion scene and cleaning occlusion noise, and propose a cascading occlusion 



112 detection algorithm GC-FRCN consisting of occlusion generation module OSGM and

113 feature repair module OSIM. Experimental results on four different data sets

114 demonstrate its superior performance. 

115 (2) Different from the existing work, the simple yet effective OSGM discards the

116 feature point with high category response and simulates different occluded scenes

117 based on the analysis of effective receptive field. Our results show this strategy

118 benefits the occlusion detection capability. 

119 (3) With the implicit mapping relationship learnt by adversarially minimizing the

120 difference between the occluded images and real scene in both local details and global

121 structure, the OSIM can remove occlusion noise from the object’s feature map. Our

122 results show the OSIM has good robustness for occlusion at different scales. 

2 Relate work123

2.1 Generic Object Detection124

Early researches on object detection relied on artificial features and classifiers to125

searching for the object to be detected in the image (Papageorgiou et al., 2000; Viola126

et al., 2004; Felzenszwalb et al., 2008; Felzenszwalb et al., 2009; Dollar et al., 2014).127

However, the detection accuracy is always unable to meet the actual application128

requirements, for the artificial features cannot express the object effectively. In recent129

years, due to the rapid development of convolution neural network, object detection130

algorithms based on deep learning have achieved breakthroughs in both detection131

accuracy and speed, which are mainly divided into two types: two-stage and132

single-stage object detection methods. Different from searching for regions of interest133



violently, the two-stage detection algorithm uses the generative strategy to produce134

proposals, which mainly includes RCNN (Girshick et al., 2014) and its subsequent135

improvements. RCNN automatically generates a set of candidate regions based on136

Selective Search algorithm (Uijlings et al., 2013), and then uses SVM and linear137

regression to achieve classification and position box fine-tuning, respectively. For its138

problem of extracting proposals’ features repeatedly which cost a large of training139

resources, He (He et al., 2015) proposed a detection method based on spatial pyramid140

pooling which gets the proposals’ features by mapping candidate regions on the global141

feature map; while Girshick (Girshick et al., 2015) directly trained an “end-to-end”142

CNN network to reduce the training volume. Furthermore, Faster RCNN (Ren et al.,143

2015) and R-FCN (Dai et al., 2016) combined the generation of candidate regions and144

detection of proposals into a whole network, which fine-tunes the entire network145

during training without storing a large number of features. Compared with the146

two-stage detection methods, the single-stage detection methods (Redmon et al., 2016;147

Liu et al., 2016; Redmon et al., 2017; Redmon et al., 2018) take the input image as a148

candidate region, and return object’s boundary box coordinates and category on the149

preset anchor frames, which further improve the training efficiency and detection150

speed of the detector.151

2.2 Data Augmentation152

Sufficient training data is the foundation for constructing a deep learning model.153

The CNN gradually abstracts the features from the original images, so the quality and154

quantity of training images have a direct effect on features’ effectiveness. As a result,155



the performance of the detector will generally improve with the increase of the scenes156

containing objects in training data. However, collecting and making an extensive157

detection data set is so difficult that the usual treatment is to expand and enhance the158

available training data through operations such as rollover, rotation, scaling, clipping159

and shifting. Meanwhile, some studies (Simo et al., 2014; Loshchilov et al., 2015;160

Wang et al., 2015) also explored how to fully mine and utilize the limited training data161

to improve the accuracy and robustness of the detector. Shrivastava (Shrivastava et al.,162

2016) proposed a detection method based on difficult sample mining, which163

significantly improved the detection accuracy by retraining samples with massive164

losses. Wang (Wang et al., 2017) also showed that the detector’s robustness on165

shielding and deformation could be improved by continuously constructing shielding166

and deformation samples when training the detector. In this paper, we are also167

inspired by data enhancement to generate a large number of occlusion samples to168

enhance the diversity of training data and further improve the detection performance169

of the model for inter-class occlusion objects.170

2.3 Feature Completing171

For inter-class occluded objects, we hope to restore noise in the features as the172

real information partially lost due to occlusion, to improve the feature quality as well173

as detection accuracy. Although the research of feature repairing is still in the initial174

stage, the problem of image repairing has been widely studied. The purpose of image175

repairing is to automatically recover the lost content in the image, whose early176

methods focus on repairing by spreading the known local information to the unknown.177



With the breakthrough of the generative adversarial network in the application of178

image repairing, relevant researches (Xiang et al., 2017; Lahiri et al., 2017; Yeh et al.,179

2017; Dolhansky et al., 2018) have achieved more accurate results not only in180

semantic but also the visual effect of repairing details. Recent studies expand the181

structure of the generative adversarial network by using multiple discriminators to182

improve the repairing effect further. Pathak (Pathak et al., 2016) proposed an183

encode-decode network for image repairing; and then Iizuka (Iizuka et al., 2017)184

designed the repair network based on local and global discrimination models, which185

realized the optimization of local details and overall texture of the image. On this186

basis, Li (Li et al., 2017) further added the semantic parsing model to optimize the187

face structure information, which reduces the error to the human eye level. Yu (Yu et188

al., 2018) abstracted the repair process into two encode-decode steps and further189

optimized the repair results with coarse precision by using counter loss, which190

significantly improved the repair accuracy.191

3 Generative Features Completing192

Based on the data-driven strategy, we improved the feature quality and193

constructed the occlusion object detector by expanding the richness of the occlusion194

scene and cleaning occlusion noise in the feature. Here, the key is how to generate195

representative occlusion data and repair occlusion noise, for which we designed196

OSGM and OSIM, respectively.197



3.1 OSGM: Refinement for the Occlusion Generation198

3.1.1 Analysis of Occlusion Simulation199

Deep learning methods are always based on large-scale data learning to achieve200 

201 the abstraction and modelling of a certain type of problem. When detecting objects 

202 with local occlusion, the simple solution is to construct a data set covering all

203 occlusion scenarios. However, collecting a sufficiently large occluded data set is

204 complicated and low cost-effective. Without extra data collection work, a feasible

205 occlusion simulation method is to randomly discard pixels of different combinations

206 on the existing detection data set. However, it cannot guarantee the effectiveness and

207 representativeness of occlusion scenes. As shown in Fig. 1, objects are not blocked in

208 some images because positions of objects to be detected and the pixels to be discarded

209 are random. With the decrease of the discarded size, the number of similar invalid

210 samples will further increase substantially. For the same object, there will be much

211 redundancy when simulating different occlusion scenes, whose occlusion expression

212 may be more similar after feature learning. Invalid samples and repeated samples do

213 not help improve the performance of the model but bring additional computational

214 overhead for feature learning and subsequent repair. 

a) Repeated occlusion scenarios



b) Invalid occlusion scenarios
Fig. 1 Examples of invalid and repeated occlusion scenarios

3.1.2 Design of Occlusion Simulation215

Based on the analysis in section 3.1.1, we hope that occluded image generated not216

only represent a kind of occlusion scene, but also the object is always blocked. For217

this reason, we firstly discard pixels on the feature map to ensure enough differences218

of different occlusion scenes generated based on the same object. During feature219

learning, the original input image will be abstracted into the feature map iteratively,220

and the pixels on the feature map have more robust semantics than the original image.221

Different feature maps after discarding pixels can be approximated as the abstraction222

of different occlusion scenes. The area of the image that any pixel of the feature map223

corresponding to can be described as a theoretical receptive field. When generating224

occluded samples, what we need to drop out is these pixels in the theoretical receptive225

field of the input image. For a specific network, the calculation method of the226

theoretical receptive field is shown in formula (1).227 ��� � = ��� � − 1 − 1 �� � + �� � (1)228

Where the ��� � means the theoretical field size of convolution layer t , while229 �� � and �� � is the stride and convolution kernel size of convolution layer �.230

In order to eliminate invalid occlusion scenes, we also want to discard pixels that231

are highly relevant to the object. Luo (Luo et al., 2016) found that although the value232



of pixel on the feature map is determined by the value in the receptive field of image,233

the correlation degree between different image pixels and feature map pixels is quite234

different. Compared with the pixels at the edge of the image, the pixels in the middle235

of the image have more influence on the value of feature map, and the effective236

receptive field which actually decides the value of feature map is always smaller than237

the theoretical receptive field. In other words, compared with the edge, the pixels in238

the middle of feature map are affected by more original image information during the239

convolution calculation, which means a higher probability to contain the original240

information of the object. We chose to discard the pixels in the middle of the feature241

map which are more relevant to the target to be detected. For the � × � feature map,242

if the pixel coordinates of its upper left vertex are denoted as (�0, �0) , the range of243

disposable pixel coordinates (����, ����) can be calculated by formula (2)-(4).244 ����∈(�0+ �∗� , �0+ (1−�)∗� )����∈(�0+ �∗� , �0+ (1−�)∗� ) (2)245 � = ������� (3)246 � = ℎ���ℎ�� (4)247

Where � and � represents the significant discard coefficient; ���� and ℎ���248

represents the width and length of the object’s minimum enclosing rectangle; ���249

and ℎ�� means the width and length of the input image, respectively.250

3.1.3 Structure of OSGM251

As shown in Fig. 2, the basic structure of OSGM is from the conv1 layer to the252

pool3 layer of VGG16 network. For all the convolution layers, we adopt the kernel of253 3 × 3 and add standard Batch-Normalization and Relu operation. While for the254



pooling layers, we use max pooling with a kernel of 2 × 2 . OSGM determines the255

pixels’ effective discard range of feature map using the formula (2) - (4) and256

calculates the receptive field using the formula (1). Then, we set the values of all257

pixels as 0 in the corresponding to the receptive field, which is mapped by the pixel258

drop out from the feature map. Here, we directly reuse the VGG16 model trained on259

the ImageNet data set to initialize the parameters of OSGM. Besides, in order to260

further enhance the richness and difficulty of occluded samples, we designed four261

different occlusion templates with the size of 1 × 1 , 1 × 2 , 2 × 1 and 2 × 2 when262

discarding pixel points in the feature map.263

Fig. 2 Structure and workflow of the OSGM module 

264 3.2 OSIM: Refinement for the Occlusion Representation 

265 3.2.1 Overview of Occlusion Inpainting 

For the object with local occlusion, the occlusion noise mixed with the original 266 

267 data space will run through the feature learning, resulting an upper limit of detection 

268 accuracy. Our innovative idea is to learn an implicit mapping relationship from

269 occluded feature map to real feature map. To realize this goal, as shown in Fig. 3,

270 OSIM is composed of one Generator and two discriminators, which make the repaired

271 region consistent with the real label both in local details and overall structure. 



3.2.2 Generator272

The generator is described as a process of feature learning and generating new273

feature values for the occlusion region. As shown in Fig. 3, after the generator274

learning the object features based on the encoding, it generates new feature values for275

the occlusion object and then passes them to the discriminator. The encoding network276

is based on the conv1 to pool2 layers of the VGG16 network (Simonyan et al., 2014),277

where the convolution kernel is 3 × 3 and the max pooling kernel is 2 × 2. We use �2278

loss to measure the difference between generated features and real features. The �2279

loss function of the generator is shown in formula (5).280 �� = 12� �=1� �� − ��' 22� (5)281

Where � is the number of pixels on the feature map, �� and ��' means the real and282

the generated feature pixels.283

Fig. 3 Structure and workflow of OSIM module

3.2.3 Discriminator284

The generator makes a narrow gap between the feature values containing block285

noise and its corresponding real values, but it cannot guarantee the repaired features286



similar to the real features in terms of content and distribution. It is because the �2287

loss punishes the outliers seriously and does not consider the local context288

information and structural relationship between the occluded region and its adjacent289

region. Ideally, the restored features should be not only similar to the real features in290

content, but also be similar to the surrounding regions in structure. For this reason, we291

designed the local discriminator and global discriminator, respectively in OSIM to292

constraint the features generated further. As shown in Fig. 3, the local discriminator293

focuses the attention of the generator on the internal details of the occlusion region,294

which helps the repaired features to be consistent with the real features in terms of295

pixel value and statistical distribution. The global discriminator maps the restored296

features to the same size as the input image through the decoding network, which297

normalizes the structural relationship by identifying the similarity between the298

original input image and the image upsampled from the repaired feature map. It299

should be noted that, the structure of the encoding network and the decoding network300

is symmetrical, while the only difference between the two networks is that the301

un-pooling layer is used to replace the pooling layer in the decoding network.302

We also note that the network structure of the local discriminator and the global303

discriminator is similar to the research proposed by Radford (Radford et al., 2016).304

Furthermore, the two discriminators also have the same loss function which is shown305

in formula (6).306 ������� = �������� = ���� ���� ��~����� � ���� � +��~��(�)[log (1 − �(�(�)))] (6)307



Where ������� and �������� represents the loss function of local discriminator and308

global discriminator, ��~�����(�) and ��~��(�) represents the distribution of the true309

image pixels and occluded noise. The loss function � of OSIM module consists of310

generator and discriminator which can be calculated by formula (7).311 � = �� + �1������� + �2�������� (7)312

Where �1 and �2 are used to balance the loss of different parts, and the313

default value is both 300.314

4 GC-FRCN：Approach Details315

4.1 Structure of GC-FRCN316

As shown in Fig. 4, GC-FRCN takes Faster-RCNN as the basic network structure,317

and includes five key steps: occluded data generation based on OSGM, feature318

learning, repairing feature based on OSIM, candidate region generation, object319

classification and position box regression. To ensure the reuse of occluded data set320

generated, OSGM is designed as an independent module which cascade integrated321

into GC-FRCN. For the different occluded data generated by OSGM, GC-FRCN uses322

the convolution neural network to learn the global features of the whole image and323

outputs the feature map. Here, the critical role of OSIM is to provide more accurate324

feature representation of blocked objects, so the OSIM is embedded as a plug-in after325

the feature learning step which is trained independently and transmits the repaired326

feature map to the RPN (Region proposal network, RPN). RPN uses the sliding327

window to traverse the repaired feature map, and sets 9 rectangular regions (3 aspect328

ratios × 3 scales) to generate candidate regions when mapping each pixel of the329



feature map. Finally, the restored features are maximally pooled to obtain the features330

of each candidate regions, which are fed into a cascade of entirely complex networks331

to achieve the final category and position box.332

Fig. 4 Structure and workflow of GC-FRCN module

4.2 Independent Training for GC-FRCN333

In this study, the training of GC-FRCN includes two parts: training the OSIM and334

training the detector. When training the repair model OSIM, the generation loss �� is335

used firstly to fill the initial eigenvalue for the occluded object; and then the336

discriminator loss �� is used to improve the precision of the eigenvalue. We337

initialize the parameters of OSIM randomly at the beginning of training, but the338

model of the latter stage is trained based on the model obtained from the previous339

stage in order to improve the training efficiency and model accuracy. When training340

the detector, we follow the setup of standard Faster RCNN based on SGD (Stochastic341

gradient descent, SGD) and alternate optimization strategy, where the only difference342

is the feature passed to RPN optimized by the repair model in the first place. The loss343



function of the detector is composed of classification loss and regression loss, which344

are normalized by ���� and ���� and then weighted by equilibrium parameters � ().345

The loss function is shown in formula (8).346 �( �� , �� ) = 1���� � ���� ��, ��∗� + � 1���� ���∗����� ��, ��∗ (8)347

Here, ���� represents the mini-batch size of training, ���� represents the number of348

candidate regions and the � is the anchor number. �� is the probability of the anchor349

point being as an object, and the corresponding ��∗ value is given as 1 when the350

anchor point is predicted as positive and otherwise it is 0 if the anchor is negative. ��351

and ��∗ represent the coordinates of the upper left and lower right vertex of the352

predicted bouncing box respectively. The ���� and ���� can be calculated by353

formula (9) and (10).354 ���� ��, ��∗ =− log ��∗�� + 1 − ��∗ 1 − �� (9)355 ���� ��, ��∗ = 0.5(�� − ��∗)2 �� − ��∗ < 1�� − ��∗ − 0.5 �� − ��∗ ≥ 1 (10)356

5 Experiment357

5.1 Datasets and Evaluation Metrics358

To verify the performance of GC-RFCN, we had carried out several experiments359

on four data sets of PASCAL VOC 2007, VOC 2012 (Everingham et al., 2010), MS360

COCO (Lin et al., 2014) and PANICLE2017. The PANICLE2017 is an image data set361

containing rice panicles covered by leaves. As shown in Fig. 5, PANICLE2017362

consists of two parts. The first one is marked according to the format of VOC, which363

is used to train the rice panicle detector. The training data set, verification set and test364

set are composed of 2080, 912 and 1280 field rice images, respectively. The other part365



is composed of 982 images of unshaded rice panicles, which are used to train the366

occlusion feature repair model.367

We conducted most of the ablation studies on the PASCAL VOC 2007 data set368

and the COCO data set and reported the results of verification of the actual369

application effect on the PANICLE2017 data set. First, we select the mean average370

precision (mAP) and mean average recall (mAR) to evaluate the performance of371

GC-FRCN on VOC and COCO data sets, as shown in formula (11) and (12).372 mAP = 1� �=1� ��� (�� − ��−1) (11)373 mAR = 1� �=1� 2 0.51 �����(���)�� (12)374

Where �� represents the different recalls ranked according to the confidence degree,375

and �� represents the maximum precision corresponding to the �� . And the ����376

means the recall corresponding to the IoU (Intersection-over-Union, IoU). Secondly,377

in order to estimate the restoration accuracy of OSIM quantitatively, SSIM (structural378

similarity index) was selected to evaluate the difference of images before and after379

image restoration, which can be calculated in formula (13).380 ����(�, �) = (2����+�1)(���+�2)(��2+��2+�1)(��2+��2+�2) (13)381

Where � and � represents the original image and recovered image; � and �382

represents the average and the standard deviation of � and �, while the ��� means383

the covariance of � and �; The �1 and �2 are constants to avoid the denominator384

being 0 whose default value are 6.5025 and 58.5225, respectively. Thirdly, we select385

the counting accuracy and the classification accuracy to evaluate the performance of386

GC-FRCN on PANICLE2017 data set. The counting accuracy �� refers to the ratio387



of detecting the correct number of panicles to the actual number of panicles; while the388

classification accuracy �� is the correct number of panicles identified as panicles389

(true positive) to the number of all objects identified as panicles (true positive and390

false positive) in the imagery data set:391 �� = ��������� × 100% (13)392 �� = 1 − ��������� × 100% (14)393

Where ���� and ���� are the correct (true positive) and wrong (false positive)394

number of panicles detected by the model, respectively; ����� and ����� represents395

the actual number of panicles and all the objects identified as panicles in the test396

sample.397

(a) Training images of VOC2017 dataset for the detect model

(b) Training images of VOC2017 dataset for the detect model

Fig. 5 Training images of PANICLE2017 rice data set

5.2 Experiment Settings398

As described in section 3.1, all experiments were simulated by OSGM module to399

reconstruct the experimental data set. For VOC data sets, we used ‘trainval’ set and400



‘test’ set for training and testing, respectively. For the feature repair model, we used a401

250K SGD training generator and discriminator by keeping the learning rates at402

0.0001 and 0.0002, respectively. For the detector, the number of iterations is 80 k and403

the learning rate starts from 0.001 and decreases to 0.0001 after 60K iterations. Also,404

we followed most of the training setups of the standard Faster RCNN (Ren et al.,405

2015) with a mini batch size of 2 images and candidate regions of 256. For the COCO406

data set, we used ‘trainval35k’ set and ‘minival’ set for training and testing,407

respectively. The parameters of feature repair model are the same as those of VOC408

data set. For the detector, the number of iterations is 320K, and the initial learning rate409

is 0.001, which decreases to 0.0001 after 280K iterations. For the PANICLE2017 data410

set, the feature repair model and detector will keep all parameter settings consistent411

with the VOC data set.412

When test the model, the experimental results of PANICLE2017 data set were413

obtained from the test set composed of real field scenes. For the VOC data set and the414

COCO data set, we generate occlusion at different scales (small, medium and large)415

on the ‘test’ set of VOC and ‘minival’ set of COCO using four discard the template416

(1× 1, 1× 2, 2× 1 and 2× 2). Especially, the small, medium and large scale mean the417

about 6%, 14% and 25% pixel loss of the whole image respectively, while means the418

14%~22%, 20%~31% and 46%~60% pixel loss of the object to be detected.419

5.3 Results on PASCALVOC 2007420

5.3.1 Quantitative Evaluations of GC-FRCN421

In order to verify the effectiveness of GC-FRCN, we select the classical Faster422



RCNN as the baseline and combine our OSGM and OSIM to train detectors,423

respectively. The results are shown in Table 1. Taking small scale occlusion and ZF424

network as an example, mAP of baseline is 48.6%, which has an increase of 2.8% and425

3.3% after adding OSGM module and OSIM respectively. While the static426

Faster-RCNN with ZF-net achieves a mAP of 58.7% on the VOC 2007 test without427

occlusion, which is about 32% and 10% higher than the big occlusion and small428

occlusion. From this point of view, we can find the occlusion has a significant effect429

on the detect results, and the difficulty of repairing the detecting is increasing with the430

size of occlusions. All these rising trends are also reflected in the test results of large431

and medium scale occlusion.432

Table 1 Mean average precision for VOC 2007 test with different size of occlusions433

Method Arch
Mechanism mAP of different occlusion(%)

+OSGM +OSIM Big Middle Small None

Faster-RCNN(Baseline)

VGG16 36.9% 53.5% 59.3% 66.9%
VGG16  43.9% 55.1% 61.5% /
VGG16  48.1% 59.4% 63.5% /
ZF 26.7% 41.7% 48.6% 58.7%
ZF  33.9% 41.1% 51.4% /
ZF  38.9% 48.6% 52.9% /

A-FRCN VGG16 45.2% 53.7% 60.6% 69.1%
YOLO VGG16 43.6% 52.7% 58.8% 65.8%

YOLO V3 VGG16 47.3% 58.6% 63.6% 76.3%
SSD VGG16 46.4% 58.1% 62.9% 72.2%

GC-FRCN (Ours) VGG16   50.5% 61.1% 65.1% 69.9%

We compare our method with other state-of-the-art detection methods on the434

backbone of VGG16. The mAP of baseline for the large, medium and small scale435

occlusion are 36.9%, 53.5% and 59.3%, which increase significantly after introducing436

the OSGM and the OSIM further. For our GC-FRCN, the mAP of 50.5%, 61.1% and437

65.1% for three occlusion scales, outperforming baseline by 13.6%, 7.6% and 5.8%.438



Furthermore, among the purely one-stage detectors such as YOLO, YOLO V3 and439

SSD or the two-stage like A-FRCN (Wang et al., 2017), the best result of YOLO V3 is440

47.3% for large occlusion scale while 63.6% for small occlusion scale, which are441

lower by 3.2% and 1.5% than the GC-FRCN. The comparison results on the PASCAL442

VOC 2007 are presented in Table 1. The results show that GC-FRCN can effectively443

improve the detection accuracy of objects with different occlusion scales.444

5.3.2 Ablative Analysis445

Hyper-parameter Analysis. The �1 and �2 in formula (7) determine the446

influence of the generator and discriminators on the occlusion impainting task, which447

is the key hyper-parameters in our OSIM. To find their optimal values, we conduct448

experiments using the OSIM model training from different �1 and �2.We always set449

same value for �1 and �2 . Intuitively, it may make more sense to find out the450

relationship between our generator and discriminators due to the two discriminators451

working as a whole participate in the zero-sum game with the generator. As shown in452

Fig. 6, the detection performance (reported by mAP of big occlusion scale) can be453

obviously improved by setting the �1 = �2 = 300. We suppose the too small weight454

is difficult to contribute the key feature generation, and too large weight means too455

harsh on the generator and may result in a local optimal solution.456



Different �1 and �2 for OSIM model

Fig. 6 The selection weights for local and global discriminator loss

OSGM Analysis. As shown in Table 2, to verify the effectiveness of OSGM, we457

also compared it with other occlusion generation strategies. We used the occlusion458

simulation strategy of discarding pixel values randomly on the original image as the459

benchmark. At this time, take the small scale occlusion as an example, the mAP as460

well as mAR of objects are 65.5% and 78.9%, and the model training time is about461

610 minutes. The second strategy is to randomly discard pixels on the feature, whose462

result shows that discarding pixels from the feature map is equivalent to discarding463

original pixel values directly. When it comes to our OSGM which selects and discard464

high-semantic feature points, the mAP and mAR only decreases by 0.3% and 0.5%465

compared with the second strategy. We also find the training time has a dramatic466

reduction in our OSGM, which decreases by nearly 33% in contrast to the second467

strategy and decreases by more than 50% from baseline. We suppose that our OSGM468

can significantly reduce the training cost during screen and produce high469

representative and effective occlusion scenes.470

471



Table 2 Results of GC-FRCN for VOC 2007 test with different OSIM drop strategies472

Methods
mAP of different occlusion mAR of different occlusion

Training time
Big Middle Small Big Middle Small

Drop on image 50.6% 61.4% 65.5% 61.7% 73.1% 78.9% 610min
Drop on feature map 50.6% 61.3% 65.4% 61.7% 72.8% 78.7% 415min
Drop on Effective

RF (OSGM)
50.5% 61.1% 65.1% 62.2% 72.5% 78.4% 275min

OSIM Analysis.We also use different loss function to train repair models and then473

compare the detection accuracy of GC-FRCN for occlusion at different scales. The474

simplest baseline method is to train the repair model using only the generation loss475 �� , as shown in the first row of Table 3, whose mAP and mAR for the object with476

small scale occlusion is 62.6% and 75.7%. In another set of experiments, we add local477

discrimination loss ������� to train the feature repair model, at which time the mAP478

and mAR for small-scale occluded object increases by 1.4% and 0.8%. When the loss479

function �3 is used to normalize the feature repair model, we show the optimized480

occluded object which output by the global discriminator in Fig. 7. The visualization481

results show that the OSIM structure in this paper can effectively remove the482

occlusion noise in the feature. We obtain a mAP of 65.1% for the small-scale483

occluded object, which increases by 2.5% and 1.1% in contrast to �1 and �2484

respectively. Similarly, for the object with large or medium scale occlusion, the485

detection accuracy of GC-FRCN still increases with the refinement of the repair486

network structure and loss function. All the experimental results show that our OSIM487

can improve the repair accuracy of the features and further improve the detection488

accuracy of GC-FRCN.489

490

491



Table 3 Results of GC-FRCN for VOC 2007 test with different OSIM loss functions492
Different
loss

Mechanism mAP of different occlusion mAR of different occlusion
+�� +������� +�������� Big Middle Small Big Middle Small�1  42.4% 56.5% 62.6% 54.9% 69.1% 75.7%�2   44.8% 57.8% 64.0% 57.3% 69.8% 76.5%�3    50.5% 61.1% 65.1% 61.6% 72.7% 76.5%

In addition to the mAP of the detection, we also perform a quantitative evaluation493

using the three loss functions on the three different occlusion scales. The results are494

shown in Talbe4. For the first row, we can see the SSIM is 0.703 for the small495

occlusion scale while only fall by 3.2% for the big occlusion. Comparing to the results496

of the second and third row with the discriminators, the SSIM of �1 shows a better497

stability with the change of occlusion. We suppose this is because the �1 favors more498

on the distance in pixel values simply. In other words, the �1 performs poorly as it499

hardly recovers the useful semantics to some extent, which can explain the lower500

mAP in Table 3. After adding discriminators, OSIM with the �3 achieves a SSIM of501

0.728 for the big occlusion, which increases by 10.4% compared to the SSIM of 0.804502

for the small occlusion. At the same time, we also find all SSIM of our OSIM with the503 �3 are better than the �1 and �2. These gaps between different occlusion scales and504

different loss functions show the validity and rationality of our OSIM with two505

discriminators.506

Table 4 SSIM of OSIM for VOC 2007 test with different loss functions507

Different loss
Mechanism SSIM of different occlusion

+�� +������� +�������� Big Middle Small�1  0.671 0.686 0.703�2   0.695 0.731 0.746�3    0.728 0.773 0.804
508
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Fig. 7 Visual repair result based on OSIM

5.3.3 Category-based Analysis509

Table 5 shows the change of detection accuracy of GC-FRCN and Faster RCNN for510

different categories of objects under different scales of occlusions. Firstly, the511

detection accuracy of GC-FRCN varies significantly for different kinds of objects.512

Taking ‘bicycle’ and ‘train’ as examples, the AP of the three kinds of occlusion scales513

are all over 59%, which can reach 76.5% and 74.6% respectively for the small-scale514

occlusion. However, for ‘bottle’ and ‘potted plant’ with small scale occlusion, the APs515



are only 40.1% and 34.9% respectively and will continue to decrease with the516

increase of occlusion scale. Moreover, we also find though our GC-FRCN can517

effectively improve the detection accuracy of most categories under different518

occlusion scales, the improvement of GC-FRCN is not obvious for some categories519

and even decrease slightly compared with the baseline method in some cases. More520

interestingly, these cases also mainly focus on the ‘bottle’ and ‘pottedplant’. The521

possible explanation is that compared with other objects, it is more difficult to learn522

features of small-size objects such as the ‘bottle’ and ‘potted plant’, which also makes523

it more difficult to deduce occlusion when using original real features.524

Table 5 Changes of average precision of GC-FRCN relative to baseline for VOC 2007 test525

Category
AP of GC-FRCN AP of Faster-RCNN Change of AP

Big Middle Small Big Middle Small Big Middle Small
aeroplane 49.3% 58.0% 66.6% 23.4% 42.4% 48.5% 26.0% 15.6% 18.1%
bicycle 63.1% 75.1% 76.5% 46.0% 69.0% 78.0% 17.1% 6.1% -1.6%
bird 36.6% 54.1% 61.8% 30.3% 50.7% 53.5% 6.3% 3.4% 8.3%
boat 40.7% 47.7% 53.2% 27.3% 42.6% 43.4% 13.4% 5.1% 9.8%
bottle 31.1% 38.2% 40.1% 30.2% 41.8% 42.5% 0.9% -3.6% -2.4%
bus 63.0% 73.7% 72.3% 41.8% 61.8% 68.1% 21.3% 11.9% 4.2%
car 65.8% 74.2% 75.7% 52.7% 68.4% 75.1% 13.1% 5.8% 0.6%
cat 63.6% 74.4% 77.3% 40.8% 61.8% 69.0% 22.8% 12.6% 8.3%
chair 33.9% 43.7% 46.6% 22.3% 40.3% 42.9% 11.7% 3.4% 3.7%
cow 43.8% 62.5% 66.5% 38.7% 54.4% 61.8% 5.1% 8.1% 4.7%

diningtable 57.3% 67.2% 66.0% 42.2% 62.7% 61.6% 15.1% 4.6% 4.4%
dog 58.1% 70.7% 73.6% 37.4% 56.3% 64.9% 20.7% 14.3% 8.7%
horse 65.1% 73.7% 77.7% 52.2% 68.7% 75.4% 12.8% 4.9% 2.3%

motorbike 62.0% 69.9% 72.8% 43.2% 64.1% 66.4% 18.8% 5.7% 6.4%
person 54.9% 63.9% 68.5% 45.4% 56.7% 66.7% 9.5% 7.2% 1.8%

pottedplant 28.5% 32.9% 34.9% 28.8% 30.9% 35.4% -0.3% 2.0% -0.5%
sheep 33.9% 54.8% 64.6% 30.7% 51.1% 57.0% 3.1% 3.8% 7.6%
sofa 52.1% 61.7% 63.7% 33.2% 54.5% 58.6% 18.9% 7.1% 5.1%
train 59.0% 67.3% 74.6% 35.8% 49.6% 59.7% 23.2% 17.8% 14.9%

tvmonitor 49.1% 58.6% 68.5% 34.3% 42.5% 57.8% 14.8% 16.1% 10.8%

5.3.4 Different Size of Occlusion Analysis526

According to the results in table 1, for objects with large, medium and small scale527



occlusion, the mAP of baseline is 36.9%, 53.5% and 59.3% respectively, which528

increase with the decrease of the occlusion scale. Other experimental results in table 1529

also verify this trend of accuracy change. For GC-FRCN, the mAP of objects in small530

scale occlusion is 65.1%, which is significantly increased by about 15% than that of531

objects in large scale occlusion. The change of occlusion scale directly describes the532

amount of occlusion noise and the loss degree of the original information. The above533

experimental results support the hypothesis that occlusion noise will directly affect534

the classification accuracy in this paper.535

Secondly, for the OSGM and OSIM modules involved in GC-FRCN, we find that536

there are significant differences in the improvement of the accuracy of objects with537

different occlusion scales. Compared with the baseline, for the objects with three538

different occlusion scale, the detection accuracy increases by 2.2%, 1.6% and 7%539

after adding the OSGM module, while increases by 4.2%, 4.7% and 11.2% after540

adding the OSIM module respectively. The above experimental results show that541

compared with OSGM module based on data enhancement strategy, OSIM based on542

high-quality feature expression strategy has a more noticeable improvement in the543

detection accuracy of occluded objects. Besides, the improvement of detection544

accuracy of OSIM is more and more evident with the increase of occlusion scales.545

When analyzing this phenomenon in-depth, the reason may be the lack of available546

original effective information for the repairing of objects with large scale occlusion,547

which increases the difficulty of repairing and reduces the detection accuracy; In548

contrast, compared with the small scale occlusion object which retains most of the549



real information, the rough feature optimization can significantly improve the feature550

quality and thus greatly improve the detection accuracy.551

5.4 Results on PASCALVOC 2012 and MS COCO552

We also verified the performance of GC-FRCN on PASCAL VOC 2012 data set553

and MS COCO data set. Taking small-scale occluded objects as an example, for VOC554

2012 data set, the mAP of Faster RCNN based on VGG-16 network is 64.8%, which555

reaches 69.4% by combining OSGM and OSIM, increasing by 4.6% than the baseline.556

Similarly, for the COCO data set, the mAP and mAR of baseline is only 21.7% and557

33.1%, which reaches 24.9% and 36.5% by combining OSGM and OSIM.558

5.5 Results on PANICLE2017559

In order to verify the actual detection effect of GC-FRCN on occluded objects,560

we also applied it to the task of counting rice panicles in the field of current561

agricultural research. Getting the number of panicles automatic is the key to high562

throughput rice breeding and intelligent yield measurement, while it is a challenge as563

the panicle usually locally covered by leaves. The detection effect on rice panicles is564

shown in Fig. 8a, and LMM (Fernandez et al., 2018), Panicle-SEG (Xiong et al., 2017)565

and Faster-RCNN are selected as comparison objects. The average counting accuracy566

and classification accuracy of the four methods are shown in Table 6.567

The average counting accuracy and classification accuracy of GC-FRCN are568

90.82% and 99.05% respectively, which are 16.12% and 5.15% higher than Faster569

RCNN algorithm, and about 8% and 4% higher than the similar counting algorithm.570

As shown in Fig. 8b, we analyze the detection effect of GC-FRCN on blocked rice571



panicles further in detail. The green box in the visualization results represents the real572

blocked rice panicles in the image, while the red box represents the detected results by573

GC-FRCN. The above experimental results firstly verify the hypothesis that occlusion574

noise will suppress the classification accuracy of object detection. Secondly, it also575

shows that GC-FRCN can be applied to the detection and counting of rice panicles576

partially blocked by leaves in complex field scenes by improving the feature quality.577

Table 6 Performance comparison of GC-FRCN and other approaches on PANICLE2017 test578

Methods Arch
�� ��

Average±STD Average±STD
Faster-RCNN VGG-16 74.12%±0.19% 93.85%±0.31%

LMM / 82.16%±0.68% 95.18%±0.36%
Pan-seg / 82.73%±0.91% 95.45%±0.62%

GC-FRCN（our） VGG-16 90.82%±0.39% 99.05%±0.20%
579

(a) Detect effect of GC-FRCN for in-field rice panicle images

(b) Detect effect of GC-FRCN for panicles occluded by leaves locally
Fig8 Detect effect of GC-FRCN for PANICLE2017 test data set

6 Conclusion580

In this paper, we propose a detection algorithm for occluded objects based on581



generative feature optimization, for the problem of low feature quality rising from the582

external occlusion. Firstly, a quick and low-cost occlusion sample generation module583

OSGM is introduced, which realized the occlusion simulation and the enhancement of584

the original training data by screening and discarding the high semantic pixels on the585

feature map; Secondly, a feature repair module OSIM is introduced, which can repair586

the occlusion noise as the object’s real feature to improve the feature quality. The587

results of ablation experiments verified the effectiveness of OSGM and OSIM. For588

the three standard data sets of VOC2007, VOC2012 and COCO, the results show that589

GC-FRCN can significantly improve the detection accuracy for objects with different590

scale occlusion. The results of PANICLE2017 data set also show that GC-FRCN can591

be applied to solve the practical problem of counting rice panicles partially occluded592

by leaves.593

Acknowledge594

This paper is supported in part by the National Natural Science Foundation of China595

(No. 31872847); and the Key Research and Development Plan of Jiangsu Province of596

China (Modern Agriculture, BE2019383).597

Reference598

[1]Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region599

proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.600

[2]He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international601

conference on computer vision. 2017: 2961-2969.602



[3]Cai Z, Fan Q, Feris R S, et al. A unified multi-scale deep convolutional neural network for fast603

object detection[C]//European conference on computer vision. Springer, Cham, 2016: 354-370.604

[4]Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C]//Proceedings of the605

European Conference on Computer Vision (ECCV). 2018: 734-750.606

[5]Lu X, Li B, Yue Y, et al. Grid r-cnn[C]//Proceedings of the IEEE Conference on Computer607

Vision and Pattern Recognition. 2019: 7363-7372.608

[6]Zhou X, Zhuo J, Krahenbuhl P. Bottom-up object detection by grouping extreme and center609

points[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.610

2019: 850-859.611

[7]Duan K, Bai S, Xie L, et al. Centernet: Keypoint triplets for object detection[C]//Proceedings of612

the IEEE International Conference on Computer Vision. 2019: 6569-6578.613

[8]Ouyang W, Zeng X, Wang X. Single-pedestrian detection aided by two-pedestrian detection[J].614

IEEE transactions on pattern analysis and machine intelligence, 2014, 37(9): 1875-1889.615

[9]Tian Y, Luo P, Wang X, et al. Deep learning strong parts for pedestrian616

detection[C]//Proceedings of the IEEE international conference on computer vision. 2015:617

1904-1912.618

[10]Wang X, Xiao T, Jiang Y, et al. Repulsion loss: Detecting pedestrians in a619

crowd[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.620

2018: 7774-7783.621

[11]Zhang S, Wen L, Bian X, et al. Occlusion-aware R-CNN: detecting pedestrians in a622

crowd[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 637-653.623

[12]Bell S, Lawrence Zitnick C, Bala K, et al. Inside-outside net: Detecting objects in context with624



skip pooling and recurrent neural networks[C]//Proceedings of the IEEE conference on computer625

vision and pattern recognition. 2016: 2874-2883.626

[13]Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object627

detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.628

2017: 2117-2125.629

[14]Pepikj B, Stark M, Gehler P, et al. Occlusion patterns for object class630

detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.631

2013: 3286-3293.632

[15]Mathias M, Benenson R, Timofte R, et al. Handling occlusions with633

franken-classifiers[C]//Proceedings of the IEEE International Conference on Computer Vision.634

2013: 1505-1512.635

[16]Tang S, Andriluka M, Schiele B. Detection and tracking of occluded people[J]. International636

Journal of Computer Vision, 2014, 110(1): 58-69.637

[17]Gidaris S, Komodakis N. Object detection via a multi-region and semantic638

segmentation-aware cnn model[C]//Proceedings of the IEEE international conference on computer639

vision. 2015: 1134-1142.640

[18]Zhou C, Yuan J. Multi-label learning of part detectors for heavily occluded pedestrian641

detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017:642

3486-3495.643

[19]Noh J, Lee S, Kim B, et al. Improving occlusion and hard negative handling for single-stage644

pedestrian detectors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern645

Recognition. 2018: 966-974.646



[20]Papageorgiou C, Poggio T. A trainable system for object detection[J]. International journal of647

computer vision, 2000, 38(1): 15-33.648

Viola P, Jones M J. Robust real-time face detection[J]. International journal of computer vision,649

2004, 57(2): 137-154.650

[21]Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale,651

deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition.652

IEEE, 2008: 1-8.653

[22]Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively654

trained part-based models[J]. IEEE transactions on pattern analysis and machine intelligence,655

2009, 32(9): 1627-1645.656

[23]Dollár P, Appel R, Belongie S, et al. Fast feature pyramids for object detection[J]. IEEE657

transactions on pattern analysis and machine intelligence, 2014, 36(8): 1532-1545.658

[24]Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection659

and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and660

pattern recognition. 2014: 580-587.661

[25]Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition[J].662

International journal of computer vision, 2013, 104(2): 154-171.663

[26]He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for664

visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):665

1904-1916.666

[27]Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer667

vision. 2015: 1440-1448.668



[28]Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region669

proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.670

[29]Dai J, Li Y, He K, et al. R-fcn: Object detection via region-based fully convolutional671

networks[C]//Advances in neural information processing systems. 2016: 379-387.672

[30]Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object673

detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.674

2016: 779-788.675

[31]Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//European676

conference on computer vision. Springer, Cham, 2016: 21-37.677

[32]Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE678

conference on computer vision and pattern recognition. 2017: 7263-7271.679

[33]Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint680

arXiv:1804.02767, 2018.681

[34]Simo-Serra E, Trulls E, Ferraz L, et al. Fracking deep convolutional image descriptors[J].682

arXiv preprint arXiv:1412.6537, 2014.683

[35]Loshchilov I, Hutter F. Online batch selection for faster training of neural networks[J]. arXiv684

preprint arXiv:1511.06343, 2015.685

[36]Wang X, Gupta A. Unsupervised learning of visual representations using686

videos[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015:687

2794-2802.688

[37]Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard689

example mining[C]//Proceedings of the IEEE conference on computer vision and pattern690



recognition. 2016: 761-769.691

[38]Wang X, Shrivastava A, Gupta A. A-fast-rcnn: Hard positive generation via adversary for692

object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern693

Recognition. 2017: 2606-2615.694

[39]Xiang P, Wang L, Cheng J, et al. A deep network architecture for image inpainting[C]//2017695

3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017:696

1851-1856.697

[40]Lahiri A, Jain A, Biswas P K, et al. Improving Consistency and Correctness of Sequence698

Inpainting using Semantically Guided Generative Adversarial Network[J]. arXiv preprint699

arXiv:1711.06106, 2017.700

[41]Yeh R A, Chen C, Yian Lim T, et al. Semantic image inpainting with deep generative701

models[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.702

2017: 5485-5493.703

[42]Dolhansky B, Canton Ferrer C. Eye in-painting with exemplar generative adversarial704

networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.705

2018: 7902-7911.706

[43]Pathak D, Krahenbuhl P, Donahue J, et al. Context encoders: Feature learning by707

inpainting[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.708

2016: 2536-2544.709

[44]Li Y, Liu S, Yang J, et al. Generative face completion[C]//Proceedings of the IEEE710

Conference on Computer Vision and Pattern Recognition. 2017: 3911-3919.711

[45]Yu J, Lin Z, Yang J, et al. Generative image inpainting with contextual712



attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.713

2018: 5505-5514.714

[46]Luo W, Li Y, Urtasun R, et al. Understanding the effective receptive field in deep715

convolutional neural networks[C]//Advances in neural information processing systems. 2016:716

4898-4906.717

[47]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image718

recognition[J]. arXiv preprint arXiv:1409.1556, 2014.719

[48]Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc)720

challenge[J]. International journal of computer vision, 2010, 88(2): 303-338.721

[49]Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in722

context[C]//European conference on computer vision. Springer, Cham, 2014: 740-755.723

[50]Fernandez-Gallego J A, Kefauver S C, Gutiérrez N A, et al. Wheat ear counting in-field724

conditions: high throughput and low-cost approach using RGB images[J]. Plant methods, 2018,725

14(1): 22-34.726

[51]Xiong X, Duan L, Liu L, et al. Panicle-SEG: a robust image segmentation method for rice727

panicles in the field based on deep learning and superpixel optimization[J]. Plant methods, 2017,728

13(1): 104-119.729


	1 Introduction
	2 Relate work
	2.1 Generic Object Detection
	2.2 Data Augmentation
	2.3 Feature Completing

	3 Generative Features Completing
	3.1 OSGM: Refinement for the Occlusion Generation
	3.1.1 Analysis of Occlusion Simulation
	3.1.2 Design of Occlusion Simulation
	3.1.3 Structure of OSGM
	3.2 OSIM: Refinement for the Occlusion Representat
	3.2.1 Overview of Occlusion Inpainting
	3.2.2 Generator 
	3.2.3 Discriminator

	4 GC-FRCN：Approach Details
	4.1 Structure of GC-FRCN
	4.2 Independent Training for GC-FRCN 

	5 Experiment
	5.1 Datasets and Evaluation Metrics
	5.2 Experiment Settings
	5.3 Results on PASCAL VOC 2007 
	5.3.1 Quantitative Evaluations of GC-FRCN
	5.3.2Ablative Analysis
	5.3.3 Category-based Analysis
	5.3.4 Different Size of Occlusion Analysis
	5.4 Results on PASCAL VOC 2012 and MS COCO
	5.5 Results on PANICLE2017

	6 Conclusion
	Acknowledge
	Reference

