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Abstract—The concept of a traditional monostatic radar 

with co-located transmit and receive antennas naturally imposes 

performance limits that can adversely impact applications. 

Using a multiplicity of transmit and receive antennas and 

exploiting spatial diversity provides additional degrees of design 

freedom that can help overcome such limitations. Further, when 

coupled with cognitive signal processing, such advanced systems 

offer significant improvement in performance over their 

monostatic counterparts. This will also likely lead to new 

applications for radar sensing. In this paper we explore the 

fundamentals of multistatic network radar highlighting both 

potential and constraints whilst identifying future research 

needs and applications. Initial experimental results are 

presented for a 2-node networked staring radar. 

Keywords—Networks, Multistatic, Distributed, Cognitive, 

Intelligent, Radar 

I. INTRODUCTION 

Traditional monostatic radar, with transmission and 
reception via a single aperture has, in general, been the default 
design for almost as long as radar sensing has been around. It 
has the advantages of minimising equipment quantity and size 
and many radar characteristics are simplified. For example, 
ranging and detection performance are described using a 
circular geometry with the radar at the centre of the circle. 
Nevertheless, the monostatic configuration imposes limits 
that, potentially, can be overcome with a network of radar 
sensors. 

At the simplest level, a network may be thought of as the 
combination of outputs from multiple monostatic radars. 
There are numerous examples where this has been 
implemented, driven by particular system level performance 
gains as well as extended and contiguous coverage. The well-
known US NEXRAD network of weather radars and its 
European counterpart OPERA are good examples [1, 2]. 
NEXRAD consists of around 160 radar sites, covering 
continental USA and provides continuous monitoring of 
weather phenomena in both space and time. OPERA has over 
200 radar stations spread across more than 20 countries. Both 
supply a wide range of weather products although they 
achieve this in significantly different ways. 

These networks of radars designed for detecting and 
tracking weather phenomena have enabled further 
exploitation in other applications areas. For example, aero 
ecology is a fast-growing field that examines the aerial 
movement of organisms and their interactions with the aerial 
environment, birds, bats and insect being most commonly 
observed [3]. Processing based networks, such as the 
European Network for the Radar surveillance of Animal 
Movement (ENRAM) have been firmly established. These 
focus on the specific processing requirements of networked 

weather radar data to both enhance quality and coverage of 
observations. 

Ocean monitoring, driven by the need to feed climate 
models as well as providing real-time assessments has led to 
rapid growth in a networked approach. Indeed, the goal is to 
have complete and comprehensive global coverage [4].  

In fact, radar networks are rapidly becoming all pervasive 
finding applications in remote sensing, provision of 
perception for autonomous transportation, health monitoring, 
security and military applications and many more. An 
excellent and up to date overview is provided in [5]. Here we 
exclusively use the definition of the network to be a collection 
of multistatic nodes linked coherently. This is different from 
multi-site networks that operate in-coherently and can offer 
benefits but are outside the scope of this paper.  

Advances is radar hardware are leading to equipment that 
can be lower cost and flexible in parameter selection. As a 
consequence, fully coherent networks in which transmitters 
and receivers are distributed in space, as opposed to a series 
of connected monostatic radars have started to become of 
interest. Examples include the Netrad [6] and Nextrad [7] 
systems developed in the UK. These offer opportunity both to 
investigate hardware design as well as providing a source of 
gathering networked data observations of targets and clutter, 
both in scarce supply. The CREW radar system [8] was 
developed as a networked radar capable of cognitive 
processing both in terms of hardware adaptation and 
processing adaptation. This is the first example of the specific 
design of a cognitive networked radar system. 

The advantages of coherent networks are in improved 
sensitivity, enhanced target detection, reduced dynamic range 
requirements and richer forms of target and clutter echoic 
information.  

Overall, radar networks offer potential performance 
advantage through additional degrees of freedom afforded by 
using multiple transmitters and receivers separated in space. 
In recent years, the advantages of using a multiplicity of radars 
to form a spatially distributed sensor have led to a sustained 
increase in research and development. In parallel, there has 
been an upsurge in advanced processing of radar echoes 
exploiting feedback, memory, and prior information, all 
coming under the banner cognitive. The combination of 
cognitive signal processing and the distribution of sensor 
elements over space offers yet further potential benefits. Here 
we examine aspects of coherent, cognitive radar networks 
concentrating on performance potential and real-world 
implementation. Specifically, we introduce the relationship 
between transmitter and receiver location and achievable 
levels of performance. We then investigate the real-world 
design and implementation of a network using a staring 
geometry as a means of establishing hardware performance, 
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particularly the levels of achievable coherency, as a function 
of design approach.  

The remainder of this paper is organised as follows. 
Section II investigates the optimal pairing of receiver arrays in 
a network for minimising the position and velocity estimation 
error for a target. Section III describes the hardware set for 
initial field trials using a two node multistatic network of 
staring radar and presents result from small light aircraft used 
as the reference target. Finally, the conclusions are given in 
Section IV. 

II. GEOMETRY AND PERFORMANCE 

A multistatic radar network's ability to estimate a target 

position and velocity depends on its geometry, relative to the 

target. Previously, a study into finding the geometry that 

minimises the position and velocity estimation error has been 

completed [18]. Here, building on the previous work, a 

method for selecting the optimal combinations of 

measurements from a network is presented. This section 

contains three subsections. Firstly, the Cramér Rao Lower 

Bound (CRLB) for estimating a targets position and velocity 

from a network is presented. Secondly, the receiver selection 

algorithm is introduced and applied to a given network 

geometry. Finally, the algorithm is applied to a simulated 

target trajectory. 

A. Target Position and Velocity Estimation Error 

A two-step method for estimating a 2D target position and 

velocity from a network is summarised [18]. Firstly, each 

receiver independently estimates the target relative range and 

Doppler shift. Secondly, the target range and Doppler MLE 

estimates are centrally combined to estimate, the vector 

parameter (𝜽) that describes the deterministic unknown target 

position and velocity, using the asymptotic properties of 

MLE estimators. 

 Consider a radar network consisting of a single 

transmitter and N omnidirectional receivers. The received 

signal at each receiver will be time delayed and Doppler 

shifted depending on the geometry of the radar network and 

the relative position and velocity of the target. The received 

signal after down conversion may be expressed as: 

𝑠𝑛(𝑡) = √𝐸𝑛𝑢(𝑡 − 𝜏𝑛(𝜽))𝑒
2𝜋𝑖𝑓𝑛(𝜽)𝑡 + 𝑤𝑛(𝑡) (2) 

where 𝜏𝑛(𝜽),  𝑓𝑛(𝜽)  and 𝐸𝑛  represent the time 

delay, Doppler shift and the energy received at the nth 

receiver, the complex envelope 𝑢(𝑡) is assumed to be unitary. 

The signal noise 𝑤𝑛(𝑡) is modelled as complex zero-mean 

Gaussian random process. The estimation performance of the 

time delay and Doppler shift from (2) is well known and 

depends on the signal to noise ratio (SNR) and the ambiguity 

function of the complex envelope [9]. The MLE estimator of 

range and Doppler can asymptotically be modelled as 

Gaussian random variables: 
�̂�𝑛(𝜽) = 𝑟𝑛(𝜽) + 𝑒𝑟𝑛 

𝑓𝑛(𝜽) = 𝑓𝑛(𝜽) + 𝑒𝑓𝑛  
Σ𝑛 = 

1

SNR𝑛
(
𝜎𝑟
2 𝜎𝑟𝑓

𝜎𝑓𝑟 𝜎𝑓
2) (3) 

where �̂�𝑛 and 𝑓𝑛 are the MLE estimates of the target range 

and Doppler shift at the nth receiver (�̂� = 𝑐�̂� where 𝑐 is the 

speed of light). These measurements are dependent on the 

target parameter vector and the geometry of the radar 

network. The range and Doppler shift measurements from the 

radar network are combined into a single vector (4). 

    The vector 𝒛 is a Gaussian random vector with mean value 

𝝁(𝜽) and covariance matrix 𝚺. As the measurement noise 

signals in (2) from each receiver are independent, the 

measurement errors are also independent and the covariance 

matrix of 𝒛 is a block diagonal matrix (5). 

𝚺 =  blkdiag(Σ1, Σ2, … , ΣN) (5) 

    Each diagonal block contains the range and Doppler shift 

covariance matrix from each individual receiver in the 

network. As 𝚺  is a block diagonal matrix, the Fisher 

Information Matrix (FIM) of the estimation of the target 

parameter vector (𝜽) from (3) may be written as: [10] 

[𝐼(𝜽)]𝑖𝑗 = ∑[
𝜕𝝁𝑛(𝜽)

𝜕𝜃𝑖
]

T

Σ𝑛
−1

𝑁

𝑛=1

[
𝜕𝝁𝑛(𝜽)

𝜕𝜃𝑗
] 

[
𝜕𝝁𝑛(𝜽)

𝜕𝜃𝑖
] =  [

𝜕𝑟𝑛(𝜽)
𝜕𝜃𝑖
𝜕𝑓𝑛(𝜽)
𝜕𝜃𝑖

] 

(6) 

The CRLB is the inverse of the FIM (6) and defines a 

bound on the covariance of an unbiased estimator of the target 

parameter vector using the networks range and Doppler 

measurements. The CRLB depends on the network geometry 

and the target position and velocity of the target. 

B. Optimal Receiver Pair Selection 

Consider a scenario in which the measurements of only a 

subset of the network’s receivers can be used to estimate the 

target position and velocity. The optimal subset of receivers 

are the receivers which result in the smallest possible 

estimation error of the target parameter vector. The trace of 

the position and velocity CRLB can be used as a cost function 

to compare the estimation performance of different subsets of 

receivers for a given target position and velocity.  

 Fig. 1 Network Geometry 

Fig. 1 illustrates a radar network consisting of a central 

radar and four smaller omnidirectional bistatic receivers. The 

central radar is based on the performance of the Aveillant 

Gamekeeper radar and each bistatic receiver is based on the 

performance of a single Aveillant channel [14]. Here, we 

consider how to select, for a given target position and 

𝜽 = (𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦) (1) 

𝒛 = 𝝁(𝜽) + 𝒆 =

(
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velocity, which pair of the bistatic receivers to use in 

combination with the central radar.  

The receiver selection algorithm evaluates, for a given 

target position and velocity, the trace of the position and 

velocity CRLB using the measurements from each pair of 

bistatic receivers in combination with the measurements from 

the central radar and selects the pair of bistatic receivers that 

minimises the resulting trace. For the radar network shown in 

Fig.1, there are six possible combinations of receiver pairs. 

 
Fig. 2 Optimum receiver pair map 

Fig. 2 shows a colour coded slice of the optimal pair map 

for the network illustrated in Fig. 1. The slice corresponds to 

drone like a target that has a velocity of −10ms−1 in both the 

𝑥  direction and 𝑦  direction. Each colour corresponds to a 

different pair of receivers. Note, that the map is symmetrical 

as the target has the same velocity in both the 𝑥  and 𝑦 

direction. 

C. Simulated  Trajectory. 

This sections applys the selection algorthm to a simulated 

trajectory. For each point in the trajectory the optimal 

receiver pairings is calculated based on the targets position 

and velocity relative to the network. 

 
Fig. 3 Optimal receiver pair selection for a simulated trajectory 

Fig. 3 shows a simulated trajectory of a drone like target, 

colour coded according to the optimal receiver pairings. The 

target moves in an anticlockwise direction along the 

trajectory. The targets speed along the three straight sections 

(labelled S1 to S3) is held constant at 10ms−1, 30ms−1 and 

5ms−1 respectively. The target speed is interpolated on the 

corners (labelled C1 to C3) to transition from the speed of the 

previous section to the next section.  

 

Fig. 4 shows the trace of position and velocity CRLB for 

the simulated trajectory. The solid lines correspond to times 

when the targets speed is constant (S1-3), and dotted lines 

correspond to corners (C1-3). Fig. 5 and 6 show the 

theoretical root mean square error (RMSE) for the position 

and velocity components of the CRLB trace. The minimum 

position RMSE ranges from 8m to 1m, and the minimum 

velocity RMSE ranges from 0.01ms−1 to 0.07ms−1. In both 

plots, there are fluctuations between 250s and 500s; this 

period corresponds to times when the targets speed is highest, 

and therefore, its position and velocity are more rapidly 

changing. 

 Fig. 4 Trace of the position and velocity CRLB over time 

 Fig. 5 Position theoretical minimum RMSE 

 Fig. 6 Velocity theoretical minimum RMSE 



D. Summary 

This section has explored a method for using the CRLB of a 

position and velocity estimator to determine the optimal 

pairings of receivers. This work can be applied to cooperative 

scenarios where the incoming trajectory is known to a greater 

degree of confidence (landing at airports) where the 

measurements from additional bistatic receivers are selected 

to improve estimation performance along specific parts of the 

trajectory. Currently, only range and Doppler measurements 

have been exploited; however, the model can be extended to 

include additional measurements, such as angle of arrival 

(AOA). The model can also be expanded to include real-time 

knowledge of the environment and the effects of interference 

and multipath propagation on the received signals. 

III. A STARING RADAR NETWORK 

In this section we describe the implementation of a small 
radar network that exploits a staring mode of operation for 
each transmit node and multiple fixed beams on receive. 

Staring radars have attracted particular interest in recent 
years due to the advantage they offer for surveillance of small 
airborne targets such as drones [11, 12, 13, 17]. L-band staring 
systems as detailed in [14] use a broad beam antenna on 
transmit and an array of 2-D receivers that are digitised at 
element level to enable digital beam-forming on receive. The 
radar recorded data from each channel (64 in total) for each 
range bin and pulse is processed to form spatial beams. The 
time samples from each range and angular bin are coherently 
integrated to obtain Doppler data. The non-scanning 
configuration allows extended dwell on targets over the entire 
field of regard which provides the necessary sensitivity for 
reliable detection of drones, birds and other small objects in 
strong clutter [15]. The angular coverage is bounded by the 
antenna aperture and networking multiple staring radars 
enables both extension of the coverage area along with other 
key advantages such as improved sensitivity and resolution as 
discussed in the previous section. 

The practical challenge with the networking a set of staring 
radars is to understand how to ensure full coherence between 
all the nodes in the network. Each radar is driven by a 
reference oscillator that is the source of the carrier frequency 
generation but also provides coherence between the 
transmitted waveform and the received echo. For multiple 
radars to operate coherently they must either be driven by the 
same reference oscillator or be able to operate with highly 
stable clocks that are able to maintain coherence between non-
collocated nodes. Whilst the aim is to seek full coherence 
between all the nodes in the radar network, preliminary 
experiments were undertaken to evaluate the performance that 
can be achieved with a networked radar without using, in this 
example, any direct “wired” synchronisation. 

The experimental set-up comprised two staring radars, 
separated by about 1km as shown in Fig. . Both radars were 
tuned to the same L-Band carrier frequency. The primary 
radar was both transmitting and receiving. It was set to a pulse 
repetition interval of 136µsecs. The timing of each pulse is 
controlled by the clock counter provided by the reference 
oscillator. The received signal, once down-converted to 
baseband, is then matched filtered with a digital copy of the 
transmitted pulse. The match filter delay is set based on an 
integer number of clock-counts from the time of the 
transmitted pulse so that the first range gate corresponds to a 

distance equal to the start of the radar range swath. For the 
transmit radar, the delay corresponding to the location of the 
start of the range swath is set to 1.5 µsecs. This way the range 
gates are correctly positioned in relation to the radar’s true 
location. The primary radar captured data corresponding to 
range swath of 5km which equates to 33 µsecs duration. For 
the remaining 103 µsecs of the pulse interval, the receiver 
remains silent and captures no data. The data capture is 
initiated again at the next pulse transmission and the cycle is 
repeated. For the fully coherent primary radar the 64 range 
gates are perfectly aligned with respect to the start range for 
each pulse. This represents the classic operation of a 
monostatic radar.  

The second radar was also configured to the same carrier 
frequency as the primary radar. This radar also used the 
identical digital copy of the pulse to use in match filtering. 
Whilst the second radar operated at the same reference 
oscillator frequency, as there was no direct synchronisation 
there was no coherency between the two radar. For this second 
radar the range swath was set to 10km so the data capture 
duration per pulse is 68µsecs. With no time alignment 
between the two radar sample clocks, the passive radar data 
capture sequence started essentially at random times 
compared to the transmitted pulse timing. The pulse repetition 
interval on the second radar was also set to 136 µsecs, same 
as that for the primary radar. This was limited as a result of the 
maximum write speed of the data disk to which raw data was 
recorded. In summary, the configuration of the second radar is 
that it captured data for 68 µsecs, remained silent for a further 
68 µsecs and then repeated the data capture. Within one pulse 
repetition interval of the second radar, a single pulse from the 
primary radar would have been transmitted. With a capture 
window of only half as long as the pulse repetition interval this 
equated to the passive radar only being able to align its capture 
window for about 50% of the time with the transmit pulse.  
Note, no reference channel is used to capture the direct path 
and the matched filter using a digital copy of the transmitted 
pulse is performed on the echo received by the passive 
receiver.  

A key challenge is how to align the pulse delay that is 
exercised to initiate the match filtering on the second radar 
with the transmit pulse time of the primary radar. The clock 
count generated by the second radar will have not only a 
random offset with respect to the clock count of the primary 
radar but the two clock counts will drift over time and 
introduce further mis-alignment. Whilst a correction for the 
clock count offset and correction for drift will require full 
coherence between the network, preliminary results are 
presented without coherence to assess the signal quality that 
would be achieved with a non-coherent network.  

Both radars were operating over several periods spanning 
two days and data was recorded for a number of flights with 
control targets. In addition to the control targets there were 
also a number of opportune aircrafts that flew within the field 
of view of the radar during the trial. The primary radar was 
processing the monostatic data in real-time and outputting 
tracks of the detected targets and several of such tracks were 
noted during the course of the trial. Fig. 8 shows section of a 
track from one of these opportune aircraft. The target had 
taken off from the runway at the airfield and the radar tracker 
reported the target to be flying outbound until eventually it 
went out of range. 



Raw data was recorded for both radars and processed off-
line to analyse the range-Doppler output obtained with each 
radar node. GPS data from the control targets were used to 
identify the target echoes in the raw data. Similarly, the 
position estimates from the tracker output were used to extract 
raw data for any target for which radar tracks were obtained.  
Information on the target position as a function of time is used 
to form a beam centred on the target for each range bin through 
digital beam forming. The beam formed data from 2048 pulses 
for all the range delay samples are processed using an FFT to 
generate one range-Doppler frame. The process is repeated 
over multiple frames and the range-Doppler data is analysed 
to evaluate the output from both radar receivers for the 
duration of the track. 

 
Fig. 7  Experimental set-up for two staring radar network 

 

 
Fig. 8  Track of target of opportunity travelling out-bound  

Firstly, the spectrogram of the target obtained with the 
primary radar is presented in Fig. 9. The spectrogram plots the 
Doppler for each frame at the range bin as reported by the 
tracker. In this plot the strong echo at zero Doppler is from 
stationary ground clutter and the dominant peak at 20-30 m/s 
is from the target body Doppler. Note there are micro-Doppler 
sidebands which are characteristic of a rotary wing target and 
this is consistent with previous published results with this type 
of radar [16]. Next is shown a range-Doppler plot for the beam 
that is centred on the target for one frame (see Fig. 10). Radial 
velocity in m/s is plotted along the x-axis and the vertical axis 
is the range bin index where each range bin corresponds to 
roughly 75m spacing. There is strong clutter present at near 
range. The chosen frame is near the start of the track where 

the target is closest to the radar. The target location obtained 
from the tracker is marked by the red cross. This marks the 
exact location of the target body Doppler. The measured SNR 
is close to 60dB. As the target heads further out in range its 
SNR drops and it can be observed that the sidebands are fading 
out as well. The variation in the measured SNR ranged from 
60dB to 30dB over the length of the track. Overall, the results 
from the monostatic radar are well within the expected signal 
level anticipated from a manned aircraft at short ranges. 

 

Fig. 9  Doppler spectrogram of an aircraft observed with the 

monostatic system 

 
Fig. 10  Range Doppler output from primary radar showing the 

echo from target of opportunity (green circle & red cross) 

Next, the output obtained with the second radar that is only 
operating as a passive receive system is shown in Fig. 11. The 
range-Doppler plot is taken from approximately the same time 
instance as the data presented in Fig. 10. The position 
estimated from the monostatic radar track is used to select the 
estimated location of the target in the bi-static data. The bi-
static Doppler will be near identical to the monostatic Doppler 
as in this instance the target is traveling along the radial path 
with respect to both radars. The bistatic range will be less than 
the monostatic range, however in this case there will be an 
additional misalignment between measured and actual bi-
static range due to the sample clock offset with respect to the 
transmitted pulse. This is evident in the measured range-
Doppler plot of Fig. 11 where the initial half range bins have 
noise only data. The range bin at which the clutter starts can 
be used as a coarse alignment for the start of the range gate. It 
does mean that only part of the 10km range swath captured by 
the passive radar will have valid data. 

This is further evident in the spectrogram (Fig. 12) which 
is generated for the same time span as for the spectrogram in 
Fig. 9. In the bi-static spectrogram the target echo is lost 
halfway along the time span whilst the target remains present 
in the monostatic data recorded over the same period. Also 
evident is the broader Doppler spread in both the target and 
clutter Doppler compared with the monostatic spectrogram. 
This is due to the non-coherent nature of the current 
experimental set-up. However, despite the lack of coherence, 
the SNR is sufficiently high to even observe the micro-
Doppler sidebands. A further observation made with this data 
set is that the SNR fluctuations differs between the bistatic and 



monostatic measurements. Evidently, this is one of the 
motivations for network systems to exploit the difference in 
SNR to overcome signal fading. 

The results show that even a passive receiver, albeit with 
crude time alignment, allows sufficient processing gain to 
detect echoes of a target illuminated by the transmitter 
component of the network. Further work is required to 
understand what additional processing enhancements will 
enable aspects such as removal of correction for the offset 
error in range within the network geometry. Modelling will 
aid understanding of the predicted range-Doppler response 
that is expected for the given radar geometries. Future work 
will explore the level of synchronisation tolerance that will be 
required to achieve optimal processing gain and maximise 
range, angle and Doppler accuracy.  

 
Fig. 11  Range Doppler output from the passive bistatic radar 

showing the echo from the target of opportunity (green circle & 

red cross) 

 
Fig. 12  Doppler spectrogram of an aircraft observed with the 

passive system 

IV. CONCLUSION 

In this paper we report initial aspects of the performance 
of networked staring radar that are related to the location and 
optimum processing of signals under the assumption of 
perfect coherency. We also report early experiments 
exploiting a pair of staring radars, that form the fundamental 
bistatic unit of a networked radar, in order to explore options 
for levels of distributed coherency as a function of method 
used to establish that coherency. Here we show that a passive 
mode of non-coherent operation is sufficiently successful to 
enable target detection in both receive nodes of the network, 
but further research is required to evaluate the degree of 
achieved coherency when the system is fully synchronised. 
This will provide a benchmark against which other methods 
can be compared and ultimately how these can be combined 
with cognitive processing to enhance system performance. 

 

ACKNOWLEDGMENTS 

The work was part funded by DSTL and supported by an 

Aveillant Limited funded Industrial PhD with Cranfield 

University. The authors would also like to thank Aveillant 

Limited for supporting the radar trials. 

REFERENCES 

[1] S. Ansari, S. Del Greco, E. Kearns, O. Brown, S. Wilkins, M. 
Ramamurthy, J. Weber, R. May, J. Sundwall, J. Layton, A. Gold, A. 
Pasch and V. Lakshmanan, “Unlocking the potential of NEXRAD data 
through NOAA’s big data partnership”, Bull. Am. Metrorol. Soc., 
2018, vol 99, pp. 189-204. 

[2] A. Huuskonen, E. Saltikoff and I. Holleman, “The operational weather 
radar network in Europe”, Bull. Am. Metrorol. Soc., 2014, vol 95, pp. 
897-907. 

[3] J. Shmoun-Baranes, C. Nilsson, S. Bauer and J. Chapman, “Taking 
radar aeroecology into the 21st centuary”, Ecography, 2019, vol. 42, pp. 
847-851. 

[4] H. Roarty et al, “The global high frequency radar network”, Front. Mar. 
Sci., May 2019, https://doi.org/10.3389/fmars.2019.00164 

[5] S. Hamed Javadi and A. Farina, “Radar networks: A review of features 
and challenges”, Information fusion, vol. 61, 2020, pp. 48-55. 

[6]  T.E. Derham, S. Doughty, K. Woodbridge and C.J. Baker, “Design 
and evaluation of a low-cost multistatic radar system”, IET, Radar, 
Sonar and Navigation, 2007, vol. 1(5), pp. 362-368. 

[7] W. A. Al-Ashwal, C. J. Baker, A. Balleri, H. D. Griffiths, R. 
Harmanny, M. Inggs, W. J. Miceli, M. Ritchie, J. S. Sandebergh, A. 
Stove, R. J. A. Tough, K. D. Ward, S. Watts and K. Woodbridge. ” 
Statistical analysis of simultaneous monostatic and bistatic sea clutter 
at low grazing angles”, IET Electronics letters, 2011, 47(10), pp. 621-
622. 

[8] G.E. Smith, Z. Cammenga, A Mitchell, K.A. Bell, J. Johnson, M. 
Rangaswamy, C.J. Baker, “Experiments with cognitive radar”, IEEE 
Aerospace and Elctronic System Magazine, 2016, vol 31(12), pp. 34-
46. 

[9] H L Van Trees. Detection, estimation, and modulation theory, Part 3 - 
Radar-sonar signal processing and Gaussian signals in noise, volume 
18. John Wiley, 1972. 

[10] Steven M Kay 1951-. Fundamentals of statistical signal processing: 
estimation theory / Steven M. Kay. PTR Prentice Hall, c1993., 199 

[11] M. Jahangir, C. J. Baker and G. K. Oswald, “Doppler characteristics of 
micro-drones with L-band multibeam staring radar”, IEEE RadarCon 
2017, Seattle, US, May 2017 

[12] M. Jahangir M and C. J. Baker, “Results from U-space live test flight 
trials evaluating non-cooperative surveillance of drones using an L-
band staring radar”, International Radar Symposium IRS 2019, Ulm, 
Germany, Jun. 2019 

[13] M. Jahangir, B. I. Ahmad B I and C. J. Baker, “Robust Drone 
Classification Using Two-Stage Decision Trees and Results from 
SESAR SAFIR Trials”, 2020 IEEE International Radar Conference, 
Washington DC, US, Apr 2020 

[14] M. Jahangir, “Target centric wide-area 3-D surveillance using a non-
scanning multibeam receiver array”, Proc. IEEE International Radar 
Conference, Arlington, US, 11-15 May 2015  

[15] M. Jahangir and C. J. Baker, “L-band staring radar performance against 
micro-drones”, International Radar Symposium IRS 2018, Bonn, 
Germany, Jun. 2018 

[16] C. Bennett, M. Jahangir, F. Fioranelli, B. I. Ahmad and J. L. Kernec, 
“Use of Symmetrical Peak Extraction in Drone Micro-Doppler 
Classification for Staring Radar”, 2020 IEEE Radar Conference, 
Florence, Italy, Sep 2020 

[17] S. A. Harman, “A comparison of staring radars with scanning radars 
for UAV detection: Introducing the Alarm staring radar”, In the 
proceedings of the European radar conference (EuRAD), pp. 185-188, 
2015 

[18] B. Griffin, A. Balleri, C. J. Baker, and M. Jahangir, “Optimal receiver 
placement in staring cooperative radar networks for detection of 
drones”, 2020 IEEE Radar Conference, Florence, Italy, Sep 2020 

 

https://doi.org/10.3389/fmars.2019.00164



