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Abstract  

Batches of grain are accepted or rejected based on the average mycotoxin concentrations 
from a composite grain sample. Spatial analysis of mycotoxins in two grain bulks was 
performed to determine the spatial distribution of toxins, whether they were collocated and 
the proportions of grain over legislative limits. The 2D distribution of deoxynivalenol (DON) 
and ochratoxin A (OTA) in a truck load of wheat grain was analysed, as was the distribution 
of fumonisins (FB1 and FB2) in a maize grain pile in 3D. The data had been previously 
analysed, but results here showed that highly skewed data need to be transformed to properly 
investigate spatial autocorrelation. In the truck of grain, DON and OTA showed co-variation 
and OTA, in contrast to previous studies, showed spatial structure when converted to normal 
scores. Spatial analysis of the maize showed that FB1 and FB2 contamination levels were 
both highest near the outer face and base of the grain pile. Simulations for both grain bulks 
showed that for average toxin concentrations close to the legislative limits, the proportions 
of grain over the legislative limit can vary greatly and be very small when toxin 
contamination is highly positively skewed. The implications of the results for management 
were considered. Post-harvest, strategically placed sensors could be used to monitor 
environmental conditions within the stored grain in real time and detect the first signs of 
spoilage allowing swift remediative action so less grain is wasted. Pre-harvest approaches 
for mycotoxin management are suggested as additional food waste reduction strategies.

Keywords: Mycotoxins, grain storage, spatial analysis, variograms, local Moran’s I, 
sequential Gaussian simulation 

Introduction 

The FAO (2017) estimates the world will need to produce 56% more food to feed over 9 
billion world population by the year 2050 (Ranganathan et al. 2018). Searchinger et al. (2019) 
noted that the key to producing a “sustainable food future,” are reducing waste, increasing 
food production while maintaining (or reducing) the land used in agriculture, and cutting 
greenhouse gas (GHG) emissions. The pursuits of precision and digital agriculture have the 
potential for addressing the problems associated with feeding the future global population 
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whilst not extending the cultivated area and reducing waste could contribute to reductions in  
GHGs.  

Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in a range  
of commodities both in the field before harvest and post-harvest during storage (Kushiro, 
2008; Wang et al., 2016). Food standard regulations around the world cover a range of 
mycotoxins which are harmful to human and animal health (Omatayo et al. 2019). The 
maximum permissible concentrations of mycotoxins that are legislated vary by country, toxin  
and food commodity (Mazumder and Sasmal, 2001). It has been suggested that lack of 
legislation for aflatoxin, a mycotoxin that is particularly carcinogenic, in some less developed  
countries can be linked at least in part to between 2-10 times (Henry et al., 1999) and 16–31  
times more deaths from liver cancer in some less developed countries (Liu and Wu, 2010).. 

This illustrates the great importance of food safety regulation. However, the testing for 
mycotoxin contamination is expensive (Papadoyannis, 1990) so it does not take account of 
spatial variability in the distribution of these toxins within batches of grain and other 
foodstuffs. The standard protocol is to collect numerous samples at regular intervals 
throughout a batch of grain. These are then mixed together to make one composite sample in 
which the mycotoxin levels are measured to represent the average concentration of 
contamination in the whole batch of grain (EU, 2006a; Maestroni and Cannavan, 2011). This 
approach could potentially result in large quantities of uncontaminated grain being wasted or 
pockets of highly contaminated grain being missed if the toxin levels are very high in small, 
localized pockets within the batch of grain.  

Due to this sampling approach, little is known about the spatial variation of mycotoxins in 
storage settings. Spatial studies of mycotoxins have been minimal due to the costs of testing 
for mycotoxins. For such studies of representative sampling, validated accredited methods 
are required to ensure the accuracy of the results. This is expensive, and because of the small 
margins in the grain industry, it is often thus not carried out. Portell et al. (2020) visually 
investigated the three dimensional (3D) spatial extent of Fusarium graminearum
colonization of wheat grain at different moisture contents and following inoculation at 
different positions within clear storage jars. Colonization dynamics and respiration were 
affected by the inoculation position but dry matter loss and fungal biomass were mainly 
affected by the moisture content. Biselli et al. (2008) measured deoxynivalenol (DON) and 
ochratoxin A (OTA) contamination of 100 samples from a truck load of grain. They 
compared the average concentrations from a bulked sample with the average concentrations 
of the 100 individual samples. They found that the former was representative of the latter for 
DON, but not for OTA, which had a far greater coefficient of variation. Using the same data 
set, Rivas-Casado et al. (2009a) investigated the spatial structure of DON and OTA variation 
within the truck- load of grain using variograms. They concluded that DON showed spatial 
structure but that OTA did not. Rivas-Casado et al. (2009b) then used this information to 
simulate data sets that could be repeatedly sampled to help determine suitable sampling 
protocols for the future. The dataset generated by Biselli et  al. (2008) showed spatial 
variation in 2 dimensions (2D), but variation within grain bulks needs to be examined in 3D. 
Rivas-Casado et al. (2010) sampled stored maize in a silo in 3D with the aim of characterising 
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the spatial structure and determining a suitable grain sampling and bulking strategy. 
However, they found no spatial structure in the data so the latter was not possible.  

The mycotoxin levels in the truck load of wheat grain and the maize pile investigated by 
Rivas Casado et al (2009a) and (2010), respectively were highly skewed. As variograms are 
based on variances, they can be sensitive to a few large outliers or asymmetry in the data 
distribution (Kerry and Oliver 2007a,b). Rivas Casado et al., (2009a, 2010) did not employ 
any method of dealing with the asymmetry in OTA or FB1 and FB2 concentrations, 
respectively. Typical methods of dealing with asymmetry for variogram computation involve 
transforming the data to logarithms or indicators, removing outliers or computing normal 
scores (Kerry and Oliver 2007a,b). The aim of the present study was to re-analyse the data 
investigated by Rivas Casado et al. (2009a) and Rivas Casado et al. (2010) to determine if 
dealing with the non-normality in the OTA and FB1 and FB2 data could reveal spatial 
structure in OTA, and any spatial association with DON  data and whether there was spatial 
structure in the FB1 and FB2 concentrations in 3D.  

These aims were partially fulfilled by Kerry et al. (2019a) in an initial examination of the 
spatial variation in DON and OTA in the truck load of grain and FB1 and FB2 in the stored 
maize grain. Unlike the previous studies of Rivas Casado et al. (2009a,b) and Rivas Casado 
et al. (2010). However, they did not interpolate (krige) the data to visualize and investigate 
the proportions of the two grain bulks that were below the legislative limits to quantify the 
amount of waste that was occurring. This has been was done in the current paper and 
geostatistical simulation has also been employed to determine the range and degree of 
uncertainty in the grain proportions that were above the legislative limits for batches of grain 
with the same variograms but a mean concentration that was equal to the legislative limit. 
This was done to determine what range of proportions of uncontaminated grain would be 
wasted in such situations and to suggest future management strategies that could reduce some 
or all of this waste.  

Materials and Methods 

Data collection 

The data for this paper come from two previous studies. Data on different mycotoxins were  
collected from two grain bulks, one in a truck and one in a grain pile. The variations in DON  
and OTA in the truckload of previously stored wheat were examined in two 2D dimensions.  
The truckload of wheat with dimensions of 2.5 m×10 m was sampled from above in the 
horizontal plane at a spacing of 0.5 m producing a grid of 100 points (Biselli et al., 2005, 
Figure 1a). A five-aperture probe sampler was vertically inserted into the grain at each grid 
point to take a single incremental sample containing grain from five depths. Each sample was 
mixed and subsampled before the DON and OTA concentrations were measured. Full details 
of the lab procedures used are given in Biselli et al. (2005). The final sets of values describe 
the spatial variation of DON and OTA concentrations (µg kg-1) in a two-dimensional 
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horizontal plane but as values are averaged with depth, there is no insight into how DON or 
OTA changed with depth.  
Data were collected from the stored maize grain pile in 3D. A bed of maize in a large grain 
store with an exposed surface area of ~ 3800 m2 and height of ~10 m was sampled in three 
planar layers inclined at 45°, parallel to the open face of the bed, providing a three D 
dimensional grid of points (Rivas Casado et al., 2010, Figure 1b). There were 50 points in 
each layer on a 10 × 5 point grid with a 0.5 m spacing between points. There was also a 
spacing of 0.5 m between each of the layers (Figure 1b). Grain samples were taken using 
probe with a conical chamber at the tip that could be opened and closed using a lever at the 
end of the shaft (Figure 1c), collecting about 200 g of grain. A 0.5 m square metal frame was 
placed on the exposed grain face to locate the sampling points where the probe would 
Samples from the three different layers were taken at each point before moving the frame to 
minimize disturbance of the grain (Rivas Casado et al., 2010).  

The FB1 and FB2 contents were analyzed using the validated method detailed in Rivas Casado 
et al. (2010). Samples were ground, passed through a 1 mm sieve and homogenized. A 
solution of acetonitrile:methanol:water (25:25:50, v/v/v) was used to extract fumonisins with 
a grain to solution ratio of 1:5. Following further sample preparation concentrations of FB1

and FB2 (µg kg-1) were determined using a liquid chromatography–mass spectrometry system 
(Thermo-Fisher Scientific, San Jose, CA, USA) 

Data analysis 

The OTA data from the truck load of grain were transformed to normal scores (NS). Normal 
score ties were broken using the local mean of the eight nearest neighbor points. Normal 
scores were calculated in the same way for FB1 and FB2 from the grain pile. Omni-directional 
variograms in two dimensions with a lag separation of 0.5 m were computed and modelled 
for DON and OTA in the truck load of grain and FB1 and FB2 in each layer of the grain pile 
using SpaceStat (Jacquez et al., 2014). A two-dimensional cross-variogram with a 0.5m lag 
was computed between DON and OTA NST for the truck load of grain using SGems (Remy 
et al., 2009). Omni-directional variograms in three dimensions with a lag separation of 0.5m 
were computed for FB1 and FB2 concentrations in the grain pile using SGems (Remy et al., 
2009). Residual maximum likelihood (REML) variograms were also computed for FB1 and 
FB2 in each layer of the grain pile  using GeoR (Ribeiro et al., 2001). 

The global Moran’s I statistic investigates the spatial autocorrelation. It involves 
standardizing data to a mean of zero and unit variance and this can be problematic when data 
are highly skewed. However, in using the mean and standard deviation of a local 
neighbourhood to standardize data, the local Moran’s I (LMI) is less likely to encounter 
problems with skewed data. Univariate global and LMI analysis (Anselin, 1995) was done 
using SpaceStat for DON and OTA NS from the truckload of grain and for the FB1 and FB2

concentrations of the  individual layers in the grain pile. The global Moran’s I statistic 
determines if there is significant positive (clustering) or negative (spatial outliers) spatial 
autocorrelation in the data compared to a spatially random distribution. The LMI statistic 
computes the statistic for a moving window to determine if a given observation is similar or 
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different to the mean of neighbouring values (here within 1m). Maps were produced to show 
whether points were part of significant (p=0.05) clusters of low (LL- low values surrounded 
by low values) or high (HH – high values surrounded by high values) values, were significant 
spatial outliers (LH – low values surrounded by high values or HL – high values surrounded 
by low values) or were not significantly (NS) different from a random distribution. Monte 
Carlo simulation was used to determine the p-value of the LMI statistic for each observation. 
The number of tests was large and each point is reused in several tests so the risk of false 
positives was increased hence the Simes correction (Jacquez et al. 2014) for multiple testing 
was used to adjust for this. Bivariate global and LMI analysis between DON and OTA NS in 
the truck load of grain and between different layers for FB1 and FB2 in the grain pile was 
performed. This indicates if clusters in the two variables or layers are collocated by using the 
standardized values of the second variable as the neighbours for each point in the first 
variable. This means that HH and LL clusters are significant clusters with high or low values, 
respectively of both variables or in both layers and show positive spatial correlation in the 
variables. Any HL or LH clusters indicate significant clusters of high values in the first 
variable and low values in the second variable, or low values in the first and high values in 
the second variable. Such locations show negative spatial correlation between variables.  

The 2D variograms for truck load of grain were used to ordinary krige the raw DON and 
OTA NS data to a 0.1 m grid to give a more complete picture of likely variation of DON and 
OTA in the grain. Kriged OTA NS data were back-transformed to the original scale following 
kriging. This analysis was performed in SpaceStat (Jacquez et al., 2014). The 3D variograms 
for the FB1, FB2 NS data in the grain pile were used to ordinary krige the values to a 0.05 m 
grid. Following kriging, 3D local Moran’s analysis of FB1 and FB2 was performed following 
the approach of Kerry et al. (2017) and kriged NS values were back-transformed to the 
original scale. 

Finally, the mycotoxin data for the truck of wheat grain and the maize grain pile and their 
associated histograms and variograms were used for conditional sequential Gaussian 
simulation (SGS) of the data to 0.1 m and 0.05 m grids, respectively in SGems (Remy et al., 
2009). SGS converts data to NS so that data being simulated have a normal distribution. 
Following simulation, the values are back-transformed to the original scale. Here 100 
realizations were simulated for each dataset. The simulated values were converted to z-scores 
(zero mean and unit variance) by subtracting the mean from each value and then dividing by 
the standard deviation of the original dataset. Although data for OTA and FB1 and FB2 were 
highly positively skewed, the values of the z-scores reflected this with fewer negative z-
scores and more positive and large z-scores. These z-scores from simulation were analyzed 
to compute summary statistics for the 100 realizations and determine what proportion of 
points were above the mean of zero and would be rejected in a scenario where the mean 
concentration was equal to a legislative limit. 

Results and Discussion 

Frequency Distribution of Mycotoxins
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Figure 2 shows the histograms for DON and OTA contamination in the truck load of wheat. 
DON had a relatively normal distribution with a slightly elevated skew (1.21) caused by a 
large outlier and slight asymmetry (Figure 2a). DON had a large range of values of up to 
~2700 µg kg-1 and there were no points with 0 ppb. Most points had values between 1000 
and 1500 µg kg-1. The histogram for OTA (Figure 2b) showed a highly skewed (4.36) 
distribution, approximating a Poisson distribution, with a large number of points with 0 ppb 
and the highest concentration being ~9 ppb. Most values in the distribution are below 1 µg 
kg-1. Rivas-Casado et al (2009a) noted the strongly skewed distribution of the OTA data but 
did not address this problem although they log- transformed the DON data, which were far 
less skewed. The histograms in Figure 3a, b show the distribution of FB1 and FB2 in the stored 
maize grain pile. Both histograms showed marked asymmetry and FB2 had a larger skew 
(1.91). For FB1, the values reached up to ~8000 µg kg-1 whereas maximum values for FB2

were ~6000 µg kg-1. For FB1, most of the values were below 4000 ppb whereas for FB2, most 
values were below 2000 µg kg-1. The positively skewed distributions of all of the toxins 
examined in the truck and the grain pile suggests that concentrations of mycotoxins typically 
have skewed concentrations. Indeed, it is well known that environmental contaminants often 
have highly skewed distributions (Goovaerts et al. 1997; Van Meirvenne and Goovaerts, 
2001) and this has implications for how the pollutant is dealt with or managed. 

Spatial Analysis 

Variogram and Moran’s I Analysis of DON and OTA Contamination in a Truck load of Grain 
As the histograms for each mycotoxin showed marked asymmetry the use of log transformed 
and normal score transformed data (Webster and Oliver, 2007) was investigated for 
computing variograms and the Moran’s I. Table 1 shows the variogram parameters for DON 
and OTA contamination in the truck load of grain. The raw DON values showed good spatial 
structure with a variogram range of 4 m and nugget:sill ratio of about 13% (Figure 2c). These  
parameters were similar to those found for the log-transformed data by Rivas-Casado et al. 
(2009a). The variogram for OTA (Figure 2d) had a similar range to that of DON but a large 
nugget effect (62 %, Table 1) showing a large proportion of spatially random variation. 
However, the variogram of OTA NS (Figure 2e) had a nugget:sill ratio of 30% and the range 
decreased to 1m suggesting that patches with similar values were small. However, these 
smaller patches could appear as a greater proportion of random variation if the skewed data 
were not dealt with. Rivas Casado et al. (2009) suggested that there was no spatial structure 
in OTA perhaps due to the high proportion of nugget variation, but after dealing with the 
highly skewed data using NS new patterns were found. The global Moran’s I values (Table 
1) also agree with these findings. Raw DON values showed strong (0.468) positive and 
significant (p=0.001) spatial autocorrelation. In contrast raw OTA values showed negative 
spatial autocorrelation that was not significant (p=0.494) whereas the OTA NS data showed 
moderate, positive and significant spatial clustering (p=0.001). These results show that highly 
skewed data need to be transformed to properly investigate spatial autocorrelation in their 
patterns. 

Figure 4a and c show the spatial patterns of the raw values of DON and OTA in the truck. 
These patterns show most spatial variation occurring along the long axis of the truck which 
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is consistent with the method of loading the truck. Indeed, examination of directional 
variograms (not shown) for the long and short axis of the truck showed spatial structure for 
the long axis with parameters almost identical to the omni-directional variogram and 
predominantly random variation across the short axis of the truck. Rivas-Casado et al. 
(2009a) also observed similar differential spatial variation in the long and short axis of the 
truck. However, they concluded that the seemingly random variation across the short axis 
was a result of it being so short and there being low numbers of comparisons at each lag. 
Figure 4b and d show how DON and OTA values are clustered in space using the univariate 
local Moran’s I. These maps are consistent with the findings of the variogram and global 
Moran’s I analysis in that they show larger significant clusters of HH and LL points for DON 
than for OTA.  

The last row in Table 1 reports the parameters of a cross-variogram between DON and OTA 
NS (Figure 2f). This showed spatial structure and co-variation in the two toxins with patches 
of similar values with a diameter of ~3m. The bivariate LM (Table 1) also showed significant 
(p=0.001) spatial association between DON and OTA NS as did the bivariate local Moran’s 
I (Figure 4e). The bivariate LMI results (Figure 4e) showed areas with significant values 
exhibiting both positive (HH and LL, red and dark blue) and negative spatial (HL and LH, 
pink and pale blue) association between DON and OTA. Thus, correlation between the two 
toxins is missed by standard correlation coefficients (Spearman’s r<0.1, p>0.05) as the 
correlation changes from positive to negative locally. Figure 5a and b shows the kriged DON 
and OTA NS respectively. The patterns of variation in kriged DON and OTA NS are 
smoother and more continuous than for the raw data. This translates into a larger patch of LL 
values in the univariate LMI for DON and larger LL and HH patches in the OTA NS 
univariate LMI than for the raw data. This also further emphasizes that there are places in the 
truck load of grain where DON and OTA values are both positively (red and dark blue) and 
negatively (pink and pale blue) associated (Figure 5e).  

The spatial analyses suggest that clusters of DON and OTA are often co-located, but the 
patches of OTA are smaller. As DON is usually produced in the field (Kushiro, 2008) and 
OTA during storage (Wang et al., 2016). This finding is consistent with OTA developing 
from locations of high DON concentrations and spreading out from them. Although the two 
toxins are produced by different species of fungi, Hussein and Brasel (2001) noted that more 
than one toxin may show high concentrations in the same initiation points because 
mycotoxins weaken the host, which improves the environment for further fungal 
development. The patterns observed are also consistent with the notion that in storage 
settings, pockets of increased moisture may favour fungal development and toxin production 
by more than one fungal species. Fungal development is not possible under 0.70 water 
activity (aw) equivalent to about around 14-15% moisture content (MC) in wheat and maize. 
However, small increases in humidity can allow the growth of xerotolerant/xerophilic fungi 
such as Penicillium verrucosum (responsible for OTA contamination). Storage of cereals in 
silos represent a complex ecosystem, the metabolic activity and damage due to insect pests 
or of these primary species can result in an increase in moisture content in small pockets, 
facilitating initiation and colonisation by such mycotoxigenic spoilage fungi. Indeed, 
numerous studies showed increased fungal growth of a range of species when moisture 
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availability and temperature become conducive for spore germination and colonisation 
(Garcia-Cela et al., 2018; 2019; Magan et al., 2020). 

Variogram and Moran’s I Analysis of FB1 and FB2 Contamination in the Grain Pile 

Variograms in 3D of raw and log-transformed data were erratic or pure nugget. This is 
consistent with the findings of Rivas-Cosado et al. (2010). but 3D variograms for NS FB1

and FB2 contamination in the maize grain showed spatial structure with areas of similar 
values of 4 and 3 m diameter, respectively. Both toxins also showed ~ 50% spatially random 
variation (Table 2 and Figure 3c). The effect of skew on data can be more pronounced when 
datasets are small, so it is not surprising that the MoM variograms for the individual layers 
were predominantly erratic or pure nugget. Nevertheless, the REML variograms for layer 1 
(FB1 and FB2) and layer 2 (FB1) showed some spatial structure as did the MoM variograms 
for layer 3 (FB1 and FB2) (Table 2). These variograms showed a decreasing range with depth 
of layer from the exposed grain face (see Figure 1a). For FB2 a similar pattern to FB1 was 
apparent but there was no spatial structure in layer 2 and the patches of FB2 were smaller 
than those of FB1 in both layers 1 and 3. This means that larger patches of both toxins were 
found in the outer layers of the stored grain and smaller patches or random variation were 
found closer to the wall of the silo (Figure 1a). This could be a function of the degree of 
aeration and moisture in the outer and deeper layers of the grain pile, as fungi are aerobic 
microorganisms that need oxygen (Semple et al., 1989). However, the spatial variation in 
fungal development and environmental conditions needs further testing.  

Global Moran’s I (Table 2) and variogram analysis showed that there was a lot of spatially 
random variation and when there was spatial structure, it was closest to significant in layers 
1 and 3. Although the p values for none of the layers were significant (p=0.05). The bivariate 
Moran’s I values between layers showed that there was more spatial association between 
layers 2 and 3 for both toxins and this was significant at: p=0.003 and p=0.016 for FB1 and 
FB2, respectively. Correlations between FB1 and FB2 for each layer and all layers together 
were strong r>0.9. Figure 6a and b show the front and back view of kriged FB1 NS values. 
These show larger values near the base of the grain pile and these larger values extend higher 
on the front exposed grain face than for layer 3 that is closer to the wall. Figure 6c and d 
further emphasize these spatial patterns. They showed that 3D LMI maps had HH clusters 
located near rows 4 and 5 of layers 1 and 2 (Figure 1a) and LL clusters were located in rows 
1 and 2 of layers 1-3. The maps of the spatial distribution of high and low values for FB1 and 
FB2 were very similar so the latter are not shown. The spatial analysis showed that FB1 and 
FB2 behave and are located similarly but FB2 had  a shorter variogram range indicating 
slightly smaller patches of contaminations than for FB1. Logic might suggest that the 
distribution of HH and LL 506 clusters within the stored grain reflects a case where moisture 
gathers under the influence of gravity towards the base of the stored grain and that toxins 
develop most in the outer layers at the base of the grain pile where oxygen and moisture and 
moisture supply are greatest. However, this could also be the result of differences in 
temperature within the grain. The environmental conditions of the grain where toxin levels 
are highest would need to be measured and monitored to confirm whether this is the case or 
not. Spatial analysis of mycotoxins and environmental conditions in more stored grain silos 
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are needed to determine whether the outer layers at the base of grain piles tend to have higher 
toxin concentrations and if so, why. If these areas are typically at higher risk of contamination 
then they should be monitored with temperature, moisture and CO2 sensors. This type of data 
could be utilised by grain silo managers to help evaluate the temporal relative risk of 
mycotoxin contamination and take immediate and appropriate remedial action. Garcia-Cela 
et al. (2020) defined three different risk levels based on the CO2 production levels in wheat 
naturally or artificially inoculated with Fusarium graminearum. If the level of risk is 
increased (by increased CO2) the immediate recommendation is to aerate the silo and reduce 
the m.c. and thus the colonisation by pockets of mycotoxigenic moulds. If the risk is 
increased then batches may need to be diverted to animal feed or biogas production. 

Estimated Percentages of Grain Discarded and Their Uncertainty 

To determine the percentages of each batch of grain that was above the legislated limits, 
ordinary kriging was used. This interpolated values of each mycotoxin in the truck load of 
wheat grain and in the maize grain between sampling points. To determine the uncertainty 
associated with kriged estimates, conditional simulations using the histograms and 
variograms for each toxin were performed. The SGS data were converted to z-scores with 
zero mean and unit variance following simulation. This means that a value greater than zero 
(the mean) would be above the legislative limits and any value less than zero would be below 
the limit.  

Tables 3 and 4 show the percentages of grain that had concentrations greater than the 
legislative limits for the raw data values and kriged data, respectively. For DON 
contamination of the truck load of wheat grains, the mean batch concentrations for the raw 
and kriged data (1342, 1354 µg kg-1) were greater than the EU (2006b) and FDA (2010) 
limits of 1250 and 1000 µg kg-1, respectively. This means that in both locations, the whole 
truck of grain would be discarded or would have to be re-purposed for animal feed use rather 
than for human food use. The FDA (2010) limits for DON used for specific animals, e.g., 
swine, are as high as 5000 µg kg-1. Re-purposing of the grain for animal feed would of course 
result in reduced income for these batches of grain. Given that the mean batch concentration 
was close to the EU limit, only 55% (53% for kriged data) of the grain had concentrations 
greater than the EU limit. This would mean that almost half the batch of grain, that had 
concentrations below the EU limit, would be wastefully discarded or re-purposed for a use 
that would results in a lower price for the farmer. Tables 3 and 4 show that the batch of grain 
would not be discarded due specifically to OTA contamination as the mean concentrations 
of 0.57 µg kg-1 (and 2.68 µg kg-1 for kriged data) are well below the 5 µg kg-1 EU (2006b) 
legislative limit.  

The SGS results (Table 5) were used to investigate the uncertainty associated with estimates 
of the proportion of grain that would be wasted due to DON contamination when the mean 
DON concentration was equal to the legislative limit. The mean percentage of grain with 
DON levels above the mean was 53 % with a large range from 9-88 % and an interquartile 
range of 37-73 %. This suggests that on occasion, data with similar characteristics to this 
could be produced by grain that only showed 9 % was contaminated at levels above the 
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legislative limits. However, it may be but equally likely that 88% of the grain had toxin levels 
above the legislative limits. This suggests a quite a wide range of uncertainty in the 
proportions of values that are above the legislative limits. However, DON concentration in 
the truck, showed spatially structured variation and little random variation (Figure 2f and 
Table 1). and  a distribution that was not too strongly skewed (Figure 2a). Therefore, if the 
average  DON concentration was at the legislative limit, on average one can expect slightly 
over half of the grain to be contaminated above legislative limits. For OTA, when the mean 
concentration was at the legislative limits, the mean proportion of grain with concentrations  
above the legislative limits was 26 % with a range of 13-36 % and interquartile range of 22-
29 %. This means that given data with such a high level of skewness, the mean 581 
concentration could be at the legislative limit but on average only 26 % of the grain would 
have concentrations above the legislative limits. This would result in a significant proportion 
of wasted grains. There was also less uncertainty in the amount of grain with toxin 
concentrations above the limits as the range was narrower (13-36%) than for DON (9-88%). 

The EU (2006b) has legislative limits of 4000 µg kg-1 for the sum of FB1 and FB2 in 
unprocessed maize and 1000 µg kg-1 in maize products intended for direct human 
consumption and the USA has a limit of 4000 µg kg-1 for total Fumonisins (FB1, FB2 and  
FB3) in whole or partially degermed dry milled corn products for human consumption (FDA, 
2001). For FB1 and FB2 contamination in the maize grain pile, the mean concentration of 
3720 µg kg-1 (3004 µg kg-1 for kriged data) was above the EU (2006b) limit of 1000 µg kg-1

limit but below the EU (2006b) and FDA (2001) limits of 4000 µg kg-1. Therefore, the whole 
batch of maize would be rejected at the 1000 µg kg-1 limit but the whole batch would be 
accepted at the 4000 µg kg-1 limit. The distribution of the data was very skewed with many 
low values and a few very high values (Figure 3 a and b). This is probably responsible for 
the fact that although only 38% (16 % for 598 kriged data) of the grain had concentrations 
higher than the legislative limit, the mean concentration of the batch, 3720 µg kg-1 (3004 µg 
kg-1 for kriged data), was close to the 4000 µg kg-1 limit. In each case, the kriged data showed 
a smaller proportion of points that were above the over legislative limits than the raw data 
values. as Kriging has a smoothing effect on spatial distributions. This is fine when trying to 
get an accurate view of the over-all distribution, but if the interest is in identifying highly 
contaminated points that are distributional and spatial outliers, the kriging process tends to 
smooth and mask this aspect of variation. Nevertheless, the LMI maps for both grain 607 
bulks (see Figures 4-6) and the global Moran’s I values (see Tables 1 and 2) show that there 
were very few points that were significant spatial outliers and that clustering of high and low 
values dominated the grain bulks. 

Table 5 shows the summary of the simulated values, for FB1 and FB2. When the mean 
concentration of the grain is at the legislative limits, the mean percentages of grain above the 
legislative limits for the 100 realizations were 43% and 51% for FB1 and FB2, respectively. 
The range of values was 38-48% for FB1 and 27-72% for FB2 and the inter-quartile range 
was 42-44 % for FB1 and 44-57% for FB2. These values indicate that for both FB1 and FB2, 
when the mean toxin concentration in the grain is at the legislative limit, on average there 
was about 50% or less of the grain that had toxin concentrations above the legislative limits. 
The range of values indicates that there is more uncertainty in the amount of FB2 than FB1 
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locations that were higher than the legislative limits, probably due to the more highly skewed 
distribution of the data (Figure 3a and b). 

Mycotoxins, like any contaminant pollutant in the environment (Goovaerts et al. 1997; Van 
Meirvenne and Goovaerts, 2001) can have a tendency towards a skewed distribution with a 
normal distribution contaminated by outliers or lots of low values and a few very high values 
forming a long positive tail in the distribution. Spatial analysis of the data in general suggest 
that the distribution of the data should not be ignored when investigating spatial patterns. 
Also, the simulation analysis suggests that the more skew in the data, makes it likely that a 
limited number of locations with very high toxin concentrations could cause the average toxin 
level of a batch of grain to be above the over legislative limits while more than half of the 
grain had concentrations well below the limits. For DON and FB1 which showed lower 
amounts of skew, the amount of grain exceeding legislative limits was around 50% when the 
mean concentration was equal to the limit, but for the OTA data which were very skewed 
only about a quarter of the grain exceeded limits when the mean concentration was at the 
legislative limit and for FB2, as little as 27% of the grain was contaminated at levels that 
exceeded the legislative limits. 

Spatial identification of the potential contaminant “hot spots” is vital information to prevent 
and mitigate the mycotoxin accumulation in cereals, and reduces food waste. Since 
mycotoxins variability in grain bulks is not well understood, the true mycotoxin 
concentration in a bulk lot cannot be determined with 100% of certainty. Consequently, this 
can result in contaminated batches being processed while uncontaminated batches can be 
rejected. As an example, European Legislation requires sampling of 1 kg of cereals by taking 
100 incremental samples for cereal lots ≥ 50 tonnes (EU, 401/2006a). Understanding the 
mycotoxin spatial variability could guide the design of accurate and less expensive sampling 
plans to identify accurately the mycotoxin contamination of each batch. Correct 
quantification of mycotoxin contamination would reduce human exposure to mis-classified 
batches. It also allows for bespoke remediation actions to be applied to specific lots for food 
or feed or could result in highly contaminated batches being diverted for biogas production. 

Strategies such as aeration (Akdogan et al., 2006), drying (Magan et al., 2020) or separating 
the grain at harvest, based on contamination risk into micro batches (Lamb, 2020) could be 
applied. The variograms for OTA, FB1 and FB2 all had considerable nugget components that  
suggests that there is unresolved spatial variation when sampling at an interval of 0.5m and 
sampling at a smaller interval could resolve some of this (Webster and Oliver, 2007) and 
reduce uncertainty from the spatially random component of variation. However, physical 
sampling destabilizes the grain bulk, making it difficult to conduct denser spatial analysis 
using traditional sampling methods. A potentially more useful approach that could be 
employed to reduce uncertainty about the spatial distribution of mycotoxins is to use sensors 
that provide data on environmental variables such as temperature, CO2 and relative humidity 
in different regions of the grain bulk so that a detailed spatial map can be obtained more 
effectively, and links to detailed mycotoxin contamination levels could be developed on this 
basis.  
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Implications of this work  
As some co-location of patches of DON and OTA contamination was observed and the 
former develops in the field and the latter in storage, grain could easily be separated at harvest 
based on moisture content. Yield monitors, one of the most used precision agriculture 684 
technologies, have integrated moisture sensors which measure grain moisture via electrical 
capacitance (Chung et al. 2016). The moisture sensors are used to correct the measured wet 
rate of grain flow to dry yield (Reyns et al. 2002). Grain could then be separated at harvest 
and the wetter grain dried to discourage further fungal development and potential toxin 
contamination by the same or other fungal species.  

The co-location of DON and OTA, show that toxin levels in stored grain can be linked back 
to environmental conditions and management practices that the crop experienced in the field, 
as well as how the grain is dried and stored. Numerous studies exist in the precision 
agriculture literature documenting the identification of fungal infections within fields and the 
practice of targeted fungicide applications (De Castro et al. 2015a,b, Di Marco et al. 2011; 
Fischer 2002; Isakeit et al., 2009). As a logical extension of such studies, Kerry et al. (2019b) 
investigated the spatial variation of aflatoxin levels within two corn (maize) fields in 
Alabama, USA and were able to establish management zones with different contamination 
risk. Such zones could be differentially managed by (1) pre-season differential planting rates, 
planting resistant varieties, (2) within season by differential irrigation and fungicide 
application rates and (3) at harvest by separating grain with different risks of contamination  
into micro-batches for storage. Although farmers strive to control fungal infection in the field,  
the risk of DON contamination pre-harvest for example is based on weather conditions which 
are uniform within fields. Also, mycotoxin levels are usually only measured at harvest and  
often ignored in subsequent post-harvest storage settings. Several studies have used 
hyperspectral imagingery to identify various fungal infections in the field (Mahlein et al. 
2012, Del Fiore, 2010). If Fusarium graminearum infections that cause DON contamination 
could be identified in the field using this approachhyperspectral imagery, fungicides could 
be applied to only the identified infected areas. Another possibility is that fertilizer 
applications could be reduced in areas with fungal infection. Paungfoo Lonhienne et al. 
(2015) showed that larger nitrogen fertilizer concentrations can alter the composition of the 
soil fungal community in favour of species with more pathogenic traits. Limiting or reducing 
the amount of DON in the field in these ways could potentially result in less OTA 
development in storage. 

The spatial analysis in 3D of the grain pile suggests the need for a post-harvest strategy to 
reduce waste. Such an approach could also to install a network of Moisture and CO2 and 
relative humidity sensors throughout stored grain silos to detect initiation spoilage, allowing 
effective aeration regimes to be instituted or subsequent separation of batches from such a 
silo that should be discarded and used for biogas production or undergo remedial drying. 
Currently, such sensors are quite expensive to install. However, with technological 
developments and the increased use of digital platforms, the economics of such approaches 
could improve. This would allow effective sampling systems to be developed for ensuring 
that a true concentration of different mycotoxins can be quantified in cereals destined for 
either food or feed use.  
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Conclusions 

Variogram and Moran’s I analysis of mycotoxin levels in a truck load of wheat and a large 
maize bulk showed that adjusting for highly skewed data using the NS transform revealed 
spatial patterns in the data. In the truck load of grain spatial structure in OTA was identified 
with smaller clusters than DON but with some co-location between DON and OTA clusters. 
As DON usually develops in the field and OTA during storage, we hypothesize that OTA 
may be developing from locations of high DON concentrations where the grain is more 
susceptible to invasion by other fungi or the environmental conditions in the grain are 
generally favourable for fungal development. In the maize grain pile, spatial analysis showed 
larger clusters and stronger spatial autocorrelation in the outer grain layers and clusters of 
high values at the base and low values at the top of the stored grain pile. We hypothesize that 
this is consistent with humidity diffusing through the grain over time under the influence of 
gravity and FB1 and FB2 tending to develop in wetter grain with more oxygen rich locations 
at the base and in the outer layers of the stored grain. Future  studies need to investigate the 
spatial distribution, within grain masses, of environmental  variables such as moisture, CO2

and O2 concentrations that are likely to co-vary with  mycotoxins, using robust integrated 
sensors.  

Kriging and simulation showed that in some cases where average concentrations are above 
legislative limit that would lead to a whole batch of grain being discarded, often less than 
50% of the grain was contaminated at levels above the actual maximum allowable levels. 
This was particularly the case when the data weare very highly skewed. This suggests that 
current approaches to sampling stored grain for mycotoxins are resulting in a lot of wasted 
grain. Simulation results showed that there was a greater degree of uncertainty about the 
spatial distribution of some mycotoxins than others, and this needs further study. Given the 
quantification of uncertainty, risk can be assessed and managed by specifying the probability 
of threshold exceedance, to give more control to decision makers. Several strategies for the 
management of food products earlier in the agricultural food production chain have been 
suggested in addition to the best practice storage procedures. We believe that management 
approaches in the field as well as spatial analysis and monitoring of environmental conditions 
in grain masses post-harvest have the potential to significantly reduce such agricultural waste 
streams 
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Table 1. Univariate and bi-variate global Moran’s I values and variogram and cross-
variogram parameters for DON and OTA contamination in the truck load of grain 

Variable(s) Global 
Moran’s I

p value Model Nugget:sill 
ratio (%)

Variogram 
range (m)

DON 0.468 0.001 Spherical 13 4.00
OTA -0.012 0.494 Spherical 62 3.57
OTA NST 0.124 0.001 Spherical 30 1.00
DON and OTA NST 0.157 0.001 Gaussian 0 3.00

Table 2. Univariate and bivariate global Moran’s I for NS FB1 and FB2 within and between 
layers and parameters of 2D and 3D variograms for single layers and the whole grain pile .  

Variable(s) Global 
Moran’s I

p value Model Nugget:sill 
ratio (%)

Variogram 
range (m)

FB1 (layer 1) 0.029 0.158 Gaussian 50 3.86
FB1 (layer 2) -0.021 0.500 Spherical 67 2.78
FB1 (layer 3) 0.047 0.054 Spherical 52 1.02
FB2 (layer 1) -0.060 0.170 Spherical 67 1.98
FB2 (layer 2) -0.009 0.400 --- --- ---
FB2 (layer 3) 0.019 0.164 Spherical 48 0.98
FB1 layers 1 and 2 0.069 0.115 --- --- ---
FB1 layers 2 and 3 0.119 0.003 --- --- ---
FB1 layers 1 and 3 0.022 0.326 --- --- ---
FB2 layers 1 and 2 0.035 0.204 --- --- ---
FB2 layers 2 and 3 0.111 0.016 --- --- ---
FB2 layers 1 and 3 -0.003 0.499 --- --- ---
FB1 all layers (3D) 0.048 --- Exponential 50 4.00
FB2 all layers (3D) 0.068 --- Exponential 48 3.00

Bold values are significant at p=0.05, Italics show REML variogram parameters, --- missing/not valid 
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Table 3. Percentages of points in the sample data points exceeding EU and FDA toxin 
limits 
Toxin EU limit 

(ppb) 
FDA limit 
(ppb) 

Mean batch 
concentration 
(ppb)

% of batch 
above EU 
limit

% of Batch 
above FDA 
limit

DON 1250 1000 1342 55 % 88 %
OTA 5 No limit 0.57 1 % ---
FB1+FB2 1000, 4000 4000 2495+1225=3720 83 %, 38% 38 %

Table 4. Percentages of points in the kriged data exceeding EU and FDA toxin limits 
Toxin EU limit 

(ppb) 
FDA limit 
(ppb) 

Mean batch 
concentration 
(ppb)

% of batch 
above EU 
limit

% of Batch 
above FDA 
limit

DON 1250 1000 1354 53 % 99%
OTA 5 No limit 2.68 0.1 % ---
FB1+FB2 1000, 4000 4000 2061+943=3004 99 %, 16% 16 %

Table 5. Summary Statistics of Percentage of Kriged Points above the Mean Concentrations 
(assumed equal to legislative limit) for 100 Simulated Realizations 
Toxin Mean % above 

mean concentration 
Range of % above 
mean concentration 

Interquartile range 
of % above mean 
concentration 

DON 53 9-88 37-73
OTA 26 13-36 22-29
FB1 43 38-48 42-44
FB2 51 27-72 44-57
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Figure 1. (a) Sampling scheme and (b) sampling probe (Rivas Casado et al., 2010). 
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(a) DON (skew=1.21) (b) OTA (skew=4.36) 

(c) DON variogram (d) OTA variogram

(e) OTA NS variogram (f) DON and OTA NS cross variogram
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Figure 2. Histograms of Mycotoxins in ppb in the truck load of grain (a) DON and (b) OTA 
and 2D variograms of (c) DON, (d) OTA, (e) OTA NS and (f) cross variogram for DON 
and OTA NS 
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(a) FB1 (skew=1.19) (b) FB2 (skew=1.91)

FB1 (ppb) FB2 (ppb)
(c) FB1 (d) FB2

Figure 3. Histograms of Mycotoxin concentrations in (ppb) (a) FB1 and (b) FB2 and 
variograms for (c) FB1 and (d) FB2 in the grain pile 
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(a) DON  
(ppb or µg kg-1) 

(b) DON 
univariate Local 
Moran’s I

(c) OTA  
(ppb or µg kg-1) 

(d) OTA NS 
univariate Local 
Moran’s I

(e) OTA NS and 
DON bivariate 
Local Moran’s I

Figure 4. Maps of raw values of DON (a) and OTA (c) and distribution and clusters from 
uni- (b, d) and bi-variate (e) LMI analysis of the mycotoxin concentrations in the truck load 
of grain 
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(a) Kriged DON  
(ppb or µg kg-1) 

(b) DON 
univariate Local 
Moran’s I

(c) Kriged OTA 
NS 
(ppb or µg kg-1)

(d) OTA NS 
univariate Local 
Moran’s I

(e) OTA NS and 
DON bivariate 
Local Moran’s I

Figure 5. Kriged maps of DON (a) and OTA (c) distribution and clusters from uni- (b, d) 
and bi-variate (e) LMI analysis of the mycotoxin concentrations in the truck load of grain 
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Figure 6. Front and back views of Kriged FB1 NS concentrations (low values yellow, green 
and blue and high values orange and red) and LMI for the grain pile (p=0.05 HH cluster 
(red), LL cluster (pale blue), NS values (dark blue)). 




