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Quick-Return Mechanisms

Abstract

A solution of the constant cutting velocity problem of quick-return mechanisms

is the main concern of this paper. An optimal sliding mode control in the task

space is used to achieve uniform and accurate cuts throughout the workpiece.

The switching hyperplane is designed to minimize the position error of the

slider-dynamics in an infinite horizon.

A Jacobian compensator is used to exploit the mechanical advantage and

ensure controllability. The velocity profile is constructed in terms of the mecha-

nism and workpiece geometric properties. Stability of the closed-loop dynamics

is verified with the Lyapunov stability theory. Experiments are carried out in a

quick-return mechanism prototype to validate the proposal.

Keywords: Constant cutting velocity, Quick-return mechanism, Optimal

sliding mode control, Slider dynamics, Jacobian compensator

1. Introduction

Many manufacturing applications using shapers, motorized saws[1], bombs

[2] and so on; require a constant cutting velocity, ẋ = v, to ensure quality of the

workpiece and reduce dimensionality errors [3, 4]. The velocity v ∈ R denotes

a desired constant cutting velocity. It has been shown in [5, 6] that the heat

transfer and temperature of both the workpiece and the cutting tool are reduced

and remain approximately constant when a constant cutting velocity is used. In

consequence, uniform cuts and reduction of dimensional errors on the machined

surface [7, 8] are obtained.

The main devices for cutting applications use some configuration of the
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quick-return mechanism [9, 10] such as Whitworth mechanism [11, 12, 13],

crank-shaper, power-driven saw [14], among others. These mechanisms pro-

vide to the reciprocating tool1(in this paper is denoted as the slider) with a

slow cutting stroke and a quick return[15]. The cutting stroke presents high

mechanical advantage [16], meanwhile the return stroke does not execute any

task. The cutting stroke is where any cutting task is developed, hence is evident

that it must be controlled to achieve uniform cuts.

The reciprocating [1, 2] and mechanism synthesis [17] methods are commonly

used together to achieve an approximate constant cutting velocity , ẋ ≈ v, at

the cutting tool while using a fixed angular velocity, q̇ = ω (ω ∈ R), at the

mechanism-crank and a fixed mechanism configuration. However, uniform cuts

throughout the workpiece cannot be ensured with this approach because it fails

to consider the geometric dimensions of the mechanism and workpiece.

In view of the above, task-space controllers [18, 19, 20] should be a good

solution since the cutting task is developed in the task space. However, these

controllers are avoided because they lose controllability at singularity points

[20, 21], that is, the Jacobian loses rank. Furthermore, the contact between

the slider and the workpiece generates an external force [22] which must be

taken into account in the controller design [23, 24] by means of the virtual work

principle.

2. Related work

Figure 1 illustrates the slider’s phase diagram of any quick-return mecha-

nism using the reciprocating method. A fixed angular velocity is applied at

the mechanism crank such that the slider performs an approximate constant

linear velocity. Any joint space controller can be used to control the mechanism

dynamics [25]. When the slider velocity is not constant, non-uniform cuts are

1The reciprocating tool or mechanism end-effector is the slider which is located at the

output link.
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obtained which affects the surface roughness of the workpiece and hence is not

desirable for industrial applications [26, 27].
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Figure 1: Slider’s phase diagram using the reciprocating method

The main advantage of joint space controllers is that the controllability prob-

lem caused by the two well identified singularities of the quick-return mechanism

is avoided [28]. The singularity points, where the transition between the cutting

and return strokes is performed, are located at the beginning xmin = f(qmin)

and at the end xmax = f(qmax) of the slider stroke. Here f is the forward

kinematics of the mechanism (see Appendix B) and qmin and qmax denote the

inverse kinematics solution [29].

However, Figure 1 shows that the geometric dimensions of the slider stroke

and workpiece are not considered. Moreover, the slider velocity is approxi-

mately constant only in a small position interval (see Figure 1). This issue can

be solved by changing the input-crank velocities in a kinematic optimization

problem [2, 11]. Nevertheless, the singularities, the mechanical advantage, and

the workpiece-mechanism interaction are not considered by this method [16]

since it uses a joint space controller to control both strokes.

In summary, the main issues of previous related work are: (1) the reciprocat-

ing method achieves an approximate constant cutting velocity in a small time

interval, (2) the mechanism synthesis method gives as output a fixed mecha-

nism geometric configuration with low versatility, (3) joint space controllers do

not consider geometric dimensions to develop the cutting task, (4) task-space

controllers do not exploit the mechanical advantage in the singularity points,

(5) both the cutting and return strokes are controlled.
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Figure 2: Proposed approach block scheme.

In this work, a solution of the constant cutting velocity issue of quick-return

mechanism is proposed. Figure 2 shows the proposed approach block scheme.

A second-order task space optimal sliding mode controller (OSMC) with a

Jacobian compensator is used to control the cutting stroke. A fixed torque

τ = T, T ∈ R is used to control in open-loop the return stroke. A switching

criterion is proposed to commute the OSMC into the fixed torque value and vice

versa. The comparison and main contributions of this work are given in Table

1.

3. Switching criterion design

The slider’s phase diagram of Figure 3 is proposed to enable the use of

task-space controllers for cutting tasks applications of quick-return mechanisms

without the controllability issue at the singularity points.
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Figure 3: Slider’s phase diagram of the proposed approach

The above Figure shows two new points xa and xb. These points determine
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Table 1: Comparison of main contributions of the proposed approach for cutting applications

using quick-return mechanisms
Method and Controller Motivation Advantages Disadvantages

Reciprocating and mechanism syn-

thesis methods (Joint space control)

Achieve an approximate constant

cutting velocity using a fixed angu-

lar velocity at the mechanism crank.

The mechanical advantage is ex-

ploited. The singularity points are

avoided.

Both the cutting and slider stroke

are controlled. The velocity is ap-

proximately constant in a small po-

sition interval. The mechanism has

a fixed configuration. It does not

consider the length and type of ma-

terial of the workpiece.

Task space control Achieve a constant cutting velocity

by controlling the slider directly in

the task space.

The mechanism has a free configura-

tion. A constant cutting velocity is

achieved. The cutting velocity pro-

file is designed in accordance to the

geometric dimensions of the work-

piece and the slider stroke.

The controller loses controllability

in the singularity points. The me-

chanical advantage is not exploited.

The proposed approach (Joint and

task space controller)

Achieve a constant cutting velocity

by controlling the slider directly in

the task space and guarantee com-

plete turn of the mechanism crank.

A constant cutting velocity is

achieved. The mechanism has a free

configuration. The mechanical ad-

vantage is exploited. The singular-

ity points are avoided. The cutting

velocity profile is designed in accor-

dance to the dimension of the work-

piece, type of material and cutting

velocity.

It requires two controllers. Unde-

sired jerks in switching controllers.

The Jacobian compensator must be

designed off-line.

the length of the workpiece Ld, that is, Ld = xb − xa. The complete slider

stroke Ld is given by Lc = xmax − xmin. The switching criterion is applied at

the singularity points and is defined as

xmin < x < xmax. (1)

The switching criterion (1) states that: if the slider position x satisfies (1),

then the task-space controller is applied; otherwise, the open-loop torque is

applied, τ = T , to return the mechanism with high velocity amplitude to the

point xmin.

The main issue of (1) is to recognize in which stroke is located the mechanism.

A good solution is to use the sign of the slider velocity z (this sign is obtained

off-line) at any stroke and compare it with the sign of the current velocity such

that the if-else condition of Figure 4 is satisfied.

4. Constant Velocity Profile

The proposed velocity profile considers the workpiece and slider stroke lengths,

and the desired cutting velocity v. A trapezoidal trajectory with parabolic
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Figure 4: Switching criterion scheme.

blends is used as desired trajectory.

Let ta = td defines the times of the parabolic blends from xmin to xa and xb

to xmax respectively, and tc denotes the cutting time from xa to xb. Algorithm

1 exhibits a simple way to compute the points of the parabolic trajectory.

5. Controller Design

An OSMC is used to ensure velocity tracking and robustness against distur-

bances.

5.1. Slider Linear Dynamics

The extended dynamic model [30] of a 1-DOF quick-return mechanism is

M ′(q′)q̈′ +C ′(q′, q̇′)q̇′ +G′(q′) = ρ−⊤(q′)(τ − ρx(q
′)Fx), (6)

where q′ = [q, s]⊤ ∈ R
n′

are the extended coordinates whose components are

the generalized coordinate q and all the n secondary variables s ∈ R
n, so n′ =

n + 1. M ′(q′) ∈ R
n′×n′

denotes a symmetric positive definite inertia matrix,

C ′(q′, q̇′) ∈ R
n′×n′

stands for the centrifugal and Coriolis matrix, G′(q′) ∈ R
n′

is the gravity vector, ρ(q′) ∈ R
n′

is the Jacobian vector in terms of q′, ρx(q
′)

is the Jacobian component that gives the mapping between the joint velocity q̇

and the slider velocity ẋ, Fx ∈ R is the slider contact force and τ ∈ R is the

control input.
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Algorithm 1 Velocity profile parameters design

Require: Lengths Ld, Lc, constant velocity v.

1: Obtain the joint positions qmax and qmin where the Jacobian loses rank, that

is, ρx(q) = 0.

2: Obtain xmin and xmax with qmin and qmax, respectively; using the forward

kinematics.

3: Calculate the trajectory times with

tc =
Ld

|v|
(2)

ta = td =
Lc

|v|
− tc (3)

4: The points xa and xb are obtained with

xa = xmin +
v

2ta
t2a (4)

xb = xmin +
v

2ta
t2a + vtc (5)

5: return xa, xb, xmax, xmin, ta, td.

The slider dynamics of any quick-return mechanism can be expressed as a

perturbed double integrator system [9] as

mẍ+G =




n′∑

i=1

ρ2i (q
′)




−1

ρx(q
′)(τ − ρx(q

′)Fx). (7)

where m is the slider mass, G is the slider gravity component. The slider

dynamics (7) can be also expressed as

ẍ = b(u+ d) (8)
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where b = 1/m and

u =




n′∑

i=1

ρ2i (q
′)




−1

ρx(q
′)τ

d = −


G+




n′∑

i=1

ρ2i (q
′)




−1

ρ2x(q
′)Fx


.

(9)

Let z(t) = [x(t), ẋ(t)]⊤, then (8) can be equivalently expressed as

ż(t) =


0 1

0 0




︸ ︷︷ ︸
A

z(t) +


0
b




︸︷︷︸
B

(u+ d). (10)

The control input u must be transformed into joint space torque via the

virtual work principle

τ = ρx(q
′)u. (11)

The main objective is to design a task-space controller such that the slider

dynamics (10) follows the desired time-varying trapezoidal trajectory zd(t) =

[xd(t), ẋd(t)]
⊤ ∈ R

2. The position error is e(t) = zd(t)− z(t). The closed-loop

error dynamics is

ė(t) = żd(t)−Az(t)−B(u+ d)

= Ae(t)−B
(
u+ d+B†F (t)

) (12)

where F (t) = Azd(t)− żd(t) and B† denotes the pseudoinverse of B.

5.2. Optimal sliding surface design

The main goal of this section is to design an optimal switching gain which

ensures convergence of the closed-loop trajectories (12) into the next switching

hyperplane

s(e(t)) = Ce(t), (13)

where C is the switching matrix gain. For sake of simplicity, the following

coordinate transformation is considered

Ψ(t) = Te(t), (14)
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where

T =


(B

⊤)
⊥†

B†


 . (15)

where B⊥ represents the null space of matrix B. The matrix transformation

T is non singular due to the construction of matrix B. The closed-loop error

dynamics (12) under the new coordinates is

Ψ̇(t) = TAT−1
︸ ︷︷ ︸

Ā

Ψ(t) + TB︸︷︷︸
B̄

(
u+ d+B†F (t)

)
, (16)

where Ā =


A11 A12

A21 A22


 and B̄ =


0
1


. Hence the new system is

Ψ̇1(t) = A11Ψ1(t) +A12Ψ2(t)

Ψ̇2(t) = A21Ψ1(t) +A22Ψ2(t) + u+ d+ f(t),
(17)

where B†F (t) = [0, f(t)]
⊤
. The switching hyperplane (13) is rewritten as

s(Ψ(t)) = CT−1Ψ(t) = C1Ψ1(t) + C2Ψ2(t) = C̄Ψ(t). (18)

The term C2 in (18) is set to C2 = 1, then

s(Ψ(t)) = C1Ψ1(t) + Ψ2(t). (19)

The existence of a sliding mode implies that s(Ψ(t)) = ṡ(Ψ(t)) = 0 in

finite time and the trajectories remain within the hyperplane. The sliding mode

hyperplane is designed to minimize the following cost index

J(e(t)) =

∫ ∞

t

e⊤(σ)Qe(σ)dσ. (20)

The above cost index is independent of the control input u. The cost index

(20) is expressed in the new coordinates as

J(Ψ(t)) =

∫ ∞

t

(
Ψ⊤

1 Q11Ψ1 + 2Ψ⊤
1 Q12Ψ2 +Ψ⊤

2 Q22Ψ2

)
dσ, (21)

where TQT−1 =


Q11 Q12

Q21 Q22


. The backstepping method [31] is used, where

the following new virtual input is proposed

v(t) = Ψ2(t) +Q−1
22 Q

⊤
12Ψ1(t). (22)
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Then the first equation of (17) and the index (21) are rewritten as

Ψ̇1(t) =
(
A11 −A22Q

−1
22 Q

⊤
12

)
Ψ1 +A12v(t) (23)

J(Ψ) =

∫ ∞

t

[
Ψ⊤

1

(
Q11 −Q12Q

−1
22 Q

⊤
12

)
Ψ1 + v⊤Q22v

]
dσ

=

∫ ∞

t

(
Ψ⊤

1 (σ)Q̄Ψ1(σ) + v⊤(σ)Q22v(σ)
)
dσ, (24)

where Q̄ = Q11−Q12Q
−1
22 Q

⊤
12. Then, the virtual control solution [31] is obtained

as in a linear-quadratic regulator (LQR) problem [32, 33]. The solution is

v(t) = −Q−1
22 A

⊤
12PΨ1(t). (25)

where P is the solution of an Algebraic Ricatti equation (ARE) [32]. Finally,

the optimal sliding hyperplane is

Ψ2(t) = −C1Ψ1(t) = −Q−1
22

(
A⊤

12P +Q⊤
12

)
Ψ1(t). (26)

5.3. Second-order SMC

The second-order SMC [24] used in this paper has the following structure

u = k1sx, k1 > 0 (27)

k̇x = sign(σ) (28)

σ = s(e(t))− s(e(t0)) exp
−λ(t−t0), λ > 0. (29)

sx = σ + k2kx, k2 > 0 (30)

The integral term in (30) overcomes the chattering problem. The exponential

term in (29) is used to start on the sliding manifold and not from any other

initial condition [34]. The closed-loop error dynamics (12) under the control

(27) is

ė(t) = Ae(t)−B

(
k1

(
σ + k2

∫ t

t0

sign(σ)dς

)
+ d+B†F (t)

)
. (31)

The next theorem states the stability and ultimate uniformly bounded (UUB)

of the trajectories of the error dynamics (12) under the second-order SMC (27).
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Theorem 1. Consider the closed-loop error dynamics (31). The trajectories of

(31) are UUB if the control gain k1 satisfies

k1 > η̄ + k0 (32)

where η̄ is an upper bound of the unknown terms and k0 > 0.

Proof 1. See Appendix A. �

5.4. Jacobian compensator

The control law (27) must be transformed into control torque using (11).

However, the Jacobian loses rank on the singularity points and therefore the

controller loses controllability. In this paper, the following Jacobian compen-

sator is used

ρ̂x = Kρsign

(
ẋ

q̇

)
(33)

where Kρ > 0 is the compensator gain. The sign of the compensator can be

obtained on-line or off-line as in the switching criterion design. The gain can be

chosen with the upper bound of the real Jacobian, that is, Kρ = |maxq ρx(q)|, or

by manual tuning. The main advantage of the Jacobian compensator is that the

controllability problem is avoided. For mote details refer to [10]. Furthermore,

the Jacobian compensator does not affect the final output of the OSMC because

the sliding gain k1 can compensate the Jacobian modeling error.

6. Experimental results

Figure 5 shows the inverted Whitworth mechanism prototype used in this

paper to test the proposed approach. The slider is located at the Y -axis so the

y variable is used instead of x. The mechanism is controlled by a permanent

magnet motor of 12 V. Angular position of the motor is measured by a BEI

optical encoder. Resolution of the optical encoder is 2500 pulses per revolution

and is directly coupled to the motor shaft. Cartesian position of the slider is

measured by a US-digital strip sensor with a resolution of 300 cpi.
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(a) Mechanism scheme (b) Prototype

Figure 5: Inverted Whitworth mechanism

A Sensoray model 626 PCI data acquisition target endowed with inputs for

optical encoders was used for the data acquisition. The data card electron-

ics increases four times the optical encoder resolution up to 10,000 pulses per

revolution.

The slider dynamics (7) was obtained from the extended dynamic model of

Appendix B as

m5ÿ +m5g = u− ρyFy (34)

where m5 is the slider mass, Fy = (
∑5

i=1 ρ
2
i )

−1ρyfy, fy is the contact force and

ρy is the slider Jacobian (see Appendix B). The dimensions of the mechanism

prototype are: O3x = −0.125 m, O3y = 0 m, r2 = 0.5 m, r4 = 0.15 m,

Dx = 0.0705 m and AB = 0.08 m.

6.1. Tracking control

First, the performance of the slider dynamics using the Jacobian compen-

sator was tested. In this experiment there is no contact force, that is, fy = 0.

The performance of the OSMC was compared against other linear and discon-

tinuous controllers [35]. The main control objective was to force the mechanism

slider position to follow the next desired reference

yd(t) = −0.2− 0.2 sin (πt) . (35)

The following controllers were used for comparison purposes: feedforward-

feedback controller (FFC), Linear Quadratic Tracking (LQT) control [13] and

12



a second order SMC. All the controllers were designed in accordance to the

slider-dynamics (34). The slider mass is m5 = 4.5 × 10−4 kg. In state-space,

the slider dynamics (34) is written as

ż(t) =


0 1

0 0


 z(t) +


 0

2222.22


 (u(t)− 0.00441) (36)

0 2 4 6 8 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 6: Jacobian ρy(q′) at the return stroke

In contrast with the proposed OSMC, the FFC and the LQT controllers

need a feedforward control law ud to guarantee position tracking and a feedback

control law uf = −Ke(t) to ensure stability, that is, u = ud+uf , for some gain

matrix K1×2. The feedforward control law is

ud = B†(żd(t)−Azd(t)). (37)

For the FFC case, the stabilizing gain of the feedback control law was com-

puted according to a desired performance as

det(λI −A+BK) = λ2 + 2ξωnλ+ ω2
n, (38)

where ωn and ξ denote the undamped natural frequency and the damping factor,

respectively. The following desired performance was proposed: ω2
n = 1000 and

ξ = 1.

The feedback control law of the LQT controller was obtained by minimizing

the following cost function

J(e(t)) =

∫ ∞

t

(
e⊤(σ)Qe(σ) +Ru2

f (σ)
)
dσ (39)
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where Q = Q⊤ > 0 is the weight matrix of the tracking error and R > 0 is the

weight of the feedback control law. The solution of the LQT problem is obtained

by solving an ARE of the closed-loop error dynamics (12) under the feedforward

control (37) [32]. The next weight were proposed: Q = I and R = 0.1.

Time (s)
0 2 4 6 8 10

P
os
it
io
n
(m

)

-0.5

-0.4

-0.3

-0.2
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0

0.1

FFC
LQT
SMC
OSMC
Reference

Figure 7: Position tracking results

The Ackermann-Utkin formula was used for the sliding hyperplane design of

the second-order SMC, where λ = −10 was proposed as the desired pole. The

main difference between this controller and the OSMC is the sliding hyperplane

design. The following weight matrix Q = diag{1, 0.1} was used for the OSMC

design. The final control gains of each controller were the following; FFC:

K = [0.45, 0.0285]; LQT: K = [3.1623, 3.1627]; SMC: C = [0.0045, 0.00045],

k1 = 0.0004 and k2 = 1; OSMC: C̄ = [3.1623, 1], k1 = 0.00441 and k2 = 1.

Figure 6 shows the performance of the slider Jacobian in the return stroke. The

gain of the Jacobian compensator was set to Kρ = 0.1. At the return stroke,

the slider velocity was negative, so z = −1.

Figure 7 shows the tracking results of each control law using the slider dy-

namics and the Jacobian compensator. It is well known that for good tracking

results the feedforward control term must be designed accurately, otherwise the

tracking results will be stable but with large error. SMC and OSMC overcome

this issue by avoiding the feedforward control term.

The main advantage of using the slider dynamics (34) is that it only requires

knowledge the slider mass instead of the complete mechanism dynamics which

facilitates the control design. Its main disadvantage lies in in the feedforward

14
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Figure 8: Mean squared error results.

controller of the FFC and LQT controllers, here stability of the closed-loop

system can be guaranteed but not tracking convergence to the desired reference.

The mean squared error (MSE), e = 1
n

∑n
i=1(Lei)

2, of the last 2 seconds of

the experiment was used in order to compare the controllers tracking precision.

L is a scaling factor whose value was proposed as L = 100. The mean squared

error results are given in Figure 8. Here it the reliability of the OSMC is

shown, where the MSE was small in comparison to the other controllers and

also guarantee optimal performance and robustness against disturbances.

6.2. Constant cutting velocity task

The gain of the optimal sliding hyperplane obtained in the last section was

used in this experiment. The mechanism of Figure 5 was built without using

a mechanism synthesis procedure. Therefore, the reciprocating method cannot

be used for comparison purposes since it will not be a fair comparison.

The workpiece was of aluminum and it was proposed to use a greater contact

force than the one proposed in the previous work [36] as

fy =





400 N if ẏ < 0 and ya ≤ y ≤ yb

0 N otherwise
. (40)

The parameters and points of the velocity profile were obtained through

the steps of Algorithm 1. The lengths of the workpiece and slider stroke were

Ld = 0.3 m and Lc = 0.4667 m, respectively. The constant cutting velocity

15
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Figure 9: Cutting velocity results

was proposed as v = −1.25 m/s. The inverse kinematics solutions were: qmin =

−0.729728 and qmax = −2.4119 rad. The mechanism forward kinematics (see

Appendix B) is used to compute the singularity points as: ymin = 0.05428 and

ymax = −0.4124 m.

The times of the trapezoidal trajectory were: tc = 0.3937 s and ta = td =

0.2187 s. Finally the ends of the workpiece were located in: yb = −0.3291 m

and ya = −0.0291 m. The gains of the OSMC (27) were k1 = 40 and k2 = 1,

which satisfy k1 ≥ ‖ρyFy +m5g‖. In Figure 9(a) is shown the cutting velocity

profile of three cutting cycles.

The return stroke was divided into two main parts to smooth the velocity

response. The first part uses a positive torque of τ = 8.65 Nm and at the mean

of the slider stroke is changed to the second part which uses a negative torque

of τ = −8 Nm. Then the cutting task starts over again.
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Figure 9(b) shows the slider’s phase diagram. The cutting stroke trajectory

exhibits an accurate performance of the OSMC controller in the proposed in-

tervals, that is, a constant velocity profile in the position interval [ya, yb] and a

smooth performance in the parabolic blends at the beginning position interval

[ymin, ya] and at the end position interval [yb, ymax] of the cutting stroke. At

the singularity point ymax, the switching criterion changes the OSMC control

law into fixed torque value to return the mechanism to ymin with high velocity

amplitude. However, the switching criterion has a jerk effect which could pro-

duce damage to the mechanism bearings. This effect will be further analysed as

future work. Since the Jacobian compensator was used, then the OSMC con-

troller was not affected at the singularity points and shows a smooth transition

between the cutting and return strokes.

Figure 9(c) shows the tracking velocity error ė = ẏd − ẏ of the cutting

stroke. Two small overshoots can be noticed which are caused by the interaction

between the slider and the workpiece. The second order OSMC attenuates the

contact force and ensures the constant velocity profile throughout the workpiece.

These impact overshoots can be attenuated by increasing the sliding mode gains

k1 or k2. Nevertheless, the jerk effect can be increased. Therefore, the exists a

trade-off between the attenuation of the jerk effect and impact overshoots.

7. Conclusions

This paper addresses the uniform cutting problem of quick-return mecha-

nisms. An OSMC controller was proposed to guarantee constant cutting velocity

tracking and robustness against disturbances. The return stroke was controlled

in open-loop by a fixed torque value in order to exploit the mechanical advan-

tage, meanwhile the cutting stroke was controlled by the OSMC. A Jacobian

compensator was used to avoid the singularities and controllability issues. The

velocity profile was designed according to the length of the workpiece, constant

velocity and the singularity points such that the reciprocating and mechanism

synthesis methods were avoided. Experiments verify the approach with satis-
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factory results which also fills the current gap in real-applications of this kind

of mechanisms using task-space controllers.

Future work will address the jerk problem caused by the switching criterion

and how can be mitigated.

Appendix A. Proof of Theorem 1

Proof 2. The next Lyapunov function is considered

V (sx) =
1

2
s2x. (A.1)

Its time derivative is

V̇ (sx) = sx

(
Cė(t) + λs(e(t0)) exp

−λ(t−t0) +k2sign(σ)
)
. (A.2)

Substituting (31) into V̇ gives

V̇ =sx

(
CAe(t)− k1sx − d−B†F (t)− λs(e(t0)) exp

−λ(t−t0) −k2sign(σ)
)

(A.3)

Recall that CB = 1. The terms |d| ≤ d̄, |λs(e(t0)) exp
−λ(t−t0) | ≤ λ|s(e(t0))|

and ‖B†F (t)‖ ≤ f̄ are bounded too for some positive scalars d̄ and f̄ . Defining

‖CA‖‖e(t)‖+ λ|s(e(t0))|+ k2 + d̄ ≤ η(t) (A.4)

where η(t) ≤ η̄ > 0 is a bounded function. So, V̇ is reduced to

V̇ ≤ −k1s
2
x + sxη(t)

≤ −|sx| (k1|sx| − η̄) . (A.5)

V̇ is negative definite if k1 satisfies (32), that is,

|sx| >
η̄

k1
≡ ǫ. (A.6)

Therefore, sx converges to a compact set Sǫ of radius ǫ centered in sx = 0

as t → ∞ and the tracking error trajectories remain bounded. �
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Appendix B. Inverted Whitworth mechanism model

The inverted Whitworth mechanism scheme is shown in Figure 5(a). The in-

dependent coordinate is q and the secondary coordinates are s = [r3, θ3, θ4, y]
⊤.

Its loop system equations are

f1(q, s) = r3 cos(θ3)− r2 cos(q) +O3x = 0

f2(q, s) = r3 sin(θ3)− r2 sin(q) +O3y = 0

f3(q, s) = O3x + (r3 +AB) cos(θ3) + r4 cos(θ4)−Dx = 0

f4(q, s) = O3y + (r3 +AB) sin(θ3) + r4 sin(θ4)− y = 0

(B.1)

The forward kinematics of (B.1) under the secondary coordinates s are

θ3 = arctan
(

r2 sin(q)
r2 cos(q)−O3x

)

r3 = r2 sin(q)
sin(θ3)

θ4 = 2π − arccos
(

Dx−O3x−(r3+AB) cos(θ3)
r4

)

y = O3y + (r3 +AB) sin(θ3) + r4 sin(θ4)

(B.2)

Consider the extended coordinates q′ = [q, r3, θ3, θ4, y]
⊤. The extended Jaco-

bian is obtained from the relation q̇′ = ρ(q′)q̇ as




q̇

ṙ3

θ̇3

θ̇4

ẏ




=




1

−r2 sin(q − θ3)

r2 cos(q−θ3)
r3

r2(AB sin(q−2θ3)−(AB+2r3) sin(q))
2r3r2 sin(θ4)

r2(AB sin(q−2θ3+θ4)−(AB+2r3) sin(q−θ4))
2r3 sin(θ4)




q̇. (B.3)

The mechanism extended dynamic is

M(q′) =




∗ 0 0 0 0

0 ∗ 0 ∗ 0

0 0 ∗ ∗ 0

0 ∗ ∗ ∗ 0

0 0 0 0 m5




, C(q′, q̇′) =




0 0 0 0 0

0 0 ∗ ∗ 0

0 ∗ ∗ ∗ 0

0 ∗ ∗ 0 0

0 0 0 0 0




G(q′) =
[
∗ ∗ ∗ ∗ m5g

]⊤

(B.4)

where m5 is the slider mass and ∗ are not relevant terms for the control design.
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Hernández-Gómez LH. Sliding mode control of a water-displacement based

mechanism applied to the orientation of a parabolic-trough solar concen-

trator. In: Defect and Diffusion Forum; vol. 370. 2016, p. 90–7.
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