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Abstract 

Removal of pesticides from drinking water remains a challenge for water 

treatment suppliers throughout the world. A combined treatment of dissolved air 

flotation (DAF) and powdered activated carbon (PAC) was investigated as a 

treatment process for removal of the recalcitrant pesticide metaldehyde. The PAC 

dosing position relative to the coagulant was studied regarding its impact on the 

removal of NOM and pesticide, floc formation and the clarification efficiency. Four 

different water sources were spiked with the pesticide and treated using PAC. A 

PAC dose of 100 mg/L using a contact time of 20 minutes was required in order 

to effectively remove pesticide to the compliance concentrations for all of the 

water sources. The pesticide adsorption rate (kmet) decreased as the source water 

DOC increased, moving from 79.5 to 21.0 mg/g/min with an increase in DOC 

from 2.6 to 6.5 mg/L. When combined with coagulation, the sequence of addition 

of PAC followed by coagulant was most effective due to increased incorporation 

of PAC into the floc, large floc size (median floc size 800 m) and a high level of 

pesticide removal, reducing the metaldehyde concentration to 0.18 g/L. Limited 

incorporation of PAC into flocs was observed when the adsorbent was added 
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after the coagulant. The results provide a rational basis for selection of process 

conditions for pesticide removal using PAC and clarification.   

 

Keywords: Clarification, floc, pesticide, adsorption, powdered activated carbon 
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1. Introduction 

Pesticide contamination of water sources used for drinking remains a significant 

challenge worldwide. There are more than 5,400 pesticides regulated for use in 

potable water across more than 100 nations (Zijian and Jennings, 2017). Hence, 

the drinking water sector needs robust treatment strategies to enable effective 

removal of this broad grouping of chemical compounds (Cosgrove et al., 2019). 

For example, metaldehyde is a molluscicide pesticide that has caused significant 

treatment issues for water utilities in the UK over the last 10 years (Castle et al., 

2017). It has been found in many water sources at concentrations exceeding EU 

statutory concentrations and, because of difficulties in treating the pesticide, has 

been occasionally detected in drinking water. The treatability of pesticides 

depends on their physical and chemical properties (Marshal, 2013). The 

traditional approach to removal of pesticides at water treatment works is through 

oxidation by ozone or chlorine and adsorption using granular activated carbon 

(GAC) (Salvestrini et al., 2016). While this has been effective for a broad range 

of pesticides, some pesticides are not well removed by these processes. For 

example, oxidation by chlorine and ozone cannot break down the molecular 

structure of some compounds (Marshal 2013; Kay & Grayson 2014). GAC is not 

economically viable for removal of pesticides that have weak affinity for 

adsorption. This includes metaldehyde, where breakthrough of GAC is observed 

after only a few weeks (Tang et al. 2016). Metaldehyde is a relatively small 

molecule (176.2 g/mol), with relatively low hydrophobicity (log kow 0.12 and log 

koc 0.18-0.37) (Li et al., 2020). This means that other organic molecules of higher 

molecular weight and hydrophobicity are preferentially adsorbed and can cause 

desorption of weakly bound metaldehyde. New technologies have emerged to 
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more effectively degrade recalcitrant pesticides. This includes advanced 

oxidation processes (AOP) that generate the highly oxidative hydroxyl radical. 

The most commonly used AOP combines ultraviolet light (UV) irradiation with 

H2O2 (Autin et al., 2012). However, these processes are not widely applied due 

to high capital and operational costs (Cosgrove et al., 2019). Other approaches 

have focused on application of alternative adsorbents, ion exchange and 

nanoparticle catalysts (Tao and Fletcher 2016; Li et al., 2017). Powdered 

activated carbon (PAC) has shown better removal of some pesticides when 

compared with GAC. This may be for a number of reasons associated with 

differences in the carbonaceous raw material of the sorbent and different 

activation procedures. In turn, this may lead to differences in adsorption sites and 

pore size distributions, resulting in differences in affinity for pesticides (Li et al., 

2020). However, one of the other main reasons for PAC being more effective is 

that fresh adsorbent is continuously added to water, providing new adsorption 

sites for contaminants to be removed. GAC, on the other hand, is left in a filter 

bed and exposed to water over a period of months or even years resulting in 

greater opportunities for competitive interactions and desorption.   

 

In comparison to other media, PAC has proven to be very effective for 

micropollutant removal. For example, Li et al. (2017) researched three 

nanoparticle catalysts and PAC for the removal of metaldehyde from water, 

reporting PAC to be the most efficient material, achieving up to 90% removal. 

Further research supports these results, showing effective removal of 

metaldehyde and emerging pollutants by PAC (Li et al., 2019, Bernal-Romero, 

2019). Compared to alternatives, PAC is relatively low cost, simple to operate, 
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can be dosed during seasonal water quality events and has wide-scale use in the 

water industry. In addition, it can be integrated into most clarification based 

WTWs with minimal infrastructure adaptations. 

 

PAC is usually dosed into the contaminated water as a fine powder in a slurry 

(particle diameters typically smaller than 45 µm), prior to or with the coagulant. 

The PAC is then agglomerated into the flocs by coagulation and flocculation 

before being removed from the water by clarification, driven by either 

sedimentation or dissolved air flotation (DAF) processes. Previous researchers 

have indicated that sedimentation may not be an effective mechanism of 

clarification for flocs containing PAC due to the relatively low density of the 

adsorbent particles (Huang et al., 2020). Flotation was therefore investigated in 

this research due to the paucity of information available for application of this 

process in combination with PAC. While PAC is commonly dosed prior to the 

coagulant (Cook et al., 2001), research on the most effective dosing position of 

PAC for contaminant removal have given contradictory results. For example, the 

best removal of the fungicide dodine and lindane by PAC were obtained when 

the adsorbent was dosed after the coagulant at concentrations of up to 100 mg/L 

for at least 30 minutes (Kouras et al., 1995; Kouras et al., 1998). However in 

these experiments, the organic pollutants were spiked into de-ionised water at 

250 g/L for dodine and 10 g/L for lindane, with no competing background 

organic compounds. Cook et al. (2001) researched PAC dosing applying PAC at 

least 30 min before the coagulant addition for MIB and geosmin removal for four 

different source waters with DOC varying from 4.2 to 10.0 mg/L. PAC doses 

ranged from 22-55 mg/L and MIB and Geosmin concentrations of 39-45 ng/L and 
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31-37 ng/L, respectively. For three of the water sources of low to moderate 

turbidity (2.3-6.0 NTU), coagulation did not hinder the removal of MIB and 

Geosmin to below concentrations of 10 ng/L. The fourth water had a high turbidity 

(>60 NTU) and this attributed to tighter binding of PAC in flocs, which slowed 

transfer of the contaminant onto the adsorbent. Other authors have tested the 

addition of PAC before, simultaneously and after the coagulant for removal of 

humic acid (3 mg/L DOC) from simulated seawater (Duan et al., 2003). The 

addition of PAC at a concentration of 500 mg/L one minute before the coagulant 

resulted in the most efficient removal of the humic acid. Li et al (2020) identified 

that PAC removal for metaldehyde removal was best when dosed into water that 

had already been flocculated, but this work did not investigate how the resultant 

PAC would be removed from the water. This paper therefore considers the 

practical consequences of changing dosing position of PAC. For example, the 

impacts of PAC on resultant floc structure and strength have not been widely 

considered. This is important missing information because breakage of flocs or 

release of PAC may negatively impact downstream processes. The use of PAC 

in water treatment therefore needs consideration of how the fine adsorbent 

material is most effectively removed from the water, in addition to the removal of 

the micropollutant target. A balance between the contaminant removal and the 

clarification performance therefore needs to be reached for efficient treatment. 

The aims of this study were to therefore understand how the dosing position of 

PAC influences the removal of recalcitrant pesticide and determine how PAC 

affects floc formation and the resultant clarification (focussing on flotation in this 

research).  
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2. Materials and Methods 

 

2.1  Water sources 

Experiments were conducted using four different source waters: Water A 

(groundwater), Water B (river water), Water C (river water), and Water D 

(reservoir water). Water samples were collected three times during the study to 

account for potential variations in water quality. Water was stored at 4 °C and left 

to reach room temperature (21 ± 2 °C) prior to experiments. 

 

2.2  Chemicals and reagents 

All chemicals used were of analytical grade or above. Ferric sulphate (Ferripol xl, 

EA, West) was used as coagulant, with 0.1M HCl and 0.1 NaOH (Fisher 

Scientific, UK), used to adjust pH. A stock solution of metaldehyde was prepared 

by dissolving 10 mg of metaldehyde (Sigma Aldrich, Germany) in 1 L of deionised 

water (DI) (15 MΩ, Pure Lab Option, Elga, UK) and mixed for 36 h. The PAC used 

was Norit SA-Super (Cabot, USA). The PAC had a median size of 10.9 m, dry 

density of 250 kg/m3 and iodine number of 1050 g/kg. The PAC has been reported 

to have a total BET specific surface (SS) area of 989 m2/g and be predominantly 

microporous (693 m2/g) (Bizi, 2019). A stock solution of PAC was prepared by 

suspending 10 g of PAC (Cabot, USA) dried overnight at 105 °C, in 500 mL of DI 

water, mixed overnight. Fresh stock solutions were prepared weekly. 

Metaldehyde was spiked to achieve a concentration of 2 µg/L, a typical 

concentration seen in environmental water sources, for all adsorption and kinetics 

experiments.  
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2.3  Adsorption tests 

Adsorption tests were carried out on a DAF jar tester that simulates the 

coagulation, flocculation and flotation process (DBT6 EC Engineering, Alberta, 

Canada). To investigate the required PAC dose, a range of PAC doses (0-200 

mg/L) were added to 1 L of water in square jars and mixed at 100 rpm 

(approximately velocity gradient, G, 180 s-1) for 20 min with no pH adjustment. 

To study the adsorption kinetics, 50 mg/L of PAC was dosed and 500 mL of water 

was mixed at 100 rpm over a range of different contact times (0-120 min). At the 

end of each experiment, samples were filtered (0.45 µm) and analysed for 

metaldehyde concentration, dissolved organic carbon (DOC) and UV254.  

 

2.4  Coagulation and clarification 

The impact of coagulation on PAC and contaminant removal was carried out on 

the jar tester according to the following: Ferric sulphate coagulant was added to 

1L of raw water followed by 1 min of rapid mixing (300 rpm, G of 950 s-1). 

Coagulation pH was adjusted to 4.5 (optimum obtained from preliminary 

experiments for combined removal of organic matter and turbidity). The mixing 

speed was then reduced to 55 rpm (G = 80 s-1) for 10 min during the slow stir 

period. Following floc formation, air bubbles for flotation were introduced into the 

water by the addition of air-saturated water (equivalent to 10% recycle) and a 10 

minute clarification phase followed. In order to determine the optimum 

coagulation doses, coagulant doses from 4 to 9 mg/L as Fe were investigated for 

raw water with and without PAC (50 mg/L). Tests investigating the impact of PAC 

on clarification took place using PAC at concentrations of 25, 50, 100, 150, 200 

mg/L. 
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2.5  Influence of dosing position on PAC and pesticide removal 

Three different experiments were conducted to study the influence of the dosing 

position of PAC on metaldehyde removal and clarification. A PAC dose of 100 

mg/L was used based on the optimisation experiments, with a coagulant dose of 

7 mg/L as Fe. Three different dosing positions and sequences were investigated 

(further detail on the dosing procedures are shown in Supporting Information (SI) 

Figure S1): 1) PAC-Coag: PAC was rapidly dispersed at 300 rpm followed by a 1 

or 5 minute adsorbent contact time at 150 rpm (G of 450 s-1). Coagulant was then 

added during a 1 minute rapid mix at 300 rpm. There then followed a flocculation 

period of 10 minutes at 55 rpm and a flotation period of 10 minutes with no stirring; 

2) Simult: PAC and coagulant were dosed simultaneously during a rapid mix 

period of 1 minute at 300 rpm followed by a flocculation period of 55 rpm and a 

flotation period of 10 minutes with no stirring; and 3) Coag-PAC: coagulant was 

dosed before PAC using a 1 minute rapid mix period at 300 rpm followed by a 1 

or 5 minute mixing period at 150 rpm. PAC was then dosed during a 1 minute 

rapid mix at 300 rpm. There then followed a 10 minute flocculation period at 55 

rpm followed by a 10 minute flotation time.  

 

Samples were taken from the sampling points positioned at the bottom of the jars 

to directly measure residual turbidity and zeta potential. Samples were then 

filtered (0.45 µm) and analysed for metaldehyde, DOC, and UV254. The filters 

were weighed after drying overnight at 105 °C before and after filtration to 

calculate suspended solids. 
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2.6  Floc size and strength 

Study into the effect of PAC on floc formation, breakage and regrowth was 

conducted using a particle sizing instrument (Mastersizer 3000, Malvern, UK). 

This instrument was used to monitor the floc size distributions formed during 

coagulation and flocculation for systems with and without PAC. 1 L of raw water 

in a cylindrical beaker was placed on a jar tester (Phipps and Bird PB-900, 

Virginia, USA) connected to the particle size instrument. Water was continuously 

pumped from the jar through the optical unit of the particle sizer and returned to 

the jar during the rapid mix and floc formation stage following the protocol of 

Jarvis et al. (2005a). Briefly, inflow and outflow tubes of 5 mm internal diameter 

were placed in the jar at a depth of approximately 2.5 cm from the water surface 

opposite one another. Water was pumped through the particle size instrument by 

a peristaltic pump. Floc size was measured at least every minute during the floc 

formation stage. Initial floc sizing experiments were carried out for the PAC 

dosing position and sequence strategies outlined in section 2.5. Floc size 

monitoring was carried out during the flocculation period, using an extended 

flocculation period of 20 minutes to ensure that a steady-state floc size had been 

reached. More detailed floc growth, breakage and re-growth tests were carried 

out for PAC dosing before the coagulant using five different doses of PAC (0, 25, 

50, 100, and 200 mg/L). When PAC was used, it was dispersed during 2 minutes 

of rapid mix at 200 rpm (127 s-1). The coagulant was then added at 7 mg/L as Fe 

and the pH adjusted to 4.5 during another rapid mix period of 1 minute. Slow 

mixing (55 rpm, 18 s-1) was applied for 10 minutes for floc growth. The response 

of the flocs to increased shear rate was then assessed by increasing the stirrer 

speed to 200 rpm for 10 minutes. The ability of the flocs to regrow was then 
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established by re-introducing a slow stir period over 10 min at 55 rpm. In addition, 

during these experiments flocs were carefully withdrawn from the jar during the 

slow mixing phase of the jar test and observed under a microscope to understand 

how the PAC was distributed in the floc structure. 

  

Floc strength and recoverability tests were undertaken to understand how PAC 

influenced the growth, breakage and re-growth of flocs. These experiments were 

important to help explain PAC incorporation and release during clarification. The 

following factors were used to establish floc strength and re-growth (Wang et al. 

2011): 

Strength Factor =F2/F1 x 100      

Regrowth Factor= F3/F2 x 100                                  

where F1 is the median floc size before breakage, F2 is the floc size after 

breakage, and F3 is the size of flocs after regrowth.  

 

 

2.7  Analytical methods 

All water sources were characterised by pH and conductivity (Hanna Instruments, 

UK), UV400 and UV254 (Spectroquant Pharo 300, Germany), turbidity (2100N 

Turbidimeter HACH, USA), zeta potential (Zeta Sizer Nano series. Malvern, UK), 

suspended solids (0.5L following the standard method 2450-D (APHA, 1992)), 

alkalinity (HCl titrimetric method 2320B, APHA, 1992), DOC (TOC-V CSH total 

organic carbon analyzer, Shimadzu, UK) and metaldehyde. Metaldehyde 

analyses were conducted using gas chromatography-mass spectrometry (GC-

MS) with a limit of quantification of 0.025 g/L. Samples for UV, DOC, alkalinity 
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and metaldehyde were filtered through a 0.45 µm filter (cellulose nitrate, 

Whatman, Germany). Residual turbidity and UV254 were used as indicators to 

assess bulk removal following clarification. 
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3. Results and Discussion 

Water A was a groundwater influenced by karstic geology. It therefore contained 

a higher background DOC concentration than would be expected for most 

groundwaters as a result of significant impacts from surface water (4.9 mg/L DOC 

and 13.2 abs/m UV254) and a turbidity of 11.4 NTU. Water B was an upland river 

water impacted by peat soils. It therefore had a high UV254 (20.3 abs/m), DOC 

(5.8 mg/L), and turbidity (11.1 NTU). Water C was a river water of high quality 

with a low UV254 (1.7 abs/m), DOC (2.63 mg/L) and turbidity (2.5 NTU). Water D 

was a reservoir water of low turbidity (1.3 NTU) and a high DOC concentration of 

6.54 mg L-1. Background metaldehyde was detected only in Water D at 0.119 

µg/L (Table 1). Metaldehyde was spiked into all water sources to obtain a 

concentration of 2 g/L in all subsequent experiments. 

 

Table 1. Water quality for the different sources used in the clarification 
experiments.  

 Water A Water B Water C Water D 
pH 7.6 ± 0.0 8.3 ± 0.0 8.6 ± 0.0 8.3 ± 0.0 
Turbidity (NTU) 11.4 ± 1.4 11.1 ± 0.3 2.5 ± 0.2 1.3 ± 0.1 

Suspended solids 
(mg/L) 

13.6 16.6 0.8 0.2 

UV254 (abs/m) 13.2 ± 0.7 20.3 ± 0.2 5.4 ± 1.0 13.6 ± 0.9 

UV400 (abs/m) 1.0 ± 1.0 1.3 ± 0.1 1.7 ± 0.2 2.1 ± 0.1 
DOC (mg/L) 4.9 5.8 2.6 6.5 

SUVA (L/mg.cm) 2.7 3.5 2.1 2.1 

Conductivity (mS) 0.9 ± 0.0 0.5 ± 0.0 0.6 ± 0.0 0.7 ± 0.0 

Zeta potential (mV) -13.3 ± 0.9 -13.6 ± 0.2 -10.7 ± 1.1 -12.2 ± 1.1 
Alkalinity 
(mg/L as CaCO3) 

250 ± 0 163 ± 2  245 ± 0 160 ± 0 

Metaldehyde (g/L) <0.025 <0.025 <0.025 0.119 
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3.1  PAC dosing for metaldehyde removal  

For all source waters there was an initial rapid reduction in metaldehyde (Figure 

1a). After 5 minutes, for a PAC dose of 50 mg/L, 85.2% pesticide removal was 

seen from Water A, 85.5% from Water B, 92.7% from Water C, and 80.7% from 

Water D. However, more extended contact times were required in order to reduce 

the pesticide near to the European Union permitted pesticide concentration in 

drinking water (0.1 g/L). For example, it was only possible to reduce 

metaldehyde to under 0.1 µg/L for one water source (Water B) using a PAC dose 

of 50 mg/L. To reliably reach concentrations below 0.1, higher concentrations of 

PAC were required (Figure 1c). Using a contact time of 20 mins, a PAC dose of 

100 mg/L resulted in residual metaldehyde concentrations of 0.05 µg/L for all the 

waters (Figure 1c). In the case of DOC, most removal was also seen in the first 

five minutes of contact time, with 31.9% removal seen for Water A, 28.6% from 

Water B, 24.1% from Water C, and 30.1 % from water D (Figure 1b). Increasing 

PAC dose resulted in improved DOC removal, with levels plateauing as the 

concentration increased above 100 mg/L (Figure 1d).  
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a. 
 

b. 
 

  
c. 
 

d. 

Figure 1. The removal of (a) metaldehyde and (b) DOC with contact time using a 
dose of 50 mg/L PAC for the four different water sources. The removal of (c) 
pesticide and (d) DOC with increasing PAC doses for the four water sources 
using a contact time of 20 minutes. 
 

The adsorption data were fitted to the pseudo-second-order rate equation using 
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calculated for metaldehyde (kmet) and the DOC (kDOC) adsorption, as well as their 

theoretical equilibrium adsorption capacity (Qe,met and Qe,DOC). The data fitted the 

model very well (see Supporting Information, Figure S2 and S3), with R2 values 

>0.99. The obtained adsorption capacity (Qe,met) for the pesticide was consistent 

for the four different waters, with values between 0.039 to 0.04 µg/mg (Table 2). 

This showed that given an appropriate equilibrium time, recalcitrant pesticide 

could be removed to similar levels regardless of the water source and water 

quality. However, the rate of adsorption was much more variable, with a 

maximum value observed for Water C at 79.4 mg/g.min and a minimum for 

Water D at 20.99 mg/g.min. These results were consistent with the poor 

removals observed for water D over contact times that would be more 

representative of those used at full-scale WTWs. 

 

In the case of DOC, differences in adsorption parameters were more significant 

(Table 2). The adsorption capacity for DOC was several orders of magnitude 

greater than that seen for metaldehyde, with Qe,DOC values between 14.8 and 

50.5 mg/g. This was a reflection of the higher initial starting concentration of DOC 

and a higher affinity for adsorption (Li et al., 2017). However, the adsorption rate 

kDOC was slower when compared to the values seen for metaldehyde, with values 

between 0.003 and 0.029 mg/g.min. This was due to the more heterogeneous 

nature of the organic matter present in the source waters, resulting in slower 

migration of a mixture of organic compounds into the pores of the activated 

carbon. Features of the DOC including its variable size, hydrophobicity and 

charge will all influence the speed at which adsorption occurs (Golea et al., 2020). 
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The relationship between bulk water quality and adsorption capacity and rate 

identified that kmet was inversely linked to the initial DOC such that the pesticide 

was removed faster when there was less competing background organic matter 

present (Figure 2). On other hand, Qe,met was stable independently of the initial 

DOC, showing that given enough time similar pesticide equilibrium 

concentrations can be achieved even though the adsorption process was slower, 

a result consistent with previous studies (Li et al., 2019). This is because small 

molecules such as metaldehyde can ultimately access micropores and 

mesopores over time, while bulk organic matter is more limited to the surface of 

the PAC or its macropores. The Qe,DOC was increased as the DOC concentration 

in the source water increased. The lowest affinity for adsorption was seen for the 

organic matter present in water C which had a QeDOC of 14.8 g/mg (initial DOC 

2.6 mg/L). This compared to values of QeDOC of 50.5 g/mg for water B (initial 

DOC 5.8) and 48.5 g/mg for water D (initial DOC 6.5 mg/L). The concentration 

gradient and the nature of the organic compounds present in each of the water 

sources were therefore shown to control overall removal of DOC.  

 

Table 2. Adsorption capacity and adsorption rate constant for metaldehyde and 

DOC for the four water sources. 

 Metaldehyde DOC 
 Qe,met 

(g/mg) 
kmet 

(mg/g.min) 
Qe,DOC 

(g/mg) 
kDOC 

(mg/g.min) 

Water A 0.04 34.3 42.0 0.005 
Water B 0.04 39.0 50.5 0.003 
Water C 0.04 79.5 14.8 0.029 
Water D 0.04 21.0 48.5 0.005 
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a. Pesticide adsorption rate 

 
b. Pesticide adsorption capacity 

  
c. DOC adsorption rate d. DOC adsorption capacity 

 

 

Figure 2. The relationship between initial water quality and the rate and capacity 

of adsorption for metaldehyde (a and b) and DOC (c and d).  

 

3.2  Coagulation and clarification of water sources 

The following results consider the integration of adsorption with the coagulation 

and clarification processes. In these experiments, water D was selected due to it 

posing the most significant challenge with respect to competing background 

organic matter being present, having the highest initial DOC of the water sources 

investigated at 6.54 mg/L (UV254 was 13.6 1/m). The coagulation of water D was 

carried out with and without PAC dosing. Preliminary tests established that the 

optimum coagulant dose for the water was 7 mg/L as Fe at pH 4.5. These 

coagulation conditions were then applied to water dosed with increasing PAC 

concentrations to see the impact on clarification and pesticide removal (SI Figure 
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4). Clarification after flotation was assessed based on residual UV254 and turbidity. 

The UV254 decreased from 11.0 to 1.0 1/m as the PAC dose increased from 0 to 

200 mg/L. On the contrary, residual turbidity was higher as the PAC dose was 

increased from to 0 to 200 mg/L (0.8 to 2.8 NTU). For the PAC dose that enabled 

pesticide compliance (100 mg/L), the turbidity increased by 1.6 NTU compared 

to the control where no PAC was added to the water. These results show that the 

addition of PAC into the clarification process causes a small deterioration in water 

quality, due to the presence of PAC particles not captured in flocs.  

 

The PAC dosing position was therefore investigated to determine whether 

removals could be improved (Figure 3). With respect to metaldehyde, the highest 

removal was achieved when only PAC was dosed, resulting in a residual 

concentration of 0.09 µg/L residual concentration. The adsorbent alone reduced 

the DOC and UV254 by 2.7 mg/L and 8.8 abs/m. With no coagulant, the residual 

turbidity was high after the clarification phase with a turbidity of 28.7 NTU and 

suspended solids of 55 mg/L. When adsorbent dosing was combined with 

coagulation, there were some reductions in the removal of the pesticide showing 

some interference in removal of micropollutants when PAC was coagulated into 

the floc (Figure 3a). When PAC was dosed prior to the coagulant, residual 

metaldehyde was 0.18 g/L, with no difference observed for the 1 or 5 minute 

contact time. Very similar residual metaldehyde was observed when PAC was 

added after the coagulant at 0.16 g/L. The lowest pesticide removal was seen 

when PAC and coagulant were dosed simultaneously, resulting in residual 

metaldehyde of 0.3 g/L. When dosed together part of the pesticide removal 

capacity was lost. A plausible mechanism explaining this observation is that when 
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dosed simultaneously, PAC and coagulant immediately interact, with the 

coagulant occupying adsorption sites on the adsorbent that would otherwise 

would be available. This is a result consistent with investigations on taste and 

odour removal by PAC, where performance declined as the coagulant dose 

increased (Ho et al., 2005). Kouras et al. (1998) similarly reported that the 

removal of lindane by PAC decreased by up to 20% when coagulant was added. 

Dosing PAC either side of the precipitation of the coagulant reduced this 

interaction. 

 

However, when PAC particles were trapped in a floc, the adsorption achievable 

in the reaction time was reduced regardless of dosing sequence when compared 

with the PAC system in the absence of coagulant. This was thought to be a result 

of both a reduction in accessible adsorption sites and a slowing of adsorption 

kinetics. When PAC was dosed alone, all of the adsorption sites were available 

for the pesticide adsorption and it was able to more easily access the pores. On 

the contrary, when the coagulant was present, some of the adsorption sites of 

the PAC may have been blocked by coagulant precipitates, reducing the PAC 

adsorption capacity. In addition, when PAC is trapped in a floc the pesticide 

diffusion pathway is also significantly increased, resulting in slower rates of 

adsorption (Ho et al., 2005).   

 

Compared to dosing the adsorbent alone, DOC removal and residual turbidity 

were much higher when combined coagulation and PAC was applied. For DOC, 

the residual achieved after 1 and 5 minutes of PAC contact before the coagulant 

was 1.30 and 1.17 mg/L, respectively (Figure 3b). When coagulant was dosed, 
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there was a small improvement in DOC removal with residual levels of 0.87 and 

0.75 mg/L for the 1 and 5 minute coagulant contact time, respectively. 

Simultaneous dosing resulted in residual DOC of 1.30 mg/L.   

 

With respect to particle removal, improvements were seen when PAC was dosed 

prior to the coagulant, with residual turbidity values of 0.9 NTU and 2 mg/L for 

suspended solids for PAC-Coag. This compared to values of 1.2 NTU and 7 mg/L 

for Coag-PAC and 3.5 NTU and 3 mg/L suspended solids. Dosing PAC into 

clarification systems necessitates a compromise between the rate of adsorption, 

the amount of PAC required for effective micropollutant removal and the ability to 

effectively remove the PAC from the water in downstream clarification and 

filtration processes. As has been shown, doses of PAC of around 100 mg/L would 

be required to effectively remove the recalcitrant pesticide metaldehyde. The 

results show that this would cause a small increase in the turbidity of water after 

clarification that would place some additional loading onto downstream filtration 

processes.  
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a. Metaldehyde  b. DOC 

  

c.  Turbidity  d. Suspended Solids 

Figure 3. Results of (a) DOC, (b) metaldehyde, (c) turbidity, and (d) suspended 
solids from the study of dosing position of PAC. In these experiments 100 mg/L 
of PAC and 7 mg/L as Fe of coagulant was dosed.  
 

3.3 Floc properties with and without PAC 

To determine the impact of dosing PAC on floc formation and clarification, floc 

growth and sizing experiments were undertaken. Initial tests were undertaken to 

show how the dosing position of PAC influenced the growth and size of flocs 

(Figure 4). All the flocs approached a steady-state floc size after 5 minutes of 

flocculation for all of the dosing sequences. The PAC-Coag and Simult systems 

reached a similar floc size in the range of 700–900 µm, the Coag-PAC floc size 

were significantly smaller at 300-500 µm. This occurred because during the 

dosing and dispersal of the PAC after the coagulant had been added, flocs were 

broken soon after they had formed. The regrowth capacity of flocs was low once 
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they have undergone breakage. This is a phenomenon observed for many 

flocculated systems including coagulation of algae, natural organic matter, 

mineral turbidity and wastewater as floc components reorganise into stable 

smaller structures once broken (Jarvis et al., 2005b; Jarvis et al., 2008; Yu et al., 

2016). The exception to this is when polymer is dosed, as there are opportunities 

for polymer molecules to reform bonds once broken (Fabrizi et al., 2012). There 

was also an increase in the proportion of small particles between 27 and 98 µm 

for the Coag-PAC dosing when compared to the other systems (inset in Figure 

4). These sizes were consistent with PAC particles that had not been 

incorporated into the floc. The increased proportion of small particles also helped 

explain why the residual turbidity was higher for the Coag-PAC dosing system 

following flotation as these smaller particles would take longer to clarify from the 

water.  

 

Further investigations were undertaken for flocs formed from PAC-Coag dosing 

due to the similar levels of pesticide removal observed alongside improved 

clarification when compared to other dosing strategies. It was evident from visual 

inspection that PAC particles were effectively incorporated into the bulk floc 

structure and that with increasing dose, the density of PAC particles captured in 

the floc increased (SI, Figure S5). There were also differences in the size of flocs 

formed with and without PAC dosing (Figure 5). During the first minutes of slow 

mixing, the PAC aggregated into larger flocs that reached median sizes of 

between 338-538 µm after 4 minutes, ultimately reaching floc sizes >800 µm after 

15 minutes of flocculation. These flocs sizes were significantly larger than those 

observed for a control test, where no PAC had been added to the water which 
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reached 666 µm. These results were consistent with those seen previously for 

the coagulation of humic acid with and without PAC (Huang et al., 2020). The 

presence of PAC particles in water helps to encourage rapid and large growth of 

flocs by increasing particle collisions and acting as seeding points around which 

flocs can grow rapidly. This is a mechanism exploited in many flocculation 

systems to encourage additional removal of contaminants, such as metal removal 

from industrial wastewater (Chen et al., 2016) and natural organic matter removal 

from drinking water (Lapointe and Barbeau, 2018).   

 

On exposure to increased shear rate, the median floc size decreased rapidly to 

plateau at sizes between 275-430 µm after 2 minutes. Once the shear rate was 

reduced again, some limited floc growth was observed. Flocs grew to between 

67-116 µm during the two first minutes after returning to the normal flocculation 

conditions (30 rpm). Re-growth was limited, consistent with that seen previously. 

Strength (SF) and regrowth factors (RF) were calculated for the different PAC 

doses (Table 3). The higher the value of the strength factor, the stronger the floc 

is considered, and the less sensitive it is to break under shear conditions (Jarvis 

et al., 2005a). Similarly, high values for the regrowth factor indicate a better 

capacity of flocs to reform, so high values of strength and regrowth factor are 

desirable. The strength factors varied from 18.0 (50 mg/L of PAC) to 48.3 (only 

coagulant) and the regrowth factors from 49.7 (50 mg/L of PAC) to 73.6 (0 mg/L 

of PAC). Flocs therefore had higher initial strength and better proportional 

recovery when only the coagulant was present reaching 68% of their initial size 

during regrowth (454 µm). In part, this was a reflection of the smaller initial size 

of the flocs formed when only PAC was dosed and the similar absolute size of 



25 
 

flocs formed following re-growth. However, the more compact floc structure and 

relative resistance to degradation may also indicate increased bonding strength 

between microflocs of coagulated precipitates compared to those formed 

between PAC particles and the precipitates. In the case of PAC dosing, a dose 

of 25 mg/L formed flocs that broke less (higher breakage factors) and regrew 

better (Growth: 865 µm, Regrowth: 607 µm) than any other PAC doses. Floc 

strength and breakage factors were similar for higher PAC doses, reflecting the 

similar growth and breakage profiles observed for these systems (Figure 5). 

Further analysis of the floc size distributions at key points in the growth, breakage 

and re-growth of the flocs showed that there were differences in the range of floc 

sizes observed (Figure 6). For example, considering a PAC dose of 100 mg/L 

that represented conditions under which effective metaldehyde removal might be 

achieved, floc sizes between 52 and 3500 µm were observed during the growth 

phase. Following the breakage phase the distribution shifted to smaller floc sizes 

between 27 and 859 µm and there was an increase in the particles between 27-

58 µm (inset Figure 5d). This secondary distribution was evident for all of the PAC 

dose systems, but a similar shoulder in the distribution was absent for the control 

test (coagulant only). These small particles were consistent with PAC particles 

that were released from flocs. The same secondary distribution was evident 

following the regrowth phase for the PAC dosed systems showing that these PAC 

particles could not be recaptured during regrowth.  
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a. 
 

 
b. 

 
Figure 4. Influence of dosing position on floc growth and size. a) median floc size 
with flocculation time. b) particle size distribution after 15 minutes flocculation 
time 
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 543 

 

Figure 5. Results of floc growth, breakage, and regrowth with increasing PAC 
dose. 
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Figure 6. Particle size distribution of flocs during growth, breakage, and regrowth 
for systems with and without PAC. The inset figure shows detail of the small flocs 
present in the system. 
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Table 3. Floc strength and re-growth factors for flocs with increasing PAC 
concentration. 

PAC concentration 
(mg/L) 

Strength Factor Regrowth Factor 

0 48 74 
25 43 61 
50 18 50 

100 30 57 
200 30 58 

 

 

3.4 Implications for application at full-scale WTWs 

Dosing PAC into clarification systems necessitates a compromise between the 

kinetics and the amount of PAC required for effective micropollutant removal and 

the abilities to effectively remove the PAC from the water in the downstream 

WTW. The results showed that there was no difference in pesticide removal 

between dosing PAC or coagulant first, a reflection that the dose and contact time 

was effective for combined adsorption pesticide and DOC, overcoming any 

kinetic limitations for this water source. If lower PAC doses were necessary, 

dosing the coagulant first might be an advantage, since part of the NOM would 

be removed by the time that PAC was dosed. Such an approach was shown to 

be most effective for removal of pesticides from other water sources (Li et al., 

2020, Tomaszewska et al., 2004). However, the poorer quality of clarified water 

with increased suspended solids would limit the application of PAC after 

coagulant for most typical water treatment flowsheets.   

 

PAC doses around 100 mg/L would be required to effectively remove the 

recalcitrant pesticide metaldehyde when dosed into raw water prior to 

coagulation. Previous research has suggested that doses of 50 and 100 mg/L 

PAC may be challenging for application in many WTWs as a result of solids 
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carryover onto filters reducing filter run times (Ho et al., 2011). However, 

operational doses of PAC up to and including 100 mg/L have been reported 

elsewhere (US Environmental Protection Agency, 2017). The current results 

show that the application of this PAC concentration would result in a slight 

increase in water suspended solids and turbidity after clarification relative to a 

control without PAC. The performance of downstream filtration systems was 

beyond the scope of this research, but the results imply that modifications to filter 

operation may be required when PAC is dosed at such high concentrations. This 

might include reduced filter times and enhanced backwashing protocols.  

 

Other modifications may also be considered. For example, adaptations to the 

DAF process may enable better removal of residual PAC. Although the size of 

PAC particles is within the recommended range suitable for flotation according to 

previous studies (10-30 µm) (Edzwald et al., 1992), a suspension of PAC particles 

without coagulant were poorly removed by flotation. PAC typically has a point of 

zero charge (PZC) between pH 6 and 8, being positively charged at pH below 

this and negatively charged at higher pH (Adam, 2016). However, once present 

in organic laden water, the PAC will assume the characteristics of the background 

organic matter as it adsorbs onto the sorbent surface, shifting the PZC to lower 

pH and becoming negatively charged under the prevailing conditions used in 

these experiments. As the electrostatic interactions between the bubble and the 

particle control the adhesion, there will be repulsion between the negatively 

charged PAC particles and air bubbles formed by DAF (-25 mV), leading to 

repulsion (Henderson et al, 2008; Rao et al., 2018). Although the addition of 

positively charged coagulant reduces the net negative charge on the PAC 
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particles, the use of bubble surface modifiers such as those used in the PosiDAF 

process, could be used as an alternative to pre-treatment in determined 

situations, or to increase the removal rate. In PosiDAF, bubble surface 

modification can be achieved by adding a chemical surfactant or polymer to the 

saturator of a DAF unit (Henderson et al., 2008; Henderson et al., 2010). 

Similarly, polymer could be used as a flocculation aid to help increase the capture 

of PAC particles during the coagulation/flocculation process (Lapointe and 

Barbeau, 2020).  

 

Invariably, if we are expecting clarification processes to carry put multiple 

functions (bulk removal and micropollutant removal), then some compromises 

must be expected. PAC dosing has been shown to be a realistic option for 

removal of a persistent micropollutant that is likely to have only a small impact on 

operational practice, much lower than would be expected for implementation of 

high energy processes such as AOPs.   

 

4. Conclusions 

The PAC dose required to remove the metaldehyde to under 0.1 µg/L for all of 

the four water sources was determined to be 100 mg/L with a contact time of 20 

minutes. The pseudo-second-order model provided the best fit for modelling the 

kinetics of metaldehyde adsorption by PAC. The removal of pesticide was faster 

when there was less background DOC present in the source water, although the 

modelled equilibrium capacity for pesticide onto the PAC was similar, irrespective 

of the DOC. PAC was able to adsorb pesticide when it was incorporated into a 

floc, but the amount of the pollutant removed during the jar test contact period 
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was reduced compared to when PAC was present in the absence of coagulant. 

Simultaneous addition of PAC and coagulant resulted in lower removal rates of 

pesticide compared to when they were dosed separately. Coagulant dosed 

before the PAC achieved better NOM removal compared to dosing PAC first or 

following simultaneous addition. After the application of the 100 mg/L PAC, 

treated water suspended solids were higher than for a non-PAC dosed system. 

For the water source investigated in detail (Water D), PAC dosing prior to 

coagulant was recommended. Further research is required to understand the 

impact of source water turbidity on PAC dosing position such that more universal 

application of the results can be achieved. In addition, work is needed to 

investigate the impact of increased solids loading in clarified water from residual 

PAC particles on downstream filtration processes. 
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