
     

Change detection in streaming data analytics:  

A comparison of Bayesian online and martingale approaches  
 

Bernadin Namoano*, Christos Emmanouilidis* , Cristobal Ruiz-Carcel*, and Andrew G Starr* 


*Cranfield University, United Kingdom (email: {bernadin.namoano; christosem; c.ruizcarcel; a.starr}@cranfield.ac.uk) 

Abstract: On line change detection is a key activity in streaming analytics, which aims to determine 

whether the current observation in a time series marks a change point in some important characteristic of 

the data, given the sequence of data observed so far. It can be a challenging task when monitoring complex 

systems, which are generating streaming data of significant volume and velocity. While applicable to 

diverse problem domains, it is highly relevant to monitoring high value and critical engineering assets. This 

paper presents an empirical evaluation of two algorithmic approaches for streaming data change detection. 

These are a modified martingale and a Bayesian online detection algorithm. Results obtained with both 

synthetic and real world data sets are presented and relevant advantages and limitations are discussed.  
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1. INTRODUCTION 

Engineering asset resilience management critically depends on 

the ability to detect events that may prevent assets from safely 

and dependably delivering their intended function. Complex 

asset monitoring produces data often characterised by 

significant volume and velocity. With the greater integration 

of internet of things technologies in such monitoring, data 

generation creates demands for considerable transmission 

bandwidth and significant computing resources. While the 

value of the data asset itself is increasingly acknowledged, 

collected data are often left poorly exploited, failing to take 

appropriate advantage of their potential for enhancing asset 

management performance (Kubler et al., 2015). Part of the 

challenge lies with the difficulty in understanding when any 

observable change in the data corresponds to events of interest, 

which in turn must require intervention actions. Directing the 

attention on significant events remains a challenging problem 

in asset monitoring. Terms such as outlier detection (André et 

al., 2008), novelty detection (Markou and Singh, 2003), and 

anomaly detection (Chandola et al., 2009), are all employed in 

this context and are relevant to change detection when 

monitoring engineering assets (Worden et al., 2000). 

However, collected data are typically not linked with validated 

event cases, making it hard to apply any supervised type of 

learning from data, making unsupervised (Filev et al., 2010) or 

semi-supervised types of learning more applicable in practice 

(Kingma et al., 2014). Most employed algorithmic approaches 

still require calibration and adjustment, as the dynamic 

characteristics of streaming data greatly vary across domains.  

This paper performs an empirical evaluation of two change 

detection approaches, namely a non-parametric modified 

martingale type (Ho, 2005) and a Bayesian approach (Adams 

and MacKay, 2007). These are applied to event detection 

problems on both synthetic and real world data to enable better 

insight into their performance. The paper is structured as 

follows. Section 2 places the present work in the context of the 

broader literature in the field. Section 3 presents a typical 

martingale change point detection algorithm, and introduces 

adaptations to address shortcomings of the original one. 

Section 4 describes the Bayesian online change detection 

algorithm. Results from the two approaches are presented and 

discussed in section 5. Section 6 is the conclusion.  

2. RELATED WORK 

Efficient change detection requires appropriate processing of 

streaming data to ensure that the delay time between a true 

change and its detection, as well as the rate of missed change 

events, are kept minimal (Ho, 2005). Depending on the 

availability of data annotated with labelled events, change 

detection methods can apply supervised, unsupervised, and 

semi-supervised learning and a range of optimisation methods. 

In supervised learning-based methods, offline streaming data 

are labelled and then used to train models to perform change 

detection. These methods include classification or regression-

based approaches, and it would be beyond the scope of this 

paper to mention all such applicable techniques. It is of interest 

though to highlight that major issues with this category of 

algorithms are their inability to detect unseen classes and their 

greediness in terms of data. Moreover, they require appropriate 

handling of unbalanced data, i.e. data with uneven numbers of 

pattern exemplars per class. For example, long time series with 

sparse events often present such learning challenges. In real 

world applications, the typical case is that there is a lack of 

annotated sample data which are representative enough of the 

range of possible circumstances and therefore a purely 

supervised approach is rarely applicable in practice.  

Unsupervised learning based methods do not operate on 

labelled data and are therefore a more natural choice in 

practice. They typically seek to assign incoming data points 

into different clusters or simply to detect when an incoming 
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data point sufficiently deviates from a single or more clusters. 

A change is detected when consecutive data points are either 

assigned to different clusters or cannot be assigned to any 

cluster with a sufficient degree of confidence. The former may 

involve any type of clustering algorithms, whereas the latter 

typically relay on employing some type of distance metrics. 

Relevant methods include the cumulative sum (CUSUM) 

(Peach et al., 1995), martingale test (Vovk et al., 2003), 

minimax (Unnikrishnan et al., 2009), Bayesian inference 

based models (Adams and MacKay, 2007) (Ge et al., 2014) 

(Mohammad-Djafari and Féron, 2006), wavelets (Wang et al., 

2018), as well as various forms of distance-based ones. Results 

from applying such methods are highly dependent on 

appropriately calibrating them to the problem at hand.  

Semi-supervised learning, in which both supervised and 

unsupervised learning are combined for change point 

detection. Such methods are well suited for real world 

problems whereby sparsely labelled data are only available. 

Examples include feed-forward neural network (Zhang et al., 

2017), used for offline training and the model built can be used 

online with non-negligible time delay. While they address the 

challenge of labelled data sparsity, they too rely on calibration. 

Change point detection problem can also be assimilated into 

an optimisation problem, wherein a cost function is 

minimised under some constraints (Truong et al., 2020). Many 

heuristics have also been developed to this end. Examples 

encompass sliding windows and bottom-up algorithm 

(SWAB) (Keogh et al., 2001), binSeg (Truong et al., 2020) in 

which global or local error cost is minimised. Appropriate 

choice of the cost function, sizing of the sliding window, and 

handling known challenges for the relevant optimisation 

approaches are among the typical challenges of such methods.  

The choice of a change detection approach depends on the 

nature of the problem and the involved data characteristics. 

The motivation for the present work has been the need to 

develop streaming data change detection solutions for railway 

rolling stock asset monitoring. The aim is to evaluate current 

approaches (Namoano et al., 2019), study their shortcomings 

and strengths, and propose solutions and improvements to 

enhance change detection performance. Given this motivation, 

the paper focuses on fully online methods, i.e. methods that 

determine whether or not the current observation marks a 

change, given the data observed so far but not given the 

complete time series. The Bayeasian online change detection 

(BOCD) (Adams and MacKay, 2007) and the martingale 

exchangeability test (Ho, 2005) are appropriate for such 

problems as they can handle univariate and multivariate data 

and can be adjusted to the problem at hand. For example, in 

BOCD, one can set the prior distribution of the underlying 

process or run a classical statistical test such as T-test to set 

hyperparameters. For the martingale methods, the computation 

of the so called p-values and the hypothesis test can be adapted 

to the problem. The two methods are presented next.  

3. MARTINGALES AND EXHANGEABILITY 

3.1. Basic Martingale algorithm 

In a martingale process, the conditional expectation of the 

upcoming data point is the same as the current one, given all 

observed values so far. The idea of the martingale concept of 

change detection is that by learning the statistical properties 

underlying the observed data, one can analyse any deviation 

by testing the data exchangeability. A time sequence of a 

vector of random variables X = {𝐗𝐢  𝑖 = 1. . 𝑛 𝑎𝑛𝑑 𝑛 ∈ 𝑁} is 

exchangeable if its joint distribution does not change by any 

alteration of the time sequence ordering of the observations X1 

… Xn. If the expected value of a sequence M is 𝐸(𝑀𝑛+1 | 𝑀1. . 𝑀𝑛 ) = 𝑀𝑛 , where 𝑀 = { 𝑀𝑖  𝑖 =1. . 𝑛 𝑎𝑛𝑑 𝑛 ∈ 𝑁} is a measurable function of X, then M is a 

martingale with respect to X. Considering a sequence of data 𝐒 = {𝑆1, 𝑆2, . . , 𝑆𝑖 , . . 𝑆𝑛−1} 𝑤ℎ𝑒𝑟𝑒 𝐒𝑖 is a multidimensional data 

point, a martingale test can be completed for each new point 𝑆𝑛 involving three types of parameters as follows (Ho, 2005):  

1) Strangeness or non-conformity measure. Denoted as 𝛼𝑖, it expresses the dissimilarity between a specific point 

and other data points.  

2) p-values: the p-value 𝑝𝑛 for the new set 𝐒 ∪ {𝐒𝑛} 

defined as: 𝑝𝑛 =  #{𝑖 ∶ 𝛼𝑖> 𝛼𝑛}+𝜃𝑛#{𝑖 ∶ 𝛼𝑖=𝛼𝑛} 𝑛 , where 𝛼𝑖 is the 

strangeness, 𝜃𝑛 is randomly chosen from [0, 1], i=1...n-1 

and #{} is a counting function. A key property of the p-

values is that as long a change does not occur, they are 

uniformly distributed in the interval [0, 1]. 

3) Computation of the martingale values 𝑀𝑛𝜀 = ∏ (𝜀𝑛𝑖=1 𝑝𝑖𝜀−1), where 𝜀 is chosen from [0, 1] and controls 

the sensitivity of the change detection, while 𝑝𝑖  are the p-

values. The martingale values can be computed without 

storing all previous values as 𝑀𝑛𝜀 =  𝜀𝑝𝑛𝜀−1𝑀𝑛−1𝜀 . To 

remove the dependency on 𝜀, a simple mixture of 

martingales can be used (Fedorova et al., 2012):  𝑀𝑛 = ∫ 𝑀𝑛𝜀  𝑑𝜀1
0  

When a change occurs, the p-values distribution becomes 

skewed, and the exchangeability condition is not met (Ho, 

2005). The absence of change is represented by the hypothesis 𝐻𝑜: 0 <  𝑀𝑛 <  𝜆 where 𝜆 is a defined threshold. The 𝐻𝑜 is 

rejected when change occurs, hence 𝑀𝑛𝜀 ≥ 𝜆. Testing the 

exchangeability online involves computing power martingale 

values using p-values (Vovk et al., 2003). The main idea is to 

construct martingales which attain large values when small p-

values are generated. The exchangeability test was applied to 

detect changes in sequential streaming data (Ho, 2005). This 

can work on unlabelled data streams, with multiple martingale 

tests with multiple strangeness and thresholds being used to 

determine whether a change occurs. Martingale difference 

values can be used to test whether a concept change occurred.  

3.2. Adaptations and modified martingale algorithm 

Complex processes often exhibit such dynamic behaviour that 

selecting a constant threshold for the martingale test leads to 

higher false alarm rates. To reduce such effects, the martingale 

value can be reset at specified time intervals, when a change 

has not been detected (Balasubramanian et al., 2014). 

Furthermore, an adaptive threshold setting approach with 

Reproducing Kernel Hilbert Space (RKHS) projection (Wang 

et al., 2017) can be applied, but this does not estimate the value 



 

 

     

 

of the initial threshold. Alternatively, different martingale tests 

with different thresholds and composite change detection 

criteria can be employed (Ho and Wechsler, 2007b). However, 

while this may improve performance, it also increases the risk 

of adding false alarms produced by individual martingale tests.  

A modified martingale algorithm (Table 1) is introduced in this 

paper to address some of the challenges facing the original 

approach. The motivation for the modification is to address a 

common challenge for martingale approaches, related to the 

time delay between the true change point and the change point 

detected by the test. The potential significance of this often 

depends on the application context. In long run processes, the 

estimation of the strangeness becomes computationally 

expensive. This is due to the fact that when the frequency of 

changes is low or when there are no changes, the size of the 

buffer set of samples (T in Table 1), used to compute the 

strangeness, can become excessively large. To improve the 

computational efficiency of estimating the strangeness, down-

sampling (Chawla, 2009) and windowing techniques can be 

used. Engineering processes often exhibit rapid changes in a 

limited number of time steps before going back to a steady-

state. For example, a driver’s acceleration is a typical case. A 

driving journey may switch between coasting and cruising to 

modes that involve gear change, acceleration and deceleration 

with braking. In such cases, the growth of the martingale value 

is not fast enough to capture the change. Lowering the 

detection threshold will result in confusing true changes with 

noise, resulting in higher false detections.  

Table 1 Modified Change detection basic algorithm used. 

 

Another difficulty is that the martingale value converges to 

zero for a streaming process with no changes. This often 

causes change points to be missed, as the growing struggle to 

reach the defined threshold. Moreover, when a change is 

detected, significant time delays may be observed. To reduce 

this effect, empirical tests carried out (Volkhonskiy et al., 

2017) suggest that instead of basing the change determination 

on the original martingale M values, martingale growth values 

G can instead be utilised:  𝐺𝑛 = 𝑚𝑎𝑥 {0, 𝐺𝑛−1 + 𝑙𝑜𝑔 (𝑀𝑛)}  

where 𝑀𝑛 is the original martingale. Depending on the context, 

the martingale values 𝐺𝑛 grows faster than the traditional 

martingale 𝑀𝑛 and can hence, exhibit a reduced delay in 

detecting a change. The present paper introduces a further 

change in the way a change is detected via a decision 

variable 𝐵𝑛, computed as follows:  

 𝐵𝑛 = 𝑚𝑎𝑥(𝐺𝑛 , 𝑀𝑛) 𝑤𝑖𝑡ℎ 𝐵0 = 0.  

 

Hence, with this modified martingale the hypothesis 𝐻𝑜 is 

rejected when 𝐵𝑛 ≥ 𝜆𝑏 , where 𝜆𝑏 a threshold, or accept it 

otherwise. This modification enables the algorithm to detect a 

change whether this is picked by growth in 𝐺𝑛 or in 𝑀𝑛. Such 

modifications aim at addressing some of the aforementioned 

challenges of the original algorithm.  

4. BAYESIAN ONLINE CHANGE DETECTION 

The BOCD approach applies online Bayesian reasoning by 

estimating for each current observation in a time series the 

probability to be a change point based on the data observed so 

far (𝑋1:𝑡).  The underlying assumption is that the generated 

data are independent and identically distributed (i.i.d) random 

variables and the change point segments are not overlapping. 

These are not assumptions that can be assured to hold in 

practice. However, it allows a simplification it the involved 

estimations which in many cases can still offer adequate 

results. The underlying idea of the algorithm is computing the 

posterior probabilities 𝑃(𝑟𝑡|𝑋1:𝑡) over the run lengths 𝑟𝑡 . 𝑃(𝑟𝑡|𝑋1:𝑡) = ∑ 𝑃(𝑟𝑡 , 𝑟𝑡−1𝑋1:𝑡)𝑟𝑡−1  

 

 

Fig. 1 Time series observations with two change point 

 

Fig. 2 Run lengths associated with the above two changes.  



 

 

     

 

The run-length is increased by one when the present data point 

is determined to belong to the same distribution with the 

previous data. However, it is reset to zero when a change 

occurs, indicating that the present measurement point belongs 

to a new distribution (Fig. 1-2). The run length drops to zero 

when a change occurs. The corresponding estimated posteriors 

are shown in Fig. 3. Further details of the algorithm can be 

found here in the literature (Adams and MacKay, 2007). 

 
Fig. 3 Diagram of the message passing methods describing 

the posterior probabilities computed. 

 

In practice, one of the drawbacks of BOCD methods is the 

quadratic growth of the run-length table with the growth of the 

size of the time-series. Pruning techniques exist to overcome 

this issue but may affect the efficiency of the algorithm. 

5. EXPERIMENTS AND RESULTS 

The experiments carried out aim to compare the modified 

martingale and the Bayesian online method and seek to 

identify performance characteristics for each approach. The 

work is motivated by industrial requirements to apply change 

detection on real world datasets from railway rolling stock 

monitoring. However, as the involved datasets are not publicly 

available, a choice was made to apply also the evaluated 

methods on publicly available data as well. For better 

evaluation of both methods, the present investigation used 

different data sources with different characteristics of change 

points (regular change points and random change points) and 

different dimensions and numbers of records. Specifically, two 

categories of datasets are used in the experiments. The first is 

a synthetic publicly available benchmarking dataset. Three 

types of synthetic data streams with induced changes are 

simulated in this dataset. The first is generated using normally 

distributed clusters data generator called NDC. It consists of a 

dataset with 1000 attributes, including 100,000 data points. 

The second is the USPS three-digit handwritten data, with 256 

attributes and 7,291 data points. The third synthetic dataset is 

a modified version of nursery binary data (UCI) consisting of 

5 attributes and 12,960 data points. For each dataset, change 

point occurs at every 1000 points. More details and the dataset 

are available online (Ho and Wechsler, 2007a). The second 

category of datasets represents real world datasets. The first 

dataset is one of the railway rolling stock monitoring datasets 

that motivated this work and is specifically from the train 

engines. It comprises three datasets representing the conditions 

of the engines hourly. Each dataset contains approximatively 

3600 data points, taken every second. The attributes of the data 

points include the engine frequency, the charge air pressure, 

the second stage oil, the exhaust gases pressure and 

temperature, and the ambient temperature and its pressure. The 

dataset contains 295 change points. Each change represents 

changing driving modes (idle, acceleration, maximum speed 

and deceleration). The second dataset represents the 2016 

soccer UEFA championship eurogame with 16 games. The 

change points include game events, such as start, end, goals, 

and substitutions. The details on the data processing as well as 

its transformation are available on (Goutte et al., 2019). 

5.1. Algorithmic parameters setting 

For the modified martingale, an incremental SVM is used for 

the computation of strangeness, while  λ𝑏  was empirically set 

to 10, after experimentation. For the engines data as well as the 

eurogame datasets, the root mean square (RMS) method is 

used to compute the strangeness, while  λ𝑏 was empirically set 

to 14. In both cases, the k-means (k=2) algorithm is employed 

to improve the change point location by separating the 

observations since the last change into two classes. The first 

class represents the statistical properties learned from the 

observations before the change and the second those after the 

change. For the martingale change detection, the algorithm of 

Table 1 is employed and when the adapted martingale value 

computed is greater or equal to the defined threshold, a change 

is detected. For the Bayesian online algorithm, the Gaussian 

distribution is used to update sufficient statistics referred to in 

(Adams and MacKay, 2007). Table 2 summarises the 

parameters used for both methods. The parameters were 

chosen via a nonlinear optimiser available in Matlab.  

Table 2 Parameters used to compute change points 

RMS: root means square, 𝝀𝒃 : martingale threshold 

hazard: The hazard function value used by the BOCD 

algorithm (Adams and MacKay, 2007). 

Dataset Martingale BOCD 

NDC SVM, 𝜆𝑏 = 10 Gaussian, hazard=2000 

USPS SVM, 𝜆𝑏 = 10 Gaussian, hazard=1500 

UCI SVM, 𝜆𝑏 = 10 Gaussian, hazard=1500 

Engines 

dataset 

RMS, 𝜆𝑏 = 14 Gaussian, hazard=100 

Eurogame RMS, 𝜆𝑏  = 14 Gaussian, hazard=100 

5.2. Evaluation approach 

The standard performance assessment employed in typical 

classification problems is insufficient for change detection. In 

real world problems it can be highly misleading to detect a 

change too early or too late. Therefore, typical performance 

metrics are supplemented by an additional indicator that 

assesses the timeless of the detection. Four performance 

indicators are therefore involved: recall, precision, the F1-

score and the mean time delay (MTD). The precision gives the 

percentage of the correctness for a detection, meaning the 

likelihood of detecting true change. Recall measures the 

percentage of detected changes that are true changes. The F1-

score is a metric of test accuracy. It measures the correctness 

of all identified cases. The MTD represents an average 

detection time lag, which is the duration between the true 

change and the one detected by the system.  



 

 

     

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 100 

𝑅𝑒𝑐𝑎𝑙𝑙 (R) =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ∗ 100 

1 − 𝑠𝑐𝑜𝑟𝑒 (F1) =  2 ∗ 𝑃 ∗ 𝑅𝑃 + 𝑅 

5.3. Results and discussion 

For each dataset, 50 runs have been performed, and then 

performance is averaged over all runs. These results are 

compared with the traditional martingale method (Ho, 2005). 

As seen in Table 3, the modified version of the martingale 

method has improved performance. The precision and the 

recall as well as the mean time delay have been improved in 

both synthetic and engines dataset. 

Table 3.  Original vs modified martingale performance 

** and -- represent the modified and the original martingale 

methods respectively 

Dataset Precision Recall MTD (in s) 

NDC data **0.87 

--0.85 

**0.93 

--0.90 

**70 

--92 

Train engine 

data 

**0.78 

--0.60 

**0.85 

--0.80 

**10 

--50 

Table 4 Results overall employed datasets 

 
Table 4 summarises the results of the experiments. The colour 

represents a visualisation of the performance for each metric. 

Green indicates better performance. A straightforward 

observation is that in terms of time delay, the BOCD MTD is 

consistently better than the martingale. On the synthetic data 

with regularly spaced change points, the martingale method 

highlights better F1-scores in comparison to the BOCD. The 

precision shows that the BOCD is less robust in term of noise.  

On the real world dataset experiments, as there is no regularity 

at the timing of the change points, it is observed that the 

martingale method creates more false detections when fast 

paced changes occur in a short period (RUSWAL dataset result 

for example, in Table 4). Overall, BOCD outperformed the 

martingale, having lower mean time delay and better accuracy. 

Further work and more experiments are needed to replace the 

empirical choice for the calibration parameters with a 

systematic approach for their setting. Considering both types 

of datasets, the experiments show that when changes occur 

over long periods, the martingale is more accurate (F1-score) 

than the BOCD. However, for changes in short time windows, 

BOCD accuracy is higher than the martingale methods.  

6. CONCLUSION 

This paper proposes a modified version of the martingale 

method for change detection in multi dimensional streams as 

well as an empirical evaluation of both the modified 

martingale and Bayesian online change detection. The 

experiments show that the proposed modified martingale 

method is effective in real world as well as synthetic data. The 

comparison between the martingale method and BOCD shows 

that the martingale method achieved better performance 

regarding robustness to noise and detection accuracy when the 

observed time series is sparse in changes and the changes are 

of longer duration. BOCD is more accurate when changes of 

shorter duration occur, but generates high false alarm rates in 

the presence of noise. Future work will examine performance 

on real world datasets, using thresholds optimisation and 

mixing both methods through an ensemble learning process to 

enhance performance, taking into account the strangeness 

magnitude. Further research is needed to clarify the following:  

Strangeness measure: For the employed data, unsuccessful 

attempts to use as strangeness measure distance-based metrics 

such as Euclidean and cosine have been made. It is therefore 

desirable to find a suitable or adaptive strangeness measure for 

the martingale methods so as to improve as well as the MTD.  

Modified martingale values: Although empirical tests show 

better performance with the modified version, further research 

is needed for a sound justification regarding the conditions 

under which such improved performance is achieved.  

BOCD: For this approach, there is a need for further research 

to improve its robustness and computational time complexity. 

This is needed to address the fact that when changes are sparse 

in time, the computational time complexity is quadratic.  
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