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Several studies have investigated the dynamics of a single spherical bubble at rest under a non-
stationary pressure forcing. However, attention has almost always been focused on periodic pressure
oscillations, neglecting the case of stochastic forcing. This fact is quite surprising, as random pressure
fluctuations are widespread in many applications involving bubbles (e.g., hydrodynamic cavitation in
turbulent flows or bubble dynamics in acoustic cavitation) and noise, in general, is known to induce
a variety of counter-intuitive phenomena, in non-linear dynamical systems such as bubble oscillators.
In order to shed light on this unexplored topic, here we study bubble dynamics as described by the
Keller Miksis equation, under a pressure forcing described by a Gaussian colored noise modeled as
an Ornstein-Uhlenbeck process. Results indicate that, depending on noise intensity, bubbles display
two peculiar behaviors: when intensity is low, the fluctuating pressure forcing mainly excites the
free oscillations of the bubble, and the bubble’s radius undergoes small amplitude oscillations with a
rather regular periodicity. Differently, high noise intensity induces chaotic bubble dynamics, whereby
non linear effects are exacerbated and the bubble behaves as an amplifier of the external random
forcing.

I. INTRODUCTION1

Over the last decades, the dynamics of gas-bubbles2

(also referred to as cavities) in liquids has attracted a3

lot of interest in the scientific community [e.g., 1–3].4

This paper focuses on the canonical case of a spherical5

bubble subjected to a prescribed external forcing which6

drives variations in the bubble’s radius. The problem7

has been extensively addressed [e.g., see 4–7] and can be8

mathematically described by ordinary differential equa-9

tions, which, depending upon different simplifying as-10

sumptions, can take different forms [8–12]. Despite such11

differences, all these equations share the common feature12

of retaining strongly non-linear terms which make gas-13

bubbles in liquids dynamically-rich systems [13].14

One of the attractive features of bubble dynamics in-15

volves the possibility of cavities to undergo abrupt vari-16

ations in size. In particular, due to the high inertia of17

the liquid hosting the cavities, bubbles, if properly ex-18

cited, can be subjected to abrupt collapses that generate19

intense pressure and temperature peaks, which, in turn,20

are associated with the generation of shock waves and21

the emission of light and sound [14–16].22

The attractiveness of such extreme pressure and tem-23

perature events stems from the fact that they can be24

exploited in several technological applications. For in-25

stance, in medicine, bubble collapses are used to break26

liver and kidney stones and cancer cells [17, 18]. In the27

water industry, bubbles’ collapses physically inactivate28

bacteria and the free-radicals generated by the tempera-29

ture peaks reached during the collapsing phase are used30
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to oxidize pollutants for waste-water treatment purposes31

[19–22]; in geophysics, bubble implosions are useful for32

sub-sea geological explorations [23, 24].33

Several factors influence bubble dynamics. The most34

relevant are the properties of the liquid hosting the gas35

bubble [25], the presence of solid boundaries close to the36

bubble [26–28], the interaction with other proximal gas37

cavities [29, 30], and the action of an external forcing that38

alters the bubble equilibrium conditions. Two classes of39

forcing are commonly considered. The first one consists40

in the alteration of the bubble size in a liquid at rest41

(with time-invariant pressure) using either laser beams42

or sparks [31, 32]. The second class involves variations43

of the static pressure of the liquid hosting the bubble44

[33, 34].Static pressure variations are usually induced by45

ultrasound waves traveling within a volume of liquid at46

rest [35, 36] or by alterations of the liquid velocity (e.g.,47

geometrical constrictions like orifice plates or Venturi48

tubes) in a pressurized system of conduits [37, 38].49

The pressure forcing – especially, the case of pressure50

fluctuations in a liquid at rest – has been the focus of a51

great deal of studies and will be considered also in the52

present paper. The largest part of previous works have53

generally explored the effects of sinusoidal pressure os-54

cillations on the bubble’s radius [e.g., 39]. In spite of55

the simple and regular temporal structure of the forc-56

ing, the response of the bubble turned out to be very57

rich, exhibiting period-doubling bifurcations and period-58

doubling cascades that can ultimately lead to a chaotic59

behavior [40–45].60

Other studies have investigated the forced dynamics61

of bubbles when the pressure of the hosting liquid is per-62

turbed by a bi-harmonic signal obtained as the sum of63

two sinusoidal signals [46, 47]. It was found that such64

a combined signal induces significant alterations in the65
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thresholds of period-doubling bifurcations and period-66

doubling cascades. It was therefore suggested to adopt67

bi-harmonic pressure signals to control chaos inception68

and to give a more controlled and predictable bubble69

behavior [48]. Finally, some theoretical and experimen-70

tal studies have focused on the transient phase occurring71

during the inception of an ultrasound field and in pulsed72

ultrasound fields [49–51]. Results showed that the col-73

lapse of bubbles was more intense in the transient phases,74

rather than during the regular sinusoidal phase of pulsed75

ultrasound fields.76

To the authors’ opinion, the aforementioned results77

from the literature suggest that transients and irregu-78

larities of the external forcing can lead to yet unexplored79

bubbles’ responses. This should not be entirely surpris-80

ing because it is well known that many interesting and81

unexpected phenomena emerge from the stochastic forc-82

ing (i.e., a form of irregular forcing) of strongly non-linear83

systems (i.e., the so called noise-induced phenomena, see84

[52–55]). It is within this context that the aim, novelty85

and relevance of the present paper are cast. The aim is in-86

deed to explore the response of a single bubble to random87

fluctuations of the external pressure. The study is novel88

because, to the best of the authors’ opinion, it has never89

been addressed before. Its relevance lies in the fact that90

stochastic pressure-forcing are important for a number91

of applications and are encountered in a number of envi-92

ronments. Notable examples include: (i) hydrodynamic93

cavitation reactors (mainly used for water-treatment pro-94

cesses) where the pressure fluctuations imposed by tur-95

bulence and by the geometry of the reactor are known96

to heavily influence bubbles’ dynamics [30, 43, 56] and,97

ultimately, bubble’s efficiency in oxidation and disinfec-98

tion processes; and (ii) acoustic cavitation reactors where99

bubbles’ dynamics is influenced by the interactions be-100

tween the sinusoidal pressure-waves generated by ultra-101

sound transmitters and the random shock pressure waves102

generated by imploding bubbles [38, 57, 58].103

In order to fulfill the aim of the paper, we chose to104

adopt a modeling approach whereby the dynamics of105

bubble was investigated through numerical integration106

of the Keller-Miksis equations [40]. The pressure of the107

fluid hosting the bubble (i.e., the pressure forcing) was108

assumed to undergo stochastic fluctuations which were109

simulated using the Ornstein-Uhlenbeck model [59]. This110

model is well-established and represents a wide number111

of random processes in nature [60–63]. More importantly,112

it is characterized by only two free parameters that al-113

low for a systematic exploration of noise-intensity and114

noise-autocorrelation effects on bubble dynamics.115

II. METHODS116

A. Mathematical modeling of bubble dynamics117

We focus on a single bubble located far from solid118

boundaries or liquid surfaces. The bubble is assumed119

to be spherical, positionally stable, and its surface not120

to be affected by instability mechanisms [64]. In order121

to study the dynamics of this type of cavity, it is stan-122

dard to focus on the temporal evolution of the bubble123

radius, R(t), where t is time. A well-known mathemat-124

ical framework for the modeling of R(t) is given by the125

Keller-Miksis equation [40]126

(
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where dots denote time derivation, c is the speed of127

sound, ρ is the liquid density, p(t) is the (possibly time128

dependent) liquid pressure indefinitely far from the bub-129

ble wall (often indicated in the literature also as p∞), and130

pw is the liquid pressure at the bubble wall. We chose131

the Keller-Miksis equation in place of more simplified for-132

mulations (e.g., the Rayleigh-Plesset equation) in order133

to properly model large and fast temporal variations of134

the radius R(t) [40]. In the following, we will show that135

long-lasting and large increments of the bubbles’ radius136

play a key role in determining chaos in the radius dynam-137

ics. In this regard, Nazari-Mahroo et al. [69] compared138

the Keller-Miksis, Gilmore, and Lezzi-Prosperetti mod-139

els, and showed that – during the radius expansion stage140

– they behave very similarly. This means that the results141

presented herein are robust and overall insensitive to the142

choice of the specific bubbles’ dynamics model. It should143

also be noted that during radius expansion stage, the144

bubble remains spherical. This is confirmed for instance145

by the experiments reported by Löfstedt et al. [70].146

The bubble is assumed to contain a mixture of liq-147

uid vapor and non-condensible gas and to be submerged148

within a liquid at constant temperature. If this mix-149

ture behaves as an ideal gas, the total pressure inside the150

bubble can be evaluated as pG + pv, where pG and pv151

are the gas and vapor partial pressure inside the cavity,152

respectively. Under this assumption, the pressure at the153

bubble wall, pw, can be derived by a force balance at the154

gas-liquid interface, reading155

pw = pG + pv −
2S

R
+ 4µ

Ṙ

R
, (2)

where S is the surface tension, and µ is the liquid dy-156

namic viscosity. Provided that the liquid that hosts the157
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TABLE I. Physical parameters adopted for the liquid hosting
the bubble. Data refer to water at 293 K.

ρ S µ c pv
(kg · m−3) (N· m−1) (Pa·s) (m· s−1) (Pa)

998 73·10−3 1.00·10−3 1481 2338

bubble is kept at constant temperature, the vapor pres-158

sure inside the cavity, pv, is also constant. The gas pres-159

sure inside the bubble, instead, can be evaluated accord-160

ing to the polytropic relationship161

pG = pG,eq

(

Req

R

)3k

, (3)

where pG,eq and Req are the gas pressure inside a bubble162

and the bubble radius in equilibrium conditions, respec-163

tively, and k is the so-called polytropic exponent. In this164

study, bubbles are supposed to undergo adiabatic volume165

changes, i.e., k = 1.4. This is consistent with several166

studies [3, 65, 66] that have shown that bubble dynam-167

ics – as predicted by adiabatic mathematical models –168

matches experimental observations. Finally, the pressure169

inside a bubble in steady conditions, pG,eq, is evaluated170

from (1) and (2) setting Ṙ = R̈ = 0 as171

pG,eq = p− pv +
2S

Req

, (4)

where p is the pressure of the liquid far from the bubble.172

A key parameter is the period of bubble free oscilla-173

tions [3, 25]174

Tn = 2π

(

3k(p− pv)

ρR2
eq

+
2(3k − 1)S

ρR3
eq

)

−
1

2

. (5)

This parameter will be crucial in the interpretation of the175

temporal evolution of the cavity radius R(t). In the fol-176

lowing, water at 293 K is assumed as hosting liquid, and177

Table I reports the corresponding physical parameters.178

B. The stochastic forcing179

The pressure of the liquid hosting the bubble is sup-180

posed to evolve over time as181

p(t) = p̄+ p′(t), (6)

where p̄ is the mean pressure experienced by the cav-182

ity, and p′(t) is the time-dependent fluctuation around183

p̄. The fluctuations p′(t) are modeled as an Ornstein-184

Uhlenbeck process [59, 63].185

The Ornstein-Uhlenbeck process is a stationary col-186

ored Gaussian-Markov process with the following char-187

acteristics: (i) the probability density function of the188

realizations p′(t) is a normal distribution with zero189

mean and standard deviation σp; (ii) the stochastic pro-190

cess is exponentially autocorrelated as p′(t)p′(t+ τ) =191

σp exp[−τ/τp], where τp is the autocorrelation time-scale;192

and (iii) the process is stationary, namely σp and τp do193

not change over time.194

We have chosen the Ornstein-Uhlenbeck process as the195

random pressure forcing due to its simplicity, mathemat-196

ical tractability and the possibility of changing its vari-197

ance and (linear) memory by acting on only two parame-198

ters, namely the standard deviation σp and the autocor-199

relation time-scale τp.200

From a numerical point of view, the realizations of201

the pressure fluctuations, p′(t), are evaluated by the so-202

called “exact update formula” provided by Gillespie [67],203

namely204

p′(t+∆t) = p′(t) · ζ + σp ·
√

1− ζ2 · n, (7)

where n is a unit normal random number, ∆t is the205

time-step of the process and ζ = exp [−∆t/τp]. Since (7)206

provides an exact update for p′(t), the actual value of the207

time-step of the process is arbitrary, and ∆t = τp/50 was208

chosen in this study.209

C. Simulation of bubble radius dynamics210

In order to investigate the effect of the stochastic pres-211

sure forcing on the dynamics of a bubble (i.e., on the212

time-series of the bubble radius R(t)), a number of nu-213

merical simulations was performed. Each numerical sim-214

ulation consisted of two steps. Firstly, a random pres-215

sure forcing p(t) was simulated according to (7). Sec-216

ondly, Equation (1) was forced with p(t) and numerically217

solved to obtain the response of the bubble, namely the218

time-series of the radius R(t).219

Simulations of p(t) were performed setting p̄ = 100·103220

Pa. Three correlation times τp = [0.5, 1, 2]Tn were con-221

sidered, and the standard deviation of the pressure was222

changed in the range [0, 120]·103 Pa. The duration of the223

simulations was set equal to 4000Tn. This duration guar-224

anteed a robust estimation of all the statistical properties225

of R(t), for all the investigated conditions.226

In order to obtain R(t) from the numerical integration227

of (1) with the forcing (7), the initial conditions R(0) =228

Req = 5 · 10−6 m and Ṙ(0) = R̈(0) = 0 were imposed229

and the time step ∆t = 10−8 s was adopted. R(t) was230

normalized with the equilibrium radius Req [25, 40, 45]231

to better quantify the dynamics of the bubble radius.232

Fig. 1b, reports the time-series of the normalized ra-233

dius R(t)/Req as obtained from integration of Eq. 1 when234

forced with the pressure reported in Fig. 1a. In Fig.235

1c− d the pdfs of the time-series p(t) and R(t) (partially236

reported in Panels a− b) illustrate the variability of p(t)237

and R(t). Similarly, Figs. 1e− f report the autocorrela-238

tion functions, and illustrate how the correlation time is239

evaluated.240
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FIG. 1. (a) Example of a time-series of the normalized stochastic pressure forcing p(t)/p̄. (b) Time-series of the normalized
radius R(t)/Req of the bubble forced by the pressure reported in (a). The black dots in (b) highlight the bubble radius attained
at the instants nTn, where n is an integer and Tn is the natural oscillation period of the bubble (see Section IIIA for the
explanation). (c, d) Probability density functions and (e, f) autocorrelation functions of the time-series (partially) reported in
(a, b). The dashed lines in (e, f) mark the level ρp = ρR = 0.1. It should be noted that the time-lag t̂l such that ρ(t̂l)=0.1 is
defined as the correlation time of the time-series. The times in (a, b) and the time lags reported in (e, f) are normalized by Tn.
The adopted parameters are σp = 60·103 Pa and τp = 2.0Tn = 2.8 · 10−6 s.

The interested reader can find in Appendix C further241

details about the numerical techniques adopted to solve242

(1) and a sensitivity analysis of the solution with respect243

to: the time-step adopted for the numerical solution; the244

duration of the simulations; and the number of realiza-245

tions adopted for the statistical analyzes.246

III. RESULTS247

Four complementary perspectives are adopted to study248

the behavior of R(t)/Req. The first (Sec. A) is based on249

bifurcation diagrams and presents a way to identify the250

onset of chaos in the R(t)/Req time-series. The second251

(Sec. B) investigates the physical mechanisms underpin-252

ning the onset of chaotic fluctuations. The third (Sec.253

C) is a detailed statistical analysis of R(t)/Req, with254

a particular emphasis on the dependence of R(t)/Req255

statistical-moments on various combinations of noise in-256

tensity and correlation time scales. Finally, Sec. D digs257

deeper into second order statistics and investigates dom-258

inant modes and characteristic time scales of R(t)/Req259

time-series. This provides hints about the random vs260

organized temporal structure of R(t).261

All the results are wrapped up in Sec. IV, which pro-262

vides an overview of bubbles’ behavior under stochastic263

pressure forcing, using and harmonizing all the results264

obtained from Sec. III A, B, C and D.265

A. Assessment of the temporal pattern and266

bifurcation diagram267

We begin the results section by discussing the temporal268

dynamics exhibited by R(t)/Req. To this aim, the values269

R(t = nTn)/Req with n = 1, 2, ... were extracted from270

R(t)/Req (see dot-symbols in Fig. 1b). If the bubble ra-271

dius oscillation exhibits a period Tn, R(t) takes the same272

value at instants that are multiples of Tn. Conversely, if273

R(t) is not periodic (or when the period of oscillations is274

different from Tn) then R(nTn)/Req exhibits a variabil-275

ity.276

Figs. 2a, b show results associated with the analysis277

of R(nTn)/Req in the form of noise-intensity bifurcation278

diagrams. These graphs report on the x-axis the noise in-279

tensity σp/p̄ and on the y-axis the values of R(nTn)/Req280

extracted from the corresponding time-series R(t). The281

gray and red dots in Panels 2a and 2b refer to different282

correlation times τp. The noise-intensity-bifurcation dia-283

grams obtained in Figs. 2a, b align with those obtained284

from other studies that considered a sinusoidal forcing285

[25, 40, 45], but key differences can be observed.286

In the case of a sinusoidal forcing with amplitude Ap287

and period Tn, the noise-intensity-bifurcation diagrams288

exhibit two different zones. When Ap is lower than a289

threshold Ap,c, the metric R(nTn)/Req is perfectly con-290

stant for any n. This can be seen, for example, in Figs.291

3a, b that report the radius dynamics forced by the sinu-292

soidal pressure with amplitude Ap < Ap,c shown in Figs.293

3d, e. Differently, for Ap > Ap,c the metric R(nTn)/Req294

exhibits a large variability for a fixed value of Ap and for295
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FIG. 2. (a, b) Noise-intensity bifurcation diagrams. For a given value of σp/p̄, the dynamics of R(t) is simulated for 4000Tn.
From this simulation, only the values R(nTn)/Req are selected, and are reported in the vertical axis for the given σp/p̄. In both
Panels, the gray circles refer to τp = Tn. In Panel (a) and (b) the red dots refer to τp = Tn/2 and τp = 2Tn, respectively. (c−f)
Time segments of the time-series R(t)/Req and p(t)/p̄. The horizontal dotted lines mark the equilibrium radius R(t)/Req = 1
and the mean pressure p(t)/p̄ = 1. The black dots in (c− d) highlight the bubble radius attained at the instants nTn. Panels
(c, e) refer to σp/p̄ = 0.3 and Panels (d, f) refer to σp/p̄ = 0.4; in both cases, τp = Tn.

different values of n. This non-regular behavior is exem-296

plified in Fig. 3c, which shows the radius dynamics under297

the sinusoidal pressure forcing with amplitude Ap > Ap,c298

of Fig. 3f . Therefore, in the case of a sinusoidal forc-299

ing, Ap,c represents an amplitude threshold that sharply300

separates the non chaotic and chaotic regimes.301

When stochastic fluctuations of pressure are consid-302

ered, the variability of R(nTn)/Req increases with in-303

creasing σp/p̄ (Figs. 2a, b). This is consistent with304

the case of a sinusoidal forcing. However, while σp/p̄305

increases, a clear threshold that separates regular os-306

cillations from chaotic fluctuations does not emerge.307
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FIG. 3. Time segments of the time-series R(t)/Req (top row) and p(t)/p̄ (bottom row) when a sinusoidal external pressure –
with amplitude Ap =

√

2σp and period τp = Tn – is applied. The dotted lines mark the equilibrium radius R(t)/Req = 1 and
the mean pressure p(t)/p̄ = 1. The black dots in (a− c) highlight the bubble radius attained at the instants nTn. Panels (a, d),
(b, e) and (c, f) refer to σp/p̄ = 0.4, σp/p̄ = 1.2 and σp/p̄ = 2.0, respectively.

Moreover, even for very low values of σp/p̄, the metric308

R(nTn)/Req does show some level of variability and hence309

it is not constant.310

A more careful inspection shows that a change in the311

bubble dynamics occurs at σp/p̄ ≈0.30: for σp/p̄ /0.30,312

the normalized radius oscillates around 1 and is con-313

fined by the almost symmetrical curves exp[1.9(σp/p̄)]314

and exp[−1.5(σp/p̄)] (these curves were obtained by fit-315

ting the maximum and minimum values attained by316

R(nTn)/Req for σp/p̄ <0.30); differently, for σp/p̄ '0.30,317

the variability of the radius suddenly increases and318

R(nTn)/Req ∈ [0.01, 50].319

B. Physics of chaos inception320

In order to elucidate the physical behavior behind the321

inception of chaos in the dynamics of R(t) occurring for322

σp/p̄ > 0.3, Panels 2c − d report two exemplifying por-323

tions of time-series R(t)/Req. To relate the bubble radius324

dynamics to the pressure fluctuations, the corresponding325

time-series p(t)/p̄ are reported in Panels 2e − f . These326

pressure time-series are obtained setting the same noise327

time-scale τp = Tn but different noise intensities. The328

dotted lines mark the threshold p(t)/p̄ = 1, and help to329

discern the instants when the instantaneous forcing pres-330

sure is below average (i.e., p(t)/p̄ < 1) or above average331

(i.e., p(t)/p̄ > 1). We recall that when the instantaneous332

pressure is below/above average, the bubble radius tends333

to increase/decrease.334

Panels 2c, e refer to the noise intensity σp/p̄ = 0.3335

(i.e., just below the threshold that separates the non-336

chaotic/chaotic behaviors). In this case, the pressure os-337

cillates slightly around the mean value (Panel 2e) and338

the bubble radius does not undergo large increments339

(R(t)/Req never exceeds the value 2, see Panel 2c). It340

follows that during the small radius increments little en-341

ergy is stored in the bubble. As a consequence of this: (i)342

the subsequent rebound is mild (R(t)/Req remains close343

to unity); and (ii) the radius growth that follows the re-344

bound is mild as well. The radius dynamics is therefore345

characterized by a sequence of modest increments of ra-346

dius intercut with mild rebounds. At this conditions, the347

period of the oscillations is very close to the natural os-348

cillation period of the bubble and no chaos is detected.349

In contrast, Panels 2d, f focus on the noise intensity350

σp/p̄ = 0.4 (i.e., above the no-chaos/chaos threshold).351

In this case, the pressure may deviate significantly from352

the mean value (e.g., see immediately after t/Tn = 3575353

in Panel 2f). As a result, large increments in the bub-354

ble radius occur, that may last a few times the natural355

period Tn. For instance, this can be seen in Panel 2d,356

where the radius growth starting at t/Tn ≈ 3575 lasts357

about 3Tn, and R(t)/Req eventually exceeds the value358

3. During these large increments of radius, a significant359

amount of energy is stored in the bubble. Consequently:360

(i) the subsequent rebound is violent (R(t)/Req is much361

lower than unity); and (ii) the radius growth that follows362

the rebound may be considerable and long lasting (this363

is exemplified in in Panel 2d, where the radius growth364

that begins after the rebound at t/Tn ≈ 3578 lasts about365

2Tn). The radius dynamics is therefore characterized by366

a sequence of significant and long lasting increments of367

radius (the duration of these phases exhibit a wide vari-368

ability) intercut with violent rebounds. At these con-369

ditions, R(t)/Req deviates significantly from unity, and370
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the period of the oscillations varies significantly from the371

natural oscillation period of the bubble. Accordingly, a372

chaotic behavior is detected. It should be noted that the373

behaviors reported in the time segments of Panels 2c-f374

are not rare, but are detected in a large number of time375

segments in the time-series simulated in this work.376

The examples previously reported depict a picture377

where bubble chaotic dynamics is characterized by long378

lasting and large radius increments, induced by time-379

coherent negative pressure fluctuations. It follows that380

chaos occurs when downcrossing events in the pressure381

signal exceed suitable thresholds; namely, the duration382

and the magnitude of the negative pressure fluctuations383

(with respect to the pressure mean value) become suffi-384

ciently high. In the cases investigated in this work, such385

downcrossing analysis gives that bubble chaotic dynam-386

ics occurs when: (i) the duration of pressure reduction387

events exceeds the threshold 1.5Tn; and (ii) the corre-388

sponding mean value of the pressure reduction during389

this negative pressure events is greater than 0.6p̄. How-390

ever, it should be noted that the bubble response to pres-391

sure forcing depends on the physical properties of fluid392

and the initial size of the bubble. Therefore, the physics393

of chaos inception previously described (i.e., interplay394

between long lasting, intense pressure fluctuations and395

nonlinear bubble dynamics) is of general validity. How-396

ever, the exact threshold values dictating the transition397

to chaos detected here are are surely dependent on the398

fluid characteristics (see Table I). The precise determina-399

tion of this dependence is beyond the scope of the present400

work, and will be the subject of future work.401

We now briefly highlight the key role of pressure402

stochasticity in the inception of chaos in bubbles’ dy-403

namics. To this aim, we evaluated the response of404

a bubble to three sinusoidal pressure forcing p(t)/p̄ =405

1 + (Ap/p̄) sin(2πt/Tn), and compared it against the be-406

havior depicted in Panels 2d, f . Three relevant val-407

ues of the oscillation amplitude, Ap, were tested: (i)408

Ap/p̄ =
√
2 · 0.4, such that the standard deviation of409

the sinusoidal signal is σp = 0.4 · p̄, and the resulting410

radius dynamics can be compared with Panel 2d (that411

refers to a stochastic pressure forcing with σp/p̄ = 0.4);412

(ii) Ap/p̄ =
√
2 · 1.2, (i.e., the sinusoidal forcing is char-413

acterized by σp/p̄ = 1.2) such that the minimum pres-414

sure attained by the sinusoidal forcing is the same typ-415

ically attained by the stochastic forcing of Panel 2f ;416

and (iii) Ap/p̄ =
√
2 · 2.0, inducing pressure oscillations417

with σp/p̄ = 2.0, i.e., much higher than 0.4. Results418

on R(t)/Req are reported in Fig. 3. The noise intensities419

σp/p̄ = 0.4 and σp/p̄ = 1.2 (Panels 3d−e) did not lead to420

inception of chaos: the radius time-series were very reg-421

ular and exhibited fluctuations with the constant period422

Tn (Figs. 3a− b). Differently, for σp/p̄ = 2.0 (Panel 3f),423

a chaotic behavior of the bubble radius occurred (Panel424

3c).425

The comparison of results shown in Fig. 2 (related to426

random forcing) and in Fig. 3 (corresponding to sinu-427

soidal forcing) clearly shows that stochasticity promotes428

the chaos inception. Although sinusoidal pressure sig-429

nals have the same standard deviation (σp/p̄ =0.4, Panels430

3a, d) or the same typical minimum values (Panel 3b, e) of431

the stochastic forcing, sinusoidal pressure forcing do not432

lead to chaotic bubble dynamics, while random forcing433

does. Only the increment of the oscillation amplitude of434

the sinusoidal pressure to Ap/p̄ =
√
2 ·2.0 eventually lead435

to the inception of chaos. Namely, the noise intensity of436

the sinusoidal pressure should be five times larger than437

that of the stochastic case, in order to observe a similar438

pattern of chaotic radius fluctuations.439

The role of the correlation time of the forcing, τp, was440

also explored. Red dots in Figs. 2a, b correspond to441

τp = 0.5Tn and τp = 2Tn, respectively; in each panel442

data pertaining to τp = Tn (gray circles in both pan-443

els) are kept to allow for comparisons. It emerges that444

variations of τp are relevant only for σp/p̄ '0.30 (i.e.,445

above the threshold identified before) and positively cor-446

related with the variability of the bubble radius. This447

behavior is in accordance with the physical explanation448

of the inception of chaos described so far. Higher values449

of correlation time of the forcing entail longer periods450

over which the pressure fluctuation has a constant sign.451

Hence, longer periods of pressure below average can be452

observed. These, in turn, promote large radius incre-453

ments and thus the inception of chaos. This analysis is454

performed in more details in the Appendix A.455

C. Statistical analysis456

The analysis of Fig. 2 reveals that R(t) deviates sig-457

nificantly from its equilibrium value and the behavior458

of R(t) can be very irregular. In order to better quan-459

tify the deviations of R(t) from Req, the probability den-460

sity functions (pdf) and the cumulative distribution func-461

tions (cdf) of the metric R/Req were evaluated. Details462

about this statistical analysis are given in the Appendix463

B where we report that changes in both σp/p̄ and τp464

induce significant alterations in the pdf of the bubble ra-465

dius R(t). However, σp/p̄−effects seems to be stronger.466

For this reason, the effect of σp/p̄ was systematically ex-467

plored in the relatively large range [0, 1.20] for only three468

values of the noise correlation time τp = [0.5, 1, 2]Tn.469

For the sake of clarity, the corresponding effects on the470

pdfs of R(t) are then expressed in terms of four relevant471

statistical parameters, reported in Fig. 4: (i) the mean472

value of the normalized bubble radius, R̄/Req; (ii) the473

coefficient of variation of R(t), i.e., cV,R = σR/R̄; (iii)474

the skewness sR of the time-series; and (iv) the kurtosis475

kR of R(t).476

The noise intensity σp/p̄ has a strong effect on the477

mean value of the bubble radius (Fig. 4a). In particular,478

σp/p̄ is positively correlated with R̄. This is a key point:479

the mean value of the bubble radius depends not only on480

the mean pressure, p̄, but also on the noise intensity, σp.481

Therefore, in the case of a stochastic pressure forcing,482

it can be misleading to estimate the mean value of the483
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FIG. 4. Effect of σp/p̄ on some relevant statistical parameters that describe the time-series R(t).

FIG. 5. Effect of the coefficient of variation of the pressure,
cV,p, on the coefficient of variation of the bubble radius, cV,R.
The shaded zone highlights the lower half plane bounded by
the bisector, where bubble exhibits the “damper” behavior.
In the upper half plane bubble behaves as “amplifier”.

bubble radius just from the mean (background) pressure.484

When σp/p̄ exceeds 0.60, different curves R̄/Req are485

observed for different values of τp. This can be explained486

as follows. According to the analysis presented in Section487

IIIA, the deviation of R̄ from Req is due to the nonlin-488

ear nature of the bubble dynamics and, in particular, it489

is ascribable to the effect of time segments during which490

the instantaneous pressure is below average (i.e., when491

p(t) < p̄). When the pressure is below average, the bub-492

ble radius undergoes a strong increment and deviates sig-493

nificantly from Req (i.e., the equilibrium radius attained494

at p(t) = p̄, see Panels 2c, d). This, clearly, contributes to495

increase R̄. It was also pointed out that, the higher τp,496

the longer the duration of time segments during which497

the instantaneous pressure is below average (see the Ap-498

pendix A), and thus the stronger the increments of the499

bubble radius and, consequently, of R̄ from Req. Besides500

R̄, the other statistical parameters are all also strongly501

affected by the noise intensity (see Panels 4b− d).502

The correlation time τp does not change the qualitative503

behavior of the the curves presented in Fig. 4, however,504

some peculiarities do occur: (i) the effect of τp on the505

mean value and on the coefficient of variation of R(t)506

is most relevant for high values of σp/p̄ (Panels 4a, b);507

(ii) the skewness and the kurtosis are affected by τp the508

most when σp/p̄ is in the range [0.4, 0.8] (see Panels 4c, d),509

instead the curves tend to merge for higher values of the510

correlation time of the pressure forcing.511

The behavior of skewness and kurtosis shows other512
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FIG. 6. (a) Effect of the noise intensity σp/p̄ on the ratio between the integral scale of the radius time-series, IR, and the
integral scale of the pressure forcing, Ip. The gray zone highlights the condition IR < Ip. Autocorrelation diagrams of R(t)
(Panels A1, B1) and p(t) (Panels A2, B2). The red lines mark the level where the autocorrelation function is 0.1. (A3, B3)
Power (amplitude) spectrum of R(t). It should be noted that the horizontal axis reports the period of the k−th harmonics
(rather than its frequency). (A4 − B5) Relevant time segment of the time-series R(t) and p(t). The dotted lines mark the
equilibrium radius Req and the mean pressure p̄.

interesting aspects. For all investigated values of τp,513

they increase with increasing σp/p̄ within the range514

σp/p̄ = [0,0.60]. For σp/p̄ ' 0.60, instead, they seem515

to tend monotonically (kurtosis) or non-monotonically516

(skewness) to an asymptotic value (Panels 4c, d). In-517

terestingly, the kurtosis tends to its Gaussian value of518

three. In summary, the trends observed in Fig. 4 indicate519

that increments in the noise intensity tend to increase520

the mean radius of the bubble as well as the intensity521

of its variations (Panels a and b). The positive value of522

the skewness indicates that it is more probable to have523

R(t) > Req than R(t) < Req. This asymmetry increases524

with increasing σp/p̄ but saturates for σp/p̄ ' 0.60. The525

behavior depicted by kurtosis indicates that the occur-526

rence of extreme events (i.e., intermittency) in R(t) in-527

creases with increasing noise intensity, but, as per the528

skewness, it saturates for σp/p̄ ' 0.60.529

An important aspect in studies about nonlinear oscil-530

lators is to evaluate whether the system behaves as a531

“damper” or as an “amplifier” of the external forcing532

[54]. To this end, the variability of the bubble radius533

was compared to the variability of the forcing pressure534

forcing (see Fig. 5). The gas bubble can be classified535

as a “damper” when the coefficient of variation of the536

fluctuating pressure forcing is larger than the coefficient537

of variation of the fluctuating bubble radius (i.e., cV,p >538

cV,R, gray zone in Fig. 5). On the other end, if cV,p <539

cV,R (white zone in Fig. 5) the gas bubble behaves as a540

noise “amplifier”. The correlation time of the noise, τp541

is a key parameter in determining the amplifier/damper542

behavior of the bubble oscillator. For τp ≤ Tn the bubble543

dynamics usually exhibits a “damper” behavior. Differ-544

ently, when τp = 2Tn, the bubble behaves as a noise545

“amplifier” for cV,p ' 0.5.546

D. Temporal correlation547

It is now instructive to analyze the correlation time-548

scale of the radius signal R(t). To this end, we evaluate549

the autocorrelation function ρR(tl) (see the examples re-550

ported in Panels 6A1, B1). Then, we select the turnover551

time-lag t̂l,R so that ρR(t̂l,R)=0.1 (red circles in Figs.552

6A1, B1). Finally, the integral scale of the signal is eval-553

uated as IR =
∫ t̂l,R

0
ρR(tl)dtl. If the same procedure is554

applied to the time-series p(t) (see Panels 6A2, B2), the555
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integral scale of the noise Ip = τp is obtained. In order556

to highlight the non-linear behavior of the bubble oscil-557

lator, we focus on the ratio between the integral scale of558

the bubble radius and the integral scale of the pressure,559

namely IR/Ip (Fig. 6a). Note that the definition of the560

crossover time scale based on the ρR = 0.1 is arbitrary.561

Note also, that any other value of ρR reasonably close to562

0 proved to lead to almost identical results and trends563

presented in Fig. 6a, meaning that the results discussed564

in what follows are essentially independent on the exact565

definition of the crossover time scale.566

Fig. 6a shows the effect of the noise intensity σp/p̄ on567

IR/Ip and two contrasting behaviors are observed. When568

the noise intensity σp/p̄ is lower or greater than ≈ 0.30569

(this value depends slightly on τp), then IR ≪ Ip (gray570

zone in Fig. 6a) and IR ≫ Ip, (white zone in Fig. 6a),571

respectively.572

In order to investigate the physical processes under-573

pinning this sharp change in the behavior of IR/Ip, we574

select two values of σp/p̄ for which these contrasting be-575

haviors are observed (see points A and B in Fig. 6a).576

For both cases, the radius signal R(t) (Figs. 6A4, B4)577

and the pressure signal p(t) (Figs. 6A5, B5) are also re-578

ported over a significant time interval. Moreover, the579

power spectrum of R(t) is evaluated (Figs. 6A3, B3).580

Case A. For low values of the noise intensity, the only581

effect of pressure fluctuations is to excite the free oscil-582

lations of the bubble. For instance, when σp/p̄ = 0.14,583

the bubble radius oscillates with a varying amplitude (see584

Fig. 6A4), but the oscillation period is almost constant,585

and close to the natural period of oscillation of the bub-586

ble, Tn. This is confirmed by: (i) the peak in the power587

spectrum of R(t) (Fig. 6A3); and (ii) the shape of the au-588

tocorrelation function (Fig. 6A1), which resembles that589

of a periodic signal with period equal to Tn. Therefore,590

for low noise intensity levels, pressure variations are not591

able to significantly alter the free oscillations of the bub-592

bles and induce chaos.593

Case B. For high values of the noise intensity, pres-594

sure fluctuations drive the bubble dynamics. In the con-595

sidered case (the noise intensity is σp/p̄ = 1.10), the596

bubble exhibits oscillations that attain large amplitudes597

(Fig. 6B4). Differently from Case A, the oscillation pe-598

riod undergoes strong variations in the range [0.5, 10]Tn.599

As a result, the power spectrum of R(t) (see Fig. 6B3)600

does not show any clear peak, and harmonics with peri-601

ods in the wide range [101, 103]Tn are characterized by602

comparable amplitudes. The signal portions reported in603

Fig. 6B4, B5 show that pressure variations alter to a604

major extent the dynamics of the bubble – according605

to the physical mechanisms explained in Sec. III B –,606

and free oscillations with period Tn are rarely observed.607

For instance, during the very long time segment from608

t ≈ 2 · 10−6 s to t ≈ 10 · 10−6 s, the bubble radius be-609

comes very large (≈10 times the equilibrium value, see610

Fig. 6B4). After this long growth phase, oscillations with611

a period slightly higher than Tn are observed. The high612

values of IR observed for high values σp are therefore in-613

duced by the long periods over which a constant growth614

of R(t) takes place. Note that, these long lasting growth615

phases are followed by rebounds exhibiting a period com-616

parable to the bubble natural period. It follows that the617

increment of IR due to long lasting radius growth phases618

cannot be balanced by phases during which the bubble619

oscillates with a period close to Tn.620

The behavior previously described justifies the negli-621

gible effect of noise correlation time on bubbles’ dynam-622

ics observed when the noise intensity is below the no-623

chaos/chaos threshold. This result was detected in the624

Fig. 2a, b (see Sec. III B). When the noise intensity is625

below the no-chaos/chaos threshold, bubbles oscillate at626

their natural frequency, and the only role of pressure fluc-627

tuation is to provide energy to sustain this motion. The628

characteristics of such pressure fluctuations are irrelevant629

in determining the frequency of vibration of the bubble.630

At most, they slightly alter the amplitude of the radius631

oscillation. Differently, when the noise intensity is above632

the no-chaos/chaos threshold, the bubble’s dynamics are633

strongly driven by the pressure forcing. Hence, key char-634

acteristics of the pressure fluctuation – such as the noise635

correlation time – become important in determining bub-636

ble dynamics. In particular, longer correlation times –637

according to the mechanisms illustrated in Section III B638

– are associated with a more chaotic bubble response.639

IV. CONCLUSIONS640

The response of a single bubble to a stochastic pressure641

forcing was investigated. The motivation underpinning642

this study lies: (i) in the occurrence of random pressure643

fluctuations in many applications exploiting bubble dy-644

namics; and (ii) in the strong nonlinearities affecting the645

deterministic bubble dynamics, which suggests the pos-646

sible occurrence of non-trivial noise-induced phenomena.647

Two key parameters control stochastic bubble dynam-648

ics: the ratio between the standard deviation and the649

mean value of the forcing pressure (σp/p̄), and the ratio650

between the noise correlation time-scale and the period651

of bubble free oscillations (τp/Tn). Two typical behav-652

iors were detected. The first one occurs when σp/p̄ is653

lower than a threshold value around 0.3; namely, when654

pressure fluctuates with small amplitudes. In this case,655

the random pressure forcing mainly excites the free oscil-656

lations of the bubble whose radius undergoes small am-657

plitude oscillations and exhibits a rather regular period-658

icity. Moreover, we observed that (i) the effect of τp/Tn659

is small, (ii) the mean value of the background pressure660

can be adopted to estimate the mean value of the bubble661

radius, and (iii) bubble always behaves as a damper of662

external noise.663

The second behavior occurs when the fluid hosting the664

bubble experiences large-amplitude pressure fluctuations665

(i.e., σp/p̄ > 0.3). At these conditions, pressure stochas-666

ticity is able to trigger a chaotic bubble dynamics. Time-667

series of the bubble radius exhibit large amplitude fluc-668
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tuations and no evident periodicities occur, not even at669

the bubble natural frequency. The parameter τp/Tn now670

significantly affects the bubble dynamics. In particular,671

when τp/Tn is high, long time intervals during which the672

instantaneous pressure is below the mean pressure ap-673

pear; these intervals entail large increments of R(t) and674

are usually followed by cavities’ collapses and rebounds.675

A strong variability of the R(t) time-series occurs and the676

bubble behaves as a nonlinear oscillator that amplifies677

the external noise. Consequently, the mean value of the678

background pressure cannot be adopted to estimate the679

mean value of the bubble radius; in doing so, the mean ra-680

dius of the bubble can be underestimated of a factor five.681

It should be finally remarked the key role of stochastic-682

ity in triggering chaos in bubble’s radius dynamics. Two683

pressure forcing –one stochastic, one sinusoidal– char-684

acterized by the same noise intensity σp/p̄ behave very685

differently: the stochastic pressure forcing is more prone686

to trigger strong chaotic radius fluctuations than its si-687

nusoidal counterpart.688

In this work, we have demonstrated that stochastic689

forcing can induce interesting and unexpected bubble be-690

haviors, presumably induced by the strongly non-linear691

nature of the bubble oscillator. This paves the way to692

study other type of noises (e.g., dichotomous or shot693

noises) and to investigate how random forcing could be694

conveniently exploited in various applications. For ex-695

ample, noise-induced violent cavities implosions – at-696

tained when intensity and correlation of pressure fluctu-697

ations are high – can be used to make water disinfection698

processes based on hydrodynamic cavitation and sono-699

chemical reactions more energy efficient.700
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Appendix A: Role of correlation time705

In order to elucidate the increment of variability of706

R(t) with τp, Panels 7a,b report some exemplifying por-707

tions of time-series R(t)/Req obtained with the same708

noise intensity σp/p̄=0.70 (chosen in order to be in the709

chaos domain) but different noise time-scales, namely710

τp = Tn/2 and τp = 2Tn, respectively. To relate the bub-711

ble radius dynamics to the pressure fluctuations, red dots712

plotted in Panels 7a, b (along the lineR(t)/Req = 1) mark713

the instants when the instantaneous forcing pressure is714

below average (i.e., p(t) < p̄). From a physical point of715

view, when the instantaneous pressure is below average716

the bubble radius tends to increase; on the contrary, ra-717

dius contractions are promoted when the instantaneous718

pressure is above average (i.e., p(t) > p̄, identified by no719

dots at R(t)/Req = 1).720

Panels 7a shows that, when the correlation time of the721

pressure forcing, τp, is low, time segments with pressure722

below average (p(t) < p̄) and time segments with pressure723

above average (p(t) > p̄) alternate fairly regularly: the724

red dots plotted at R(t)/Req = 1 are grouped in short725

time segments, and are followed by short segments where726

no dots are reported. A key consequence of short time727

segments with pressure below average (p(t) < p̄) is that728

the bubble radius cannot attain large increments (see the729

black time-series in Panel 7a).730

In contrast, for high values of the correlation time, time731

segments with pressure below average (p(t) < p̄) persist732

for long time and are followed by long-lasting time inter-733

vals with pressure values above average (p(t) > p̄): Fig.734

7b shows, indeed, that long sets of red dots alternate735

with long sets without dots. In this case, time segments736

in which the pressure is below average (p(t) < p̄) last so737

long that very large radius increments are attained (e.g.,738

see the strong growth of R(t) occurring at t/Tn ≈ 255739

in the second time segments of Panel 7b). V ice versa,740

when the condition p(t) > p̄ is restored, the bubble col-741

lapses. As explained in Section III B, the occurrence of742

these phases of remarkable radius expansion contributes743

to trigger the irregularity of R(t).744

Appendix B: Statistical analysis – pdf and cdf745

In Fig. 8, we show some exemplifying cases, in order to746

discuss the effect of σp/p̄ and τp on the the probability747

density function (pdf) and cumulative density function748

(cdf) of the bubble radius. To this end, it is useful to749

define a benchmark case (see the thick black lines). .750

We selected the benchmark correlation time τp = Tn.751

This choice was based on past studies that considered si-752

nusoidal pressure oscillations. These studies found that753

complex dynamics occurs when the period of the sinu-754

soidal forcing is equal to the natural oscillation period of755

the bubble [13, 25, 41, 42, 45]. Therefore, we expect bub-756

bles to exhibit interesting dynamics when the correlation757

time of the noise signal is equal to the natural oscillation758

period of the bubble. On the other hand, we selected759

the benchmark noise intensity σp/p̄ =0.60. This choice760

was based on the results reported in Figs. 2a, b, showing761

chaotic dynamics of the bubble radius in the σp/p̄−range762

[0.30,1.10]. We wanted to focus on bubble exhibiting a763

chaotic behavior, so we chose a value of noise intensity764

in this chaos range.765

The noise intensity (in terms of σp/p̄) was then al-766

tered, keeping τp = Tn (broken lines in Panels 8a, c, d).767

Finally, τp was also changed while σp/p̄ was kept at its768

benchmark value (broken lines in Panel 8b). The dotted769

(dash-dot) lines refer to a parameter higher (lower) than770

the benchmark value.771

Irrespectively of the noise parameters {σp/p̄, τp}, the772

quantity R/Req exhibits a unimodal pdf (Panels 8a, b),773

whose shape, though, depends significantly on the noise774

intensity (Fig. 8a). In particular, increments of σp/p̄775
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FIG. 7. Time-series of R(t)/Req in four relevant time segments in the case of τp = Tn/2 (a) and τp = 2Tn (b). In both
cases σp/p̄=0.70. The red dots plotted at R(t)/Req = 1 mark the instants when p(t) < p̄, and should not be confused with the
dynamics of R(t)/Req reported by the black line. Panels (a) and (b) report different ranges in the vertical axis.

FIG. 8. (a, b) Probability density function of the metric R/Req. (c) Complementary cumulative distribution function of R/Req

evaluated for R/Req > 1 (right tail of the distribution). (d) Cumulative distribution function of R/Req evaluated for R/Req < 1
(left tail of the distribution), note that the horizontal axis reports Req/R and not R/Req as in Panel (c).

induce the reduction of the peak height, the fattening of776

the tails, more asymmetrical pdfs, and the increment of777

the mode. Differently from σp/p̄, changes of τp induce778

less relevant effects (Fig. 8b). No changes of the peak779

height, of the mode of the pdf, and of the symmetry of780

the curves are in fact observed. The only relevant effect is781

a slight expansion of the distribution range toward higher782

values of R/Req, which occurs when the correlation time783

increases (see the right tail of the dotted curve in Fig.784

8b).785

The tails are better described by the cumulative dis-786

tribution functions. A complementary distribution is787

adopted to analyze the right tail, (see Fig. 8c). In or-788

der to focus on the left tail, the cumulative distribution is789

evaluated (see Fig. 8d). Increments of the noise intensity790

mainly induce a fattening of the tails and an increment791

of the range (see Panels 8c, d). In the right tail, the792

range increases from 2 to 20 when σp/p̄ increases from793
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0.14 to 1.10. Moreover, the frequency of occurrence of794

a given R/Req changes of orders of magnitude, for the795

same increment of σp/p̄. The same behavior is observed796

in the left tail: the minimum value attained by R/Req797

reduces from 0.6 to 0.2, when σp/p̄ increases from 0.14798

to 0.60. Interestingly, the further increment of σp/p̄ from799

0.60 to 1.1 does not lead to a reduction of R/Req. The800

distribution does not extend beyond 0.2 (Req/R = 5 in801

Fig. 8d). However, the frequency of occurrence of this802

extreme value increases of more than one order of magni-803

tude. Finally, as surmised from the analysis of Panels 8a804

and 8b, the pdfs of R/Req display asymmetry. In fact the805

right tail is always characterized by a power-law behavior806

(linear in the log-log diagrams of Panel 8c) for low values807

of R/Req followed by a cut-off. On the contrary, the left808

tail is always approximately linear (Panel 8d).809

Appendix C: Numerical Details810

In order to evaluate the response of a gas bubble to811

a pressure forcing, the numerical integration of (1) is re-812

quired. To this aim, the dimensional Eq. (1) is firstly813

made dimensionless adopting the length scale Req (i.e.,814

the bubble radius in equilibrium conditions) and the time815

scale Tn (i.e., the period of bubble free oscillations, see816

Eq. 5). Secondly, the second-order differential dimen-817

sionless equation is transformed in the system of two818

first-order differential dimensionless equations819



























ỹ2 =
dỹ1
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3ỹ2
2

2ỹ1
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where tilde denotes dimensionless quantities, ỹ1 =820

R/Req, Ma= ỹ2Req/cTn is the Mach number, P =821

ρR2
eq/T

2
n , M = cρ/Req, and N = M/Tn. Finally, pw822

and pG can be expressed, according to (2-4), in terms of823

ỹ1 and ỹ2 as824
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825

pw = pG + pv −
2S

Req ỹ1
− 4µỹ2

Tnỹ1
. (C3)

The system of equation (C1) was numerically solved826

by an explicit Runge-Kutta approach by using the827

Dormand-Prince pair [68].828

In order to select the appropriate time-step for numer-829

ical integration, a sensitivity analysis about this param-830

eter was performed. The test case was a gas bubble with831

Req = 5 µm, R(0)/Req = 2 and Ṙ(0) = 0 in a uniform832

pressure field. Three time steps (∆t = [10−7, 10−8, 10−9]833

s) were tested in the numerical simulations of the bubble834

dynamics (see Fig. 9). Panel 9a shows that ∆t = 10−9
835

s and ∆t = 10−8 s led to a bubble response (in terms836

of R(t)) indistinguishable, while ∆t = 10−7 s led to a837

less precise simulation of the system dynamics. To bet-838

ter quantify the quality of the numerical integrations, we839

evaluated the relative error840

εR(t) =
‖R(∆t, t)−RREF(t)‖

RREF(t)
, (C4)

where R(∆t, t) is the bubble radius at the instant t eval-841

uated with a numerical simulation in which the time-step842

∆t was adopted. The term RREF(t) is the “exact” refer-843

ence value. In this case, we adopted RREF(t) = R(∆t =844

10−9, t). The time step ∆t = 10−8 s was found suit-845

able for the numerical integrations, as the maximum er-846

ror ε ∼ 0.02 was attained (see Fig. 9b).847

In order to guarantee that the statistical description848

of a stochastic process was significant, two tests were849

performed. The first test concerns the duration of the850

considered stochastic process. In particular, we studied851

whether the same statistical values were obtained, irre-852

spectively of the length of the analyzed time-series. Fig.853

10 reports the behavior of two statistical metrics as a854

function of σp/p̄, as already discussed in Fig. 4. Each sta-855

tistical index was evaluated from four time-series, R(t),856

characterized by different durations, T . It can be ob-857

served that simulations carried out with T > 2000Tn lead858

to curves characterized by the same behavior. The du-859

ration T = 4000Tn was therefore deemed appropriate for860

the statistical analysis of the stochastic bubble dynamics.861

The second test was to verify the independence of the862

results from a single realization. Namely, whether differ-863

ent stochastic realizations of the process lead to the same864

statistical indexes. Fig. 11 reports two statistical pa-865

rameters of Fig. 4. Each statistical index was evaluated866

with seven time-series, R(t), characterized by a different867

pressure forcing. Each pressure time-series was charac-868

terized by the same statistics (σp, τp), but a different set869

of random numbers (see Eq. 7) was adopted to introduce870

randomness. It can be observed that all simulations give871

curves characterized by the same behavior. Moreover,872

the mean value, the standard deviation and the kurtosis873
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FIG. 9. (a) Example of curves R(∆t, t) numerically com-
puted adopting different time-steps ∆t. (b) Relative error
εR(t) occurring in the numerical computation performed with
different time-steps. The relative error is evaluated consider-
ing the curve computed with ∆t = 10−9 s the exact reference.
The initial conditions are R(0)/Req = 2 and Ṙ(0) = 0. The
pressure field is uniform.

of the bubble radius were basically the same.874

[1] F. Risso, Agitation, mixing, and transfers induced by875

bubbles, Ann. Rev. Fluid Mech. 50, 25 (2018).876

[2] A. Prosperetti, Vapor bubbles,877

Ann. Rev. Fluid Mech. 49, 221 (2017).878

[3] C. Brennen, Cavitation and bubble dynamics (Cam-879

bridge University Press, 2013) pp. 1–249.880

[4] M. Azmin, C. Harfield, Z. Ahmad, M. Edirisinghe, and881

E. Stride, How do microbubbles and ultrasound inter-882

act? Basic physical, dynamic and engineering principles,883

Curr. Pharm. Des. 18, 2118 (2012).884

[5] Y. Hao and A. Prosperetti, The effect of viscosity885

on the spherical stability of oscillating gas bubbles,886

Phys Fluids 11, 1309 (1999).887

[6] J.-L. Laborde, C. Bouyer, J.-P. Caltagirone, and888

A. Grard, Acoustic bubble cavitation at low frequencies,889

Ultrasonics 36, 589 (1998).890

[7] A. Prosperetti, The thermal behaviour of oscillating gas891

bubbles, J. Fluid Mech. 222, 587 (1991).892

[8] L. Rayleigh, On the pressure developed in a liq-893

uid during the collapse of a spherical cavity,894

Phil. Mag.Ser. 6 34, 94 (1917).895

[9] M. Plesset, The dynamics of cavitation bubbles, J. Appl.896

Mech. 16, 277 (1949).897

[10] F. R. Gilmore, The growth or collapse of a spherical bub-898

ble in a viscous compressible liquid, Report No 26-4 Hy-899

drodynamics Laboratory, California Institute of Technol-900

ogy, Pasadena, California, USA (1952).901

[11] M. S. Plesset and A. Prosperetti, Bubble dynamics and902

cavitation, Ann. Rev. Fluid Mech. 9, 145 (1977).903

[12] A. Prosperetti, Bubble dynamics in a com-904

pressible liquid. Part 1. First-order theory,905

J. Fluid Mech. 168, 457 (1986).906

[13] W. Lauterborn and T. Kurz, Physics of907

bubble oscillations, Rep. Prog. Phys. 73,908

10.1088/0034-4885/73/10/106501 (2010).909

[14] H. Lin, B. Storey, and A. Szeri, Inertially driven910

inhomogeneities in violently collapsing bubbles:911

The validity of the Rayleigh-Plesset equation,912

J. Fluid Mech. 452, 145 (2002).913

[15] A. Moshaii and R. Sadighi-Bonabi, Role of liquid com-914

pressional viscosity in the dynamics of a sonoluminescing915

bubble, Phys Rev E. 70, 6 (2004).916



15

FIG. 10. Effect of the duration T of the simulation on the
statistical metrics that describe the time-series R(t). Similar
to Fig. 4, two statistical parameters and their dependence
on σp/p̄ are considered. The different curves were evaluated
considering different length of the simulation. The parameter
τp = Tn is adopted.

[16] O. Supponen, D. Obreschkow, and M. Farhat, Rebounds917

of deformed cavitation bubbles, Phys. Rev. Fluids 3,918

10.1103/PhysRevFluids.3.103604 (2018).919

[17] M. Ghorbani, O. Oral, S. Ekici, D. Gozuacik, and920

A. Kosar, Review on lithotripsy and cavitation in urinary921

stone therapy, IEEE Rev. Biomed. Eng. 9, 264 (2016).922

[18] V. Agnese, V. Costa, G. Scoarughi, C. Corso, V. Ca-923

rina, A. De Luca, D. Bellavia, L. Raimondi, S. Pa-924

gani, M. Midiri, G. Stassi, R. Alessandro, M. Fini,925

G. Barbato, and G. Giavaresi, Focused ultrasound ef-926

fects on osteosarcoma cell lines, BioMed Res. Int. 2019,927

10.1155/2019/6082304 (2019).928

[19] M. Dular, T. Griessler-Bulc, I. Gutierrez-Aguirre,929

E. Heath, T. Kosjek, A. Krivograd Klemeni, M. Oder,930

M. Petkovek, N. Raki, M. Ravnikar, A. arc, B. irok,931

M. Zupanc, M. itnik, and B. Kompare, Use of932

hydrodynamic cavitation in (waste)water treatment,933

Ultrason. Sonochem. 29, 577 (2016).934
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