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Abstract—This paper focuses on the design, test and vali-
dation of a deep neural network (DNN)-based control scheme
capable of predicting optimal motion commands for autonomous
ground vehicles (AGVs) during the parking maneuver process.
The proposed design utilizes a multi-layer structure. In the first
layer, a desensitized trajectory optimization method is iteratively
performed to establish a set of time-optimal parking trajectories
with the consideration of noise-perturbed initial configurations.
Subsequently, by using the pre-planned optimal parking trajec-
tory dataset, several DNNs are trained in order to learn the
functional relationship between the system state-control actions
in the second layer. To obtain further improvements regarding
the DNN performances, a simple yet effective data aggregation
approach is designed and applied. These trained DNNs are then
utilized as the motion controllers to generate the feedback actions
in real-time. Numerical results were executed to demonstrate the
effectiveness and the real-time applicability of using the proposed
control scheme to plan and steer the AGV parking maneuver.
Experimental results were also provided to justify the algorithm
performance in real-world implementations.

Index Terms—Deep neural network, autonomous ground
vehicles, trajectory optimization, motion controller, parking ma-
neuver.

I. INTRODUCTION

A
DVANCED driver assistance systems currently play a

key component of intelligent vehicle technology. In order

to achieve a higher level of automation and to satisfy different

autonomous driving demands, a large amount of efforts have

been paid by both the academic and industrial communities

on researching this topic during the last decade [1–3]. Among

these developments, a particular focus is the design and control

of automatic parking systems. Automatic parking usually

refers to placing a ground vehicle in a pre-determined parking

area and it is a typical use case in the autonomous driving

mode [4, 5]. Due to the existence of uncertainty in the traffic
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environment, it is still challenging to design a reliable real-

time parking control system which can ensure the passenger’s

comfort whilst completing the maneuver in a safe and quick

way.

The entire automatic parking task is often fulfilled by

performing two steps: trajectory planning and motion control

[6–8]. Generally speaking, in the first step, the system aims

to generate a feasible parking path connecting the vehicle’s

current position and the desired position in the parking slot

without colliding with obstacles (e.g. the edge of the road,

parking area boundaries, or objects). It should be noted

that this step is fundamental yet important, as it is likely

to obtain enhanced motion control performance if a well-

designed parking trajectory can be recorded. Contributions

on researching trajectory planning methods for autonomous

vehicles (AVs) can be found in the literature. For example,

a number of well-developed geometric path planners have

been proposed [6, 9]. The core idea of these approaches

is to shape and smooth the vehicle maneuver profile using

spline or polynomial techniques. Although geometric-based

approaches are computationally friendly, they have a number

of limitations. Commonly, a geometric path planner may

produce a solution on the basis of specific structures. When

complicated traffic environments are required to consider, such

a planner may fail to satisfy vehicle dynamic constraints under

a certain scenario. Also, it is likely to result in a relatively-

large difference between the actual maneuver trajectories and

the designed curves.

As a potential alternative, researchers have recently in-

vestigated the possibility of applying optimization or artificial

intelligence-based methods to plan the motion of AVs [10–13].

For example, the study carried out by Choi and Huhtala [14]

investigated the feasibility of using gradient-based optimiza-

tion to search the global path of the AV. Their work showed

that, given a proper set of algorithm parameters, it is possible

to calculate the shortest path using the proposed approach.

In addition, in [5] a swarm intelligent optimization algorithm

was constructed to plan the parking trajectory of the wheeled

vehicle.

Once a pre-planned trajectory is generated, the motion

control system should be designed so as to steer the vehicle

to fulfill the entire maneuver. A commonly-used strategy is

the reference-tracking-based control [15, 16]. This type of

method is motivated by modern control theories and it has been

broadly utilized in the literature [17–21]. For instance, Xu et

e805814
Text Box
IEEE Transactions on Neural Networks and Learning Systems, Volume 33, Issue 4, April 2022, pp. 1400-1413DOI: 10.1109/TNNLS.2020.3042120

e805814
Text Box
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2

al. [19] derived a neural network-based (NN) dynamic control

law in order to steer and track the motion of an autonomous

flight vehicle, whereas in [20], an NN-assisted adaptive back-

stepping law was derived and successfully applied to address

an AV attitude tracking problem. In addition, an NN-based

mechanism, coupled with a robust adaptive strategy, was

advocated in [21] in order to control the AV to track the desired

trajectory. From the reported verification results, these methods

can work properly for the considered cases. However, for

many complex nonlinear or hybrid systems, an explicit control

policy which can guarantee system stability under dynamic

constraints and various model uncertainties might not be easily

derived [22]. To circumvent the problem, multiple model-

related assumptions are usually provided. This will inevitably

introduce conservatism in the design, thereby limiting the

practical application of the proposed control law.

In recent years, there is a growing trend in terms of

extending the optimization-based motion planners to real-

time motion control applications. This is usually achieved by

constructing a receding horizon replanning procedure and the

control command is re-optimized at each sampling instant.

In the literature, a number of works on this topic can be

found [23–25]. The authors in [24] designed a nonlinear model

predictive control (NMPC) scheme to produce the guidance

commands and control profiles for AVs under a public traffic

environment. Similarly, an NMPC-driven scheme was devel-

oped in [25] to steer the motion of AVs with the consideration

of moving obstacles. One important feature is that a B-spline

parametrization method is used to decrease the scale of the

nonlinear optimization process. Though the results reported

in the aforementioned works confirmed the effectiveness of

using these optimization-based motion control algorithms, they

are less likely to be applied in real systems due to the high

computational burden and insufficient robustness of the online

optimization process.

To ease the computational burden while producing op-

timal feedback actions in real-time, in this paper, we are

interested in designing, testing, and validating a deep neural

network-based (DNN) control scheme for the automatic park-

ing problem. The motivation of applying DNN mainly relies

on its ability in representing complex functional relationship,

thereby making it a useful tool for approximation of optimal

state-control actions. Early studies suggested that DNN-based

direct representations have the potential to be applied in

autonomous vehicle trajectory planning/control problems, and

a number of works have been reported in DNN for autonomous

driving [26–28]. For example, Grigorescu et al. [26] provided

a comprehensive review regarding artificial intelligence (AI)

techniques applied in autonomous driving. In this paper, the

authors systematically outlined the self-driving architecture

including key modules constructed via deep learning algo-

rithms. In [27], the authors introduced a parallel learning

concept in order to form AI-based systems for engineering

problems. Later in [28], a first attempt was made to combine

transfer leaning and parallel learning such that the network can

learn the parking skill more effectively. Motivated by these

impressive achievements, a bi-level integrated framework is

proposed in the present work. Employing such a multi-layer

design, we are able to merge advanced trajectory optimization

and deep learning algorithms together, thus preserving the

structure of the optimal solution and reducing the online

computing demand.

In the upper level of the proposed control scheme, a set

of optimal parking trajectories with time duration minimiza-

tion is generated by sequentially utilizing a newly-developed

trajectory optimization approach. Following that, the obtained

parking trajectory dataset is provided to the lower level, where

deep neural networks are constructed to learn the structure

of the optimal state-control relations. To further strengthen

the network approximation performance, a data aggregation

strategy has been developed. In this way, the trained DNNs

can gain an understanding of the parking trajectory-steering

mapping relationship such that they can be applied for con-

trolling the vehicle to achieve the optimal trajectory online.

It is noteworthy that compared with online replanning-based

approaches (e.g., dynamic programming (DP) or model predic-

tive control (MPC)-based methods), the proposed DNN-driven

method is likely to save considerable computational time and

resources.

The remainder of this work is structured as follows.

In Sec II, the trajectory optimization model of the parking

maneuver problem is established. Following that, the process

of generating the optimal parking trajectory ensemble, along

with the establishment of the DNN-based control scheme, is

outlined in Sec III. Furthermore, in Sec IV the DNN-driven

motion control performance is studied in detail by performing

a number of experiments. Key findings as well as highlights

of obtained results are then concluded in Sec V.

II. OPTIMIZATION MODEL OF THE PARKING MANEUVER

PROCESS

A. System Model of the Vehicle

The trajectory optimization model of the parking maneu-

ver problem is introduced in this section. The general parking

scenarios (e.g., the vertical parking and parallel parking) can

be visualized in Fig.1.






   









   
























 













   









  











 
























 








 

 

Fig. 1: General parking scenarios

To describe the movement of the wheeled vehicle, a set of

differential equations are established, which can be abbreviated

to the following affine nonlinear system [7]:

�̇� = 𝑓(𝑥(𝑡)) +𝐵𝑢(𝑡) (1)
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In Eq.(1), t ∈ [t0, t𝑓 ] is the time variable. x(t) =
[p𝑥(t), p𝑦(t), v(t), a(t), θ(t), φ(t)]

𝑇 is the system state vari-

able consisting of the center location of the rear wheel

(p𝑥(t), p𝑦(t)), the velocity and acceleration (v(t), a(t)), the

oriental angle θ(t), and the steering angle φ(t), respectively.

u(t) = [η(t), ω(t)]𝑇 represents the control input, where η and

ω are the jerk and angular velocity, respectively. The nonlinear

function f(·) and B are given by:

f(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

v(t) cos(θ(t))
v(t) sin(θ(t))

a(t)
0

v(t) tan(𝜑(𝑡))
𝑙

0

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where l denotes the length between the two wheels.

B. Parking Maneuver Constraints

Multiple process or boundary constraints are required

to be taken into account during the parking maneuver. For

instance, the starting and ending conditions of the vehicle

should be specified. This can be described as:

px(t0) = px0
py(t0) = py0 v(t0) = 0 a(t0) = 0

θ(t0) = 0 φ(t0) = 0 px(tf ) = pxf
py(tf ) = pyf

v(tf ) = 0 a(tf ) = 0 θ(tf ) = θf φ(tf ) = 0
Ay(tf ) ≤ 0 By(tf ) ≤ 0 Cy(tf ) ≤ 0 Dy(tf ) ≤ 0

(3)

It is noteworthy that the target final conditions may vary from

scenario to scenario. For example, the terminal oriental angle

value for the vertical parking mission should be θ(t𝑓 ) = 90∘,

while for the parallel parking mission, the target θ(t𝑓 ) be-

comes 0∘. In Eq.(3), (A𝑦, B𝑦, C𝑦, D𝑦) can be calculated via:
⎧
⎪⎪⎨
⎪⎪⎩

A𝑦(t) = sin(θ(t))(l + n) + 0.5b cos(θ(t)) + p𝑦(t)
B𝑦(t) = sin(θ(t))(l + n)− 0.5b cos(θ(t)) + p𝑦(t)
C𝑦(t) = p𝑦(t)− 0.5b cos(θ(t))−m sin(θ(t))
D𝑦(t) = p𝑦(t) + 0.5b cos(θ(t))−m sin(θ(t)))

(4)

Here, m and n are, respectively, the rear and front overhangs.

b is the width of the vehicle. Apart from the boundary

constraints, each system state or control variable should satisfy

the following path constraint:

|p𝑥(t)| ≤ p𝑚𝑎𝑥
𝑥 |a(t)| ≤ a𝑚𝑎𝑥

|p𝑦(t)| ≤ p𝑚𝑎𝑥
𝑦 |φ(t)| ≤ φ𝑚𝑎𝑥

|v(t)| ≤ v𝑚𝑎𝑥 |η(t)| ≤ η𝑚𝑎𝑥

|θ(t)| ≤ θ𝑚𝑎𝑥 |ω(t)| ≤ ω𝑚𝑎𝑥

(5)

As shown in Fig.1, the edge of the parking slot is modeled

as F𝑒𝑑𝑔𝑒(x) = −(H(x) + H(x − l𝐿))l𝑊 , where H(x) is

the Heaviside step function. During the parking maneuver, we

need to guarantee that the vehicle will not collide with both the

edge of the parking area and the edge of the road. To achieve

this goal, the following path constraint should be imposed:

F𝑒𝑑𝑔𝑒(A𝑥) ≤ A𝑦 ≤ W

F𝑒𝑑𝑔𝑒(B𝑥) ≤ B𝑦 ≤ W

F𝑒𝑑𝑔𝑒(C𝑥) ≤ C𝑦 ≤ W

F𝑒𝑑𝑔𝑒(D𝑥) ≤ D𝑦 ≤ W

(6)

In Eq.(6), the width of the road is denoted as W .

(A𝑥, B𝑥, C𝑥, D𝑥) can be calculated via:
⎧
⎪⎪⎨
⎪⎪⎩

A𝑥(t) = cos(θ(t))(l + n)− 0.5b sin(θ(t)) + p𝑥(t)
B𝑥(t) = 0.5b sin(θ(t)) + cos(θ(t))(l + n) + p𝑥(t)
C𝑥(t) = p𝑥(t) + 0.5b sin(θ(t))−m cos(θ(t))
D𝑥(t) = p𝑥(t)− 0.5b sin(θ(t))−m cos(θ(t))

(7)

Besides, a collision-free constraint should be constructed

such that the vehicle will not collide with two corner points

of the parking slot during the entire maneuver (e.g., O1

and O2 shown in Fig.1). This is achieved via the following

inequalities:

AAO1B + ABO1C + ACO1D + ADO1A > AABCD

AAO2B + ABO2C + ACO2D + ADO2A > AABCD
(8)

where A· stands for the area. A𝐴𝐵𝐶𝐷 is the region occupied by

the wheeled vehicle. Eq.(8) indicates the two corner points of

the parking slot can always locate outside the region occupied

by the vehicle.

C. Mission Objective

In this paper, we are interested in steering the autonomous

vehicle to the specified parking area in the shortest time

possible. Therefore, the objective function of the considered

problem can be written as:

𝐽 = min

∫︁ tf

t0

1dt or 𝐽 = min

∫︁ sf

s0

1

�̇�(𝜏)
d𝜏 (9)

where t0 and t𝑓 denotes the initial and terminal time instants.

ṡ(τ) is the velocity along the path s. Both of these two

formulation are widely applied in the literature to reflect the

traveling time [4, 29]. In the former one, t ∈ [t0, t𝑓 ] is

considered as an independent variable. In the later one, ṡ

can be formulated as a function of velocity, curvature radius

or other geometrical considerations. In this paper, we use to

former one to construct our trajectory optimization model.

The entire optimization model can be understood as

follows: we aim to determine the vector of optimal states

x*(t) and controls u*(t) that minimize the total time duration

(9) when the autonomous vehicle starts its maneuver from

an initial configuration at time t0, and moves to a final

configuration at t𝑓 , while being subjected to the process

constraints introduced in Sec II.B. Note that the nonlinear

vehicle equations of motion (1) are considered as dynamic

constraints and adhered in the optimization model.

III. MANEUVER PLANNING AND CONTROL VIA A

DNN-BASED APPROACH

Indeed, the parking maneuver optimization problem con-

structed in the previous section yields an open-loop control

solution which is not implementable for real AGVs. This

stimulates a technology development program that calls for

high precise control systems capable of delivering optimal

feedback actions in real-time. To achieve this goal, signif-

icant amount of efforts have been devoted by researchers

to investigate and improve the possibility of using MPC-

based approaches [24, 25]. That is, the re-optimization process

is performed at the current time instant and only a certain

segment of the resulting optimal control solution is acting on
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the system. Although some related work demonstrated that

the MPC-based methods have the potential to steer AGVs in

an optimal way, a main drawback is that the time-consuming

re-optimization process can hardly be afforded in real-world

applications (e.g., it may cause large time delays in receiving

the control command). Consequently, the main objective of

this section is to design a computationally-friendly control

framework for the AGV parking system. Motivated by the

previous work [23, 28], a bi-level integrated framework is

proposed and visualized in Fig. 2.

A. Dataset of Optimal Parking Maneuver Profiles

As shown in Fig. 2, the upper level of the designed frame-

work is mainly responsible for producing a number of optimal

parking maneuver profiles. This is achieved by solving the

optimal maneuver planning problem defined in the previous

section with noise-perturbed initial configurations. Due to the

existence of system nonlinearity and path constraints, deriving

the analytical form of the optimal solution becomes much

more difficult. In this case, numerical methods become an

effective tool to tackle the problem. In this paper, we resort

to the method of pseudospectral collocation which is com-

monly applied in wheeled vehicle control applications [30] for

transcribing the continuous-time parking maneuver planning

problem into a nonlinear static version. In this approach, the

system states and controls are discretized on a set of temporal

nodes {t𝑘}
𝑁k

𝑘=1 (denoted as x(t𝑘) = x𝑘, and u(t𝑘) = u𝑘).

Then the mission objective, system equations and dynamic

constraints become either a function of the parameterized state

and control or a value at the collocation node. In this way,

the original optimal parking maneuver planning problem is

transformed into a static constrained version which is solvable

using standard optimization algorithms. More specifically, the

aim of the optimization process becomes finding (x𝑘, u𝑘) at

every temporal node t𝑘, k = 1, ..., N𝑘 such that the discretized

performance index can be optimized and the discretized con-

straints are satisfied.

Priory to trigger the solution-finding iteration, two addi-

tional steps are performed to further improve the robustness

of the numerical optimization process.

1) Normalization: A normalization process should be

performed on each decision variable, which can be written

as:
𝑝x = 𝑝x/𝑝

max
x 𝑝y = 𝑝y/𝑝

max
y

𝑣 = 𝑣/𝑣max �̄� = 𝑎/𝑎max

𝜃 = 𝜃/𝜋 𝜑 = 𝜑/𝜋
𝜂 = 𝜂/𝜂max �̄� = 𝜔/𝜔max

(10)

It is noteworthy that this step is simple yet non-neglectable.

It was shown in [5, 13] that poor scaling can damage the

algorithm robustness and it may lower the convergence speed.

Therefore, we use Eq.(10) (e.g., the nondimensionalization

equation) to regulate the AGV system variables and desensitize

these potentially negative effects.

2) Initial Parking Maneuver Profile: The consideration

of perturbed configurations may also damage the convergence

rate of the optimization process. To deal with this issue,

a desensitized trajectory optimization algorithm specifically

designed for AGV parking problems [5] is applied. The idea of

this algorithm is to pre-generate a feasible parking maneuver

trajectory between the noise-perturbed initial point and the

target point via a swarm-intelligent optimization approach.

Subsequently, this trajectory is applied as the initial guess

value to warmly trigger the main solution-finding loop. It was

analyzed in [5] that using the pre-generated guess trajectory,

the convergence speed and the successful rate for finding

the optimal parking maneuver profile can be significantly

improved. As a result, we choose this method as the maneuver

planner in this work.

Suppose that the initial configuration of the vehicle is

perturbed by some uncertain noises. That is, the initial state

value becomes

𝑥(𝑡0) = 𝑥0 + 𝜁ix, 𝑖 = 1, ..., 𝑁i (11)

In Eq.(11), the noise ζ𝑥 is a random variable taken from a

normal distribution. That is, {ζ𝑖𝑥}
𝑁i

𝑖=1 ∈ N(0, G2), where G2

represents the variance and N𝑖 is the sample size. A Monte-

Carlo technique is then used to generate trajectories in order

to form the optimal parking maneuver dataset D𝑇𝑟. These

steps will be carried out offline and they are summarised in

Algorithm 1. The algorithm will be terminated until the size

Algorithm 1 Construction of the optimal parking maneuver

dataset

1: Generate the temporal points {𝑡k}
Nk
k=1

;
2: for 𝑖 := 1, 2, ... do
3: Generate the noise value 𝜁ix randomly;
4: Construct the noise-perturbed model based on (11) and (8);
5: Discretize the noise-perturbed optimization model at
6: (𝑥k, 𝑢k);
7: Initialize the initial parking maneuver generator [5];
8: Pre-solve the problem using the initial parking maneuver
9: generator;

10: Assign the output of the generator as the starting point;
11: Resolve the problem using gradient-based approach;
12: if the algorithm can successfully converge (tolerance 𝜖) then
13: Collect the optimal result (𝑥∗

k, 𝑢
∗

k) to 𝐷Tr;
14: Set 𝑖 = 𝑖+ 1;
15: else
16: Discard the current solution and set 𝑖 = 𝑖+ 1;
17: end if
18: end for
19: Output the final dataset 𝐷Tr

of the dataset reaches a certain value specified by the designer.

B. Learning the Optimal Structure of State-Control Actions

Following the discussion provided in the previous subsec-

tion, it is assumed that an optimal parking maneuver dataset

has already been produced. As mentioned earlier, open loop

solution can make limited contribution in real world applica-

tions. Hence, one goal of the proposed framework, especially

in the lower level, is to construct an optimal feedback motion

controller which can be applied in real-time. To do this, the

idea is to train DNNs N on the produced dataset such that

the network can explore and estimate the relationship between

the optimal state-control pairs. That is,

𝑢1(𝑡k) ≈ N1(𝑥(𝑡k))
𝑢2(𝑡k) ≈ N2(𝑥(𝑡k))

(12)
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Fig. 2: Bi-level integrated framework

Here, N1 can be understood as the acceleration control subsys-

tem. Analogically, N2 denotes the steering control subsystem.

                                  

  













Fig. 3: An illustration of DNN

The considered DNNs (e.g., N1 and N2) use a feed-

forward neural network structure including an input layer, an

output layer and multiple hidden layers. An illustration of the

constructed DNN is given by Fig. 3, from where it can be

observed that multiple node points (neurons) may exist in each

layer and once the numbers of layer and neuron (e.g., N𝑙 and

N𝑠) are specified, the structure of the DNN is determined. The

output of the jth neuron at ith layer can be written as

𝑆i,j = 𝑓i(𝜔i,j𝑆i−1 + 𝑏i,j) (13)

Here the term S𝑖−1 is defined as

𝑆i−1 =

Ni−1

s∑︁

i=1

𝑓i−1(𝜔i−1,j𝑆i−1,j + 𝑏i−1,j) (14)

In Eq.(13) and Eq.(14), the activation function f used in the

hidden layer is the rectified linear function f(x) = max(0, x),
while in the output layer, the tanh function is used as the

mapping function. The weight and bias variables [ω, b] will

be adjusted during the network training process such that the

DNN can optimally approximate the functional relationship

between the input and the target output values. In other words,

the training process aims to update [ω, b] so that a loss function

in the form of (15) can be minimized.

𝐿 =
1

𝑁

N∑︁

i=1

(̂︀𝑜(𝑥i)− 𝑜(𝑥i))
2

(15)

In Eq.(15), the variables N , ̂︀o and o stand for, respectively, the

size of data, the network output value, and the target output

value. Similarly, the network approximation performance can

be assessed by introducing the error and the mean squared
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error (MSE) functions:

𝑒i = |𝑥i)− 𝑜(𝑥i)|/𝑜(𝑥i

MSE =
√︁

1

N

∑︀N

i 𝑒2i
(16)

It is worth noting that gradient descent (GD) method is

commonly-used in training the neural network. Specifically,

ω = ω +∆ω b = b+∆b (17)

where the increment vectors ∆ω and ∆b are written as:

∆ω = 𝜉 ∂L
∂ω

∆b = 𝜉 ∂L
∂b

(18)

where ξ represents the learning rate value. In recent years,

various modified GD approaches have also been proposed in

the literature to obtain enhanced training performance. In this

paper, a state-of-the-art stochastic gradient descent method

(SGD) proposed in [31] is selected to train the weight and

bias variables.

C. Performance Enhancement

One important conclusion obtained from [23] is that the

learning rate value tends to be sensitive with respect to the

stability and accuracy of approximating the optimal state-

control relation. More specifically, a relatively small ξ value

might result in insufficient approximation accuracy. However,

a large ξ value tends to result in insufficient robustness in

terms of the convergence history. To enhance the network

performance, an effective strategy is to start the training

process with a large learning rate value and gradually decrease

ξ as the number of training iteration increases. This is achieved

by introducing a natural exponential decay equation:

𝜉 = 𝜉𝑒−λτ 𝜏 =
sg
sd

(19)

in which s𝑔 stands for the current iteration step while s𝑑 is

the decay step. λ ∈ [0.8, 1] denotes the decay rate.

In order to further improve the network approximation

ability, another simple yet effective approach is designed and

investigated in this paper. The proposed strategy can be treated

as an imitating learning process, where the DNN aims to

imitate an action specified by the experts so as to improve

its performance. Specifically, for the considered problem, we

apply a data aggregation (DA) technique. The motivation for

the usage of DA mainly relies on its simplicity and capability

of recovering from past mistakes.

To perform the proposed strategy, the constructed DNNs

are firstly trained on the optimal maneuver dataset D𝑇𝑟.

Once the training has been completed, we test the network

prediction ability on the test dataset D𝑇𝑒 including N𝑇𝑒

testing trajectories. Following that, according to the terminal

state conditions (3) and the MSE function (16), the parking

maneuver index (among the test dataset) which cannot be

accurately predicted is detected and the corresponding parking

trajectory will be collected to a bad performance dataset

D𝑏. Subsequently, we adhere the detected bad performance

dataset into the training dataset and re-train the DNN, thereby

allowing more emphases on this particular group. The general

procedures of constructing the bad performance dataset for the

automatic parking problem are summarised and presented in

Algorithm 2.

Algorithm 2 Bad performance dataset construction

1: procedure
2: Step 1: Use the pre-generated optimal maneuver dataset 𝐷Tr

3: to train DNNs;
4: Step 2: Apply the trained DNNs on the test dataset 𝐷Te;
5: Step 3: Assign the acceptable threshold with respect to the
6: MSE and the terminal state errors;
7: for 𝑞 := 1, 2, ..., 𝑁Te do
8: (a). If the 𝑞th trajectory among 𝐷Te cannot satisfy the
9: acceptable threshold;

10: (b). Add the 𝑞th maneuver trajectory to 𝐷b;
11: (c). Set 𝑞 = 𝑞 + 1;
12: end for
13: Step 4: Adhere 𝐷b into 𝐷Tr via:
14: 𝐷Tr = 𝐷Tr ∪𝐷b

15: Step 5: Re-train the DNNs on 𝐷Tr for further improvement;
16: end procedure

D. Overall Algorithm Framework

The overall framework of the proposed DNN-driven

parking maneuver controller is structured in Algorithm 3.

Algorithm 3 Procedures of the DNN-driven parking maneuver

1: Offline: Construct the parking maneuver optimization model via
Eq.(8)

2: Generate the optimal maneuver dataset via Algorithm 1;
3: Assign the network structural parameters to establish the DNNs;
4: Train the DNNs on the pre-generated optimal trajectory dataset;
5: Construct the bad performance dataset via Algorithm 2;
6: Re-train the DNNs on the detected bad performance dataset;
7: /*Main Loop*/
8: Online: At each time point 𝑘 := 0, 1, ...;
9: (i). Obtain the current vehicle state 𝑥k;

10: (ii). Predict the optimal control commands using the trained
11: DNNs 𝑢k := N (𝑥k);
12: (iii). Implement 𝑢k to the vehicle motion system until the
13: next sampling instant;
14: (iv). Set 𝑘 = 𝑘 + 1;
15: (v). Compute the state variables at the next time point by
16: numerically integrating �̇� = 𝑓(𝑥,N (𝑥));
17: (vi). Repeat the steps i)-v) for the next sampling time instant;

IV. RESULTS AND DISCUSSIONS

In this section, we focus on the test and validation of the

proposed DNN-based strategy. Specifically, detailed numerical

and physical studies were executed and the obtained results

are presented to show the availability as well as the real-time

applicability of applying the proposed control scheme to plan

and steer the parking maneuver of the AGV.

In the following tests, two real-world parking scenarios

are mainly considered:

• Scenario 1: Vertical parking as visualized by Fig. 1(a) and Fig.
4(a)

• Scenario 2: Parallel parking as visualized by Fig. 1(b) and Fig.
4(b)

Some vehicle-related parameters existing in the optimiza-

tion model (8), along with the algorithm-related parameters

are provided in Table I. On the other hand, the initial/terminal

state values of the AGV, together with some scenario-related

parameters are assigned in Table II.
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Fig. 4: Two Parking Scenarios

TABLE I: Vehicle/algorithm-related parameters

Parameters Values Parameters Values Parameters Values

𝑚 0.4 𝑣max 2 𝑁k 60

𝑙 1.45 𝜃max 90 𝑁i 50000

𝑛 0.55 𝑎max 0.5 𝑁l 7

𝑏 1.54 𝜑max 30 𝑁s 128

𝑊 4 𝜂max 0.5 𝜆 0.9

𝑝max
x 15 𝜔max 35 𝜖 1 × 10−8

𝑝max
y 5 𝑡max

f 50 𝜉 0.1 − 0.0001

TABLE II: Scenario-related parameters

Scenario 1 Scenario 2

𝑝x(𝑡0) = 10.4 𝑝x(𝑡f ) = 1.745 𝑝x(𝑡0) = −4.5 𝑝x(𝑡f ) = 1.25
𝑝y(𝑡0) = 1.615 𝑝y(𝑡f ) = −1.25 𝑝y(𝑡0) = 1.615 𝑝y(𝑡f ) = −3.255
𝑣(𝑡0) = 0 𝑣(𝑡f ) = 0 𝑣(𝑡0) = 0 𝑣(𝑡f ) = 0
𝑎(𝑡0) = 0 𝑎(𝑡f ) = 0 𝑎(𝑡0) = 0 𝑎(𝑡f ) = 0
𝜃(𝑡0) = 0 𝜃(𝑡f ) = 0 𝜃(𝑡0) = 0 𝜃(𝑡f ) = 90
𝜑(𝑡0) = 0 𝜑(𝑡f ) = 0 𝜑(𝑡0) = 0 𝜑(𝑡f ) = 0
𝑙L = 2.5 𝑙W = 5 𝑙L = 5 𝑙W = 2.5

To establish the DNN-based controller, we need to pro-

duce a number of optimal parking maneuver profiles for the

two considered parking scenarios. As illustrated by Algorithm

1, for each i ∈ {1, 2, ..., N𝑖}, the desensitized maneuver

planner proposed in [5] is iteratively applied to calculate the

optimal parking maneuver profiles from the noise-perturbed

initial configuration to the target final point. It is assumed

that ζ𝑝x
, ζ𝑝y

and ζ𝜃 are normally distributed on [−2, 2]m,

[−0.5, 0.5]m and [−5, 5]∘, respectively.

A. Determination of Network-Related Parameters

In this subsection, we determine the combination of

network-related parameters such that the trained DNN can

acquire enhanced approximation performance. It should be

noted that three important factors, including the data used

for training the network N𝑑, the depth of the network N𝑙

and the number of units N𝑜, may have impacts on the DNN

approximation performance. To explore the optimal combina-

tion, we divide these factors into five levels and design the

orthogonal experiments (as shown in Table IV). The detailed

factor specifications can be found in Table III. Note that 80%

of the data is utilized for training the DNN, while 10% of the

data is applied for testing the network. The rest 10% forms

the validation dataset, which is primarily used to provide a

feedback while the training process is performing. In this

way, the training can be terminated if the error value on the

validation dataset increases, as this can be viewed as a sign

of over-fitting. The MSE value on the test set is used as the

main indicator to reflect the final DNN performance under a

certain parameter combination. This result has been reported

in the last column of Table IV.

TABLE III: Factor specification

Factor Level

Level A Level B Level C Level D Level E

Data Size 𝑁d 2 × 105 3 × 105 4 × 105 5 × 105 6 × 105

Layer 𝑁l 3 4 5 6 7

Unit 𝑁o 8 16 32 64 128

TABLE IV: Results: different combinations

Experiment Level Result

𝑁d 𝑁L 𝑁o MSE value

Test case 1 A A A 6.46E-04

Test case 2 A B B 4.92E-04

Test case 3 A C C 3.43E-04

Test case 4 A D D 2.12E-04

Test case 5 A E E 8.01E-05

Test case 6 B A B 5.91E-04

Test case 7 B B C 4.44E-04

Test case 8 B C D 2.39E-04

Test case 9 B D E 9.57E-05

Test case 10 B E A 6.84E-05

Test case 11 C A C 5.42E-04

Test case 12 C B D 4.04E-04

Test case 13 C C E 2.25E-04

Test case 14 C D A 2.14E-04

Test case 15 C E B 6.00E-04

Test case 16 D A D 5.12E-04

Test case 17 D B E 3.61E-04

Test case 18 D C A 3.13E-04

Test case 19 D D B 9.77E-05

Test case 20 D E C 5.87E-05

Test case 21 E A E 5.10E-04

Test case 22 E B A 4.41E-04

Test case 23 E C B 2.78E-04

Test case 24 E D C 1.09E-04

Test case 25 E E D 4.64E-05
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Fig. 5: Level trend results

After carrying out all the test cases, the level trends for

different factors can be visualized in Fig. 5. A jump in the level

trend curve may be viewed as a sign of over-training. From

this figure, we can see that the optimal network approximation

ability can be obtained if the N𝑙 and N𝑜 factors can be

assigned to level E, while the N𝑑 factor can be set to Level
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D (e.g., N𝑙 = 7, N𝑜 = 128 and N𝑑 = 5 × 105) for the

considered problem. Interestingly, from the data size level

trend profile, the DNN performance is not always improved as

the dataset becomes larger. Also, it can be observed from Fig.5

that compared with the impact caused by the data size and the

number of units, the depth of the network tends to have more

significant influences with respect to the DNN approximation

performance.

B. DNN Results and Real-Time Performance Evaluation

Priori to directly apply the proposed method on the

real vehicle, semi-physical experiments were executed in a

laboratory environment. The testing environment is visualized

in Fig. 6, from where it can be observed that the semi-physical

system contains three main parts:

1) A server (Dell EMC PowerEdge R930 rack): Generating

dataset and training DNNs.

2) An industrial PC (IPC-610MB-30LDE/I5-2400/DDR3):

Creating executable files via LabVIEW real-time mode.

3) An embedded controller (NI PXI-8820): Testing the con-

trol performance.



Fig. 6: Semi-physical testing environment
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Fig. 7: Parking maneuver profile: Scenario 1

Monte-Carlo (MC) approach is adopted to assess the con-

trol performance and the real-time capability of the designed

DNN-based algorithm. 500 MC trials were performed for the

two mission scenarios and the DNN-driven parking trajectories

are depicted in Fig. 7 and Fig. 8. The corresponding state and
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Fig. 8: Parking maneuver profile: Scenario 2

Fig. 9: State-control profiles: Scenario 1

Fig. 10: State-control profiles: Scenario 2
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control profiles are plotted in Fig. 9 and Fig. 10, respectively.

From the results presented in Fig. 7 and Fig. 8, the proposed

algorithm can successfully steer the AGV from the noise-

perturbed initial pose to the target final pose for the two

parking scenarios. In addition, by viewing the state/control

profiles shown in Fig. 9 and Fig. 10, all the state and control

path constraints can be satisfied, which confirms the validity

of the obtained maneuver results.
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Fig. 11: Algorithm execution performance

As for the real-time applicability of the proposed algo-

rithm, results regarding the average processing time per control

action for MC each trial are visualized in Fig. 11, from where

we can observe that the algorithm execution time can be kept

in a small scale. This is because in real-time applications,

only a finite number of forward operation is required by the

algorithm, while other primary steps of the algorithm are

mainly carried out offline.

C. Control Performance and Stability Analysis

Since the proposed control algorithm is acting on the

AGV nonlinear system with different initial conditions, the

stability issue becomes a key and must be analyzed. It is worth

noting that the main objective of the parking mission is to

control the AGV to reach the specified point in the parking

slot. Therefore, from a practical point of view, one important

indicator that can reflect the stability and quality of the parking

maneuver is the terminal state errors e𝑥(t𝑓 ) = x𝑓 − x(t𝑓 ).
Fig. 12 and Fig. 13 reveal the distribution of the terminal state

errors for the two mission cases. According to the obtained

results, we can see that the proposed approach is able to steer

the vehicle state variable to a small neighbourhood of the target

point (e.g., the terminal state error can locate in a small region

around the origin). A comparative analysis was performed by

applying the DNN-based algorithm with and without the data

aggregation part. The resulting final error distributions are also

revealed in the histograms (see Fig. 12 and Fig. 13). Clearly,

the distribution of error becomes closer to the origin if the

data aggregation strategy can be applied.

Fig. 12: Distribution of final state errors: Scenario 1

Fig. 13: Distribution of final state errors: Scenario 2

TABLE V: Final error results

Terminal

error

Deisreable

region

p-value

Scenario 1

p-value

Scenario 2

DNN DNN-DA DNN DNN-DA

𝑒px [−0.1, 0.1] 66.4% 78.2% 67.0% 98.6%

𝑒py [−0.1, 0.1] 74.0% 89.4% 83.6% 99.4%

𝑒v [−0.1, 0.1] 92.4% 99.6% 80.4% 94.6%

𝑒a [−0.1, 0.1] 98.6% 100% 79.6% 98.8%

𝑒θ [−0.5, 0.5] 99.8% 100% 99.6% 100%

𝑒φ [−0.05, 0.05] 99.4% 100% 99.8% 100%

Detailed comparative results are summarised and tabu-

lated in Table V, where a highly desirable region is defined to

better reflect the performance enhancement achieved by using

the DA. In Table V, p-value denotes the probability that e𝑥f

can locate inside the desired region. Based on the data shown

in Table V, it is obvious that the results acquired via the DNN

algorithm with DA tend to be much closer to the targeted

final conditions and have higher probability to locate inside

the desirable region. This further confirms the advantage of

applying the DA established in Algorithm 2 to achieve better

network control stability.

Apart from the final error distribution, another clue which

can also reveal the stability of the proposed method is the

DNN-driven parking trajectory behaviour after touching the

target position. Ideally, these trajectory profiles should main-

tain a stable behaviour around the pre-specified target point.

Fig. 14 illustrates the corresponding results for the parallel and
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Fig. 14: Trajectory Profiles After Reaching the Target Point

vertical parking trials. From Fig.11, a stable behaviour can

be witnessed in the vehicle position and orientation trajectory

profiles (e.g., p𝑥, p𝑦 and θ) for both of the two parking

cases. These results further reflect the stability of the proposed

design. That is, the DNN-based method is able to keep the

AGV states remaining close to x𝑓 long after the target parking

point has been reached.

D. Comparative Studies Against Optimization-based Methods

Apart from the comparison carried out to study the impact

of the imitation learning process on the control performance,

another attempt is made to compare the proposed control

scheme with other optimization-based motion control methods.

Specifically, two MPC-based trajectory controllers, the linear

MPC scheme (denoted as LMPC) and the nonlinear MPC

scheme (denoted as NMPC), have been modified such that

they are able to tackle the considered parking maneuver prob-

lem. Based on our experiments, the maximum optimization

iteration should be set to 400 so as to guarantee the real-time

applicability. After reaching this maximum allowable value,

the MPC algorithm will terminate the current optimization

process and jump to the next control loop. The two parking

missions were re-executed by using the three algorithms and

the obtained maneuver trajectories are displayed in Fig. 15.

Fig. 15 clearly indicates that the quality of MPC-based

parking maneuver solutions is not as comparable as the one

achieved using the proposed DNN-driven method. For exam-

ple, the actual maneuver trajectories driven by the proposed

algorithm are almost identical with the simulated optimal

solutions, whereas a relatively-large deviation can be found in

the LMPC solutions for both parking cases. As for the NMPC

solution, a collision with the edge of the parking slot can be

detected, which indicates the obtained maneuver trajectory is

infeasible. Actually, one problem of applying the NMPC is that

it needs to solve a nonconvex optimization model at each time

step and the global convergence of the solution can hardly be

guaranteed. Moreover, the consideration of various constraints

might also result in heavy burdens on the optimization process.

Fig. 15: Maneuver Trajectories Obtained Using Different Methods

This will affect the accuracy of the obtained solution and

degrade the computational performance significantly. From our

observations, most of the online optimization processes were

partly-solved and some of them were terminated after getting

stuck at local infeasible solutions. As for the LMPC method,

solving the optimization model becomes easier as the problem

is transformed to a linear version. However, if the accumula-

tion of errors caused by the successive linearization process is

large, the actual maneuver trajectory is likely to diverge from

the simulated optimal reference, thereby degrading the control

and computational performance.

E. Experimental Results





































Fig. 16: Experimental Setup: Vehicle Platform
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Fig. 17: An Illustration of the Entire System Structure

Although results presented in previous subsections can

demonstrate remarkable performance of the proposed method

in both qualitative and quantitative sides, real-world applica-

tion results are much more desirable for solidly convincing

evaluations. Consequently, we test our proposal in a real-world

autonomous system, which is illustrated in Fig. 16(a) and Fig.

16(b). The vehicle-related parameters are identical with the

setting provided in Table I. Fig. 16(c) and Fig. 16(d) provide

an illustration of the vehicle control box, while the battery

shown in Fig.16(c) is applied as the main power supplier of

the control box.

Remark 1. Multiple sensors are installed on the vehicle such

that the AGV can acquire the capability of localization and

perception. Specifically, the vehicle is equipped with onboard

motion sensors such as the wheel speed sensor and the steering

angle sensor. Their information is shared via the controller

area network (CAN). To obtain the position of the AGV, a

real-time kinematics GPS receiver is installed on the vehicle

(as shown in Fig. 16(a)). Besides, in order to measure the

accelerations, angular rates and other attitude variables of the

AGV, an inertial measurement unit (IMU) is installed and

placed in the geometric center of the vehicle. Furthermore,

laser scanners and cameras are also installed on the vehicle. To

better present the connection between sensors and actuators, a

graphical illustration of the entire automatic parking system is

shown in Fig. 17, where four key components are included: lo-

calization, environment perception, parking trajectory planning

and motion control. The cameras and laser scanners are mainly

responsible for the environment perception module while other

sensors are mainly responsible for the localization module.

Remark 2. It is important to note that multiple types of

measurement noises or bias may exist in the localization

module and the environment perception module. For example,

in the localization module, the measured GPS raw data can be

easily polluted by poor satellite signal conditions, blockage

or other perturbations. As a result, the position and veloc-

ity information used to construct the trajectory optimization

model may be unreliable, thereby significantly damaging the

operation of the proposed automatic parking algorithm. To deal

with this problem and improve the accuracy of the localization

module, a GPS noise/bias correction method can be utilized

[32]. The core idea of this method is to focus on the fusion of

GPS data with other sensor outputs (e.g., the IMU and onboard

motion sensors), thereby forming a fusion-based localization

module. That is, as shown in Fig.17, multiple sensor outputs

will be provided to the localization module, where a particle

filter can then be applied to estimate and compensate the bias.

Under each mission scenario, we have performed four

parking cases. The initial configurations of these test cases

are tabulated in Table VI.

TABLE VI: Test cases and results

Case

No.

Scenario 1 Final error

𝑝x(𝑡0) 𝑝y(𝑡0) 𝜃(𝑡0) 𝑒px 𝑒py 𝑒θ

No. 1 12.21 2.02 -1.08 -0.12 0.13 0.07

No. 2 12.38 1.22 2.85 -0.09 0.07 0.05

No. 3 8.62 1.94 4.60 -0.14 0.10 0.05

No. 4 8.44 1.17 -4.72 -0.05 -0.03 0.04

Case

No.

Scenario 2 Final error

𝑝x(𝑡0) 𝑝y(𝑡0) 𝜃(𝑡0) 𝑒px 𝑒py 𝑒θ

No. 1 -6.38 1.99 -1.46 -0.11 0.15 0.11

No. 2 -6.49 1.26 -3.74 -0.12 0.15 0.24

No. 3 -2.56 1.79 4.04 -0.14 0.16 0.34

No. 4 -4.41 1.63 -0.63 -0.14 0.15 0.11
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Fig. 18: Maneuver profiles for all test cases: Scenario 1
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Fig. 19: Maneuver profiles for all test cases: Scenario 2
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The actual parking trajectories for all the test cases are

shown in Fig. 18 and Fig. 19, while the results of final position

errors are included in Table VI. It can be seen from Fig.

18 and Fig. 19 that by applying the DNN-driven guidance

approach, the AGV does not collide the edge of the road

as well as the corner points of the parking area during

the entire maneuver phase. From Table IV, the difference

between the achieved final pose and the targeted final pose

is relatively-small. Moreover, by viewing the results presented

in Fig. 18 and Fig. 19, the actual maneuver profiles for all

test cases are almost identical with respect to the simulated

optimal solutions. Consequently, the results provided earlier

validate the effectiveness of the proposed design and justify

its enhanced performance.

Remark 3. It is true that differences can always be found

in the parking environments or in the dynamics of various

intelligent vehicles. In these cases, the trajectory-steering

mapping relationship may vary from case to case and the

collected data might be outdated. Since the neural network was

trained only for two specific parking scenarios, the algorithm

performance tends to be degraded if it is applied to another

complex scenario. However, the proposed algorithm has the

potential to be extended for other parking environments. For

example, we can take the advantage of transfer learning [33].

Specifically, suppose we have a set of parking trajectories D𝑠

under a particular parking scenario and a corresponding set of

control actions C𝑠 which can steer the vehicle to the given

position. Let D𝑇 and C𝑇 represent the parking trajectory and

control action sets of another parking scenario. The primary

aim of transfer learning is to boost and reinforce the learning

of mapping relationship f𝑇 : D𝑇 ↦→ C𝑇 by fully exploiting

the knowledge of f𝑠 : D𝑠 ↦→ C𝑠. That is, training will be

initially performed on the source domain (e.g., D𝑠 and C𝑠).

Subsequently, a retraining process will be executed for specific

hidden layers based on the target domain data (e.g., D𝑇 and

C𝑇 ). In this way, a good transferability is likely to be achieved.

V. CONCLUSION

In this paper, a multi-layer control scheme merging

optimal trajectory planning and deep learning was designed

and used to steer the parking maneuver of the autonomous

ground vehicles. To improve the approximation accuracy of

the network, a data aggregation strategy was applied such that

the DNNs can recover from past mistakes. This process was

performed by re-training the DNNs on a selected trajectory

ensemble containing all the wrong predicted samples. Detailed

numerical studies was carried out to illustrate some important

findings of the DNN-driven parking maneuver solutions. From

the results, it can be concluded that:

1) The proposed intelligent control strategy has the capabil-

ity of predicting optimal motion commands and steering

the vehicle to the pre-specified parking slot.

2) The developed data aggregation approach can indeed

provide contributions with respect to the approximation

accuracy of the DNNs.

3) The proposed DNN-driven scheme is able to produce

optimal feedback actions online and its real-time appli-

cability can be verified.

Field experiments were also executed and the results

verify the availability of adopting the DNN-based approach

in real-wold applications.
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