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According to the World Bank, as of mid-2000s, more people

have access to mobile technologies than clean water. Mobile

technologies were quickly recognized as excellent high

performing work tools and became adapted early on for use in

the agricultural sector. They offer exciting opportunities for

improving farming practices, including operating sustainable

fertilizer management strategies and related extension support.

From assessing potential Nitrogen losses in California to fine-

tuning fertilizer recommendations in Thailand — harnessing the

potential of mobile technologies was recognized as an

essential piece in the worldwide move towards information-

driven, efficient, and sustainable agriculture. In this review,

mobile technologies designed to augment existing methods of

fertilizer management were reviewed and challenges to their

adoption together with missing links in their development

process were emphasised.
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Introduction
Mineral fertilizers (MFs) play an irreplaceable role in

ensuring that the growing demand for food is met without

jeopardising long-term soil fertility [1,2]. However,

greenhouse gas emissions associated with fertilizer pro-

duction and continuous use [3,4], soil and water pollution

resulting from over application and mismanagement [5],

and soil degradation caused by lack of organic inputs [6]

have all been recognized as posing serious threats to

global food security.
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Regardless of this, both the developed and developing

countries are set to increase their MF demand, pre-

dicted annually to reach 201 thousand tonnes by the

end of 2022 [7]. Despite the fact that MFs have been

available for over sixty years, their application is often

suboptimal for crop growth due to limited access to

critical soil and plant information and the resulting low

nutrient use efficiency [8]. Lack of information, in

combination with decreasing farmer participation in

soil testing and farm planning (<30% of American and

Australian farmers take part in such programmes  at

recommended frequencies) [9] give rise to concerns

regarding the long-term sustainability of conventional

agriculture. Thus, it is essential to enhance the avail-

ability and access to tools that allow for better MF

management. These include, for example, fertilizer

advisory service [10,11��], models of plant-soil pro-

cesses [12], in-field [13,14] and off-field [15,16] soil

and plant matter testing, and improved communication

between farmers, farming communities and agricul-

tural consultants or governmental extension workers

[17].

Mobile technologies offer a wide range of opportunities

for potential ways to contribute to creation of such tools.

Smartphones have been repurposed for use in farm man-

agement the moment they became affordable, and thus,

available to the general public [18] and continue to play a

compelling role as decision support tools (DSTs)

[19,20��]. This paper aims to review the increasing impact

of mobile devices on agricultural decision making relating

to sustainable use of MFs via phone based soil-plant

testing, farm-level agronomic extension advisory, and

assessment of economic viability of fertilizer application,

whilst highlighting opportunities and challenges associ-

ated with these technologies.

The evolution of mobile technology and its role in

farming

Starting with a 412 MHz CPU and 128 MB eDRAM in

2007 and transitioning today into powerful microcompu-

ters with 64-bit multi-core processors supporting 4 GB of

RAM; and over 250 GB of internal memory by 2019,

smartphones demand little IT literacy and provide an

easy and cost-effective means to access information at will

via the Internet. In the early years of mobile technology

adoption, the devices available gave rise to productivity-

oriented software with weather monitoring, agricultural
www.sciencedirect.com
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Simplified timeline of smartphone development and its application in agricultural services.
news, and record keeping, acting as a backbone of ‘mobile

Agriculture’, or m-Agriculture [21] (Figure 1).

However, as technology advanced, smartphone apps

began to display a higher degree of sophistication and

task-specificity to accommodate the growing needs of

modern and information-intensive agriculture. From

assessing potential Nitrogen losses in the west of the

United States [22] to connecting farmers in Ghana [23��],
and fine-tuning fertilizer recommendations in Thailand

[24], they showed potential for contributing to the devel-

opment of a new generation of agriculture-oriented infor-

mation technology architecture, where data is instantly

received, recorded and either shared between interested

parties or stored in the cloud for ease of recall or use.

Because of their capacity to collect and manage data both

quickly and easily, mobile devices enable the idea of

smart farming, which builds on the concept of precision

agriculture but is not confined solely to accounting for in-

field variability. In smart farming, decision making that

forms part of agricultural management is based on data,

and thus, becomes enhanced by context awareness and

situational awareness whilst remaining responsive to

events taking place in real-time [25]. This approach

can bring substantial benefits to sustainable and inte-

grated MF management as field-specific and geo-located

information and agronomic knowledge become democ-

ratized through access to Information and Communica-

tion Technology (ICT) brought about by mobile

devices.
www.sciencedirect.com 
Opportunities and challenges for mobile
technology innovation, adoption and use
Tools for sustainable mineral fertilizer management:

portable soil and plant analyzers

Responsible nutrient management requires frequent (3–5

years) soil and plant matter testing [26,27]. However,

traditional methods of soil-plant analysis are often expen-

sive, time-consuming and labour-intensive [28]. Smart-

phones have been recognized as having the potential to

act as portable testing devices [19,29] but there are still

only a limited number of complementary apps that would

inform farm workers about soil-plant nutrient content in

real time.

There was an early attempt to develop a portable colori-

metric analyzer to determine plant available phosphate

[30], whereby a smartphone was affixed onto a device

used to capture a set of images of soil extract, which were

analyzed for RGB values via a custom-made Phosphorus

Analysis App (Figure 2). Images obtained from the smart-

phone camera were subsequently analyzed by the app

and were found to be highly correlated (R2 = 0.996) with

the standard spectrophotometric methods. Concurrently,

Campbell et al. [31] used a smartphone-mediated green

chemistry enzymatic method for assessing soil P assess-

ment in field conditions with similarly promising results

(1.5–4.0% error between the methods). More recently,

Golicz et al. re-purposed a water quality testing app, Akvo

Caddisfly, to measure soil mineral nitrogen (N) content

via colorimetric test strip method on smallholder subur-

ban farms in South-East China [32��].
Current Opinion in Environmental Sustainability 2021, 49:26–32
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Application of smartphones in soil and plant analysis. In recent years, mobile devices have been repurposed to act as low-cost alternatives to

expensive laboratory tests. This offers a great potential for improving fertilizer management, especially on smallholder farms. However, accuracy

and precision, as well as accessibility need to improve if smartphones are to become a viable alternative to standard testing.
Other apps such as BaiKhao — a widely popular app used

to assess the level of N and potassium (K) deficiency in

rice plants [24], and Smart SPAD, which was demon-

strated to accurately measure chlorophyll content of

maize [33], have been employed, offering an indirect

measurement tool to inform farmers about nutrient con-

tent of their soils. BaiKhao reduces errors associated with

subjective comparisons of leaves against the standard leaf

colour chart (correct leaf colour assignment rate = 93%)

providing accurate estimates of N K inputs required

during the crop growing season. SmartSPAD estimates

the chlorophyll content by contact imaging and was

shown to correlate well (R2 = 0.88) with an expensive

Minolta SPAD 502 mmeter.

These apps offer a low-cost alternative for conducting

soil and plant analyses, potentially enhancing farmers’

capacity to improve MF application across their fields.

Provided they are used alongside other sources of agro-

nomic advice, they can contribute to minimising the

economic and environmental risks associated with over-

fertilisation and underfertilization. However, few were

made fully accessible to the public, they require some

form of hardware and/or reagents that are not immedi-

ately or widely available and lack context (with excep-

tion of BaiKhao) as they are not integrated with wider

fertilizer recommendations adjusted for singular crops

that can be quickly understood and applied in practice

by the farmer.
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Tools for sustainable mineral fertilizer management:

digital agronomic advisory services

In emerging economies, and especially on the African

continent, MFs have been demonstrated to increase crop

yields under smallholder farming conditions, provided

they were applied at the right quantity and spatial-tem-

poral scale and accompanied by appropriate agronomic

practices [34]. Unless these conditions are met, invest-

ment in on-farm inputs has been shown to bring negligi-

ble benefits and to cause disfranchisement resulting from

financial difficulties brought about by purchase of expen-

sive MFs [35]. Thus, both governments and international

NGOs have recognized the importance of providing

dynamic and location-specific nutrient information to

agricultural practitioners [36].

Complex agricultural decision support tools such as the

International Rice Research Institute’s Nutrient Manager

for Rice (NMR) have been optimized for use with a

smartphone and/or tablet [37]. The application of

NMR in the Senegal River Valley was widely successful

and shown to increase yields (up to 2.3 t ha�1) and

incomes (by US$ 216�640 ha�1) whilst decreasing inputs

including water and mineral fertilizers, bringing precision

agriculture to smallholder farms in West Africa. However,

such apps are directed largely at extension workers and

are less likely to be taken up by individual farmers

without targeted training. Top-down transfer of knowl-

edge limits the potential of mobile devices to involve
www.sciencedirect.com
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multiple end users in responsible nutrient management.

By contrast, Lomotey et al. surveyed Cocoa farmers in

Ghana, finding that 78% of the respondents owned a

smartphone and that all (100%) interviewees would be

interested in using Cocoa farming-oriented apps if they

were made available. Information regarding pest control

and fertilizer application alongside discussion forums

topped the list of desired features [23��]. The digital

agronomic advisory service developed subsequently

was considered ‘very helpful’ by 72% of end-users, paving

the way for informed application of on-farm inputs on

Cocoa plantations.

This farmer-inclusive digital extension service is also

widely popular in India, where the IFFCO KISAN app

has complemented a farmer-to-advisor helpline first

implemented by the Indian Farmers Fertilizer Coopera-

tive Limited (IFFCO) in collaboration with Airtel, India’s

largest mobile network provider [38]. Both the helpline

and the app allow farmers to access location-specific

advice regarding best practices for crop cultivation,

including MF recommendations. The programme is

now being used by over one million farmers across the

country and has been deemed successful at disseminating

information to agricultural practitioners [39��].

Developed countries have historically had more access to

multiple sources of fertilizer advice, for example, paper or

computer-based [9]. However, regulatory pressures have

given rise to interest in applications designed to support

sustainable nutrient management planning. The Nitro-

gen Index is a USDA-approved software package that can

assess the risk of nitrogen loss resulting from farm-specific

nutrient management practices [22]. The software was

adapted to the smartphone ecosystem, allowing for data

input to be conducted away from the desktop computer

and thus, providing a portable and effective tool for N

management to farmers across the US.

Considering the high level of interest in utilising mobile

technologies for optimal and thus, sustainable MF use —

there is little doubt that more applications will continue to

be developed. In the future however, consultation with

practitioners should constitute an essential part of the

development process to ensure that these tools respond to

the needs of agricultural workers and can be quickly and

easily made available to the interested parties. Concerns

regarding the ‘black box’ approach to soil management,

which ignores farmers’ experience, have been voiced with

regards to a variety of decision support tools [40–42] and

should be avoided in the ICT-mediated smart farming

approach at all cost.

Tools for sustainable mineral fertilizer management:

cost calculators and fertilizer purchase facilitators

MFs represent a substantial draw on farmers’ financial

resources [43]. Thus, precise calculation of fertilizer
www.sciencedirect.com 
needs (adjusted for expected yield and soil-plant test

results) relative to their market price and the price

fluctuations at the point of purchase constitute essential

information for successful farming operations regardless

of their scale. Hence, relying on mobile technology for

fertilizer calculations is likely to be considered risky

comparative to getting advice from agronomists or exten-

sion workers, especially since there is no clear govern-

mental architecture that determines who, that is, the

farmer, the software developer or the software distributor,

is responsible and accountable for erroneous information

provided by mobile apps [44].

Governments and NGOs have recognized this concern

and are taking an active part in tool development for

augmentation of fertilizer calculations. In Canada, the

Saskatchewan Soil Conservation Association lists a num-

ber of state approved apps, with Fertilizer Blend app

being designed to assist in calculating a liquid and/or dry

MF blend that meets crop demand whilst optimising its

cost [45]. The Government of South Australia publishes

updated inventories of farming-oriented apps that work in

both iOS and Android environment, including the NPK

app [46]. Bueno-Delgado et al. conducted a non-exhaus-

tive review of similar smartphone applications alongside

the introduction of the Ecofert app, designed to calculate

the best combination of fertilizers whilst taking into

account self-updating price of fertilizers made available

via a cloud-based service [47].

Furthermore, the Centre for Agriculture and Bioscience

International (e.g. Fertilizer Optimizer) [48] and Food

and Agriculture Organization e-Agriculture (e.g. MITRA)

[49] offer apps that can not only be used in fertilizer

calculations but also offer an opportunity to facilitate the

process of procuring MFs, which is associated with addi-

tional costs in emerging economies [50].

These types of apps require meticulous cross-examina-

tion to reduce the potential for calculation error, well

thought-out architectural designs that account for the

challenges likely to be encountered in the agricultural

sector, for example, intermittent Internet access, band-

width fluctuations, and energy conservation necessary for

prolonged in-field use [51,52] as well as regular post-

release updates, to remain relevant to the end-user. This

level of engagement in app development requires a

robust and dynamic collaboration between farmers, gov-

ernmental organizations (potentially requiring a separate

regulatory body that could provide certification for verifi-

able apps), and related MF industry, which is not yet fully

capitalized upon.

Integration of knowledge for sustainable
fertilizer management
In the coming years, mobile technologies will be firmly

established as a factor helping to address one of the
Current Opinion in Environmental Sustainability 2021, 49:26–32
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biggest weaknesses of rural markets in developing nations

— asymmetric access to useful and relevant information

[53,54]. As well as, offering opportunities to small-scale

agriculture in the developed countries, where large-scale

competitors have greater access to technological innova-

tions [44].

However, schemes aimed at improving agricultural pro-

ductivity whilst enhancing sustainability have failed fre-

quently over the years. In such cases, the lack of techno-

logical solutions was rarely identified as the chief barrier

to their adoption [55]. Instead, socio-economic problems

arising from linear transfer-of-technology and top-down

approaches that did not account for innovative systems

and informal peer-to-peer information systems were

highlighted [56,57,58��,59] (Figure 3).

Providing agricultural practitioners with decision-support

tools to better manage MFs through mobile technologies

constitutes a promising tactic but it is insufficient to bring

about a significant behavioural change on its own. DSTs,

in the form of paper-guidance, email/text alerts, com-

puter-based tools and finally, smartphone apps, have been
Figure 3
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available for a number of years but their uptake was

limited despite of their apparent value [41].

Provision of information does not equate to its full

utilization and considering the costs involved in the

DST development, more research effort must be directed

towards identifying what socio-economic factors might

impact farmers’ uptake of mobile technologies in agricul-

ture. The on-the-ground implementation strategies

should constitute a part of the DST development process

and not be assumed or an afterthought.

Smartphones and smartphone apps repurposed to act as

soil-plant analysers, digital agronomic advisories and fer-

tilizer calculators must become better integrated into the

farming systems. They should be considered trustworthy,

quality controlled and certified to address liability con-

cerns, and emphasize connectivity by facilitating transfer

of knowledge and agricultural innovation on a person-to-

person basis (facilitated by extension workers), rather

than focusing solely on passive information transfer. If

those conditions are met, mobile technologies will play an

irreplaceable role in closing the gap between theoretical
novation

tional
 transfer

nology-
d
ation
edge

BOTTOM-UP

Pros:
• Experience-based
• Practitioner-oriented
• Encourages peer-to-peer
  communication
• Innovative by design

Cons:
• Anecdotal evidence
• Potential for non-compliance
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tween farmers and extension workers linking top-down and bottom-up
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knowledge and on-farm MF application across the devel-

oped and the developing world.
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