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a b s t r a c t

Antimicrobial resistance (AMR) in the environment is a global concern for public health and recent
studies have shown that various soil pollutants (e.g. heavy metals, petroleum hydrocarbons) can cause
the emergence of antibiotic-resistant bacteria and antibiotic-resistance genes in the soil. This emergence
of AMR in soil is therefore prompting the research community for the development of rapid and real-
time monitoring tools to better understand the source, fate and transfer pathway of AMR in contami-
nated soils. In this respect, the recent development of rapid sensors-based methods has been critically
reviewed. The analytical performance of each sensing technique along with their advantages and limi-
tations is further discussed to inform future development needs for the next generation sensors that
would allow rapid and multiplexed detection of AMR in contaminated soils. By doing so, it would assist
the decision making during remediation project and provide crucial insights into the risk assessment for
contaminated sites.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Antimicrobial resistance (AMR) is a global concern which has
attracted increasing attention since 2001, when the WHO issued
their report on the need to take action to mitigate the emergence
and the transmission of antimicrobial resistant microorganisms [1].
Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes
(ARGs) which are promoted by the inappropriate use of antibiotics,
have been frequently detected in various aquatic and soil envi-
ronments. This AMR emergence in the environment can seriously
threaten the health of humans and animals [2,3]. In the U.S, it was
estimated that 2.8 million people are infected with antibiotic-
resistant bacteria or fungi each year and more than 35,000 people
die every year due to ARB infection [4]. O'Neill (2016) further re-
ported that there would be 10 million lives at risk per year and an
enormous cumulative 100 trillion USD cost if no action is taken [5].

To date, a lot of attention has been devoted to wastewater
treatment plants (WWTPs) as they have been shown to be hot-
spots for the accumulation and dissemination of AMR in the
environment [6,7]. Studies have also shown that WWTP effluents
can still contain a high level of ARGs, even after disinfection [6]. In
contrast, less attention has been devoted to sludge or biosolids
while there are also potential sources of AMR especially for soil
when either disposed to a landfill or reused as a soil conditioner
and fertiliser for agriculture or remediation purposes [8e11]. Even
though the soil is a natural habitat for the actinomycete and
Streptomyces, whose members are the well-known antibiotic-
producing species and present multidrug resistance [12,13], the
anthropogenic agricultural and industrial activity-induced AMR
exceeds the normal ecological soil balance. Since ARGs in the soil
can indirectly threat human health through the food chain and
dietary habits [14], this has now raised worldwide attention on
the spread of AMR in soil [15e20]. In response, several studies on
the prevalence of AMR in soil have been recently conducted
reporting specific issues on contaminated soils, the influence of
pollutant transfer and bioremediation strategies on AMR disper-
sion from contaminated sites [21e24]. However, not all studies
corroborate similar findings and the main inconsistencies are that
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the application of manure or sludge can contribute to the AMR in
soil [25,26] while some studies manifested no apparent correla-
tion between them [27,28]; the bioaugmentation provides both
the introduction of AMR in soil and the benefits of better soil
remediation effect [29e31].

Further to this, most of the studies conducted to date are using
traditional microbial and molecular methods such as microbial
culture, microscopy, colony counting, etc. for AMR or ARB detection
which are usually laboratory-based, time-consuming and require
trained personnel. Even if using the later-developed methods such
as polymerase chain reaction (PCR), reverse transcription-
polymerase chain reaction (RT-PCR), loop-mediated isothermal
amplification (LAMP), flow cytometry etc. to detect microorgan-
isms and the related antimicrobial genes, we still rely on the lab-
oratory-based techniques and require well-trained personnel,. To
overcome these limitations, there is an urgent need for simple,
rapid, accurate, and sensitive methods for the detection of AMR
[32].

In the last decade, several rapid sensor-based methods have
been developed including optical [33], electrochemical [34], mass
sensitive, and microfluidic-based sensors [35]. They all have shown
high sensitivity, specificity, easy-operation, and portability for the
detection of inorganics (metal ions, sulfide, etc.), organics (antibi-
otics, pesticide, hydrocarbon, drugs, etc.), biomolecules (DNA, RNA,
antibody, plasmid, etc.), microorganisms (bacteria, fungi), and vi-
ruses. However, to the best of our knowledge, there is to date only a
very limited number of studies considering the environmental is-
sues posed by contaminated soils and sustainable bioremediation
practices as triggering the emergence of the potential new reservoir
of antimicrobial resistance and how this can be tackled and
monitored. Therefore, this review discussed the causes (i.e. pol-
lutants), in addition to the well-known antibiotics, that can trigger
the AMR in soil, and how the AMR emergence would be affected
and transmitted into the soil through bioremediation methods
aside from the water-sourced pathway, followed by the introduc-
tion of recent progress on rapid methods for AMR-related targets
detection. The common characteristics of different rapid assays
were compared and analysed to give a future strategy for devel-
oping rapid detection method allowing for simultaneous detection
of AMR and associated contaminant in the soil to inform risk
assessment and site remediation end point.

2. Pollutants triggering AMR in soil

The excessive use of antibiotics is the main reason for AMR
into the soil via sludge or biosolids spreading to land. Knapp et al.
[36] reported that concentrations of some specific ARGs in Dutch
soils where biosolids application was used were 15 times higher
in 2008 compared to values of 1970. Other studies also reported
that AMR in the soil can be triggered by various conditions, such
as the intrinsic soil physicochemical properties (e.g. pH, EC and
redox), the carbon source content, the nutrient levels [37] and
the chemical contaminants [38]. Thus, the exposure to pollutants
from anthropogenic activities and how is this triggering AMR in
the soil is becoming one of the most important concern to human
health [24]. Recent evidence showed that besides the antibiotics,
the pollutants such as heavy metals and PAHs in the soil can also
exert positive selective pressure on multiple-antibiotic-resistant
bacteria due to their attempt to resist to the stressors, thus
prompting them to acquire ARGs and aggravating AMR phe-
nomenon [39].

Therefore, in this review we highlighted how common con-
taminants found in contaminated sites, mainly heavy metals and
petroleum hydrocarbons, exert potential pressure on soil micro-
organisms and AMR selection.

2.1. Heavy metals

In addition to antibiotics, heavy metals can stimulate AMR in
the environment. Studies have shown that ARGs in soil could be
innately affected by both geochemical conditions [40], and heavy
metal contamination [38,41]. For example, the co-existence of
antibiotics and Zn at subtoxic levels contributed to an increase of
AMR of the culturable bacteria [42]. Similarly, high concentrations
of Cu, Cd, and Ni in the soil can contribute to a high level of
antibiotic resistance for ampicillin and sulphanilamide [43] and
tetracycline [44]. Other studies showed that soil amendment with
antibiotic-free manure can trigger ARGs selection in soil microbial
communities due to the presence of high levels of heavy metals
[45]. Knapp et al. [46] further found that residential soils, which
were assumed to have no history of exposure to antibiotics, had
higher relative ARG abundances when biosolid derived fertiliser
with low metal concentrations was used for gardening activities.
These findings clearly highlighted that even low metal concen-
trations can trigger both metal tolerance and antibiotic resistance
in soil microbial communities and therefore suggesting a rela-
tionship between AMR and heavymetals. Studies have shown that
metal resistance genes are generally found with ARGs on the same
mobile genetic elements (like plasmids) [47] that are easily
disseminated through horizontal gene transfer (HGT) [48]. This
means the resistance genes can be easily transferred to other cells
and even from dead cells.

Other studies also reported that the co-regulation by heavy
metals and antibiotics might originate from the multi-drug resis-
tant genes of the soil microorganisms (mainly efflux pump genes),
which is also called cross-resistance mechanism and therefore
facilitate AMR in the environment [49,50].

2.2. Polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) can also contribute to
elevated AMR levels such as changing the abundance of both the
intrinsic ARB and hydrocarbon degrading bacteria developing
resistance to antibiotics [31]. Further to this, Chen et al. [51] showed
that ARG abundance in PAHs-contaminated soils was approxi-
mately 15 times higher in soil heavily contaminated with PAHs
compared to soil with lower concentration.

With regards to the environmental pressures exerted by PAH
contaminated soils on AMR emergence, these remains largely un-
explored compared to heavy metals. Recent research suggests that
efflux pump is the dominant resistance mechanism involved for
PAH contaminated soils where about 70% of studies reported
resistance related to aromatic antibiotics such as acriflavine and
fluoroquinolone [51]. Also, the Class I Integrons were attributed to
ARG increase in the coastal microbiome due to conjugative transfer
mechanism triggered by the presence of PAHs [52]. After ARG or
Class I Integrons transmission, acquisition and expression, the soil
indigenous bacteria could adapt to the new environment (i.e.
contaminated environment) and exhibit AMR traits [53,54]. Also
due to their mutagenic properties, PAHs can directly change DNA
characteristics and/or trigger stress/repair systems that confer
multiple resistant genes to the adapted microbes and thus
contributing to AMR [55]. It is also worth pointing out that
contaminated sites are often impacted by a wide range of chemical
mixture, and therefore the co-presence of PAH and heavy metals is
often found at contaminated site [31,56]. The presence of such
complex chemical mixtures can further complicate the under-
standing of AMR emergence at site, as studies have shown an in-
crease, similar level or even lower level due to cofounding factors
and co-toxicity effects on soil microbial communities and lower
opportunity for gene transfer between cells [57e59].
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3. AMR transmission during bioremediation application

Recent move towards integrated and sustainable bioremedia-
tion practices for contaminated sites may contribute to the emer-
gence, co-selection and transmission of antimicrobial resistance
(AMR) in the environment [21] Amendment application to improve
nutrient levels of contaminated soils and enhance microbial
degradation of contaminants is a common practice but without
some drawbacks, as it may impact upon the mobility and/or
bioavailability of contaminants (i.e. heavy metals and PAHs) and
subsequently on AMR emergence at site. Recent studies have
looked into these issues as detailed in the following sub-sections.

3.1. Manure amendment

The use of animal manure for soil amendment is perceived as
one sustainable approach for agricultural soil fertilisation and
contaminated soil remediation where levels of nutrients are often
depleted [60]. Besides, the slow-release nitrogen and phosphorus,
and the additional organic content from the manure can bio-
stimulate microbial activities and the degradation of petroleum
hydrocarbons. For example, Liu et al. [61] reported higher degra-
dation rate of petroleum hydrocarbons when pig manure was
added to oily sludge compared to the untreated one. Poultry ma-
nures have also been used successfully for the bioremediation of
diesel, lubricating oil or gasoline contaminated soils [61e65].

However, animal manures often contain antibiotics, ARB, ARGs,
and in certain cases the levels are not insignificant. For example,
tetracycline and sulfonamide resistance genes have been system-
atically detected inmanure that were applied to agricultural soils in
China [28,66e68]. Similarly, studies showed that long-term appli-
cation of manure containing antibiotics triggered the amplification
of ARGs thus increasing their diversity and abundance in agricul-
tural soils. However, the prevalence of environmental AMR on
contaminated soils amended with animal manure is still today
largely ignored.

It is also worth pointing that not all the manure application
would exert side-effect on the dispersal of ARGs and ARB in soil.
Ghosh and LaPara (2007) found no increased chlortetracycline-
resistant bacteria in soil amended with different tylosin- or
chlortetracycline-containingmanures [27]. Tang et al. [69] reported
that even though the ARGs abundances in paddy soils increased
over a decade of manure application, the increases were not
significantly in other sites.

Another point is that previous researches mainly focused on a
limited number of ARGs and therefore providing only a limited
snapshot of the true environmental situation [27,45,66,69e71].
Some other studies also showed that unamended soils can also
show higher ARGs prevalence compared to soils amended with
treated pig manure [60]. Other studies have also highlighted that
the presence of highly diverse microbial community may
contribute to limit ARGs transmission in amended soils [71e74].
Hence AMR prevalence and dissemination in manure amended
soils remains inconclusive [11].

3.2. Sewage sludge amendment

Similar to the application of manure, sewage sludge is also
treated as a cheap and disposable fertiliser which could provide
nutrients and microorganisms for bioremediation of PAH contam-
inated soil [75e77]. For instance, sewage sludge amendment to a
10,000 mg kg�1 diesel spiked soil resulted in 99% total petroleum
hydrocarbons (TPH) degradation within 30 days [78]. In another
study, it was shown that sewage sludge amendment to urban soil in
Poland resulted in enhanced degradation of PAHs after a one-year

application, [79]. Similar findings have been reported for hydro-
carbon contaminated soils in Australia and Canada [80,81].

However, most studies published to date have largely ignored
the potential prevalence of AMR on these sites.

3.3. Bioaugmentation

In a few instances, the rate of petroleum hydrocarbons
biodegradation in the soil can be limited due to the number of
hydrocarbon-degrading bacteria present in the soil. In such case,
bioaddition or bioaugmentation of hydrocarbon degraders is a
common strategy used to speed up the rate of degradation. How-
ever such practice in light of recent studies can contribute to the
prevalence of AMR in contaminated soils [24,31,82]. For example,
M�ath�e et al. obtained a collection of hydrocarbonoclastic bacteria
that showed remarkable PAH degradation potential and tolerance
to heavy metals [31]. They also found a significant correlation be-
tween antibiotic tolerance/hydrocarbon degradation ability and
heavy metal/antibiotic tolerance ability for strains isolated from
sites co-contaminated with heavy metals and hydrocarbons, while
these correlations were not detected in soils solely contaminated
with hydrocarbons. Similarly, Benedek et al. developed a bacterial
consortium containing Rhodococcus qingshengii BBG1 and Pseudo-

monas fluorescens BBN1 to degrade hydrocarbons in presence of
Cu2þ, Pb2þ, Zn2þ and under a wide range of pH [83]. Again, they
observed that the strains developed antibiotic resistance over time.
While it is difficult to say at this stage, whether developing anti-
biotic resistance ability can pose a long-term issue or not at
contaminated sites, some researchers held the view this was a
positive effect for bioremediation as the hydrocarbon-degrading
bacteria can withstand degradation activities in a highly polluted
environment [29,30]. Others instead recognised that soil biore-
mediation strategies should consider more than just the removal or
decrease of pollutants and therefore the prevalence of AMR should
be systematically considered and investigate.

In addition, microbial bioremediation is suggested to be tested
for antimicrobial susceptibility and confirmed with low or none
antibiotic resistance before use [21]. For instance, Pseudomonas

aeruginosa (P. aeruginosa) which are tolerant to multiple antibiotics
and heavy metals because of their efflux pump proteins, are not
recommended to be used in bioremediation. Kaszab et al. detected
multi-resistant strains of P. aeruginosa isolated from eight PAH
contaminated soil samples of the total 26 sites in Hungary [82].
Such bacteria are more useful to the sorption of antibiotics or heavy
metals rather than the soil remediation. On the contrary, those
bacteria without antibiotic resistances such as Acidovorax temper-

ans [84] would be a very good choice for bioremediation.

3.4. Disposed biosolids

Generally, the pre-treated biosolids are characterised with bet-
ter features like less antibiotic residues, pathogenic organics and
ARGs [85]. Composted manure and sludge and pyrolysed biochar
are the main typical disposed biosolids for soil remediation.

3.4.1. Composted products

The composted products from manure usually contain fewer
antibiotic residues during the process of transferring degradable
organics to stable humus [86]. They generally hold more abundant
nutrients and can increase soil water retention, heat preservation,
air permeability and fertiliser retention. Besides, the high temper-
ature (usually about 60e70�C) generated during the composting
process could disinfect some pathogens, worms and weed seeds in
the original materials thus reducing ARB and ARGs in the manure.
Therefore, composted sludges or manures have been the popular
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bioremediation strategy for hydrocarbon-contaminated or the
agricultural soils.

Ros et al. used fresh and composted sludge for the bioremedi-
ation of hydrocarbon-contaminated semi-arid soil [87]. After the
cultivation for 8 months, they found that fresh sludges held the
highest hydrocarbon-degrading rate of 46% while the rate for
composted sludge was only 36% compared with the controlled one
of 31%. Besides, the highest bacterial and fungal population were
also observed in the fresh sludge treated soils. While after a 126-
day greenhouse experiment of PAH removal in soil by sewage
sludge or composted sludge, better degrading efficiencies of PAHs
were found in compost soil [75]. However, situations were different
with various soil/amendments ratio in the research of Namkoong
et al. who wished to find the appropriate organic amendments
mixing ratio for the increase of diesel oil degradation [78].

3.4.2. Biochar

Biochar is a carbon-rich solid derived from biomass (such as
wood, leaves, dead plants, animal bones, dung, etc.) through the
pyrolysis and has been widely applied in soil remediation [88].
Unlike manure, sludge, compost and organic degrading bacteria,
the thermal pyrolysis under high temperature of biochar contrib-
utes to fewer risk for it to introduce microorganisms, ARB or ARGs
into the soil when it is used as soil amendments. Due to its abun-
dant carbon fibre and the functional groupwhich could provide the
nutrients and make an effect with organic and heavy metals, bio-
char has also been utilised for pollutants reduction in the envi-
ronment such as ARGs and antibiotics [89e94]. Moreover, the
carbon catabolic capacity of the biochar may also enhance the soil
fauna abundance [95] which could alleviate the AMR dissemination
in soil. Also, biochar is now usually added into other remediation
material for better modifying the characteristics of amendments.
The mobility and bioavailability of fluoroquinolones, fenicols and
sulfonamides can be reduced by the biochar mixtures with manure
[89]. To alleviate the side-effect of sludge as a biosolid compost that
is imposing outer microorganism into the soil which could
contribute to AMR, Liu et al. used 5% added biochar into the sludge
composting for nitrogen transformation and immobilizing heavy
metals [96].

Even though biochar has many superiorities than manure,
sludge and bacteria in the soil remediation, the heavy metal con-
tent in it should be paid attention as biochar is the stimulus for
AMR in soil [97]. Pyrolysis can reduce the most mass of biochar and
concentrate the heavy metal concentration. Whereas, as various
faeces-derived biochar has been widely used recently in farmland
due to the characteristics of waste reuse and the high sorption
performance for heavy metals, it's a potential risk to trigger the
evolution of ARGs in the environment. Altogether, no matter what
the effects of bioremediationmethods on the AMR in contaminated
soil, we should pay close attention to the disseminating pathways
and affecting factors.

4. Rapid detection methods development for AMR and

associated contaminants

Traditional detecting methods for microorganisms are microbial
culture-based methods. These methods are typically time-
consuming and can take hours to days. They also often require
well-trained users. Another limitation is the identification of
pathogens that are only culturable. The alternative way is the
molecular method, such as polymerase chain reaction (PCR) and
isothermal amplification [98e100]. PCR-based technologies such as
real-time PCR, reverse transcriptase PCR, multiplex PCR, droplet
digital PCR can all achieve multiple functions and goals for the
detection of pathogens. However, they still need professional

technicians and remain several tricky issues such as the precision
reduction with low DNA concentration, the incorrect products
sometimes when contaminated, the complicated pre-treatment
procedures from original samples, etc.

Recently, rapid sensors including optical, electrochemical as
well as microfluidics have been developed to detect pathogens,
antibiotic resistance genes, and contaminants. Generally, most
rapid methods focused on the detection of antibiotics, heavy
metals, and the foodborne or iatrogenic pathogens, while it's still
challenging for the detection of hydrocarbons. The rapid methods
have a clear potential for multiple targets detection (such as ARB,
ARGs, antibiotics, heavy metals, etc.), and can be eventually inte-
grated into a single device.

4.1. Optical sensors

Optical sensors arewidely applied for various analytes detection
through the transducers of colourimetric, fluorescence, Raman
spectroscopy (RS), surface plasmon resonance (SPR), etc. Those
optical sensors combined with receptors (e.g. antibody, aptamers)
as the biorecognition element usually have advantages of
simplicity, sensitivity, selectivity and specificity. Hence, we dis-
cussed several main optical sensors.

4.1.1. Colourimetric sensors

Colourimetric sensors have attracted increasing attention due to
their simple procedure, rapid response, low-cost and visual
readout. The target signal is recognised through colour changes
which can be detected by naked eye thus making the colourimetric
sensors portable for on-site detection. Furthermore, colourimetric
sensors have been combined with various readout devices to
enhance their reading efficiency and accuracy [101]. The key
feature of colourimetric sensors is the chromogenic substrate and
catalytic enzyme. For example, the horseradish peroxidase (HRP)
and G-quadruplex are the two commonly used catalytic enzymes
due to their high catalytic efficiency and substrate specificity [102].
Those colourimetric sensors combined with peroxidase activity can
provide an amplificated colour-change signal for the detection of
various analytes, including antibiotics, heavy metals, pathogens,
etc. While several types of nanoparticles (NPs) like gold nano-
particles (AuNPs) have been used for the modification of colouri-
metric sensors recently. Their excellent optical and electrical
advantages, including large surface area, great quantum yield, high
absorption coefficient, great luminescence and conductivity [103]
make them the typical material for colourimetric sensors. The
colour of AuNPs can be changed from red to blue or purple once
they aggregate, which is treated as the signal of analytes recogni-
tion with ready readout by naked eyes. Generally, aptamers can be
easily bonded to the surface of AuNPs to protect them from ag-
gregation induced by ions or other materials. While they will be
separated from the AuNP under the occurrence of analytes and bind
to the target, contributing to the aggregation of AuNPs and colour
changing [102]. Such colourimetric sensors can be used for a range
of analytes based on this principle such as metals, antibiotics and
microorganisms. For example, Gan et al. [104] used an aptamer
functionalised AuNPs for the in-situ detection of cadmium in high
salt solutions (Fig. 1A). This colourimetric sensor can detect Cd2þ in
the range of 2e20 mg L�1 with a detection limit (LOD) of 1.12 mg L�1.
Due to the shielding of electrostatic repulsion force exerted by the
salt, AuNPs aggregate with Cd2þ, and the presence of the aptamer
avoids its aggregation. However, the specific interaction between
Cd2þ and the aptamer will attenuate the stability of AuNPs after the
adding of Cd2þ and causes the solution colour change. Similar
sensors have been developed for other metal saltsand metalloids
such as Fe3þ, Hg2þ, As3þ, with high sensitivity and selectivity
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[105e107]. Colourimetric sensors can also be used for the detection
of microorganism. For instance, Feng et al. [33] developed a col-
ourimetric aptasensor combined with AuNPs for the detection of
Shigella flexneri (Sh. flexneri.) (Fig.1B). The target bacteria induce the
release of aptamer immobilised on the AuNPs due to its high
binding affinity between the specific aptamer and Sh. flexneri.,
which leads to the aggregation of AuNPs after adding NaCl and
changes the solution colour. The concentrations of Sh. flexneri can
be detected within the range from 102 to 106 CFU mL�1 with the
LOD of 80 CFU mL�1 under the optimised conditions in 20 min or
less. Raja et al. [108] developed a colourimetric assay using Poly(-
propylene glycol) (PPG) stabilised AuNPs for the detection of cef-
triaxone (Fig. 1C). In their work, the colour of AuNPs changed from
red to blue in the presence of ceftriaxone and the concentration
ranged from 0.1 to 100mM. In another study, Hu et al. [109] utilised
AuNPs assay for the direct quantification of 1-hydroxypyrene (1-
OHP) in urine samples with a LOD of 3.3 nM (Fig. 1D). The AuNPs
were initially coupled with citrate and then formic acid was added
to stabilise the AuNPs. Once 1-OHP was added, it interacted with
the carboxylic anions on AuNPs due to the hydrogen bonds, leading
to the non-crosslinking aggregation of AuNPs within 5 min and
changing the colour from red to violet blue. Apart from the AuNPs,
other nanomaterials including carbon nanotubes (CNTs) and
quantum dots (QDs) [110,111] have been widely explored for col-
ourimetric sensors development.

Even though this colourimetric assay was aimed for a single
pathogen, it provides a generic platform that can be modified by
replacing the aptamers to be implemented for the detection of a
range of ARB in the environment and other targets. Therefore,
identifying specific aptamer which has a high affinity to either the
targeted chemicals or the targeted microbial strains is the key for

future sensor development. For more convenient reading out,
smartphones have been widely utilised for accurate on-site detec-
tion of antibiotics [101], heavy metals [104,107,112], pathogens
[113], etc. which significantly improve the convenience and accu-
racy of colourimetric detection.

4.1.2. Fluorescent sensors

Fluorescent sensors are powerful analytical technologies
because of their simple operation, rapid analysis, good reproduc-
ibility and high sensitivity. The signal sources used for fluorescent
sensors are either organic dyes or nanomaterials such as QDs,
AuNPs, graphene oxide (GO), providing notable advantages such as
broader absorption, narrower and symmetric emission band, stable
fluorescence, and higher resistance to photobleaching.

Nanomaterials can provide fluorescent signals that can be used
for the recognition of conformation changes of bioreceptor (e.g.
DNA aptamer) when the analytes were targeted. Yu et al. [114]
presented a one-step strategy where they functionalized gold
nanoclusters (AuNCs) with the antibiotic vancomycin (Van) and a
nucleic acid aptamer for the selective detection of Staphylococcus
aureus (S. aureus) within 30 min (Fig. 2A). The dynamic range was
between 20 to 108 CFU mL�1 and the LOD was 10 CFU mL�1.

In addition to the utilisation of AuNPs alone, the combination of
AuNCs and magnetic beads (MB) is also commonly used for the
detection of pathogens. The AuNCs are generally stabilised with
some antibiotics for the fluorescent detection of targets. The
magnetic beads are usually coated with aptamer for the capture
and enrichment of targets. For example, Cheng et al. [115] utilised
the Van-stabilised AuNCs (AuNCs@Van) and aptamer-coated MB
(Apt-MB) to detect Staphylococcus aureus (SA) in single culture
sample and complex culture samples (Fig. 2B). The Apt-MBwas first

Fig. 1. (A) Detection principle for Cd2þ based on AuNPs using colourimetric aptasensor [104]; (B) Colourimetric aptasensor detection scheme for Sh. flexneri detection [33]; (C)
UVevis spectra after adding 0.1 mM antibiotic solution into PPG-AuNPs, and the colour refers to the colour change after adding ceftriaxone [108]; (D) Schematic diagram of
colourimetric sensor for 1-OHP [109].
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added into the samples containing SA to capture them by magnetic
enrichment, and then the AuNCs@Van were added into the sample
and bound on the Apt-MBs. After the elution with NaOH for elim-
inating Apt-MBs on the surface of SA, the left SA@AuNCs@Van was
detected and recorded by the fluorescence signal. In this work, the
AuNCs@Van were prepared in a simple one-step method which
simplified previously published procedures. This new approach
also allowed to quantify SA in the range of 32e108 CFUmL�1 with a
LOD of 16 CFUmL�1, enabling to detect SA as low as 70 CFUmL�1 in
multi-bacteria samples. Similar strategies can be applied to the

detection of other analytes. Luo et al. [116] developed a fluorescent
aptasensor utilizing AuNPs modified magnetic bead composites
(AuNPs/MBs) and nicking enzyme for antibiotic detection (Fig. 2C).
AuNPs/MBs were synthesised with polyethyleneimine (PEI) and
specific aptamer which bonded with complementary DNA (cDNA)
for the detection of ampicillin. After adding ampicillin, partial cDNA
was free from the aptamer due to the affinity between aptamer and
ampicillin. Next, the cDNA initiated the cycle of fluorescence signal
amplification using a nicking enzyme with TagMan probes. In this
assay, the concentration of ampicillin can be sensitively detected in

Fig. 2. (A) Schematic illustration of vancomycin based aptasensor for Staph. Aureus [114]; (B) Schematic Illustrations of a) Preparation of AuNCs@Van, and b) Detection process for SA
in using Apt-MB and AuNCs@Van [115]; (C) Schematic illustration for the detection of ampicillin amplified strategy for fluorescence signal using AuNPs/MBs with a nicking enzyme
[116]; (D) Detection principle of turn-off/on fluorescence probe based on the green CQDs [117]; (E) Schematic illustration of the working mechanism of GQDs with Fe3þ for
fluorescence quenching and the turn-on mode with pyrene [118]; (F) Schematic illustration of the interaction of different ARGs [119].
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the range of 0.1e100 ng mL�1 with a LOD of 0.07 ng mL�1. The
sensor combined with AuNPs and MBs presented a better perfor-
mance than only using MBs as they can magnify the separation
capacity with strong covalent bio-conjugation.

QDs are also widely-used materials for the detection of patho-
gens [120,121], heavy metals, antibiotics [117,122e126] and hy-
drocarbons [118]. For instance, Pourreza and Ghomi developed
fluorescent aptasensor based carbon quantum dots (CQDs) exhib-
iting a high quantum yield of 5% blue luminescence with excellent
and facile performance for the detection of Hg2þ and chemet
(Fig. 2D) [117]. In the presence of Hg2þ, the CQDs were bonded with
Hg2þ and the fluorescent response was off. In contrast, in presence
of chemet, the fluorescence was detectable within 2 min with high
affinity to Hg2þ. The concentration of Hg2þ and chemet can be
detected in a linear range from 5 to 500 ng mL�1 and
2.5e22.5 ng mL�1 with a LOD of 1.26 ng mL�1 and 1.4 ng mL�1,
respectively. Since the CQDs was derived from Prosopis juliflora

leaves, this assay offers a low-cost and sustainable sensor on the
market place.

Graphene quantum dots (GQDs) provide additional advantages
such as higher biocompatibility, photostability, and larger surface
area, which allow wider sensing applications such as the detection
of petroleum hydrocarbons. For example, Nsibande and Forbes
developed a fluorescent assay with GQDs and associated ferric ions
for the detection of pyrene in lake water samples which was also
based on the “turn-off-on” strategy (Fig. 2E) [118]. The addition of
ferric ions acted as fluorescent quencher that turned off the fluo-
rescence emission at first while turned on in the presence of pyrene
through p-p stacking. Graphene oxide (GO) and citric acid (CA)
were used as the two sources of GQDs in this study showing a linear
range from 2 to 10�6 mol L�1 with a LOD of 0.325 � 10�6 mol L�1

and 0.242 � 10�6 mol L�1, respectively. This assay was also pre-
pared from environmentally friendly material with simple syn-
thesis approach and showed high reproducibility.

Similar turn-on/off strategy can be used for the detection of
many other analytes such as ARGs. Li et al. [119] developed a paper-
based chip utilising loop-mediated isothermal amplification
(LAMP) technology to detect genes in 1 h (Fig. 2F).
[Ru(phen)2dppz]

2þ was chosen as the light switch molecule for the
turn-on fluorescent detection of mecA with a LOD of 100 copies.
This assay simplified the detecting process by embedding the
amplification reagents in advance and intercalating the
[Ru(phen)2dppz]

2þ to remove the washing procedure.

4.1.3. Raman spectrometry-based sensors

Surface-enhanced Raman scattering (SERS) based on light
scattering has the potential for rapid detection of pathogens, anti-
biotics, metals, and hydrocarbons in soil. Main advantages of SERS
sensors are high sensitivity, low photo-bleaching, rapid response
time, simplicity and multiplexing. Owing to their excellent char-
acteristics, SERS sensor is one of the most promising rapid methods
for various analytes detection such as ultra-trace elements, or-
ganics, inorganics, microbial cells and viruses [127,128].

Pang et al. [129] developed an Aptamer-Fe3O4@Au magnetic
nanoparticles (AuMNPs) sensor for the detection of various bacteria
(Fig. 3A). AuNPsweremodified bymercaptobenzoic acid (MBA) and
conjugated with Van for the intense Raman signal detection. The
aptamer-Fe3O4@Au MNPs were first synthesised to form a core
(Fe3O4)-shell (Au) structure and then modified with mercapto-
undecanoic acid (MUA) to get surface carboxylation. As Fig. 3A
illustrated, Aptamer-Fe3O4@Au was first added into S. aureus cul-
tures and then incubated to capture the targets and enrich them.
The Au-van tags were then added and incubated. Finally, the
Fe3O4@Au/bacteria/SERS tag complexes were detected by Raman
signals. This assay could detect S. aureuswithin a total 50min in the

concentration range from 10 to 107 cells ml�1 with a LOD of
3 cells ml�1.

AuNPs based SERS biosensors can also be used for antibiotics
detection [128,133e135]. For example, Li et al. [130] developed a
SERS-based magnetic nanospheres-targeting aptasensor for
tetracycline (TTC) detection. The magnetic nanospheres (MNs)
were composed of magnetite colloid nanocrystal clusters (MCNCs)
conjugated with an aptamer and combined with polymethacrylic
acid (PMAA). The resultant Au/PATP/SiO2 (APS) acted as the
Raman reporter (Fig. 3B). By immobilizing the APS with MNs, the
composite MNs-targeting aptasensor was prepared by mixing the
aptamers and cDNA on the surface of APS. After the addition of
TTC, it bound on the aptamer and released cDNA-APS which were
then produced strong SERS signals for the recognition of TTC. The
concentration of TTC could be detected in a linear range from
0.001 to 100 ng mL�1 with a LOD of 0.001 ng mL�1. In this assay,
the high saturation magnetization of MNs can facilitate the easy
and rapid magnetic separation for the further detection of targets
in the supernatant. Besides, the cDNA on the APS can amplify the
Raman signals to provide a strong SERS intensity for better
recognition of TTC. Besides, the highly sensitive and well selective
SERS aptasensor can still work under generally coexisted
interferences.

Similarly, the AuNP-SERS sensors combined with other sub-
stances can be used for heavy metal detection [127,131,136e138].
For instance, Xu et al. [131] developed a rapid SERS assay for Pb2þ

detection based on Ag-coated AuNPs of core-shell nanostructure
modified with L-cysteine. Upon the formation of nanoparticle ag-
gregation, the L-cysteine-functionalised Au@Ag probes with Raman
labelling molecules (Au@AgNPs) were used to detect Pb2þ after
reacting for 30 min with a linear range from 5 pM to 10 nM and an
unprecedented LOD of 1 pM (Fig. 3C). Except for this detection
mechanism, there are many other strategies of SERS sensors for
heavy metals detection such as the “turn-on”, “turn-off” mecha-
nism, etc. [139].

The rapid on-site detection of PAHs remains challenging. Unlike
colourimetric and fluorescence sensors, SERS sensors have a sig-
nificant advantage for hydrocarbon detection [140e145]. For
example, Zhou et al. [132] developed a SERS assay for the detection
of the 16 USEPA PAHs using the Ag nanoparticles (AgNPs). Briefly,
the 16 PAHs were extracted fromwater samples using liquid-liquid
extraction (LLE) for 15 min (Fig. 3D). After solvent volatilization of
the organic phase, the PAHs were eluted out to be ready for the
detection by Ag-SERS sensors. The LOD values of anthracene, pyr-
ene, and benzo[a] pyrene were 100, 50, and 5 ng L�1, respectively.
According to the number of aromatic rings for each molecule, these
PAHs can be detected by this assay at concentrations from 100 to
0.1 mg L�1.

Additionally, there are other optical technologies, including
Surface plasmon resonance (SPR), and chemiluminescence. SPR is a
sensitive analytical method which can detect minor changes at the
interface between twomaterials. SPR sensors have the potential for
various analytes detection, including antibiotics [146e149], genes
[150e152], metals [153e156] and pathogens [157e162]. For
instance, Zhang et al. [163] utilised Fe3O4 nanoparticle cluster (NPC)
modified aptamer for signal amplification and detection of Listeria
monocytogenes (L. monocytogenes). After adding the Fe3O4 NP or
Fe3O4 NPC into the sample, they can identify the concentration of
L. monocytogenes through the intensity of colour by naked eyes. The
colour intensity was higher in the samples used with Fe3O4 NPC
than those used with Fe3O4 NP. This simple and rapid detection
method can quantify L. monocytogenes within a range of
5.4 � 103e108 CFU mL�1 and the LOD is 5.4 � 103 CFU mL�1 which
can be completed in 145 min. We summarized selected optical
sensors for various analytes detection in Table S1.

C. Zhou, Y. Pan, S. Ge et al. Trends in Analytical Chemistry 137 (2021) 116203

7



4.2. Electrochemical sensors

Electrochemical sensors have exclusive advantages of rapid
response, low cost, and small size which are easy to be integrated
with other electrical devices [103,164]. Furthermore, they only
need a small dose of samples and do not require fluorescent ma-
terials, therefore avoiding the need for cleaning and reducing
analysis cost. Cyclic voltammetry (CV), differential pulse voltam-
metry (DPV), and electrochemical impedance spectroscopy (EIS)
have been widely reported for the rapid detection of antibiotics,
metals/metalloids and pathogens. The development of surface
chemistry on the electrode is the key for electrochemical sensors
especially nanomaterials such as CNTs, graphene, immuno-
magnetic nanoparticles or beads which have been extensively used
for coating inkjet-printed platforms and screen printed electrodes
(SPEs).

Besharati et al. [165] used nano-porous glassy carbon electrode
(NPGCE) as they are optimal electrodes for enzyme-based
biosensor for the detection of tetracycline (TC) resistance. A TC
degrading enzyme, TetX2 was immobilised on NPGCE using poly-
cation polyethyleneimine (PEI) as the electrode (Fig. 4A). In the
presence of TC, the oxygen reduction peak current was detected,
showing a linear range from 0.5 to 5 mMwith a LOD of 18 nM. Other
developments of CV such as the fast-scan cyclic voltammetry
(FSCV) are emerging for the detection of various analytes. The
technique that FSCV combined with carbon-fibre microelectrodes

(CFMs) has a rapid response to analytes concentration with mini-
mal interference to the analytical medium. For instance, Yang et al.
reported a highly selectivemeasurement for subsecond Cu(II) using
FSCV with covalently modified CFMs. In their approach, the binding
of Cu(II) was enhanced by covalently grafted ionophore while the
chemical blocking on the non-selective surface adsorption sites
prevented the binding of other metals [166]. Therefore, Cu(II) could
be detected in a complex medium with negligible interference.

Melo et al. developed a rapid and sensitive amperometric sensor
for Salmonella Typhimurium [170]. The sensor consisted of a cyste-
aminemonolayer modified gold electrode combinedwith protein A
to immobilise the anti-Salmonella antibody, can detect as low as
10 CFUmL�1 Salmonellawithin 125min for the final detection time.

The DPV measurement using electroactive indicators provides
an effective and simple detection for various targets. GO is one of
the most popular materials for electrode modification due to the
p�p interactions between GO and aptamers. For instance, Shah-
rokhian and Ranjbar designed a hollow porous structure zeolitic
imidazolate Framework (HZIFs) functioned by phenolic acids [167].
The aptamer and ferrocene-graphene oxide (Fc-GO) were immo-
bilised on the HZIFs separately, and Fc-GOwas coupled with DPV as
the indicator for the analytes (Fig. 4B). In the presence of Pseudo-
monas aeruginosa (P. aeruginosa), the aptamer was bound to specific
epitopes of P. aeruginosa thus releasing Fc-GO from the electrode
surface. Through the signal-off strategy, this sensor showed a linear
detection of P. aeruginosa from 1.2� 101 to 1.2� 107 CFUmL�1 with

Fig. 3. (A) Schematic illustration of the synthesis of Au-Van SERS tags and aptamer-modified Fe3O4@Au MNPs, and the detecting procedure for S. aureus via the dual-recognition
SERS biosensor [129]; (B) Schematic illustration of assay preparation and aptasensing for tetracycline [130]; (C) The detection principle and procedure of Pb2þ based on the ag-
gregation strategy of Au@AgNPs [131]; (D) Schematic illustration of LLE-SERS procedure for detection of PAHs [132].
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a LOD of 1 CFU mL�1. A similar strategy was also utilised for the
detection of heavy metals, using AuNPs and polymers modified
electrode [168] (Fig. 4C). In the presence of Pb2þ, the aptamer was
attached to Pb2þ and released from the electrode, reducing the
current signal. The detection range of Pb2þ was between 0.5 and
25 ppb with a LOD of 0.6 ppb. This detection method was even
successfully applied to detect Pb2þ in soil.

Except for the signal-off or signal-down strategy [167,171], the
signal-up strategy has been applied in the detection of pathogens
[172]. Zou et al. developed a new sensor, where AuNPs were well-
distributed on a polypyrrole-reduced graphene oxide (PPy-rGO)
composite to assemble and fabricate a sensor for the detection of
E. coli K12 [172]. This nanocomposite with a high surface area has
good biocompatibility and conductivity. The linear range toward
E. coli K12 was from 1.0 � 101 to 1.0 � 107 CFU mL�1 and the low
LOD was 10 CFU mL�1.

In most cases, the assays can commonly be polluted by the
complex in the real samples. The development of those technolo-
gies of antifouling sensors has attracted the focus of researchers. He
et al. developed a novel antifouling electrochemical sensor for an-
tibiotics in complex media [169]. Two poly(N-isopropylacrylamide)
microgels were utilised here for the detection of streptomycin
(STR). The zwitterionic liquid 1-propyl-3-vinylimidazole sulfonate
(PVIS) and glycidyl methacrylate (GMA) modified microgels were
prepared for the specific recognition of anti-STR and antifouling,
respectively (Fig. 4D). A decrease of current density was reflected

by the electrochemical signals in the presence of antigen and anti-
STR after the incubation of 35 min. The detecting linear range for
STR was from 0.05 to 100 ng mL�1 with a LOD down to 1.7 pg mL�1.
In this assay, the Zwitterionic liquid-modified microgels with the
ability to form stronger hydration presented an excellent anti-
fouling ability which provided the possibility for this assay of low-
fouling and sensitive detection for other analytes in complexmedia.

Electrochemical impedance spectroscopy (EIS) sensors used
different aptamers to detect various antibiotics. For example, Wang
et al. utilised the condensation polymerization between melamine
and 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) forming an
organic framework (COF) as a novel detecting assay (Py-M-COF)
[173]. The main advantages include big pore cavities, large specific
surface area (495.5 m2 g�1), extended p-conjugation framework,
rich functional groups and nanosheet-like structure promoting a
good scaffold to immobilise aptamers for antibiotics detection
(Fig. 5A). After the binding of two aptamers for enrofloxacin (ENR)
and ampicillin (AMP), the electrochemical results provide a sensi-
tive reaction in the presence of each targeted antibiotic. This assay
has an extremely low LOD of 6.07 and 0.04 fgmL�1 for the detection
of ENR and AMP, respectively. By changing the relevant aptamers,
other analytes can also be sensitively detected by this sensing
platform. Similarly, such sensor can be modified with other DNA-
based specific aptamers for the detection of heavy metals and
pathogens. For example, Abu-Ali et al. reported an electrochemical
sensor for rapid detection of Hg2þ and Pb2þ using the screen-

Fig. 4. (A) Preparation of enzyme-based nano-biosensor for the detection of tetracycline using CV [165]; (B) The preparation of aptasensor for the detection of Pseudomonas

aeruginosa using DPV signal-off [167]; (C) The fabrication of aptasensor for the detection of Pb2þ using DPV [168]; (D) The fabrication procedure and detecting principle of the
electrochemical biosensor for streptomycin using DPV [169].
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printed gold electrodes immobilised with aptamers by thiol groups
[174]. These two aptamers were labelled with ferrocene for Hg2þ

and methylene blue for Pb2þ. In the presence of target ions, the
aptamers would chelate the targets and changed the conformation
to a hairpin structure for anti-Hg aptamer and G-quadruplex for
anti-Pb aptamer (Fig. 5B). After that, the closer redox labels to the
electrode led to the increase of electron transfer which was recor-
ded by the electrochemical current. The LOD for Hg2þ and Pb2þ was
as low as 0.1 ng mL�1. In another study, Cebula et al. developed an
antibody-modified gold electrode sensor for the detection of
Pseudomonas Syringae pv. Lachrymans (Psl) [175]. In the assay, 4-
aminothiophenol (4-ATP), glutaraldehyde (GA), and anti-Psl anti-
bodies were successively immobilised on the gold disc electrode
with bovine serum albumin (BSA) as free-sites blocking (Fig. 5C).
The detection is achieved within 10 min after easy preparation. The
linear concentration of Psl ranges from 1 � 103 to
1.2 � 105 CFU mL�1 with a LOD of CFU mL�1.

The analytical performances of the electrochemical sensors for
various analytes are provided in Supplementary Data (Table S2).

4.3. Microfluidic sensors

Microfluidic sensors are highly miniaturised and integrated
with the advantage of excellent selectivity, rapid analysis, low cost,
tiny reagent consumption [176,177], which has been extensively

applied in the fields of chemistry, materials, biology, medical
diagnosis, and drug analysis. Recently, microfluidic sensors have
been used for environmental pollutants analysis, such as antibi-
otics, heavy metals, antimicrobial resistance genes, and pathogens.
For instance, Chang et al. developed an integrated microfluidic
system for the automatic identification of vancomycin-resistant
gene (vanA) in live bacteria from clinical samples [178]. Initially,
the dead and live bacteria were treated with ethidium monoazide
(EMA) for the chemical lysis under low temperature and nucleotide
probe hybridization (Fig. 6A). Then, the target DNAwas attached to
the nucleotide probes and isolated by the magnetic beads,
following by a fluorescent LAMP assay within less than 1 h and
showing a LOD of 10 CFU for vanA from live Enterococcus.

Besides, Jasim et al. developed an impedance microfluidic
sensor with three microchannels to simultaneously detect three
Salmonella serogroups [179]. Each channel included a focusing re-
gion to direct the Salmonella cells in the centreline, toward the
sensing region (Fig. 6B). The positive di-electrophoresis force was
used for highly concentrated samples. Ten pairs of fingers consisted
of an interdigitated electrode (IDE) constituted the sensing region.
The antibodies of three Salmonella types (B, D and E) were immo-
bilised on the detection electrodes for each channel. After adding
type B spiked Salmonella samples in the inlet region, they were
introduced through the focusing region to the sensing region.
When the target antigenwas bound to the antibody, the impedance

Fig. 5. (A) a) Schematic diagram of the synthesis of Py-M-COF and b) the electrochemical detecting procedure for enrofloxacin (ENR) and ampicillin (AMP) by the Py-MeCOFebased
aptasensors [173]; (B) Schematic illustration of electrochemical detection for Hg2þ and Pb2þ using redox-labelled aptamers [174]; (C) Fabrication of biosensor and the linearity
response on different concentrations of Psl [175].
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change was recorded. This sensor can recognise the single Salmo-

nella serotype B or the mixed two Salmonella serotypes B, and D in
40 min with of the LOD of 7 cells mL�1. Further, Salmonella can also
be selectively detected in the presence of other pathogens such as
Escherichia coli O157: H7 and the design of this device provides a
non-enrichment step for many samples.

Other studies also demonstrated the possibility of detecting the
different type of contaminants and environmental stressors
simultaneously. For example, Chen et al. reported a multi-analysis
method based on a microfluidic chip (MC) which was coupled
with magnetic encoded aptamer probes to simultaneously detect
kanamycin (KANA), 17b-estradiol (E2), and Pb2þ [35]. Multiple
targets were firstly captured by the gold modified magnetic bead
(MB) probes labelled with aptamers and then the single-stranded
primers were generated initiating a multibranched hybridization
chain reaction (mHCR) (Fig. 6C). Finally, the arms of the mHCR
products were hybridised with three different length cDNAs to
produce three types of multibranched DNA nanostructures. They
were then separated by the magnetic bead (MB). The reduced
signals of cDNAs in the supernatant reflected the qualification of
targets. The LOD for KANA, E2 and Pb2þ were 1.76 � 10�4 nM,
1.18 � 10�4 nM and 1.29 � 10�4 nM, respectively. In this assay,
different targets corresponded to their separated signal tags,
decreasing the massive cDNAs for one target. Also, the MB probes
can be magnetically separated to eliminate interference in the
complex. Further, the MC platform can be reused for more than
4000 samples. Such assay can detect various chemical contami-
nants by changing the aptamers and can also be applied in the
detection of environmental samples.

Paper-based microfluidic sensors is an attractive technology
which is growing fast since the Whitesides' group reported in 2007
the first paper analytical device [180]. Paper-based microfluidic
sensors generally use printing conductivematerials as the substrate
which can hold 0.1e100 mL of liquids in the millimetre dimensions
channel. Each layer of the assays can be achieved by stacked, folded,
and laminated to fabricate the simple device with easy operation.
Recently, paper-based microfluidic sensors have been popular in
the analytes of the environment due to their merits of convenient
carriage, rapid detection and low cost. A simple paper device for
antibiotic detection can be fabricated by the paper with specific
materials for colourimetric sensors. For example, Ha et al. utilised
the AuNPs developed a wax printed paper device for kanamycin
detection in milk [181]. The AuNPs aggregated and changed colour
from red to blue in the presence of kanamycin with the addition of
NaCl within 30 min (Fig. 7A). By modifying the materials and/or
chemicals integrated on the paper, the paper device can be used for
different analytes [181,182]. For instance, Devadhasan and Kim
[183] used a chemically patterned microfluidic paper-based
analytical device (C-mPAD) for the detection of heavy metals. The
heavymetals are immobilisedwith silane compounds coupledwith
amine (NH2), carboxyl (COOH), and thiol (SH) termination (Fig. 7B).
These function groups were then covalently coupled to three
chromogenic reagents which can distinctly react with Ni2þ, Cr6þ

and Hg2þ within 1 min. Using the single-plex platform, they ach-
ieved a LOD as low as 0.24 ppm, 0.18 ppm, and 0.19 ppm for Ni2þ,
Cr6þ and Hg2þ respectively. Such portable device is a good example
that can help further rapid detection method for multiple analytes
in the environment.

Fig. 6. (A) The schematic detecting procedure of the integrated microfluidic system for vanA [178]. (B) a) Schematic illustration of the impedance-based biosensor for Salmonella,
enlarged display of the focusing electrode and detection electrodes; b) Physical picture of the biosensor on a PCB board [179]. (C) Schematic illustration of the fabrication of
biosensor and the detecting mechanism for different types of analytes (kanamycin, 17b-estradiol and Pb2þ) based on the microfluidic system [35].
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As for the detection of pathogens, a common strategy is to
combine LAMPwith paper-basedmicrofluidic biosensors [100,185].
One simple paper origami colourimetric device has been developed
for the detection of pathogens [184]. This all-in-one origami paper
device integrated the DNA purification, LAMP and on-site detection
(Fig. 7C). Microchannel networks and chambers on the origami
paper were firstly created which were then coated with hydro-
phobic polydimethylsiloxane prepolymer for stabilization of
structures and providing fluid barriers. The specific nucleic acid
amplification testing was accomplished through the integrating of
cell splitting and purification, and target wicking, reaction, and dye
pads folding alternatively on the paper microdevice. To obtain the
DNA only from the live cells for amplification, the dead cells were
penetrated by propidiummonoazide (PMA) to be covalently bound
to their DNA. Subsequently, chitosan was utilised for the purifica-
tion of DNA into the microdevice through electrostatic capture, and
the methylene blue was introduced for the colourimetric detection
of LAMP amplicons. This paper microdevice can detect various
pathogens such as Escherichia coli O157: H7 and Salmonella spp.
with the LOD of 25 CFUmL�1 under the amplification of 30min and
the colourimetric detection of 10 min. Methylene blue is generally
used in the electrochemical detection while it was used for col-
ourimetric detection here which manifests that some chemicals
can be mutually utilised in different assays.

A range ofmicrofluidic sensors for various analytes detection are
provided in the Supplementary Data (Table S3).

In summary, the colourimetric sensors are cost-effective due to
the no requirement of additional instruments which can be rec-
ognised by naked eyes. They are the most suitable for on-site
detection. However, colourimetric sensors remain the shortage

of relatively low sensitivity and selectivity compared to fluores-
cence sensors which possess generally lower LOD values of ana-
lytes. As for electrochemical sensors, they have exclusive
advantages of rapid response, low cost, and small size which are
easy to be integrated with other devices and are executable for the
real sample detection. Microfluidic technology develops
commonly combined with electrochemistry, fluorescence, col-
ourimetric, SPR, paper-based device, etc. They are usually applied
for multiple targets, especially the paper-based microfluidic de-
vice, a highly promising technique, which is portable for on-site
detection owing to their simple operation and multiple-analytes
detection.

5. Strategy for the rapid detection and monitoring during

remediation of contaminated sites

Even though the rapid methods for various analytes and the
remediation measures for contaminated soil have been developed
for many years, the prevalence of AMR has largely been ignored
until now. There is an urgent need for the development of tech-
nologies that allow rapid assessment on site to inform bioremedi-
ation appraisal, monitoring and end point.

Further, even though there is the possibility of existing assays
for the monitoring of various analytes in the environment due to
the same working principle [217,218], each method has its own
focus on different targets due to their specific characteristics.
Especially, petroleum hydrocarbons are seldom monitored by the
current rapid methods due to the specific characteristic of hydro-
carbons such as the weak interaction between hydrocarbons and
other materials [170]. Development of rapid methods for those

Fig. 7. (A) Schematic illustration of the fabrication of paper chip-based colourimetric sensor for kanamycin detection [181]. (B) Schematic of illustration of various heavy metal
detection on the multiplex C-mPAD [183]. (C) Schematic illustration of sample preparation and the detection for pathogens on the origami paper microdevice [184].
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analytes is required for better monitoring of the environmental
contaminants.

5.1. Insights on the suggestion for the development of rapid

detection methods

Based on the working mechanism, implementation of de-
vices with the capability for multiplexed detection of analytes
(i.e. antibiotics, heavy metals, hydrocarbons, etc.) is the ulti-
mate goal of the rapid methods. Of course, the microfluidic
technology especially paper-based microfluidic sensors which
can be integrated with different transducers (e.g. colourimetric,
fluorescent, electrochemical, etc.) is the promising assay in the
future.

The EIS based sensors can monitor various analytes even the
hydrocarbons from oil or diesel [186,187]. Researches have also
developed the EIS sensors for “green” on-site metal detection
directly in the soil, indicating the potential for field application
[188]. Therefore, the future development of rapid methods can be
integrated with a wide range of sensors which can target more
analytes, especially for the ARGs and hydrocarbons. There is also a
need for the integrations of multidisciplinary solutions, involving
engineering approach with nanotechnology and novel nano-
material to improve the sensitivity and selectivity.

For the detection of solid samples, the targets are in the sol-
vent after pre-treatment of the solids and therefore the current
state-of-art sensor technology is easy to be adaptable for soil
samples. Besides, studies focus on the solid samples like manure,
sludge and soil have been inadequate due to the tedious pre-
treatment. This hence needs to incorporate the development of
sample processing technique of solid samples and detection
methods. Even though there are some studies on solid samples
such as food, they still need the pre-treatment for analytes
extraction [189,190]. The development of rapid methods should
focus on both the detection of specific targets and the pre-
treatment protocol with integration for the detection of com-
plex environmental samples.

5.2. Strategies for soil remediation from the perspective of AMR

situation

From the current developed various rapid methods, we have no
vested standard to assess the quality of one method as the re-
searchers only provide their detecting parameters like the dynamic
range and LOD. When investigating the situation of farmland or
contaminated land, studying as many factors as possible to obtain
an overall survey is essential, especially during the application of
bioremediation. We know that the microorganisms and pollutants
like antibiotics, heavy metals, hydrocarbons, exert some effects on
the AMR in the soil. The monitoring of extensive indicators will
provide us with a synthetic understanding of the current situation.
This is also themotivation to develop the future integrated platform
aiming for multiple analytes.

On the other hand, more attention should be paid on the issue of
AMR in soil, especially when developing the remediation strategy.
Soil amendments (i.e. manure, sludge, biosolids) containing trace
contaminants such as heavy metals, microorganisms and ARGs, are
expected to be carefully considered for the remediation. A
comprehensive understanding of the polluted soil can be achieved
by the rapid detection of various analytes and the soil amendments.
Ultimately, the control of pathways for pollutant source into the soil
is the most essential factor for the environmental governance and
ecological health.

6. Conclusion and perspectives

The prevalence of AMR in contaminated soils and/or soil un-
dergoing bioremediation has been largely overlooked until now.
Recent recognition of the potential risk associated with antibiotic-
resistant bacteria and genes is calling for further investigation and
also prompting for the need of rapid measurement tools to inform
risk and sustainable bioremediation strategies. Thereby there is a
need for integrated assays allowing simultaneous field-based
detection of various analytes including antibiotic residues, heavy
metals, petroleum hydrocarbons, ARGs, and pathogenic bacteria.
Key criteria for the selection and the development of rapid methods
include the selection of appropriate specific receptors, surface
coating, and proper amplification strategy to ensure a highly sen-
sitive and specific assay. A range of engineering method can be
implemented the assay for a portable device for rapid on-site
detection of soil samples. The combination of optical or electro-
chemical sensors with the microfluidic sensors is a promising
choice for the simultaneous detection of complex biological and
chemical mixture in soils. Those rapid method will provide an
immediate monitoring result of contaminated soil to inform risk
assessment and remediation strategy in a timely manner and
minimise the risk of propagating AMR in the environment.
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[175] Z. Cebula, S. _Zołędowska, K. Dziabowska, M. Skwarecka, N. Malinowska,
W. Białobrzeska, E. Czaczyk, K. Siuzdak, M. Sawczak, R. Bogdanowicz,
D. Nidzworski, Detection of the plant pathogen pseudomonas syringae pv.
Lachrymans on antibody-modified gold electrodes by electrochemical
impedance spectroscopy, Sensors (Switzerland) (2019) 19.

[176] J. Kudr, O. Zitka, M. Klimanek, R. Vrba, V. Adam, Microfluidic electrochemical
devices for pollution analysiseA review, Sensor. Actuator. B Chem. 246
(2017) 578e590.

[177] M. Puiu, C. Bala, Microfluidics-integrated biosensing platforms as emergency
tools for on-site field detection of foodborne pathogens, TrAC - Trends Anal.
Chem. 125 (2020) 115831.

[178] W.H. Chang, J.C. Yu, S.Y. Yang, Y.C. Lin, C.H. Wang, H.L. You, J.J. Wu, M.S. Lee,
G. Bin Lee, Vancomycin-resistant gene identification from live bacteria on an
integrated microfluidic system by using low temperature lysis and loop-
mediated isothermal amplification, Biomicrofluidics 11 (2017).

[179] I. Jasim, Z. Shen, Z. Mlaji, N.S. Yuksek, A. Abdullah, J. Liu, S.G. Dastider, M. El-
Dweik, S. Zhang, M. Almasri, An impedance biosensor for simultaneous
detection of low concentration of Salmonella serogroups in poultry and fresh
produce samples, Biosens. Bioelectron. 126 (2019) 292e300.

[180] A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a
platform for inexpensive, low-volume, portable bioassays, Angew. Chem.
119 (2007) 1340e1342.

[181] N.R. Ha, I.P. Jung, S.H. Kim, A.R. Kim, M.Y. Yoon, Paper chip-based colori-
metric sensing assay for ultra-sensitive detection of residual kanamycin,
Process Biochem. 62 (2017) 161e168.

[182] A. Nilghaz, X. Lu, Detection of antibiotic residues in pork using paper-based
microfluidic device coupled with filtration and concentration, Anal. Chim.
Acta 1046 (2019) 163e169.

[183] J.P. Devadhasan, J. Kim, A chemically functionalized paper-based microfluidic
platform for multiplex heavy metal detection, Sensor. Actuator. B Chem. 273
(2018) 18e24.

[184] P. Trieu, Tung, N. Yoon Lee, Paper-based all-in-one origami microdevice for
nucleic acid amplification testing for rapid colorimetric identification of live
cells for point-of-care testing, Anal. Chem. 91 (2019) 11013e11022.

[185] M. Dou, S.T. Sanjay, D.C. Dominguez, P. Liu, F. Xu, X.J. Li, Multiplexed
instrument-free meningitis diagnosis on a polymer/paper hybrid micro-
fluidic biochip, Biosens, Bioelectron 87 (2017) 865e873.

[186] A.S. Pelliccione, A.B. Da Silva, E.A. De Souza, J.A.C.P. Gomes, Electrochemical
techniques for hydrocarbon leak detection in cooling water systems, Int. J.
Electrochem. Sci. 11 (2016) 4497e4514.

[187] X. Qiao, M. Wei, D. Tian, F. Xia, P. Chen, C. Zhou, One-step electrosynthesis of
cadmium/aluminum layered double hydroxides composite as electro-
chemical probe for voltammetric detection of anthracene, J. Electroanal.
Chem. 808 (2018) 35e40.

[188] M. Radovanovi�c, D. Vasiljevi�c, D. Krsti�c, I. Anti�c, O. Korzhyk,
G. Stojanovi�c, B.D. �Skrbi�c, Flexible sensors platform for determination of
cadmium concentration in soil samples, Comput. Electron. Agric. 166
(2019) 105001.

[189] Q. Wang, M.Y. Long, C.Y. Lv, S.P. Xin, X.G. Han, W. Jiang, Lanthanide-labeled
fluorescent-nanoparticle immunochromatographic strips enable rapid and
quantitative detection of Escherichia coli O157:H7 in food samples, Food
Contr. 109 (2020) 106894.

[190] L. Xue, F. Huang, L. Hao, G. Cai, L. Zheng, Y. Li, J. Lin, A sensitive immunoassay
for simultaneous detection of foodborne pathogens using MnO2
nanoflowers-assisted loading and release of quantum dots, Food Chem. 322
(2020) 126719.

C. Zhou, Y. Pan, S. Ge et al. Trends in Analytical Chemistry 137 (2021) 116203

17


	Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy
	1. Introduction
	2. Pollutants triggering AMR in soil
	2.1. Heavy metals
	2.2. Polycyclic aromatic hydrocarbons

	3. AMR transmission during bioremediation application
	3.1. Manure amendment
	3.2. Sewage sludge amendment
	3.3. Bioaugmentation
	3.4. Disposed biosolids
	3.4.1. Composted products
	3.4.2. Biochar


	4. Rapid detection methods development for AMR and associated contaminants
	4.1. Optical sensors
	4.1.1. Colourimetric sensors
	4.1.2. Fluorescent sensors
	4.1.3. Raman spectrometry-based sensors

	4.2. Electrochemical sensors
	4.3. Microfluidic sensors

	5. Strategy for the rapid detection and monitoring during remediation of contaminated sites
	5.1. Insights on the suggestion for the development of rapid detection methods
	5.2. Strategies for soil remediation from the perspective of AMR situation

	6. Conclusion and perspectives
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


