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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Aircraft manufacturing industries often evolve in the ecosystem of complex designs and manufacturing processes associated with large volume 
of information generated along the lifecycle. Digital Twin (DT) technology has the potential of leveraging such information to provide useful 
insights benefiting the overall business in many ways. Information Management (IM) for DT is still an ongoing challenge for many industries, 
thus leaving a considerable research gap. In this paper, an IM framework for DT in the aircraft manufacturing sector is proposed. The key phases 
and elements of IM are discussed on which the framework is constructed. The potential application of the framework along aircraft lifecycle is 
further discussed. The framework not only provides an effective approach to managing information but also opens new research prospects in DT 
domain. 
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1. Introduction  

Digital Twin (DT) is the combination of logically integrated 
models of a physical asset to give useful insights using data and 
information associated with those models. The concept of DT 
has been introduced by Grieves at the University of Michigan 
in 2002 [1] refereeing it as the conceptual ideal for the Product 
Lifecycle Management (PLM). DT is predicted to play a 
significant role in improving consistency, seamless 
development process and the possibility of reuse in subsequent 
stages along the product lifecycle [2]. As DT allows the 
integration of end-to-end information between both physical 
and virtual spaces, Information Management (IM) becomes the 
key essential activity for DT development and implementation 
process irrespective of the application. IM becomes even a 
bigger challenge whilst leveraging DT in complex aircraft 
manufacturing industries. Aircraft lifecycle includes complex 

design, manufacturing process, long testing & certification 
process and safety-critical operational life. Therefore, to 
harness technology like DT, IM becomes crucial for effectively 
manage data and information across the enterprise. The existing 
literature mainly focuses on DT development for individual and 
standalone systems, thus lacking a holistic IM approach to DT. 

In this paper, a novel IM framework is proposed dedicated 
to the aircraft manufacturing industry. The paper covers the 
current state of managing an asset in an industrial space. 
Further, the key phases of IM and information flow for DT 
across aircraft manufacturing industry are discussed based on 
which the framework is proposed. Through a case study, a 
potential application and benefits of the framework are 
explained. The research is in collaboration with the industrial 
partner which is one of the leading aircraft manufacturing 
company globally. 
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Nomenclature 

DT         Digital Twin  
IM         Information Management 
IoT        Internet of Things 
PLM      Product Lifecycle Management  
PDM     Product Data Management  
DMU     Digital Mock-Up  

2. Digital Twin (DT) & Information Management (IM)  

As a product, aircraft and its systems are designed, 
developed and maintained for the long-term sustainment. The 
average airline lifespan for a single-aisle aircraft is around 25-
30 years with adequate periodic maintenance checks [3].  
Maintaining such systems for long-term sustainment needs 
dedicated IM infrastructure and tools. DT for such systems 
would also require maintainability of information. Aircraft 
manufacturing industry manages a large amount of data with 
tools such as PLM & PDM (Product Data Management) and 
simulation-based tools. The systems like PLM and PDM store 
and release huge amount to product/process data coming from 
multiple authorising tools and sources [2]. As DT is heavily 
driven by information across the asset or system, IM becomes 
one of the key aspects to support multiple services-based 
business models, maintainability of information and long-term 
system sustainment. 

Only a few research works focus on the information and data 
side of DT. John [4] proposed DT design framework using 
ontologies for data capturing in complex engineering systems.  
Gulnar [5] used ontologies for querying data and semantically 
integrate knowledge base to facilitate intelligent diagnostics of 
an industrial turbine. Agniva [6] proposed a way of formalising 
knowledge as DT models coming from sensors of industrial 
production lines. This approach uses a Graph-based Query 
Language (GQL) equivalent to conjunctive queries and has 
been enriched by inference rules. In both cases, the use of a 
single semantic definition for DT is not well explored. 

Looking at the DT data management side, Zhang [7] 
proposed an approach to design and develop DT of production 
line based on semantic data model as a reference model and 
synchronisation of equipment at the physical level. Angrish [8] 
introduced an architecture based on databases and generic 
machine access library for the virtualisation of the production 
factories. Uhlemann [9] proposed a multi-model data 
acquisition approach to minimise the delay between the time of 
data acquisition and creation of production process DT. 
Requirements driven approach to DT is also proposed [10]. For 
a concept like DT, understanding the context of data is 
important and asking the right questions to make sense out of 
that data. The freshness and completeness of data, merging of 
structured and unstructured data is still an ongoing challenge 
for DT. Therefore the existing framework targets to address the 
following research gaps: 
 requirements for DT development based on specific 

views along the aircraft lifecycle; 
 research in data modelling and data structuring for DT; 
 integrated framework for IM for DT in aircraft 

manufacturing domain 

3. DT IM Framework 

3.1. Challenges 

DT has the ability of real-time control and optimisation of 
product and production lines in manufacturing environments 
[11], but the cost of developing and maintaining DT must be 
driven by both business and economic models of the industry. 
Not only cost but maintaining DT along its lifecycle is 
challenging in multiple aspects. The challenges of DT have 
been summarised [12]. The proposed IM framework is 
targeting  to address some of the following challenges in the 
aircraft manufacturing industry: 

3.1.1. Big data - variety & volume 
Big data involves the collection of datasets that are so large 

and complex that it becomes difficult to process using hands-
on database management tools or traditional data processing 
applications. The amount of data generated across aircraft 
lifecycle is immense and industries often find it difficult to 
utilise it via technologies such as DT. The current research 
lacks an effective approach for resolving implications of big 
data on DT across an enterprise. 

3.1.2. Information sharing  
The information sharing can be segmented into two: internal 

data sharing and external data sharing [12]. Information sharing 
across the value chain brings tangible benefits and transparency 
but still remain an ongoing challenge due to silo effects. 
Therefore, information sharing becomes a serious challenge 
beyond the technology and engineering complexities for DT. 

3.1.3. Information organisation  
Out of a large amount of information, organisation of 

information is also an ongoing challenge in aerospace and 
aircraft manufacturing domain. With sector servitisation, data-
driven solutions are desirable. Such solutions often lead to 
more data and information to be organised and maintained 
across the process. Therefore, for a concept like DT, 
organisation of information remain a challenge.  

3.1.4. Scalability 
For DT, designing the virtual copies of the physical assets 

and manufacturing processes, scalability is one of the important 
model properties [7]. Scalability varies with different 
architectures, data load, and ability to change the level of 
parameters, supply chain complexity and computational 
ability. For all these elements, scalability tends to be the key 
issue for DT [13]. A robust and flexible IM approach is a way 
to address scalability issues. 

3.2. Asset management 

The asset management domain is widely known for 
leveraging DT technology [14]. The current process of 
managing an asset involves different phases of information 
flow. The digital flow of the traditional asset management 
process is conceptualised and explained, as shown in Figure 1. 
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The system X acts as a data acquisition unit for the collection 
of data and making it fit for analysis. The information is further 
fed to the databases based on different data model structures 
from where the information is extracted for visualisation. In 
some cases, separate software’s or computational models are 
required to have a deeper analysis depending on the complexity 
of the asset. Further, the data visualisation may have separate 
views based on the user’s profile and needs.  

 
 
 
 
 
 
 
 
 

 

Fig. 1. Asset management digital flow 

For DT development, along with potential constraints, it is 
important to understand requirements for system X, external 
analysis software and system limiting the analysis unit. System 
X is depending upon communication attributes such as IoT, 
smart sensor, and sensor fusion communication technologies.  
External systems for analysis are driven by the complexity of 
analysis. Machine learning and multi-level data analysis are 
promising. The external systems to limit analysis is the 
gateway to establish the feedback loop across the asset and its 
virtual representation. The knowledge for limiting the analysis 
should be driven by design parameters and in-service 
behaviour patterns of the asset. 

3.3. Framework  

The IM framework requirements are captured based on 
different views across the aircraft lifecycle. The view-based 
approach covers both the product and process constraints for 
the development of a digital twin. With continuous industrial 
engagement, requirements across different views are collected. 
Each business function  has different view on data and 
information. The different views are: (a) IM View,  (b) 
Engineering view, along which preliminary functional 
requirements for framework development identified, shown in 
Table 1: 

Table 1. Requirements for framework development 
Requirement Description 

Minimum 
information 

Access to the minimum level of information for DT 
development such as data types, data views, etc. 

Critical 
Requirements at 
physical layer 

Identification and access to the requirements based on 
DT essential components such as Product 
Identification, Data Management, DT Model, IM, etc. 

Different data 
views 

Highlight different data views and defining the 
requirement for each view. This also includes 
definition of the context to support each view. 

Dynamic 
requirements 

Access to changes in requirements for DT 
development w.r.t. change in scale of application from 
the  Requirement Engineering perspective. 

Level of 
configuration 
information 

Enable the access to the minimum level of 
configuration information required for a specific 
business case or case study. 

Data mapping Map the different type to data to DT ontology model 
classes, either based on standards or case driven. 

Fidelity of the 
system 

Access to minimum data set knowledge for its DT to 
ensure the fidelity of system. 

 
Based on these requirements, the IM framework for DT is 

proposed. The overall framework is divided among the four 
layers: physical, data acquisition, model and data model layer, 
shown in Figure 2. The overall framework will enable the 
following: 

a. Capture the high-level system and data requirements for 
the DT development for the physical product at a 
hierarchy of the physical product at the aircraft level. 
The requirements are semantically modelled.  

b. The data acquisition layer focuses on the capturing of 
the data from different systems.  

c. Model layer focuses on identifying the relationship 
between different models to be embedded in the DT and 
mapping the integration based on the data flows. The 
inclusion of the models is solely driven by the 
outcome/application of DT in the service phases of the 
product lifecycle. 

d. The data model layer focuses on capturing the minimum 
data structure required for DT data model. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. DT IM Framework 

Each time information is exchanged between different layers, 
a workflow is created. At an enterprise level, multiple 
workflows exist within the business process. The integration of 
existing workflows becomes essential along with the IM 
activities around DT. The proposed framework requires multi-
disciplinary approach to define requirements and manage 
information along the lifecycle. The dynamic nature of 
requirements at the physical layer is suggested to be captured 
semantically in the form of ontologies. Software Protégé is 
widely used to create and maintain ontologies [15]. Once the 
requirements are captured in physical layer, data acquisition 
highlights the data capturing and connectivity aspects to DT. 
Capturing data depends on the existing system and 
organisational best practices. The overall communication 
architecture needs to be flexible to accommodate different IoT 
based connectivity solutions within the scope of the 
framework.  

Activities for the model layer can be covered with using 
current Model Based System Engineering (MBSE) methods. 
Platforms such as 3D experience [16] are revolutionising the 
current way of modelling the products and information around 
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architecture needs to be flexible to accommodate different IoT 
based connectivity solutions within the scope of the 
framework.  
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it. Such platforms provide competitive advantages in terms of 
integrated simulations and visualisations. Data model layer 
focusses on extracting minimum structure for DT data model. 
The data modelling and further storage can be done in either 
graph-based platforms or relational databases based on the 
current practices the systems are maintained. The dynamic 
behaviour of the data model structure directly affects the 
change in scale and requirements in the physical layer. 
Therefore, use of ontologies is recommended to derive the 
minimum data structure. The five-step methodology to cover 
this aspect is discussed [17]. 

3.4. DT IM Phases 

The IM for an aircraft is highly complex and demanding. It 
involves managing multiple streams of data capturing, 
processing and storage, development and maintenance of 
software, tools, licences, etc. to ensure the availability of 
information among various business functions. IM for DT for 
aircraft manufacturing industry requires a holistic approach to 
information. The difference between data, information and 
knowledge is well explained [18]. DT has the capability to 
support the transformation from data to knowledge. DT is the 
integration of models along the product lifecycle using data in 
real-time to provide valuable information about asset behaviour 
and such information retains as knowledge for long-term 
system sustainment and usage.  Therefore, the IM framework 
requires a more holistic approach around data, information and 
knowledge.  As the building blocks of the proposed framework, 
we have divided the IM throughout DT in aircraft 
manufacturing industry in four different phases, as shown in 
Figure 3. 
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it. Such platforms provide competitive advantages in terms of 
integrated simulations and visualisations. Data model layer 
focusses on extracting minimum structure for DT data model. 
The data modelling and further storage can be done in either 
graph-based platforms or relational databases based on the 
current practices the systems are maintained. The dynamic 
behaviour of the data model structure directly affects the 
change in scale and requirements in the physical layer. 
Therefore, use of ontologies is recommended to derive the 
minimum data structure. The five-step methodology to cover 
this aspect is discussed [17]. 

3.4. DT IM Phases 

The IM for an aircraft is highly complex and demanding. It 
involves managing multiple streams of data capturing, 
processing and storage, development and maintenance of 
software, tools, licences, etc. to ensure the availability of 
information among various business functions. IM for DT for 
aircraft manufacturing industry requires a holistic approach to 
information. The difference between data, information and 
knowledge is well explained [18]. DT has the capability to 
support the transformation from data to knowledge. DT is the 
integration of models along the product lifecycle using data in 
real-time to provide valuable information about asset behaviour 
and such information retains as knowledge for long-term 
system sustainment and usage.  Therefore, the IM framework 
requires a more holistic approach around data, information and 
knowledge.  As the building blocks of the proposed framework, 
we have divided the IM throughout DT in aircraft 
manufacturing industry in four different phases, as shown in 
Figure 3. 
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based on four IM phases. Further, the proposed information 
flow for DT enables ones to understand the flow of information 
among different layers. Across all the three layers: physical, 
data and model layer, information flow establishes continuous 
exchange of information and its type along the DT lifecycle. 
With the understanding of IM phases and information flow, a 
multi-layered framework is proposed based on common 
requirements from IM & engineering views. Further, a case 
study for aircraft structure damage tolerance has been 
formalised for the framework. Framework helps in 
understanding the different phases of IM from identification to 
retrieval and retention. The framework will allow industries to 
explore the dependencies of system requirements on IM for 
DT. The four-layered framework covers understanding 
minimum information to develop DT, data capturing and 
processing, and further modelling data for DT, thus reducing 
cycle time in DT development. The continuous interacting and 
updating four layers will resolve challenges of big data and 
information organisation along DT lifecycle. The framework 
provides an adequate balance between IM and engineering 
domains which is primarily missing in existing literature.  

DT development and managing information become more 
complex as the complexity of the system or product increases. 
The proposed framework has the capability of serving multiple 
applications along the aircraft lifecycle. The framework targets 
mainly to support DT development activities in manufacturing 
and in-service phases of the aircraft lifecycle. It is also targeting 
to support some design feedback loop DT development 
activities with some caliberations. As future work, testing  
robustness of the framework with multiple detailed case studies 
can provide extended benefits in the area of research and 
industrial domain. 
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