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Abstract

Damages on the aircraft structure could be caused by lightning strikes, hail, accidental impacts or senescence. Scratches or dents
on the aircraft surface are typical indication of impact damages. General Visual Inspection (GVI) is the primary way to detect
such damages. The inspection process is time-consuming, raises safety concerns for the inspector and is subject to human factors
variations. Significant inspection automation is still challenging, mainly because GVI requires the critical human ability to assess
anomaly. Also, damage specifications in maintenance manuals are influenced by human interpretation. Some automated tools are
beginning to be available for aircraft inspection checks. However, none of them is capable to replace the inspector judgementy
yet. Humans still need to manually assess the location or the data generated by the tools. Their performance is also affected by
different environmental conditions, materials and overall characteristics of the damage. This review presents the main methods for
non-contact visual aircraft inspection, explaining their basic working principles and limitations. Their suitability for automation
in aircraft inspection is discussed.
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1 Introduction

To maintain performance and safety, aircraft are checked both pre-flight and periodically. Pre-flight checks follow
a defined checklist comprising an exterior walk-around with visual inspection of critical parts such as sensors, probes,
engine fans, landing gear and structural components. The pilot looks for leakages, cracks or other abnormal circumstances.
Periodic checks, instead, are more extensive. They are carried out by approved maintenance, repair and overhaul (MRO)
companies and, depending on type, may take from hours to months to complete.

General visual inspection (GVI) is the primary way to detect anomalies. It is made from within touching distance
under available light conditions and oriented to detect obvious damage, failure or irregularity [1]. GVI is frequent, time
consuming and affected by environmental circumstances.

For example, in traditional human GVI the probability of detection (POD) of dents changes with different surface
color, finish (e.g. gloss surfaces are easier to inspect) and light conditions. Also different depth and width/depth ratio
affect the POD [2].

After a potential damage is found, a detailed inspection is performed. Detailed inspections usually require to clean up
the part and use specific tools to measure the damage against the limits provided by the structure repair manual (SRM),
issued by the manufacturer. In both cases the inspector is required to get within touching distance of the aircraft part.
This could be at height on the upper-fuselage or wings, raising safety concerns, slowing down the process and increasing
costs. Moreover he/she is subjected to a variable psycophysical state (e.g. boredom or fatigue) that may affect results.

Today many tools are readily available for the inspection process, but the final assessment still relies on the inspector’s
experience. Drones equipped with a camera combined with pattern recognition algorithms are used to evaluate aircraft
airworthiness after hail, lightning strike or other accidental damages. Better GVI automation would lower the downtime
of the aircraft while improving safety and reliability, so that the inspector’s expertise can be spent on evaluating the
actual damage (detailed inspection) without having to search over the whole aircraft structure. The aim of this paper is
to evaluate non-destructive inspection (NDI) technologies from the new perspective of their capability to be automated.
In this review, only non-contact methods for external NDI of the aircraft surface are included, as they are more suitable
for GVI automation in the medium term. Without contact, an end effector composed of multiple sensors could move fast
and freely around the aircraft, completing a scan within hours and potentially delivering a report with sufficient level of
certainty.

The research methodology is an integrative literature review. Published literature reports a wide range of technology
and use cases are used. This paper presents the basic working principles of the key methods, and the context in which
they are used.

Pattern recognition is briefly illustrated in Sec. 2. However this technology can not be applied to defects like dents as
they do not have sharp boundaries and require to catch the third dimension. Automated 3D measurement methods using
passive and active triangulation are introduced in Sec. 3, while time of flight cameras are presented in Sec. 4. Different
materials do not react equally to damage. A carbon fibre reinforced composite part, in fact, may show an almost invisible
dent compared to an aluminium one exposed to the same impact and yet present a subsurface delamination [3], then,
again, the judgment of the human inspector is critical. An attempt to detect subsurface damages can be pursued with
thermography, as introduced in Sec. 5. Despite its pertinence to detect delamination, ultrasound scanning is not discussed
here because it generally requires contact. As this review aims to address in situ aircraft inspection, methods that require
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highly controlled environment or complex optical structures [4] are omitted. Sec. 6 concludes with the applicability of
each technology to different damage types, and the challenges to automate these methods for aircraft inspection.

2 Pattern recognition

Pattern recognition is the process of classifying image data based on previously gathered knowledge or statistical infor-
mation extracted from other images, usually using machine learning algorithms.

Pattern recognition has been widely applied in many fields, as well in aircraft inspections. Commercial drones
equipped with a camera1 are already available on the aircraft MRO market, thus allowing to scan the entire aircraft
quickly. To some extent, the GVI task can be interpreted as a 2D image classification problem, looking for recurring
image patterns typically found as positive flaws by the inspector, e.g. lightning strikes or scratches. Although there are
several classification algorithms usable for this scope, the state-of-the-art performances are reached using convolutional
neural networks (CNN) [5].

(a) A direct match will not work. (b) Comparing small features works better.

Source: Brandon Rohrer, CC0 (public domain).

Figure 1: Basic CNN approach.

An artificial neural network is a mathematical model made by an ensemble of nodes called neurons and performing
a function, interconnected by links called synapses, each one with its own weight that is multiplied with values flowing
through the network. Neurons are organised in layers, with hidden layers between the first one (input) and the last one
(output).

The CNN scheme is particularly adapt to visual tasks since is unaffected by position shift and inspired by biological
processes [6]. Its approach is to select relevant pieces from the original image called features (Fig. 1), which are smaller
two-dimensional matrix that are most able to distinguish e.g. an “X” from a “O” [7]. The layers can be stacked multiple
times in every order (Fig. 2) and the network may have very different configurations. As a rule of thumb, the more
the layers (so that the network is deep), more sophisticated features of the image can be understood. CNN require a

Source: Brandon Rohrer, CC0 (public domain).

Figure 2: An example of complete CNN layout with two outputs.

significant amount of training data available, i.e. “damage” and “non-damage” labeled data so that the network can
iteratively learn which features are more important to classify the input. This is done calculating the error at each
iteration and doing the backpropagation to adapt weights accordingly.

2.1 Pros and cons

Using pattern recognition is a relatively cheap technique, with performances above 95% for certain types of flaws [5]. It
can drastically reduce the time spent for a GVI and also be integrated with MRO software systems to quickly generate
reports. Nevertheless, it can not be considered a definitive solution because:

• It requires huge amounts of training data. In many situations such data is not easy to gather, for example because
that kind of damage does not happen very often.

• It operates well only in diffused light conditions, while could easily fail in presence of non-uniform light.

1Usually with the addition of a LIDAR (light detection and ranging) sensor for collision avoidance and a positioning system relative to
the aircraft itself.
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• Missing the third dimension, it is incapable to detect dents and other shape deformations, while it works good for
scratches or lightning strikes.

• The output is only a prediction that a part of an image belongs to classes of flaws within a certain confidence. E.g.
an image could have an output of 0.70 in the class “scratch” and, at the same time, 0.40 in the class “lightning
strike”. From these values one may infer that the image contains a scratch with a probability of 70% and a lightning
strike with a probability of 40%, but in any case this is giving no quantitative evaluation of the damage. As a
consequence, the inspector would probably need to go through many false positives.

3 Triangulation

The basic principle to recover the depth z from images is to measure the triangle among the object located in an unknown
point X and two known points. The two known points can be cameras or a camera and a light source. Using triangulation
without manipulating light sources is called passive triangulation [8], active triangulation otherwise. The nature of the
problem between the two is different, because in passive methods a correspondence needs to be established between
features from two different camera images of the same scene, while in active methods the correspondence problem has
already been solved using an artificial source of illumination [9].

Each camera is characterised by its intrinsic and extrinsic parameters. The former are related to the actual camera
structure, like the focal length and the principal point, while the latter define the position and orientation of the camera
in the 3D space with reference to an origin system. Both intrinsic and extrinsic parameters are given as matrices, output
of a calibration procedure of the stereo system [10]. To correct lens distortion both radial and tangential distortion are
often taken into account as coefficients and used to correct the image, so that stereo vision can make use of relatively
cheap cameras too. While some algorithms can make use of uncalibrated cameras [11], the best accuracy generally
requires a well calibrated stereo pair of cameras.

In a given stereo system the so-called fundamental matrix establishes a relation between a point XL in one image
and an epipolar line onto the other one. Thanks to the epipolar geometry, the stereo correspondence is a one-dimension
problem that consists to find the point XR corresponding to XL on that epipolar line only (Fig. 3) without having to
span the whole image.

Source: Arne Nordmann, Wikipedia.org, CC BY-SA 3.0.

Figure 3: The search for point XL on the right image is restricted to the epipolar line passing by eR and XR. If the
image is rectified, this line becomes horizontal.

Since epipolar lines are generally oblique, after the acquisition of a image pair it is convenient to rectify the two
images, i.e. to transform the two images as if they were taken with only a horizontal displacement and projected to a
common image plane parallel to the baseline. This reduces the matching problem on the x-axis only as the algorithm
searches for the corresponding points on a horizontal line [12]. Although rectification is not a necessary step, it is largely
used to speed up the matching process.

The stereo correspondence problem is to match features between two images. Being able to identify the projection of
the same point X in both the images, then, means to solve it, as the triangle is completely known. The cameras’ focal
length, the optical axes orientations and the position of cameras OL and OR are all given by calibration, with B = OLOR

as the baseline.

3.1 Passive triangulation

Photogrammetry is a passive triangulation method that involves using many perspective views of the same scene. More
than two points of views can be useful in some situations, e.g. where horizontal obstacles are present [13]. Stereo vision
is the sub-class of photogrammetry that only involves two points of view to extract information (Fig. 4).

On a rectified image pair, a point P1 in the left image and the corresponding point P2 in the right image are displaced
by a number of pixels dP = |xP1

− xP2
|, called disparity. The disparity is inversely proportional to the depth, so that

it is larger on the foreground and smaller on the background. Disparity information is typically stored in a greyscale
image called disparity map, where dark pixels encode low disparity (high distances from the camera) and vice versa. In
a calibrated stereo system, the disparity map is sufficient to reconstruct a metric 3D model of the recorded scene [14,
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Figure 4: Passive stereo system elements. Figure 5: Recovering the depth information from disparity is based on
similar triangles. The triangle PC1C2 is similar to the union of triangles
built on the segments XP1

and XP2
.

12], achieving our final goal. The depth z of the corresponding pixel point P can be calculated with:

z =
f ·B

dP
(1)

where f is the camera’s focal length2 and B is the stereo baseline (Fig. 5). Note that in case of cameras with different
focal lengths, one can be rescaled to match the other one.

A naive approach to solve the matching problem would be, for every pixel P1 of the left image, to search along the
corresponding horizontal line in the right image, and then select the pixel P2 whose colour is most similar to that of P1 as
a matching point. This approach leads to very noisy disparity maps, because of the ambiguity of the data (similar colours
on different positions). Making the assumption that spatial neighbouring pixels are likely to have similar disparities helps
to reduce noise. Local and global algorithms differentiate in how this assumption is made [15]. In general local methods
match small image areas, while global methods try to define a disparity map of the whole image at the same time.

Local algorithms simply assume that all pixels within a certain window have exactly the same disparity. So, given a
square window w centered on P1, a simplistic algorithm looks for P2 into a window w′ in the right image shifted by d

along the x-axis, varying d so that the dissimilarity between w and w′ is minimised:

dP = argmin
0≤d≤dmax

∑

x∈w

diff(x, x− d) (2)

where the function diff() calculates the dissimilarity between a pixel of the left and one of the right image. The difference
could be, for example, the sum of absolute differences of RGB colour values. Here dmax defines the maximum allowed
disparity [14].

Figure 6: Local algorithms look for a window w shifted by dP so that the overall colour differences between w and w′ is
minimised.

Many complex local methods have been developed replacing the window definition and the cost function of Eq. (2)
to obtain more accuracy and computational efficiency. Most of the local approaches are based on:

• Adaptive windows: the principle is to keep windows large but without overlap disparity discontinuities, so to get
clear edges.

• Weighted pixels: the key idea is to give a different weight to each pixel in influencing the matching process.
• Colour: takes into account adjacent colour areas which are likely to have the same disparity.

Nowadays local methods seem to be the most used and best performing, although the same window setting is not
suitable for the whole image, e.g. both low textured areas and object borders, so low texture areas and/or edges may
remain highly ambiguous.

Global algorithms, instead, introduce an energy function that gives a measure of the whole disparity map. The goal
is to find the disparity map of lowest energy [14]. The usual form of the energy function is:

E(D) = Edata(D) + λ · Esmooth(D) (3)

2Here the focal length is expressed in pixels, as the calibration process is proportional to the pixel size.
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where D is a disparity map, λ is a parameter that balances between Edata and Esmooth. The term Edata measures photo
consistency, i.e. the absolute difference of intensity values between left image Il and the corresponding right image Ir
pixels:

Edata(D) =
∑

p∈Il

c(p, p− dp) (4)

with c() usually being the sum of absolute or squared differences. The Esmooth term, instead, makes smooth disparity
maps more preferable, assigning lower energy if values are spatially smooth:

Esmooth(D) =
∑

p,q∈η

s(dp, dq) (5)

where η denotes all pairs of spatially neighbouring pixels in the left image and the s() function assigns a penalty if the
disparity is different.

The target of global methods is to find a disparity map that minimises the equation (3), but finding the global
minimum is, in general, an np-complete problem [16]. One way to reduce the complexity of the energy equation is to
map neighbouring pixels into a tree on the image grid, so that η does not contain cycles and an optimal solution can
be computed efficiently via dynamic programming. However, global methods also find their limits because of the energy
formulation, which does not efficiently represent the stereo matching problem [14], despite further developments have
been made towards better converging algorithms.

3.1.1 Pros and cons

Passive stereo vision (and photogrammetry in general) is an effective way to extract depth information without touching
the object and requiring simple hardware. However in NDI it may not lead to an optimal choice for the following issues:

• Texture absence: in case the scene lacks of well-defined textures any matching algorithm will fail3 because no
reliable data can be extracted from pixels and the depth remains ambiguous. Unfortunately this is a common case
in aircraft inspections.

• Occlusion: not every pixel of the left image may find its correspondence into the right one and vice versa. In fact
there may be areas visible from a camera and not visible from the other, so no match can be established.

• Calibration: the conversion from disparity measure to depth assumes a perfect calibrated system. In reality this is
not to be taken for granted, especially if sub-millimeter accuracy is required.

• Distortions, noise, specular surfaces, transparent objects or repetitive patterns could cause matching algorithms to
fail.

The correspondence problem has not been completely solved yet, but performances of the newest techniques are encour-
aging. Moreover, passive sensing keeps its importance where there are overriding circumstantial constraints that prevent
the use of artificial illumination (e.g. automated cartography, aircraft navigation) [9] and also because it is much more
cheaper compared to other depth estimation methods.

For a benchmark evaluation many of the passive stereo matching algorithms refer to a common evaluation dataset,
e.g. KITTI4. At date the method with best performance is “LEAstereo”, achieving a 1.65% of outliers 5 over the all
ground truth pixels of the test set of the 2015 KITTI dataset.

3.2 Active triangulation

Active triangulation introduces the control of light sources. In general the term active stereo refers to a configuration
with two cameras and one light source (Fig. 7a), while structured light refers to a configuration with one camera and
one light source (Fig. 7b). In both cases light is projected with a known pattern onto the object, so that the way that
shapes are observed becomes a new source of information.

(a) Active stereo configuration. (b) Structured light configuration.

Figure 7: Common active triangulation configurations.

Active stereo is more common as it allows to do triangulation between the two cameras as in passive stereo, without
the need to calibrate the projector. In fact, even if methods for projector calibration have been designed [17, 18], it

3Note that also human eyes are deceived into perceiving the depth in front of a completely white wall.
4http://www.cvlibs.net/datasets/kitti/
5With a certain tolerance. Of course thresholds for inspection applications would be more demanding.
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remains a laborious operation as the projector is not capable to capture images, thus leading to lower overall accuracy.
Anyway the methods discussed below can be found in both configurations.

The basic example of structured light are point gauges to make one dimension measurements [8]. A point gauge
system is made by a camera and a light spot. The camera focal axis is directed to the object and the light axis is inclined
by θ degrees (Fig. 8). So, given the light displacement d = x2 − x1 between two unknown positions, the depth difference
can be easily calculated as:

z =
d

tan θ
(6)

The measure can be converted to metric if the system is appropriately calibrated.
The working principle of structured light is the same of the point gauge but, to match multiple points simultaneously,

complex patterns are projected instead of a single spot of light. A naive way to speed up the process would be to project
n stripes. That will divide the required time by n but it will cause ambiguity, since the same pattern is repeated multiple
times (Fig. 9).

Figure 8: Also point gauges make one-
dimension measures based on similar tri-
angles.

Figure 9: Projecting an identical stripe multiple times would cause am-
biguity from the camera perspective.

Approaches to resolve ambiguity follow temporally or spatially coding. An effective temporally coded method is
binary coding [19]: since the correspondence problem is one-dimensional and simplified after rectification, the aim is to
represent each vertical stripe on the projector with a unique code. The code is realised by projecting a sequence of black
and white patterns, so that the camera knows exactly which vertical stripe the pixel belongs to. In order to do this,
binary encoded stripes are projected sequentially (Fig. 10a), such that the stripes have a crescent number from 0 to the
maximum value. The resolution is limited to half the width of the smaller stripe.

Higher the number of unique codes, higher the accuracy of the calculated depth, up to physical limits. In fact, one of
the problems is that transition pixels create uncertainty areas for the camera: stripes can not be too thin as the camera
would perceive blurred borders. A clever solution is then to minimise transitions in projected patterns, so the Gray
encoding was developed (Fig. 10b). Gray code is less prone to errors due to the lower number of transition lines, still
maintaining the same number of projected images and corresponding unique codes generated. Moreover, the width of
the stripes is bigger for equal coding capacity, facilitating analysis on oblique surfaces and, since each neighbour code
has only 1 bit variation, any wrong decoding introduces a misplacement of one unit only.

(a) A typical binary encoding that assigns a unique code
to each vertical stripe.

(b) Gray encoding minimises transitions, thus is less prone
to errors.

Figure 10: Stripes encoding commonly used.

These encodings are widely used in commercial products, despite they are affected by uncertainty and limited in
resolution. Moreover, except for expensive hardware solutions, they are slow, e.g. for a 1920 pixel horizontal resolution
log2 1920

∼= 11 pattern projections are required. The acquisition speed is then constrained by projector and camera frame
rates, that need to be roughly synchronised. More importantly, the object must stay still during the whole process.

In addition, surface texture and reflections could disturb the camera reading. A way to reduce these errors is to
project both the pattern and its inverse every time, assigning the unique code with more confidence after comparing
on/off thresholds [20]. This approach, evidently, requires twice the time.

More advanced techniques tend to reduce the number of projected patterns by increasing the size of the alphabet:
an alphabet of k symbols encodes km stripes, with m characters. With binary patterns k = 2 only (white and black),
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but k can be increased using multiple colours or diversifying the number of intensity levels used to encode the stripes,
although more similar the color or intensity levels, higher the error rate, because diffusion and ambient light affects
camera perception.

Pure spatially coding requires larger alphabet, so that a single projected pattern is enough to encode the image. A
good example of it is the De Bruijn sequence method [21, 22]. Apart from using colors to increase k, it introduces the
concept of using neighbour stripes to uniquely determine the associated code, so the algorithm is good at identifying
each stripe uniquely, e.g. the couple red-green occurs only once (Fig. 11).

Figure 11: An example of De Bruijn sequence of order 2 over an alphabet of 4 symbols mapped to 4 colours with no
repetitions. A sequence of 2 colors uniquely identifies a position.

The advantage of the De Bruijn sequence method is that it is a “one shot” method (single projected pattern) so it
can be applied to moving objects, e.g. to get near real time 3D reconstruction of a moving scene. Apart from transition
errors, the major drawback is that it requires many colours to develop a long sequence but a camera does not receive
neat colour stripes as they were projected, instead they appear mixed due to the original colour of the object and light
scattering.

Instead of remaining into discrete domain, fringe analysis introduces a continuous way to map the position [19]
projecting sinusoidal structured patterns, called fringe patterns, onto the object. Then, recovering the phase from the
camera perception image allows to map every point using a continuous function, hence with sub-pixel accuracy. Digital
fringe projection (DFP) is the field that deals with the creation of these patterns.

Consider a single sinusoidal fringe pattern represented as:

I(x, y) = I
′(x, y) + I

′′(x, y) · cos[φ(x, y)] = I
′(x, y) + I

′′(x, y) ·
[ejφ(x,y) + e−jφ(x,y)]

2
(7)

where I ′(x, y) is the average or DC component of the signal, I ′′(x, y) is the intensity modulation and φ(x, y) the phase
captured in the image point (x, y). Then, to obtain the phase, a high-pass filter can be applied into the frequency domain
to filter out the conjugate and the DC component. The remaining signal is:

Ĩ(x, y) = I
′′(x, y) ·

ejφ(x,y)

2
(8)

From which the phase can be calculated as:

φ(x, y) = arctan

{

Im[Ĩ(x, y)]

Re[Ĩ(x, y)]

}

(9)

The calculated phase φ ranges in [−π,+π) as it is the output of the arctangent, so φ(x, y) it is often called wrapped
phase map. Since a continuous phase is necessary for 3D model reconstruction, the following process of phase unwrapping
is needed to remove discontinuities. Substantially, phase unwrapping consists in determining discontinuities location,
find the fringe order (i.e. how many 2π to add) and then remove discontinuities [23].

Phase unwrapping algorithms can be spatial or temporal. Spatial methods analyse the wrapped phase map and
determine fringe order for every position. These methods, in practice, always assume a smooth surface: the object
geometry must not introduce sudden phase changes between two consecutive points, otherwise a reliable map can not be
built. Temporal methods, instead, require to project at least two different wavelength sinusoidal patterns. Two patterns
would be sufficient in a noise-free system but, in practice, more the number of patterns used, more the resilience to noise.

All the light patterns can be projected using visible incoherent light, e.g. with a common video projector, infrared,
UV light or with a coherent source of light (laser) that can be less affected by scattering. Lasers stay focused for longer
distances, but typically, there is no way to modulate individual stripes, such as with Gray codes.

Line laser scan technology involves building up an image one line at a time. The line sensor is usually composed
by a planar laser and a camera. It slowly moves over the object (or, viceversa, the object moves under the sensor)
following known positions on the scanning line. For each position the triangulation is trivial as there will be only one
point (along the baseline direction) corresponding to the projected laser line. So, if time is not an issue and the system
is well calibrated, spacetime analysis [24] can be used. Often, as in many laser optics applications, the laser beam is
assumed to have an irradiance profile that follows an ideal Gaussian distribution6 [25]. Given the above assumption, for
each image the camera will perceive only a few points of a Gaussian curve. With these points the position of the middle
point is exactly assigned and used for triangulation. The advantage of this method over the previous ones is that it leads
to sub-pixel accuracy, however it requires a substantial amount of time during which the object must stay completely
still [26].

6Nevertheless, all actual laser beams will have some deviation from ideal Gaussian behavior.
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3.2.1 Pros and cons

Theoretically structured light solves the matching problem because pixels are identified with a unique mark, so that
triangulation among object, camera and projector is easily applicable. In fact, if the projected pattern is dense enough,
the depth resolution can be very accurate. Moreover, structured vision does not rely on object texture to solve the
matching problem, so it is suitable also for smooth single-colour surfaces, as many aircraft surfaces are. The field of
structured light has been widely developed and the resulting depth accuracy is generally high (∼ 50 µm on current
commercial products), especially with the use of laser beams which are less sensitive to ambient light.

Problems that, nevertheless, continue to affect structured light are:

• Short distance: many commercial product require short distances (∼ 30 cm) to guarantee high accuracy.
• Reference targets: high precision devices need reference points, usually in the form of dot reflective stickers, applied

to the inspected part.
• Occlusion: if any part of the object can be seen only from the camera and not from the projector, or vice versa,

no depth can be calculated;
• Reflections: reflecting surfaces distort the pattern projection, thus preventing the identification of the unique code

relative to involved pixels;
• Environment conditions: the use in uncontrolled environment (e.g. outdoor) could drastically reduce performance;
• Time: apart from one-shot methods and fast synchronised devices, it is generally limited to objects that remain

static during scanning. For extremely precise systems, like laser line scanning, the time spent may increase signifi-
cantly up to many hours [26].

Classic scanning systems oriented to manufacturing and reverse engineering usually operate in a controlled environ-
ment, with the object staying still and having relatively small dimensions. On the contrary, aircraft inspections are
carried on in uncostrained environments and over large surfaces, so the compromise between accuracy and speed may
be difficult to achieve.

So far the problem has concerned the obtainment of depth of the scene and this is only the first step of a comprehensive
flaw detection system. In fact the output of triangulation algorithms is a point cloud, that can be processed to build a
3D model of the object within a certain degree of confidence. But a subsequent process must be adopted to actually
detect flaws and assess the damage. This may be difficult on articulated surfaces and may rely on a comparison with the
expected surface model to reduce false positives. Furthermore, it may get computationally expensive as the resolution
grows.

4 Time of flight

A time of flight (TOF) sensor is capable of measuring the light travel distance, through a certain medium, from the
source to the object and back. The working principle is similar to a sonar: a wave is emitted and, after having been
reflected on an object, it comes back so that given the total journey time ∆t and knowing the speed of light in the
medium v, the space measure is derived as v∆t

2
. The term TOF camera may include a wide range of systems like LIDAR

and motion detection systems, all based on the same principle.
Different methods exist to calculate the time interval ∆t, here the following are summarised:

1. timed pulses (or direct).
2. continuous modulation.
3. on/off loop.

The timed pulses method, in theory, would be to send pulses and measure the time interval until reflection. This
naive approach requires very fast and expensive electronics, because a clock speed of around 300GHz would be needed to
measure a time delay of about 3.33 ps at speed of light, corresponding to a travel distance of 1mm. Since such frequencies
are not easy to achieve in silicon nor cost effective, then the following alternative methods were developed.

Continuous modulation is the basis of most high accuracy TOF cameras currently on the market. It uses a sinusoidal
modulated light source and measures the phase shift of the reflected wave, since the speed in a medium is known very
precisely in different conditions and the phase shift directly relates with time shift [27, 28]. The emitted signal frequency
f to set depends on the maximum distance to measure λ, also considering the return journey [29]:

v = λ · f ⇒ f =
v

λ
(10)

where v is the speed on light in the medium. E.g. to measure objects within 7.5m distance (hence, a λ = 15m journey),
a wave with f = 20MHz could be used. The reflected light will still be sinusoidal with a different amplitude (due to
attenuation and background light) and certain amount of phase shifting. There will be no phase shifting if the full
journey is exactly a multiple of λ. A wave coming from farther away will cause ambiguity, that is why TOF cameras
usually come with a maximum operating range (which would be 7.5m with f = 20MHz), unless some phase unwrapping
algorithm is used. Note that to actually measure a wave with f = 20MHz, the effective clock frequency of the measuring
system speed must be at least 4f using the four-quadrants method to approximate the arctangent function.

The third method is to provide on/off loops transmitting a 50% duty cycle square wave (stroboscopic light source)
and record the amount of returned light in a specific interval using CMOS imaging sensors, called smart pixels. These

8

Page 8 of 12

http://mc.manuscriptcentral.com/insi

Insight



are particular LEDs having two capacitors per pixel [28, 30]. The capacitors are alternately connected to the sensor,
using the same clock source of the stroboscopic light. This arrangement allows to directly relate the differential charge
in the capacitors to the phase offset, then to the distance as seen above.

4.1 Pros and cons

TOF cameras are a relatively new type of sensor, but their diffusion is rapidly increasing because of key advantages
like speed, compactness, absence of moving parts, low weight and power consumption. Nevertheless, they suffer of some
unsolved issues:

• Limited resolution: to date, commercial TOF cameras have reached 640x480 pixel resolution.
• Internal issues like imperfections in sensors and lens [31].
• Noise (e.g. interaction with other TOF systems) and background light (e.g. in outdoor environment) have to be

filtered out, if possible.
• Ambiguity: the phase estimation is based on the reflected intensity of the signal that may vary. It is known that

darker object cause an error that depends on the distance itself, non-linearly related[32].
• Reflections: the complexity of the scene causes double reflection (or retroreflection): light enters the sensor after

bouncing on two (or more) surfaces instead than only one and mixes with the proper main reflection that becomes
indistinguishable [31].

5 Thermography

All the objects with a temperature above absolute zero emit radiations caused by the thermal motion of particles in the
matter. An idealised opaque non-reflective body in thermal equilibrium, called black body, emits radiations at different
frequencies, with the energy distribution described by Planck’s law. At any given temperature T the distribution has its
maximum for a specific wavelength λmax, proportional to T . Wien’s displacement law assigns the wavelength λmax of
the energy peak with:

λmax =
b

T
(11)

where b = 2.897 771 955 . . . × 10−3 mK is the Wien’s displacement constant and T is the temperature of the black body.
For example, a black body at a temperature of 300K has its peak of emitted energy at ∼ 9.6 µm, while a temperature
of 400K corresponds to ∼ 7.2 µm.

Thermography allows to visualise temperature differences that reveal object structure and is generally a non-contact
method, although some applications make use of direct contact with the object [33]. Thermographic cameras are usually
made to perceive infrared wavelengths (range 700 nm − 1mm), in which energy peaks fall more often. Commonly the
measures are translated into a pseudo-colour image, called thermogram, to better express intensity changes.

The standard sensing structure is made by Focal Plane Arrays (FPA) that measure the excitation generated by
incident photons as change of electrical conductivity or by measuring a generated voltage. Some accurate but expensive
technologies require cooling, while uncooled ones are more cheaper and compact, hence more popular.

Thermography can be of two types: active and passive [34]. Passive thermography is limited to observe the object
in ambient temperature conditions comparing with surrounding parts. Active thermography, instead, uses an external
source to heat or cool the object to be inspected, thus allowing some characteristics to emerge more, also considering
transient temperature measurements. Active techniques are the most used in NDI and include pulse thermography (PT),
step heating (SH) and lock-in thermography (LT).

PT uses a very short pulse to heat up the inspected object and then observing its temperature decay curve. It only
needs from a few microseconds to a few seconds of time, directly proportional to the thermal conductivity of the material
inspected (e.g. metal parts are quicker). The presence of a defect reduces the diffusion rate so it appears as an area of
higher temperature with respect to the surrounding area. PT is particularly indicated for near-surface defects [34]. SH,
also called “long pulse” thermography, inverts the previous approach and, instead of the decay, it monitors the increase
of temperature while continuously heating the surface with a low power source. The curve shape is directly related to
specimen features. LT stimulates the inspected object with periodic (usually sinusoidal) waves. These cause attenuated,
phase-shifted and dispersive thermal waves to run inside the material with a certain regime. If the input wave reaches
non-homogeneous area (a defect), it is reflected. It is important to note that a defect may appear only if the right pulse
ω is chosen. Advanced NDT methods make use of periodic energy stimulation to improve flaws detection [35, 36], even
for military aircrafts [37].

5.1 Pros and cons

Thermography is very different from the other methods reported so far. In aerospace, it is indeed the most appropriate
non-contact way to find structural and subsurface defects, being fast and with results relatively easy to interpret [34]. In
particular PT thermography has a fast inspection rate (a few m2 at a time) and it is safe for the operator as there are no
harmful radiations, even if powerful flashes require protections. However thermography comes with some disadvantages
like:
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• Difficulties to obtain a uniform thermal stimulation over large surface. Defects seen by thermal images usually
have high variability [38] due to different environmental temperature (e.g. outdoor), materials, perspective, etc.

• Effect of thermal losses which induces unwanted contrasts (noise).
• Ability to inspect materials of a limited thickness.
• In general, limited to defects that cause a measurable change of thermal properties (e.g. cracks are detected only

if they induce thermal resistance) [34].

6 Conclusions

The aim of this paper is to consider the suitability for automation of aircraft inspections. The previous sections introduced
the working principles of the major non-contact NDI methods. Their performance as reported in literature cannot be
directly compared because of different equipment, conditions and inspected materials. A qualitative comparison is
summed up (Fig. 12) with respect to speed, cost-effectiveness and ease of use and best use-case accuracy7.

Figure 12: Indicative features of the technologies discussed.

Different inspection purposes benefit from different characteristics. In the case of aircraft NDI, accuracy is surely an
important factor while higher costs could be overlooked. Apart from the use of high power lasers or some thermography
applications, safety is generally not a concern for these NDI techniques. Nevertheless collisions may be an issue if
drones are employed in a busy environment (e.g. a MRO hangar), although this is not related to the NDI technologies
themselves.

Different NDI technologies work differently with respect to main damage types (Fig. 13).

Figure 13: Comparison of technologies with respect to types of damage.

Lightning strikes: Pattern recognition is particularly adequate for the identification of lightning strikes, assumed
that there is a quality training set to train a CNN. Many commercial solutions make use of this technology, but relying
on the final inspector say (also because of regulatory compliance). Pulse thermography is also effective on composites as
lightning strikes deteriorate resin structure [38].

Scratches: Similarly to lightning, pattern recognition is a good choice for scratches, if neat contours are visible.
Some thermography techniques allow to see differences in the coating of materials, so they are suitable and probably
more accurate for this task, but more expensive and slow.

Cracks: A crack may or may not cause a change in thermal conductivity. If it does, thermography can identify it.
A crack may also have a small 3D offset that an accurate laser-based active stereo may be able to detect, as successfully
experimented for pipeline inspections [39].

Dents: Dents (and other shape deformations) are 3D damages that a single camera can not see. A millimeter level
accuracy or less is required but they come without neat contours and are difficult to be identified even by the human eye.
The best option to detect them is to use active stereo [40]. The absence of texture prevents the use of passive stereo,
while time of flight is still not achieving such levels of detail.

Delamination: Since it often has no noticeable anomaly on the outside, the only practical non-contact method to
discover delamination would be thermography. However the results are extremely variable and there are no standard
datasets available for training, so automatic detection remains a significant challenge.

In conclusion, aircraft NDI is an important but time-consuming process, a real bottle-neck for airlines considering the
high downtime costs. Introducing automation in inspections will significantly cut the costs and increase the reliability
of inspections that still rely completely on human assessment. Although human inspectors have the best capabilities in
understanding the context and interpret the output of different tools, they are also affected by errors and factors like
stress. Automation of current technology has many challenges. A major hurdle is the lack of quality damages dataset

7This is an indicative reference as levels may vary significantly among different methods of the same technology.
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on which algorithms can be trained to detect and assess damages. Substantial development is still needed to get highly
automated damage detection techniques that perform better than humans. A combination of the methods above together
with high volumes of quality data to train AI algorithms is probably be the best way forward for future aircraft NDI.
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