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ABSTRACT An aircraft is made up of a number of complicated systems which work in harmony to ensure

safe and trouble-free flight. In order to maintain such a platform, many diagnostic and prognostic techniques

have been suggested, mostly aimed at components but some at the system level. Together these form a

patchwork approach to the overall problem of efficiently informing aircraft maintenance to the Original

Equipment Manufacturers, the operators /airlines, and the Maintenance, Repair, and Overhaul organisations.

It involves these organisations having to support several different approaches to aircraft health management,

and is therefore inefficient and costly. In the current work, a streamlined methodology is put forward. This

is based on OSA-CBM (Open System Architecture for Condition Based Maintenance) and can be applied to

any aircraft system. Integral with this is the use of mRMR (minimum redundancy maximum relevance) for

feature selection, the resulting symptom vector being used for fault diagnosis. This approach is demonstrated

on three test cases: the engine, the environmental control system, and the fuel system. In each case, the digital

twin setup, simulation conditions for healthy and faulty scenarios, a methodology based on OSA-CBM up

to diagnostics are detailed. Diagnostics is carried out for each system in turn, using four machine learning

supervised algorithms. The best performing algorithm for each system will then subsequently be used in a

vehicle level reasoner called FAVER (A Framework for Aerospace Vehicle Reasoning), which requires these

system diagnoses as a starting point for vehicle reasoning and fault ambiguity resolution.

INDEX TERMS Aircraft systems, OSA-CBM, diagnosis, digital twin, minimum redundancy maximum

relevance.

I. INTRODUCTION

An aircraft is a complex machine made up of multiple sys-

tems, as detailed by the FAA [1]. These systems are usually

built-in isolation and assembled together on a common plat-

form. Every aircraft system, such as the engine, the environ-

mental control system (ECS), the fuel system, the electrical

power system (EPS), the pneumatic system, or the auxiliary

power unit (APU), has functions of its own and objectives

to satisfy at different levels [2]. These objectives may range

from the component level (e.g., the blade of a compressor

in an engine), the line replaceable unit (LRU) level (e.g.,

gearbox assembly in an engine), the subsystem level (e.g., the

engine compressor), the system level (e.g., the engine) or the

overall vehicle level (the aircraft). One of the most important

objectives of these aircraft systems, at any level, is to perform
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safely at their optimal health and efficiency, contributing

to the best performance of the aircraft, as well as saving

the cost and time involved in maintenance, and unexpected

downtime. In order to achieve this objective, Integrated Vehi-

cle Health Management (IVHM) uses technology across

numerous sources like sensor data, fleet history, maintenance

records, and design documents to monitor and assess the

health of the concerned asset (component/ LRU/ subsystem/

system/ vehicle), to diagnose any fault present in the asset

and then to prognose its remaining useful life. In this way,

IVHM capability enables aircraft Condition-Based Mainte-

nance (CBM), resulting in the achievement of cost and time

saving [3].

Currently, IVHM’s principal focus is on components and

LRUs, with subsystems and systems receiving less attention.

For example, the Model-based Avionics Prognostic Reasoner

provided a solution for non-intrusively monitoring the health

and predicting remaining useful life for Electro Mechanical
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FIGURE 1. The schematic of FAVER.

Actuators by using exclusive algorithms and reasoning tech-

niques [4]. Similarly, a high frequency vibration monitoring

system was developed to detect and isolate incipient faults in

critical rotary components in engines, gear trains, and gener-

ators. [5]. On the other hand, a framework based on symbolic

dynamic filtering was developed to isolate faults in engine

subsystems by interpreting and fusing data from multiple

sensors in order to extract maximum information from the

features [6]. These works show the extensive research carried

out to isolate faults in components, LRUs, and subsystems in

the aircraft.

However, none of these developments offers a rigorous

process for the development of aircraft system diagnostics.

A process that can effectively and efficiently inform aircraft

maintenance to the OEM (Original EquipmentManufacturer)

and the MRO (Maintenance, Repair, and Overhaul) organi-

sations is needed. Such a system, based around OSA-CBM,

is proposed here.

The idea for such an approach originated from a wider

project named FAVER (Framework for Aerospace Vehicle

Reasoning). The effect of the health state of one aircraft

system over another due to their interactions, i.e., health

assessment at the vehicle level, is not explored much in the

technical literature, contributing to one of the significant

gaps in the field of IVHM [7]. Aircraft accidents like the

engine rollback incident on a Boeing 777 (2008) caused by

a block in the fuel oil heat exchanger, and the emergency

evacuation incident in a Fokker F28 (2002) caused by smoke

in the cabin as a result of a crack in the APU compressor

blade, are real life examples for multiple aircraft systems

affected due to their interactions [2]. Isolating such cascading

faults involves complex troubleshooting activities resulting in

loss of time and increased cost due to extended downtime

and prolonged maintenance. To address this gap, FAVER

(fig 1) was proposed to isolate root causes and the effects

of cascading faults considering the health of multiple aircraft

systems using the concepts of reasoning and digital twins [2].

In FAVER, there is a need for diagnostics built for each

system under consideration, and hence the idea for generating

such diagnostics in a rigorous manner emerged.

A. FAVER: A FRAMEWORK FOR AEROSPACE VEHICLE

REASONING

While the concept of digital twins has been used across

IVHM in a variety of roles [3], FAVER simulates multiple

aircraft systems interacting with each other to demonstrate

and isolate the effects of cascading faults at the vehicle level.

Fig 1 shows the overall working mechanism of FAVER.

As seen in the bottom row of fig 1, FAVER demonstrates

the interaction between aircraft systems using digital twins

and for the Electrical Power System (EPS), the engine, and

the Environmental Control System (ECS), and hardware in

the loop for the fuel system. The fuel system supplies fuel

to the engine, the engine provides shaft power to the EPS

and bleed air to the ECS, and the EPS provides electricity to

the other three systems. Once the digital twin layer produces

results for healthy conditions, and with certain fault modes,

their health information is processed through diagnostics set

up at the individual system level, as shown in the middle

rows of fig 1. This is the subject of the current paper. Later,

symptom vectors made from the health information from

simulations of these individual digital twins, along with their

diagnostic results, will be used by FAVER’s reasoning as

shown in the top row of fig 1, to identify the root cause and

the effects on the interacting systems at the vehicle level.

B. THE NEED FOR A GENERALISED METHODOLOGY FOR

THE DIAGNOSTIC PROCESS

Across the industry, maintenance of aircraft is mostly done by

the OEMs or MROs. The format of health data acquired from
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aircraft systems and the techniques applied by those carrying

out, and troubleshooting, maintenance will vary considerably

from platform to platform due to a lack of standardisation and

development.

The functioning of IVHM systems at the systems level

is not affected by the differences in the way health data is

processed. However, in the case of a platform reasoner such

as FAVER, since the reasoning is done at the overall aircraft

level, processing data and carrying out the diagnosis for all

concerned aircraft systems becomes complicated and tedious,

especially when they are done using different methodologies.

Hence, there is a need to implement a generalised method-

ology to identify and streamline the repetitive steps involved

in the diagnostic process. This will help save time spent in

developing diagnoses for each aircraft system and make the

overall aircraft level health reasoning faster and more practi-

cable; to serve this purpose, the Open Systems Architecture

for Condition-BasedMaintenance (OSA-CBM) framework is

employed.

This article demonstrates the application and usefulness

of OSA-CBM as a generalised methodology for developing

diagnostics for different aircraft systems. Section II focuses

on the OSA-CBMmethodology, and the steps involved in the

process. Section III demonstrates the role of the OSA-CBM

methodology through three different aircraft system use

cases: the engine, the ECS, and the fuel system. Section IV

provides the diagnosis part of these use cases, and Section V

summarises the article and discusses ideas for future work.

II. THE OSA-CBM METHODOLOGY

OSA-CBM was developed in 2001 by an industrial team

partially funded through a Dual Use Science and Technol-

ogy (DUST) program [8]. Its aim was to define and develop

open standards for distributed CBM. OSA-CBM implements

ISO 13374 [9], Condition Monitoring and Diagnostics of

Machines, to define the open standard. This standard breaks

down the data collection, processing, and information flow

into the six layers shown in fig 2. It defines the interfaces

(data structure and interface methods) between each step and

so, indirectly, what can happen in each of the layers [10]. Each

layer is briefly described here.

Data Acquisition: Data is acquired from the target asset

using sensors and other measuring devices, historical data,

maintenance records, design documents, and other relevant

information.

Data Manipulation: The collected data is preprocessed

and made useful for further processing. This step could use

feature extraction and feature selection processes.

State Detection: The processed data is used to monitor the

current condition of the asset. This is done by comparing

features against expected values, or operational limits and

outputs enumerated condition indicators (e.g. low, normal,

and high.

Health Assessment: This stage determines if the health of

a monitored system or subsystem is degraded. Several types

of diagnostic algorithms, such as model-based, data-driven,

FIGURE 2. The Open Standard Architecture - Condition Based
Maintenance (OSA-CBM) framework.

or hybrid algorithms, are used to assess the health of the asset.

This layer generates a diagnostic record that proposes one or

more possible fault conditions with associated confidence.

Prognostic Assessment: The remaining useful life and the

future performance of the asset are then projected based on

its state estimation results. In some cases, uncertainty propa-

gation is also estimated using prognostic algorithms.

Advice Generation: Provide recommended actions and

alternatives. Depending upon the applications, recommenda-

tions may include maintenance action schedules, modifying

the operational configuration, or modifying mission profiles.

BecauseOSA-CBM is a standard and is not an instantiation

of that standard, the above layer descriptions are open to inter-

pretation and are given here for general guidance. OSA-CBM

is defined using unified modelling language (UML), and

is designed to enable multiple types of information to be

processed without involving the technical interfaces. The

OSA-CBMmethodology can be applied at any stage of CBM,

ranging from real-time health monitoring to portable mainte-

nance and cloud services [8].

So far, in IVHM systems, the OSA-CBM framework steps

are applied at the component, subsystem, and at the systems

level. For example, at the LRU level, GE Aviation demon-

strated the benefits of an IVHM system by monitoring the

health state of an electromechanical actuator with parameters

like the Hall effect sensor and supply current [11]. At the

higher subsystem level, Boeing, the Air Force research labo-

ratories, and Smith Aerospace together developed a program

called Aircraft Electrical power systems Prognostics and

Health Management and demonstrated health management

of several subsystems for electrical actuation, fuel pump/

valves, and arc fault protection by monitoring parameters like

torque efficiency, motor performance, and vibration analy-

sis [12]. At the systems level, Safran has developed an Engine

Health Management program by monitoring multiple param-

eters such as oil consumption monitoring, oil and fuel filters
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FIGURE 3. OSA-CBM methodology to develop diagnostics for three aircraft systems for a Framework for Aerospace Vehicle Reasoning (FAVER).

monitoring, actuation control loop monitoring, bearings

vibration monitoring, and global performance monitor-

ing [13]. Few more examples of applications of OSA-CBM

can be found in these references ([14]–[16]). It can be seen

from the examples that the aircraft systems have multiple

sensors for multiple fault modes linked to multiple diagnos-

tic algorithms. In this article, instead of following different

processes for each aircraft system, a common methodology

is sought and the series of steps from the OSA-CBM frame-

work, leading up to health assessment (i.e., diagnosis), will

be implemented for all concerned aircraft systems. The last

two steps in the framework, viz, Prognostic Assessment and

Advisory Generation, are not used in this article, as the goal is

mainly to develop diagnostics. However, the results produced

from diagnostics developed in this article for the aircraft

systems, i.e., the symptom vectors, can be used for further

prognostic assessment to provide maintenance solutions in

practice.

A. CONTRIBUTIONS IN THIS PAPER

The work carried out in this article is shown in fig 3, high-

lighted by dotted black lines. In this work, three aircraft

systems shown in the schematic diagram of FAVER (right

side of fig 3) are examined: the engine, the ECS, and the

fuel system. Previously, a simulation model of the EPS

(Electrical Power System) was developed, with an Adaptive

Neuro-Fuzzy Inference System (ANFIS) being implemented

for its diagnosis [17]. It fits into the current framework but

will not be replicated here. Diagnostics developed for these

four aircraft systems are later used for vehicle level reasoning

in the platform level reasoner, FAVER, which is not covered

in this article.

In this article, the following contributions are made with

regard to these three aircraft systems:

i) As seen in fig 3, the engine and the ECS digital twins

are represented by MATLAB simulation models, while

the fuel system is represented by hardware-in-the-loop

(HIL), to show the flexibility of this approach. These

models are run for healthy scenarios, and a certain num-

ber of faults are injected (both local and interacting

faults), and their data recorded. In these digital twins,

the simulation models are to be replaced by real per-

formance data at the later stage, to represent the living

models of the aircraft systems (as shown in the bottom

part of fig 3).

ii) Adhering to the OSA-CBM methodology (left part of

fig 3), data from the digital twins is processed, and a

feature selection algorithm (mRMR) is applied on all

these systems to narrow down the health parameters

necessary for developing the symptom vector as an input

for the diagnosis.

iii) The State Detection and Health Assessment steps of

OSA-CBM are fused into one step by considering the

diagnosis of faults as a classification problem. Here,

the classification will take care of both, detecting if

the symptom vector is healthy or faulty. In the case of

a faulty symptom vector, the classification algorithm

will also diagnose the fault. As mentioned previously,

the developed diagnostics are to be used later in FAVER

for vehicle level reasoning.
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FIGURE 4. Turbofan engine block model in T-MATS (adapted from [20]).

The diagnostics for all three aircraft systems follow the

data-driven approach in order tomaintain uniformity and save

time. Only single faults are injected; simultaneous or multiple

faults are not considered [2]. It is to be noted that these aircraft

systems are represented by a combination of digital twins and

HIL and are chosen as a part of the project, FAVER [2]. Diag-

nostics for any other aircraft system represented by different

types of simulation models could also be developed using the

OSA-CBM methodology.

III. USE CASES

This section presents the setup of system level diagnostics for

three aircraft systems: the engine, the environmental control

system (ECS), and the fuel system. These have been chosen

to demonstrate the use of the OSA-CBM methodology and

for their fit into the overall FAVER architecture.

A. THE ENGINE

The engine is a primary safety critical aircraft system. It pro-

duces thrust, powers the EPS, and provides bleed air required

for anti-icing and the ECS of the aircraft. Among the types of

jet engines, the turbofan is the most used by the civil airliners,

as it optimises fuel consumption for the thrust produced.

Fig 4 shows a block diagram of a high bypass turbofan

engine. The turbofan engine is made up of the following

standard components: fan, compressor, combustion chamber,

turbine, and nozzle. The engine sucks air through the fan

(stations 2-21 from fig 4), and a portion of it is ducted into

the core (station 23), while the rest of the air is bypassed

(station 13) through the flow splitter to the bypass nozzle

(station 19). The core flow is then compressed (stations

23-3) before being sent to the combustion chamber (stations

3-4), where the compressed air is mixed with fuel and burnt,

producing hot gases and increasing the temperature. The hot

air then expands across the turbine blades (stations 4-5) and

then passes through the core nozzle (stations 7-9). The cold

bypassed air passes through a similar nozzle (stations 17-19)

and mixes with the core flow to produce the thrust that moves

the aircraft forward [18]. Bleed air is extracted from the

compressor (station 3) based on demand, and supplied to the

ECS and for anti-icing and deicing.

1) DIGITAL TWIN SETUP

The model chosen for the engine digital twin is the Pratt &

Whitney JT9D open source turbofan engine model provided

by T-MATS software inMATLAB Simulink [19]. This model

features a high bypass turbofan engine with a bypass ratio

of 4.8:1, one stage fan, three stage Low Pressure Compressor

(LPC), 11 stage High Pressure Compressor (HPC), annu-

lar combustion chamber, two stage High Pressure Turbine

(HPT), four stage Low Pressure Turbine (LPT), and a con-

vergent divergent nozzle.

The healthy scenario is run with input conditions

of 34000 ft altitude, 0.8 Mach number, and 1.91 pounds per

second (pps) fuel mass flow rate, along with the efficien-

cies set as default in T-MATS [20]. A total of eight fault

modes, including local and interacting faults, are simulated

in T-MATS for this article, by reducing the efficiency of the

subsystems as well as introducing leakages and blockages

in the ducts and valves. The efficiency degradation and the

leak induced in the fault modes are randomly chosen, and

hence the resulting engine performance for each degradation

mode can be viewed for the trend but not cross-compared for

quantitative effect. For brevity in this engine simulation, only

one mode of degradation is simulated for each subsystem.

This single mode of degradation for each fault is sufficient for

demonstrating the approach advocated here; the diagnostics

could always be updated with multiple degradations and dif-

ferent fault modes at a later date. The following are the eight
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selected faults injected in this simulation model; the first five

are local faults, and the last three are interacting faults.

Local Faults: These engine faults do not affect other air-

craft systems. However, as a result of these fault modes,

the subsystems function with reduced efficiency, contributing

to overall reduced efficiency for the engine.

i) Fan FOD: Foreign Object Damage in fan blade

reducing the efficiency of the fan by 2.7%

ii) LPC Contamination: Blade corrosion in LPC reduc-

ing the efficiency of LPC by 3%

iii) HPC Fouling: Fouling in HPC reducing the efficiency

of HPC by 1.1%

iv) HPT Blade Broken: Partial loss of blade in HPT

reducing the efficiency of HPT by 1%

v) LPT Blade Broken: Partial loss of blade in LPT

reducing the efficiency of LPT by 3%

Interacting Faults: These faults are either caused by, or affect

aircraft systems other than the engine.

vi) Bleed Valve Stuck: The bleed valve is stuck at

60 degrees. This fault affects the engine indirectly but

directly affects the bleed air supplied to the ECS.

vii) CDP Leakage: This fault is due to a 0.5% leakage in

the duct carrying the bleed air from the engine to the

ECS. Similar to the previous fault, this fault has the

potential to affect the bleed air supplied to the ECS but

does not affect the engine directly.

viii) Reduced Fuel flow: The input fuel flow is reduced by

10%, a fault that could have been caused by a reduction

of fuel pump speed. The reduced fuel input affects the

engine performance directly.

The simulation model is adapted to include a simple Pro-

portional Integrator (PI) controller, which is programmed

to meet the demanded thrust as the overall objective. This

is achieved by calculating Thrust Specific Fuel Consump-

tion (TSFC) as shown in (1):

TFSC =
m

f
(1)

where, m is the fuel mass flow rate, and f is the gross thrust.

TSFC is provided as feedback to the PI controller, where

the input fuel flow is altered by the controller to achieve

the demanded thrust. As can be seen from fig 5(a), for all

fault modes except Reduced Fuel flow, the demanded thrust

objective (27500 lbf) is met, which is due to the PI controller.

In the case of the Reduced Fuel flow fault mode, the loss of

mass flow rate affects the gross thrust, as they are directly

proportional to each other, as shown in (1). This can also be

seen in fig 5(b), where the mass flow rate of the fuel increases

for all the fault modes in order to achieve the thrust, except for

the Reduced Fuel flow fault mode where the mass flow stays

constant and hence does not achieve the demanded thrust.

Parameters like flow, total temperature, total pressure,

enthalpy, and fuel-air ratio are measured at several stations,

along with other parameters such as fan speed, core speed,

torque, and TFSC. The data collected from the simulations

FIGURE 5. Gross thrust and fuel flow rate in healthy and faulty scenarios.

are then used for developing further diagnostics for the failure

modes mentioned in this section.

2) DATA ACQUISITION AND DATA MANIPULATION

The engine digital twin conFigd in T-MATS is run in MAT-

LAB R2019b for both healthy and faulty scenarios until the

objective of thrust demanded is reached.

The next step is data manipulation, where the raw data

collected from the simulations are formatted in MS EXCEL

for further process in the OSA-CBM methodology. Only

steady state data are used in the process; the rest of the

data are ignored. Further, the number of health parameters

to be monitored are narrowed down only to the essential

features. This is because many parameters extracted from the

simulation would be redundant to each other; hence moni-

toring all parameters from the simulation results would be

time-consuming as well as would require higher processing

power. In order to avoid this issue, feature analysis for each

simulationmodel is carried out, and only themost influencing

features are chosen for condition monitoring and diagnosis of

the system.

Health parameters like flow, enthalpy, temperature, pres-

sure, fuel-air ratio, are measured at several stations along

11442 VOLUME 9, 2021



C. M. Ezhilarasu et al.: Generalised Methodology for the Diagnosis of Aircraft Systems

the gas flow path, with other calculated measures like thrust,

TSFC, core speed, fan speed, and torque. Additional mea-

surements are made near the bleed valve, which does not fall

under the gas flow path. These result in a total of 85 features

from which data is extracted to monitor the performance of

the engine. In order to save time and reduce the complexity

of the monitoring process, only the important features that

influence or represent the engine performance are selected

for the diagnostic process. This is carried out in two steps.

Step 1: Only the ‘measurements’ from the Digital Twin

that would correspond to sensors in a real engine, such as

temperature (Tt), pressure (Pt), mass flow (Wf), speed, TSFC,

and thrust, are chosen. This results in 35 features.

Step 2: From the 35 features, the second stage of selection

is carried out using the Minimum Redundancy Maximum

Relevance (mRMR) algorithm. The mRMR algorithm is a

selection algorithm that finds the optimal set of features with

respect to the response variable by identifying the features

with maximal and mutually dissimilar relevance and with

minimal redundancy. This is done by calculating the mutual

information between features and the response variable and

through pair wise comparison of features itself [21].

In general, mutual information MI between two variables

S,T is given by (2). This helps in finding how the variable S

is helpful in reducing the uncertainty of variable T.

MI (S,T) =
∑

ij
P
(

S = si,T = tj
)

× log

(

P
(

S = si,T = tj
)

P (S = si)P
(

T = tj
)

)

(2)

The mutual information is calculated for mRMR algorithm

in the following fashion. Consider an empty set G, represent-

ing the optimal set of features (G = {}). Let H be the set

containing the features, x, z (H = {x, z}), and let y be the

response variable. The mRMR algorithm aims to add suitable

features to the set G from set H . It does so by choosing

the feature x (from set H ) with maximum relevance (Px),

with respect to the response variable y, as calculated by (3)

and assigning it to set G. In the next step, the feature z

from set H is compared with x from set G, to minimise the

redundancy by calculating (Qx) between through (4). The

mutual information quotient (MIQ) is then calculated using

(5) and is used to rank all features in set G [22]:

Px = MI (x, y) (3)

Qx =

(

1

|G|

)

∑

zǫG
MI (x, z) (4)

MIQ =
Px

Qx
(5)

|G| is the number of features in set G. Once the ranks are

assigned for all the features in set H, the optimal set G is

filled with features that have maximum MIQ. In MATLAB

R2019b, the importance of the feature is quantified by cal-

culating its score. The score is the ratio of the difference

between the MI of the target and the considered feature to the

FIGURE 6. Top 15 features selected by mRMR algorithm for state
detection and diagnosis of the engine.

average of MI of target and previously considered features.

In short, the score represents the importance of the target

feature with respect to the previously considered feature.

The higher score for a feature indicates the importance

of the predicting factor with respect to the response vari-

able. The bigger difference in scores between the features

shows the confidence of the algorithm in choosing one feature

over the other [22].

While the ranks of features show exclusivity of the features

using mutual information, the scores show their importance

as predictors with respect to the response variables. In the

case of engine simulation, the set H contains the 35 features,

and set G will be populated with the features having higher

ranks. This is done by calculating MI for all 35 features

with respect to the response variable, i.e., the fault classes.

This step will calculate the relevance of these features for

better representation of the fault classes. Similarly, MI is

calculated for pairwise comparison of these 35 features and

measures the redundancy of these features. MIQ of these

35 features are then calculated and set G is populated with

features having maximumMIQ, i.e., better ranks. In this step,

the features which are least relevant are ranked the lowest.

Finally, the scores of these ranked features are calculated by

comparing the MI of each of these 35 features with respect to

the average of the rest. Fig 6 shows the top 15 scored features

and their ranks as calculated by the mRMR algorithm.

The final list of features required for condition monitoring

and diagnosis of the engine is narrowed down based on the

scores from 35 to only four, viz: i) Core speed (HP shaft

speed), ii) Pressure at LPC exit (station 24): Pt_S24, iii) tem-

perature at LPT exit (station 5): Tt_S5, and iv) pressure at the

exit of bleed air duct: Pt_AfCDP.

Fig 6 shows the core speed and Pt_S24 possess the top-

most scores among the monitored features. This indicates

that these two features are better predictors of the engine

health performance. This can be correlated with fig 7 (a) and

fig 7 (b), where the features, core speed, and Pt_S24 show

clear distinction among different fault modes from the healthy

case of the engine. (Only steady state is considered in this

simulation. Hence, in fig 7, data from t = 230s is chosen for
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FIGURE 7. Performance of engine features for healthy and faulty scenarios.

analysis and interpretation. The entire timeline from t = 0 is

shown in fig 7 for clarity).The turbine exit gas temperature

from fig 6, Tt_S5, has a better score, and can understandably

predict the health of the engine (as seen in fig 7(c)), because of
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its location in the gas path. As corroborating evidence, across

the literature, these three features are proven predictors of

engine health performance [23]–[25].

The strength of the mRMR algorithm is demonstrated

in choosing the Pt_AfCDP feature in fig 6. Identifying the

importance of Pt_AfCDP would not be normally possible

without the help of the mRMR algorithm, as this feature is

not directly related to any of the stations in the engine model,

not located in the gas path of the engine, and was placed

only to measure the exit pressure in the bleed air system

ducts. However, the pressure sensor placement has resulted

in this feature Pt_AfCDP to function as a predictor of the

engine health. This can be observed from fig 7(d), where the

pressure at the bleed air exit has a distinct profile for each

fault mode and is differentiated clearly from the healthy case.

Thus, the mRMR algorithm has successfully selected the

most important predictors of the engine health performance

as well as aided the selection of optimal sensor placement for

monitoring the engine health. The next step is to use these

four features to detect the current state of the engine and to

diagnose fault modes.

3) STATE DETECTION

In the state detection step of OSA-CBM, the current condition

of the system is monitored to understand if the system is

healthy, and, if not, to proceed for diagnosis. Fig 7 shows the

comparison of the healthy mode with all eight fault modes

for each feature selected to monitor the engine’s current

condition. These features are chosen because their profiles

are distinct for every fault mode, making them easier to

distinguish from the healthy profile and also to isolate the

exact fault mode.

From fig 7, it can be clearly seen that the Reduced Fuel

flow fault mode is far from the healthy profile in all four

features, making it easy to detect. In other words, in this fault

mode, reduction of the fuel flow rate by 10% leads to the

engine running off-design, resulting in reduced core speed,

pressures, and temperatures measured at the stations (fig 7)

and reduced gross thrust (fig 6).

In fig 7(a) it can be observed that the fault modes HPC

Contamination and HPT Blade Broken have lower core

speed when compared to the healthy profile, whereas all the

other fault modes have higher core speeds. This is because

the core speed refers to the high pressure shaft speed, which

connects HPT and HPC (from fig 4). Hence the loss of

efficiency in either HPC or HPT would result in reduced core

speed. However, in case of loss of efficiency in any other

subsystem like the fan, LPC, or LPT, the high pressure shaft

will run faster to obtain the demanded thrust, resulting in

higher core speed when compared to the healthy profile.

In fig 7(b), which shows the profiles of LPC exit pressure,

Fan FOD, LPC fouling, and LPT Blade Broken fault modes

have pressures lower than the healthy pressure profile. The

reason behind the difference is the low pressure shaft that

connects fan, LPC, and LPT. Loss of efficiency in these sub-

systems, because of fouling, or the loss of material, leads to

lower intake of air resulting in lower compression developed

by the LPC.

The opposite is true for HPC contamination and HPT

Blade Broken fault modes. Here, the loss of efficiency in the

HPC results in lower compression by the HPC, and loss of

efficiency in the HPT results in the HPC being driven with

a lower speed. Hence, there is slight pressure build up at the

entrance of theHPC, as the HPC cannot compress to its fullest

in both cases.

In fig 7(c), it can be observed that loss of efficiency of any

subsystem in the engine results in higher turbine exhaust gas

temperature because of the extra workload on the engine to

achieve the demanded thrust. While fig 7(a),7(b), and 7(c)

showed a clear distinction between fault modes affecting the

main subsystems of the engine, the fault modes Bleed Valve

Stuck, andCustomer Discharge Pressure (CDP) leakage are

not seen clearly, as they have profiles similar to the healthy

one. These two fault modes are distinguished only with the

help of pressure measured at the exit of the bleed air duct,

which in this instance shows a distinguishing profile for all

the fault modes, as seen in 7(d).

Thus, with the help of these four features chosen by the

mRMR algorithm, the current health state of the engine is

monitored, and degradation in any of the subsystems can be

easily detected by comparing their performance profile with

that of the healthy profile. Therefore, the four features of the

engine, viz, the core speed, Pt_S24, Tt_S5, and Pt_AfCDP

together form the symptom vector for the engine diagnosis.

B. THE ENVIRONMENTAL CONTROL SYSTEM (ECS)

The Environmental Control System (ECS) of an aircraft

maintains the in-flight conditions suitable for the passengers

as well as for the effective functioning of the onboard equip-

ment. The bleed air system (BAS) in the ECS receives bleed

air extracted from the APU (on the ground) and the engine

(during flight) and passes it to the anti-icing system and the

PACK (passenger air conditioner). The PACK is the subsys-

tem in the ECS responsible for conditioning the bleed air to be

supplied to the cabin. The PACK consists of a series of com-

ponents such as the primary heat exchanger (PHX), the sec-

ondary heat exchanger (SHX), air cycle machine (ACM),

high pressure water separator (HPWS), temperature control

valve (TCV), and a flow control valve called the Pack Valve

(PV). The PACK conditions the pressure (P), temperature (T),

and specific humidity (SH) of the bleed air to match the flight

deck requirements. The conditioned air then passes through

a mixed manifold system and air distribution system to the

cabin, and the cabin pressure control system regulates the air

pressure inside the cabin as required by the flight deck [26].

1) DIGITAL TWIN SETUP

In order to simulate the operation of the ECS, a simula-

tion package called SESAC (Simscape Environmental control

system Simulation under All Conditions) is chosen [26].

SESAC provides a library of components to perform simu-

lation of the ECS under a wide range of operating conditions
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FIGURE 8. B737-800 ECS PACK model emulated in SESAC [26].

for both healthy and faulty scenarios. The SESAC component

library has been configured to produce a detailed model of

the B737-800 PACK. This model has been validated against

actual data from the aircraft [26]. Fig 8 shows a schematic of

the PACK model in SESAC. The bleed air from the engine

or the APU is received at high temperature and pressure by

the ECS. The PACK uses the PV to control the flow of this

air, a portion of which is passed through the PHX for heat to

be removed. This air is then cooled further by the compressor

(as part of the ACM) and the SHX. Ram air is used by both

heat exchangers (PHX and SHX) as a heat sink. The HPWS

consists of a Reheater (RHX), condenser (CHX), and water

separator (WS), which together remove any condensation

from the air before it enters the turbine (the other ACM

component). The cooled air is then merged with the bypassed

hot air, the TCV regulating the flow as demanded. Further

details on the PACK model in SESAC can be found in this

reference [26].

For the work here, the digital twin is fed with input condi-

tions of 28000 ft altitude and 0.761 Mach number to meet

the target cabin pressure of 79.1kPa, cabin temperature of

291.24K, andmass flow rate of 0.445 kg/s. In order to develop

diagnostics for the ECS, the simulation of a 100% healthy

scenario is run in SESAC, followed by injection of six faults

which are listed below, combining local and interacting faults

as for the engine case.

Local Faults:

i) ACM 0.6: only 60% mechanical efficiency of the ACM

is simulated.

ii) PHX Fouling: Fouling in the PHX, leading to its effi-

ciency reduced by 50%.

iii) SHX Fouling: Fouling in SHX, leading to 50% reduc-

tion in efficiency.

Interacting Faults:

iv) CDP Leak: this fault is due to 0.5% leakage in Cus-

tomer Discharge Pressure (CDP) from the engine.

v) Low Bleed air Pressure: this fault could be due to the

HPSOV being stuck in the bleed air system, reducing

the input bleed air to 75% of the original demand.

vi) TCVStuck:TCV is stuck at 10 degrees. This fault could

be due to an intermittent supply from the EPS to the

TCV.
As in the case of the engine, the percentage loss of efficiency

and leakage are chosen randomly, and hence these faults can

be compared for trend, but cannot be quantitatively compared

with each other. Temperature (T) and pressure (P) are mea-

sured at the inlet and outlet of every subsystem along the path

of the bleed air.

Fig 9 (a) shows the temperature profile for the healthy

and faulty simulation scenarios. The monitored parameters

are laid out in the way that represents the path followed by

bleed airflow in the PACK. In the healthy scenario (sky blue

colour), the temperature of the bleed air is first reduced by

passing it through PHX. It then increases slightly when com-

pressed by the ACM compressor, after which the temperature

decreases as the compressed air passes through the SHX.

The air is reheated within the RHX and condensed in the

CHX; hence the temperature increases in the hot sides of both

RHX and CHX.

The air is sent through the water separator and again

through the cold side of RHX, where the temperature remains

constant. The air is expanded by the turbine, with the tem-

perature reducing dramatically. This expansion work directly

powers the compressor (on the same spool as the turbine).

After this, the temperature of the expanded air increases when

mixed with the hot airflow, to meet the cabin target temper-

ature, before leaving the PACK outlet. Fig 9(b) shows the

pressure profile, where, in the healthy scenario, the pressure

of the bleed air decreases towards the PHX exit, followed

by an increase in pressure when the air is compressed in the

ACM. When the compressed air passes through the HPWS

components (RHX andCHX), the pressure reduces gradually,

followed by a dramatic reduction when the air is expanded

11446 VOLUME 9, 2021



C. M. Ezhilarasu et al.: Generalised Methodology for the Diagnosis of Aircraft Systems

FIGURE 9. Temperature and pressure profiles for healthy and faulty
scenarios for ECS PACK simulation in SESAC.

through the turbine. This pressure is maintained as the air

passes towards the PACK outlet.

Fault mode ACM 0.6, reducing the mechanical efficiency

of the ACM, gives a lower temperature (fig 9(a)) and pressure

(fig 9(b)) output from the compressor relative to the healthy

case.

Fault modes PHX Fouling and SHX Fouling lead to less

heat exchanged when air passes through the corresponding

heat exchangers, resulting in higher temperatures at their

outlets, as seen in fig 9(a). However, the effect of degradation

in PHX is negated by SHX, but the effect of degradation

in SHX is carried forward into the HPWS, resulting in a

higher turbine inlet temperature. Therefore, the pressure ratio

increases between the turbine and the compressor, as seen in

the pressure profile for SHX Fouling (fig 9(b)).

Fault modes CDP Leak and Low Bleed air Pressure allow

air at lower pressure inside the PACK; hence, they are char-

acterised by lower temperature and pressure profiles, similar

to ACM0.6.

In theTCVStuck fault mode, when the temperature control

valve is stuck at 10 degrees, it only allows air at a lower mass

FIGURE 10. mRMR algorithm for the ECS features selection.

flow rate to pass. Hence the remaining air is cooled down

much more than it should be, as seen in fig 9(a), and pressure

profile is slightly higher than the healthy case.

While all six fault modes have individualistic profiles when

compared to the healthy profile, monitoring all 32 parameters

to detect the current state of the ECS would be tedious,

time-consuming and consume more computational power.

Hence, feature selection is used, similar to the case of the

engine, to choose only the most relevant parameters to the

response variable.

2) DATA ACQUISITION AND DATA MANIPULATION

The ECS digital twin is run in MATLAB R2019b for both

healthy and faulty scenarios. For the ECS model in SESAC,

temperature and pressure parameters are monitored at the

inlet and exit of all ECS subsystems along its path. Using the

mRMR algorithm explained in Section III (A.2), the 34 mon-

itored features are ranked and scored. The features with the

first 15 scores are shown in fig 10. The first two features have

higher scores, followed by a large drop in the scores for the

other features. This drop signifies the confidence level of the

scores of the first two features, implying that, they are better

predictors of ECS health. Hence, the final list of four features

chosen fromfig 10 for the conditionmonitoring and diagnosis

of the ECS are i) Outlet temperature of the compressor (ToC),

ii) pressure from the bleed air system (PBAS), iii) Reheater

cold side outlet temperature (TcoRHX), and iv) Compressor

inlet pressure (PiC).

3) STATE DETECTION

Instead of monitoring all 34 parameters listed in fig 10, the

current condition of the ECS will be detected by monitoring

only the four parameters chosen by the mRMR algorithm,

as shown in fig 11. It can be seen from fig 11 that each chosen

feature is able to distinguish more than one faulty scenario

from the healthy profile. For example, from fig 11(a), ToC

has a distinguished profile for PHX Fouling, SHX Fouling,

and ACM 0.6. Fig 11(b) shows the differences between Low

Bleed air Pressure and CDP Leak. Fig 11(c) has a clear

difference betweenPHXFouling, SHXFouling,TCVStuck,

and the healthy scenario, and fig 11(d) shows a distinction

VOLUME 9, 2021 11447



C. M. Ezhilarasu et al.: Generalised Methodology for the Diagnosis of Aircraft Systems

FIGURE 11. Healthy and faulty case profiles for ECS features selected by mRMR algorithm.

between most of the faulty scenarios. Using a combination

of these four features alone will be sufficient to detect the

presence of a fault in the ECS. Hence, the features ToC,

PBAS, TcoRHX, and PiC form the symptom vector for the

ECS to carry out the required diagnosis.

C. THE FUEL SYSTEM

The primary function of the fuel system is to supply fuel to

the engine and APU at the required pressure and temperature.

In a typical twin-engine aircraft, the fuel system has three

tanks, two in the wings and one at the centre of the fuselage.

Both the engines consume fuel, at pressure, from the centre

tank until it reaches a low level, and then they use fuel from

their respective main tanks. The fuel system transfers fuel

from the tank through the first stage fuel pump, the fuel oil

heat exchanger, fuel filter, and then to the second stage boost

pump. Fuel flow is then measured, after which the fuel enters

the manifold and is supplied to the combustion chamber in

the engine. Since the primary function of the fuel system

depends upon the fuel transfer lines, any failure in these

components could result in safety issues. The possibility of

faults like pump failures, leakage in the fuel pipes, clogging

in the filters, sticking valves, and blockages are taken care

of during maintenance in order to prevent their occurrence

in flight. There are several diagnostic methods developed to

isolate faults to the LRU level to help with troubleshooting

activities [27]–[30].

1) EXPERIMENTAL SETUP

The fuel system is represented by an experimental setup in

the IVHM Centre’s laboratory and is therefore treated as

HIL [31]. A simulation could have been written and used

as in the previous two examples, but the use of a rig for

this example serves to show the flexibility of the overall

approach. The fuel rig shown in fig 12 is a closed loop, where

fuel (water) is pumped from a reservoir R by a motor driven

pumpP that has an internal relief valve, passing through a shut

off valve S, followed by another valve V, a filter F, flowmeters

FM1, FM2, a nozzle N and back to the reservoir R.

The control system is programmed using LabView soft-

ware, and the experiments are run at a constant flow rate or

constant pump speed. The speed of the motor driven pump

on the test rig is controlled by LabView to meet with the

required flow rate or a selected pump speed. Filters, valves,

and nozzles on the test rig are emulated by Direct acting

Proportional Valves (DPV), which are also controlled with

LabView. Faults are injected, at different severity levels, by

controlling the opening rates of these DPVs. Pressure sensors

11448 VOLUME 9, 2021



C. M. Ezhilarasu et al.: Generalised Methodology for the Diagnosis of Aircraft Systems

FIGURE 12. Layout of the fuel rig setup in IVHM centre.

P1, P2 . . . ,P6, are installed to monitor the pressure along the

line, and they are powered by 12.8 VDC power supply. The

laser sensor L, which is used for measuring the pump speed,

is powered by 10-30VDC. The pump motor is powered by

three phase 230/400 VAC at 50 Hz [31].

With the above-mentioned arrangement, the following five

faults are injected into the fuel rig.

Local Faults:

i) Sticking Valve: Fault injected bymanipulating the valve

V by changing the opening rate of DPV from 100% to

90%, 80%, 70%, and 60%, emulating 0% severity of

degradation to 10%, 20%, 30%, and 40% respectively.

ii) Clogged Filter: Fault injected by manipulating the filter

F by introducing severity in increments of 10%, up to

40% degradation.

iii) Clogged Nozzle: Fault injected by manipulating the

Nozzle N by introducing severity in increments of 10%

up to 40% degradation.

iv) Blocked Flow Meter: Fault injected by blocking the

flow meter FM1 by introducing severity in increments

of 10% up to 40% degradation.

Interacting Fault:

v) Reduced flow: Fault simulated by reducing the pump

speed, because of low voltage supplied to the pump

motor M. This is considered as an interacting fault, due

to the involvement of the EPS in supplying reduced

voltage to the pump motor.

With the pressure sensors, along with pump speeds, being

monitored, the fuel rig is first run at the 100% healthy condi-

tion at a constant flow rate of 0.5 litre per minute (lpm), at the

beginning of every experiment. The results from running at

this condition are, as might be expected, highly repeatable.

The health of components is reduced gradually from 100%

to 90%, 80%, 70%, and 60% subsequently by manipulating

the DPVs, giving a block of experiments for each failure

mode.

2) DATA ACQUISITION AND DATA MANIPULATION

For the fuel system, all experiments are initially run at

the healthy condition, followed by fault injection. Readings

from the sensors in the fuel rig are collected at a frequency

of 1 kHz. [31]. The data is collected from the LABVIEW

environment as.lvm files, which are then converted to.csv

files and processed into MS EXCEL for further analysis.

In the fuel rig experiment, there are only six pressure

sensors and a laser sensor for measuring pump motor speed.

Hence, due to the low number of possible features, themRMR

algorithm is not applied here, and all seven parameters are

chosen for state detection and diagnosis.

3) STATE DETECTION

Fig 13 shows the pressure profiles and pump speed variation

during each fault mode while trying to maintain the constant

fuel flow objective.

Fig 13(a) shows the pressure profile for fault mode Stick-

ing Valve, the pressure values at P2 and P3 decrease with

increase in the fault severity. This is consistent with the fault

being injected in the valve (V) that lies between pressure

sensors P1 and P2. The fault results in an increased pressure

drop across the valve, and since the fuel rig is controlled

to run for constant flow, the pressure drop continues to be

observed up to P3. Since the motor pump is controlled to

meet the constant flow of 0.5 lpm, the pump speed increases

with the increase in severity of the fault, as seen in fig 13(b).

The values of P4, P5, and P6 do not change since the pump,

delivering a constant mass flow, shields them.

Fig 13(c) shows the pressure profile and fig 13(d) the pump

speed profile, for a constant flow rate during Clogged Filter.

There is an increase in pressure drop between P2 and P3 as

the filter is located between these two sensors. The pressure

values at other locations remain the same. The pump speed

increase with the severity of degradation to meet with the

constant flow demand, as observed in fig 13(d).

Fig 13(e) shows the pressure profile and pump speeds for

Clogged Nozzle. The nozzle N is located after the pump

between P4 and P5, as shown in fig 12. When this fault

is injected pressure increases at P4, just before the nozzle

location. The rest of the pressure sensor readings remain the

same. It can be seen from fig 13(f) that the pump speed

increases rapidly to meet the constant flow rate demand.

When the Blocked flowmeter fault is injected (fig 13(g)),

it generates a back pressure to the motor pump, and the pump

speed increases to maintain the flow at 0.5 lpm as observed

in fig 13(h). There is no pressure sensor between the pump

and the flowmeter, and hence the pressure profile does not

indicate any change when this fault is injected.

In the case of theReduced Flow fault mode the pump speed

was reduced by 50 rpm per experiment, starting from 400 rpm

to 250 rpm, to emulate the reduced flow in the line. The

response of all pressure sensors is seen through the gradual

change, as observed in fig 13(i), with respect to change in the
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FIGURE 13. Pressure profiles, pump speeds and flows for various faulty scenarios from fuel rig experiment.
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pump speed. The change in flow rate with respect to the pump

speed, as shown in fig 13(j).

Thus, the seven parameters (P1, P2, . . . , P6, Pump Speed)

from the fuel rig experiment form the features for the symp-

tom vector for the diagnosis of faults in the fuel rig.

IV. DIAGNOSIS

Once the features have been shortlisted for being candidates

for the symptom vector for each system, the next step in the

OSA-CBM methodology is diagnosis.

In this article, diagnosis is treated as a multi-class classi-

fication problem, in which, the symptom vector is classified

as belonging to any of the fault class or labelled as healthy.

In order to devise the diagnostics for all three aircraft sys-

tems, the data collected from the experiments are trained

with machine learning classification algorithms and tested

for their accuracy of classification. It is to be noted that the

model-based diagnosis can also be implemented using the

OSA-CBMmethodology. However, they are not tested in this

article, and only data-driven diagnosis is implemented for cre-

ating uniformity in developing similar diagnostic functions

for different aircraft systems.

Data from the chosen features from each use case is

collected and split into training and testing datasets by

Monte-Carlo simulation at 60%-40%, respectively. The

datasets for training are uploaded into the MATLAB Clas-

sification Learner application and trained using various clas-

sification algorithms.

The training uses various supervised machine learning

algorithms in this multi-class classification problem, and

the best performer is chosen for the next stage. The algo-

rithms chosen for comparison are Decision trees, k-Nearest

Neighbor (kNN), Linear Discriminant Analysis (LDA), and

Support Vector Machines (SVM). While the decision tree

algorithm classifies the symptom vector based on rules and

conditions developed using the training sets, the kNN algo-

rithm assigns value to the symptom vector and classifies

based on how its points are when compared to the training

set. The LDA algorithm calculates the means and covariance

matrix for different classes from the training set and classifies

the symptom vector based on its computed values. In the

SVM method, hyperplanes are created based on the classes

from the training set. The symptom vectors are assigned

co-ordinates and are classified based on their distances from

the hyperplanes. The mathematics behind these algorithms

can be found in these references [32], [33], and are not

discussed in this article. Datasets from each aircraft system

are trained using all four algorithms and are tested for their

accuracy of classification.

Table 1 shows the accuracy in classification, i.e., in diag-

nosing fault modes, using the machine learning algorithms,

for each of the aircraft system use cases outlined in this arti-

cle. It appears from the table, and judicious choice of features,

that any of these algorithms could be used to diagnose faults

to quite high levels.

TABLE 1. Accuracy of Classification by Machine Learning Algorithms for
the Diagnosis of Faults in Three Aircraft Systems.

FIGURE 14. Confusion matrices for best classification method for three
aircraft systems.

The LDA algorithm is chosen for the engine diagnostics,

as it shows 99.9% classification accuracy. For the ECS,

all four algorithms show 100% classification accuracy, and

the kNN algorithm is chosen for the ECS diagnostics for

its ease of computation compared to the other algorithms.

The decision tree algorithm is chosen for the fuel system
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TABLE 2. Summary of the Use Cases Demonstrated Using OSA-CBM Methodology.

diagnostics for having 99% accuracy from table 1.

Fig 14 shows the confusion matrix for the best methods for

each of these aircraft systems.

The better performer in each use case is chosen for the next

stage, depending upon the application in which the diagnostic

results are used. For example, if the diagnostic results are

used in aircraft maintenance directly, they can be helpful in

troubleshooting and fault isolation. On the other hand, these

diagnostic results could also be used for remaining useful life

calculations in the prognostic step of OSA-CBM methodol-

ogy, followed by the advisory generation step, which is to

develop suitable maintenance plans for the particular aircraft

system. In FAVER, these diagnostic results will be used in the

next stage of this research work for further reasoning at the

vehicle level to identify cascading faults and root causes.

V. SUMMARY AND FUTURE WORK

In this article, the OSA-CBM methodology has been used

to demonstrate the process of developing system level diag-

nostics for multiple aircraft systems. Table 2 presents a sum-

mary of the use cases demonstrated in this article. In order

to emulate a typical industrial scenario, the digital twin of

each aircraft system has been developed separately and is

isolated from the others. They have various faults injected,

some affecting the local system, and some interacting with

other systems. They have a different number of features

monitored for assessing the health of the systems. Developing

diagnostics for such independent aircraft systems is generally

time-consuming. However, the application of the OSA-CBM

methodology has helped in establishing uniformity in build-

ing the system level diagnostics into the framework. The

developed diagnostic functions in MATLAB can isolate a

certain number of faults, with just a few chosen monitored

features. These features form a symptom vector for each of

the targeted aircraft systems.

While this article demonstrated how the bottom three lay-

ers from FAVER’s schematic in fig 1 (starting from the dig-

ital twin layer to the diagnosis layer) are brought together,

the future work will present how FAVER uses the symptom

vectors generated from these aircraft systems to isolate faults

and their root causes. These papers will also discuss the

architecture of FAVER, the reasoning mechanism involved,

and demonstration of isolation of faults and identification

of the root causes and their cascading effects on interacting

aircraft systems.

LIST OF ABBREVIATIONS

ACM Air Cycle Machine

APU Auxiliary Power Unit

CDP Customer Discharge Pressure

CHX Condensor

DPV Direct acting Proportional Valves

ECS Environmental Control System

EPS Electrical Power System

FAA Federal Aviation Administration

FAVER A Framework for Aerospace Vehicle

Reasoning

FOD Foreign Object Damage

HIL Hardware-in-the-loop

HPC High Pressure Compressor

HPT High Pressure Turbine

HPWS High Pressure Water Separator

IVHM Integrated Vehicle Health Management

kNN k-Nearest Neighbour

LDA Linear Discriminant Analysis

LPC Low Pressure Compressor

LPT Low Pressure Turbine

LRU Line Replaceable Unit

MI Mutual Information

MIQ Mutual Information Quotient

mRMR minimum Redundancy Maximum Relevancy

MRO Maintenance, Repair, and Overhaul

OEM Original Equipment Manufacturer

OSA-CBM Open Standard Architecture for Condition

Based Maintenance

PACK Passenger air conditioner

PBAS pressure from the bleed air system

PHX Primary Heat Exchanger

PiC Compressor inlet pressure

Pt_AfCDP Pressure at the exit of bleed air duct

Pt_S24 Pressure at LPC exit (station 24)
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RHX Reheater

SESAC Simscape Environmental control system

Simulation under All Conditions

SHX Secondary Heat Exchanger

SVM Support Vector Machine

TcoRHX Reheater cold side outlet temperature

TCV Temperature Control Valve

TFSC Thrust Specific Fuel Consumption

T-MATS Toolbox for Modeling and Analysis of

Thermodynamic Systems

ToC Outlet temperature of the compressor

Tt_S5 Temperature at LPT exit (station 5)
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