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Trustworthy Deep Learning in 6G Enabled Mass

Autonomy: from Concept to Quality-of-Trust KPIs
Chen Li, Weisi Guo, Schyler C. Sun, Saba Al-Rubaye, Antonios Tsourdous

Abstract—Mass autonomy promises to revolutionise a wide
range of engineering, service, and mobility industries. Coordi-
nating complex communication between hyper-dense autonomous
agents requires new artificial intelligence (AI) enabled orchestra-
tion of wireless communication services in beyond fifth generation
(5G) and sixth generation (6G) mobile networks. In particu-
lar, safety and mission critical tasks will legally require both
transparent AI decision processes, and quantifiable Quality-of-
Trust (QoT) metrics for a range of human end-users (consumer,
engineer, legal). We outline the concept of trustworthy autonomy
for 6G, including the essential elements such as how Explainable
AI (XAI) can generate the qualitative and quantitative modalities
of trust. We also provide XAI test protocols for integration
with radio resource management and associated key performance
indicators (KPIs) for trust. The research directions proposed
will enable researchers to start testing existing AI optimisation
algorithms and develop new ones with the view that trust and
transparency should be built in from the design through to the
testing phase.

Index Terms—Machine Learning; Deep Learning; Trust; XAI;
6G; Mass Autonomy

I. INTRODUCTION

As 5G networks roll out across the world, researchers

are sewing the seeds for the ideas and technologies that

will shape future 6G mobile networks. 6G networks are

likely to be increasingly integrated with hyper-dense mass

autonomy, where intelligent agents (from mechanical robots to

data analytic engines) are complementing and supplementing

human labour across a diverse range of local industrial,

commercial, agricultural, and mobility services. Internet-of-

Autonomous-Things (IoAT) will require highly tactile and

robust wireless communication channels. This will increase the

network complexity in safety critical operations, and therefore

Quality-of-Trust (QoT) requirements are necessary from legal,

safety, and ethical reasons. Although AI is anticipated to be

an enabler - to optimize high dimensional network resource

management from the bottom to top layer [1], many deep

learning algorithms’ low transparency in processing logic leads

to difficulties in exploring model transparency and uncer-

tainty. In turn, this risks undermining the human trust in AI-

empowered services, and slow down their ubiquitous adoption

in real systems. Here, we attempt to describe both a technology

agnostic approach for 6G - adding a trust brokerage, but also

give wireless specific examples to aid understanding.

The legal requirements for an all data-driven autonomy

requires decisions to be explainable to human beings to
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Fig. 1. Relationship Between the Proposed Quality-of-Trust (QoT) with
Traditional Motions of QoS and QoE for Diverse Wireless Services.

enable transparency and pave the way for legal responsibility.

After all, communication channels are increasingly responsible

for safety-critical tasks such as autonomous driving, remote

surgery, and manufacturing. Legally, the General Data Pro-

tection Regulation (GDPR) in EU propose ”right to explana-

tion” that request machine learning models provide reasoning

through dyadic statements. As such, AI orchestration of re-

sources (communication, computing, storage) in 5G beyond

and 6G will need to offer QoT in additional to the current

Quality-of-Service (QoS) and Quality-of-Experience (QoE)

targets. As we expand our use of autonomous systems, trust

and the associated KPIs to measure it will become increasingly

important.

A. Trust of XAI in 6G Autonomy

Orchestration of diverse service requirements in 5G and

beyond has led to the proposed adaptation of deep learning

optimisation approaches to overcome growing complexity. For

example, in the PHY layer, deep learning’s high-dimensional

ability to achieve effective non-linear channel equalisation

can enable new levels of QoS in highly complex scatter rich

channels without channel state information (CSI) [2]. In the

MAC layer, deep Q-network (DQN) is used to optimise a

variety of high-dimensional dynamic RRM challenges includ-

ing unmanned aerial vehicle (UAV) relay joint navigation and
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Fig. 2. 6G Network Slicing and Trust Broker for Different Applications and End User Stakeholders. The Trust Broker Translates AI Algorithms into
Explainable Outputs.

communication [3]. Deep Learning (DL) can in many complex

cases improve performance compared to classic approaches

(DSP, SVM, Bayesian inference), especially in the absence of

explicitly accurate models. However, the lack of transparency

in its reasoning yields a lack of human trust. As such, whilst

the design logic of DL and Deep Reinforcement Learning

(DRL) is clear, the data features’ propagation and the logical

reasoning processes are not.

Our increased demand for mass autonomous prompt the

requirement of trust metrics, such as our proposed Quality of

Trust (QoT). As shown in Fig. 1, there is increased emphasis

from new services on high trust - ranging from remote surgery

(high trust, high QoS & QoE) to industrial robotics (medium

trust, but low QoS demand). These will sit alongside current

telephony and multimedia services that require very little trust,

but a large variation in QoS/QoE. To achieve trust of AI

wireless resource orchestration, we will propose the need for a

trust broker entity in future wireless networks - see Fig. 2. This

entity can produce a variety of visual, textual, symbolic ex-

plainable outputs, offering reasoning to deep learning actions

embedded in the base stations. The reasoning outputs speak to

human stakeholders in a variety of applications, ranging from

engineering experts to end-users. As such, a range of KPIs

and test scenarios should be developed. Considerations should

include human psychology and philosophy aspects and a high-

quality XAI model should have the ability to clarify itself in

human-understandable ways (different modes) based on their

purpose.

B. XAI and QoT in Future 6G Network Slicing

Mass autonomy in 6G will demand localized sub-network

slicing for diverse and dynamic service demands (incl. trust

in safety critical multi-modal actions). Therefore, current

Software-Defined Networks (SDN) in 5G will need to adapt

its network slicing (NS) to meet rapid multi-modal service

requirement transitions in hyper-dense autonomous system

environments [4]. AI-empowered 6G is envisaged to grant

BSs with edge intelligence by embedding high speed, precise

and robust AI algorithms to ensure safety critical multi-modal

mass autonomy in localized sub-network settings, as shown

in Fig. 2. Current 5G network slicing has virtually split the

network into different independent slices according to service

types (e.g. eMBB). Future AI-empowered slicing in 6G will

be more fine-grained at the sub-network level and allocate by

different new human-centric requirements (e.g. QoT for safety,

ethics). Simultaneously, XAI can explain behaviors of mass

control systems in both individual instances and overall policy,

combined with system performance as important evidence in

continuous trust supervision of 6G services.

C. Current Work, Novelty, & Organisation

In current research, uncertainty propagation in neural net-

works with different structure is analysed in [5]. Trust in

6G physical security is analysed and defined in [4], but lack

analysis of mobile resource management trust. In the work of

[6], initial and continuous trust in AI are defined but lack

test protocol studies, and a recent EU ‘EASA Road Map’

defines trustworthiness and risk profiles for aerial autonomous

systems, but lack consideration of 6G and trust quantification.

In this article, we focus on reviewing the relevant concepts

of trust for 6G RRM automation. We focus on mapping the

technical aspects of XAI to the psychological aspects of trust

in the context of wireless networks. We develop potential

trust test protocols and key performance indicators (KPIs)

that map AI architecture, performance, to trustworthiness.

Firstly, we introduce deep learning model explainability, an
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Fig. 3. Mapping between Explainable AI to Trust: Demonstration of a) Directions, b) Modes, c) Methods and Their Relationships

important concept in the trust of AI. Secondly, we articulate

the methodological approaches in explainability, spanning

different modalities and depth. Thirdly, we design trustworthy

KPIs and the test protocols for trust in 6G enabled autonomy,

factoring in both quantitative physical trust and qualitative

emotional trust.

II. EXPLAINABILITY OF AI

Globally implementation of AI in a variety of industries has

raised the attention of legal issues regarding both its reliability

(e.g., variability and robustness of performance to diverse

circumstances) and the provenance of reasoning (e.g., which

data features caused which decisions). We define the concepts

of research direction, mode of analysis, methods, and KPIs

for both explainability and trust in Fig. 3. Explainability is

extracted from different characteristics of ML models with

multi-level expression of reasoning in statistics, semantics,

mathematics, and vision.

A. XAI Research Directions: Integrated and Post-hoc for

Local and Global Interpretability

We envisage that a request for explanation maybe demanded

either post-event or continuously during reasoning (operations)

- see Fig. 3-a). In either case, the request should specify the

direction or granularity in which the reasoning needs to be

made (e.g., at the local or global reasoning level, and at the

post-hoc or integrated level.)

Integrated interpretability directly extracts explanations

from the ML model structures and processing logic [7]. The

structural complexity of ML models limit current integrated

interpretability to only models with low complexity. Some

low-dimensional classifiers (e.g. decision-tree or Naı̈ve Bayes

based channel state prediction models) could directly be

explained by its processing logic. But models with complex

structures, like deep neural network (DNN) or support vector

machine (SVM) based RRM optimizing models, are hard

to be explained due to complex multi-layer connections or

hyperplanes.

Post-hoc interpretability twin-system approach proposes to

explain the AI model by using high transparency (white-box)

systems (like decision trees, linear models) to mimic/mirror the

AI model after training. The twin-system can roughly explain

black-box models (e.g. DNN, DQN) [7] at the risk of poor

approximation or over-fitting to a particular training set.

Local and global explanation indicates the granularity

scope. Local explanation examines an individual prediction

while global explanation explains the operational logic of the

entire ML model behaviour [8]. As in Fig. 2, complex service

slice handover decisions between BSs can be explained by

local explanations (e.g., the mobility and data demand of one

service), but can also be explained by the overall handover

policy that governs the process.

B. Different Modes of Generating Explainability

The modes indicate methods to extract and generate the

compositions of explainability from learning models, guides

the turning of learning model into explainable learning model

(Integrated), or the analysed explanation based on the output

of models (post-doc) as shown in Fig. 3-b).

1) Structural Mode: Use simple models: low complexity

in structure can generate logical explanations at the perceptual

level to be accepted by users, the backtracking of the decision-

making process from decision tree can directly generate ex-

planation. Symbolic classification can also relate to physical

laws or well-established optimisation results (e.g. water-filling

or channel inversion).

Design explainable models: the machine learning models

are reconstructed by interactive sections that process sub-tasks

respectively from the overall prediction task, and each section

and interaction could be inherent architecturally explainable.

Sub-modular Pick Local Interpretable Model-Agnostic Ex-

planations (SP-LIME) [9] generates reliable non-redundant

explanations globally by using a set of representative-enough

instances from LIME (a surrogate model introduced later)

see - Algorithm 2 in Fig. 4; it iterates to greedily find the

explainable set by the softmax of instance coverage then let

users choose interested cases themselves and track the raw

data.

2) Statistical Mode: Sensitivity analysis: the gradient of

input features respect to a label can give out which part

contains the most influential information while doing decision.

For instance, Layer-Wise Relevance Propagation (LRP) [10]
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Fig. 4. Demonstration of Surrogate XAI Model: Mapping 6G Optimisation (3) to XAI Local (1) and Global Algorithms (2).

allocates each input with a relevance score to intuitively anal-

yse the contribution of each layer in DNN by the proportion

for each neuron output between each layer pair.

Train surrogate models: similar to twin-system, surrogate

models [11] ideally use a simple-structured model to fit the

output of a complex model. LIME [9] in Fig. 4-Algorithm 1, is

a model-agnostic algorithm, explains the complex prediction

by approximation of the local case via an interpretable model

(e.g. linear regression). Authors in [12] proposed a method to

build a soft decision tree created by DNN, to makes hierarchi-

cal decisions with the ability to provided better generalizations

and robustness to unlabelled data.

3) Human Perception Mode: Using Examples/ Compari-

son (Cases Based): Similar/opposite cases can guarantee users

with confidence in the reason why AI models handle the

recent problem in a specific way or not. Case-Based Reasoning

(CBR) could select relevant similar cases from database by

selecting items with minimum distance to give out the reasons

for model predictions.

Generate Explanations: Linguistic explanations could be

one of the most powerful and intuitive explanations which

should extract the interaction and logic from features, generate

semantic sentences and cooperate with visualisation methods

to demonstrate intuitive explanations. Authors in [13] proposed

a method to generate linguistic explanation by using the

coupling of visual recognition and text definitions, which

generate an understandable high-leveled explanation of the

prediction.

C. Methods of Explainability in 6G Mass Autonomy

Previously, modes defined where and how to generate

explanations from ML models. Methods guide the way to

demonstrate the explanation to human users, based on their

individual demands and different knowledge backgrounds. We

define 1) experts: sufficient background knowledge, designer

for learning logic; 2) trained-users: sufficient background

knowledge in specific area, designer of applications; 3) end-

users: lack specific background knowledge, user of designed

applications. XAI resolutions are divided into 3 methods

based on different dimensions of their demonstration: raw

explanation for experts, summative explanation for trained-

users and cognitive explanation for end-users, which explain

the learning model from abstract to concrete as shown in c),

Fig. 3, details are listed as follows.

1) Raw Explanation: Data is the most direct, meaningful

and detailed explanation in ML models, the raw explanation

highlights the features with high contribution to the decision-

making, which contains rich unbiased and unmodified raw

information (e.g. Trust Broker in Fig. 2 provides activation

map, gray-scales and derivatives to supervisors), but lacks

expressions in logic (why and how extracted features coop-

erated). For example, In 6G RRM, underlying data response

in the MAC layer extracted and used by ML models could help

experts understand the output resource allocation, and dig out

problematic channels refers to the features.

2) Summative Explanation: Summative explanation using

design explainable models and surrogate models (high trans-

parency ‘white box’) mentioned above, generates smoothing

and fitted explanations based on the processing of statistics

from low transparency ‘black box’. As Auto-drive tasks in

Fig. 2, the decision flow of on-board autonomous model is

not visible from Raw Explanation explanations, especially for

CNN encoded high dimensional features, while summative

explanation could generate a fitted symbolic expression (e.g.

Meijer G function) of the DL model to clarify the relationships

among inputs in formula expressions. But during the extraction

process, meaningful sharp data (such as outliers) could be

ignored that add difficulty in data trace to experts.

3) Cognitive Explanation: For end-users who without the

ability and interest to comprehend summative explanations,

a clearly semantic or visualised explanation will be needed.

Simple models (e.g. decision tree), high transparency surro-

gate models could propose the simple and basic information
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needed. Cognitive explanation will conclude the evidence to

clarify the prediction in human-understandable linguistic and

visualized explanations, but highly concluded explanations

ignore some value details and break the information integrity

that important for experts and trained-users.

Explainability introduced above could increase the trans-

parency of autonomy and help the development of trust super-

vision in 6G environment. Take service delivery as an example

in Algorithm 3 in Fig. 4. Here, we demonstrate mobility and

resource allocation, and how XAI can be used to understand

AI reasoning:

- We start with user u under high mobility transfer into an-

other sub-network (Fig. 2). As the mobility request is received,

the local sub-BS b will allocate the user to uRLLC network

slice. It will then analyze its priority φ(u) and achievable rate

c(u), and allocate the user with individual weight k(u) and

re-optimize the resource allocation.

- During the optimization, 5G RRM uses policy-driven

optimization that calculates the utility of each slice and find

solutions based on different baseline methods like Socially

Optimal (SO) and Static Slicing (SS) [14]. This basically

meet the requirement in different targets (e.g. SO: maximize

overall utility; SS: unilaterally optimize node), but lack the

balance of these factors due to modeling clashes. As such,

deep learning (fb) can overcome the clash by finding new high

dimensional nonlinear models to replace these explicit policy-

driven optimization. As network slicing greatly increased net-

work efficiency, we demonstrate how XAI-modes introduced

explain RRM in network slicing in Fig. 4 with the numbered

flow steps:

1) To achieve XAI: the sub-BS provide LIME (surrogate

model in statistical mode) for fb and optimisation in-

stance x;

2) LIME then generate i surrounding perturbation instances

zi, and use the model fb to make predictions based on

the set of zi;
3) fb send back the predictions and LIME use the predic-

tions to find local approximate linear explanation;

4) To globally explain fb, SP-LIME request a set of in-

stances X used in performance model fb;

5) SP-LIME send each instance x into LIME for local

explanations;

6) LIME select local explanations to SP-LIME, and SP-

LIME greedily find K most representative explanation

sets V to globally explain the model fb.

As such, we have demonstrated both local and global

explanations, both of which are important for trust, e.g. local

is for understanding specific feature importance in decisions,

whereas global is for the overall optimisation balancing be-

tween competing demands. Now that we have algorithmic

understanding of DL reasoning, we must develop trust metrics

to translate between explainability and human perception of

trust. As different services have different QoT requirements,

trust analytic and supervision detailed in the next chapter can

better guide decisions on whether trust requirements are met

in a continuous manner.

III. TRUST IN 6G ENABLED MASS AUTONOMY

“Trust” is a highly abstract conception, indicating the

reliability of technology and willingness of users to trust

the performance. In order to quantify the trust in 6G, we

define Trust: T (m) for an explainable DL model m, which

is composed by a set of sub-models M = {m′

1
,m′

2
...m′

n},

calculated by a linear combination of physical trust P (m)
and emotional trust E(m), adjusted by a coefficient α as

shown in equation 1. According to the phenomenon proposed

in [15] that users may not need explanations from systems with

extremely high accuracy, or systems they can not participate

in, Trust of highly autonomic models should depend more

on physical trust while multi-model-human-interaction models

should be allocated more weight on emotion trust than that of

physical trust.

T (m) = αP (m) + (1− α)E(m) (1)

A. Physical Trust of AI Model

P (m) is quantified by a product of model’s robustness

R(m), accuracy A(m) and explainability, where explainability

calculated by division of transparency τ(m) and complexity

C(m) as:

P (m) = R(m)τ(m)
A(m)

C(m)

= R(m)τ(m)
adm(

∏
m′

n
∈M am′

n

)
∑

m′

n
∈M Ωgn(ω(m

′
n))/n

,

(2)

The parameter A(m) is a combined-accuracy-indicator in

(0, 1), which equals to the product of accuracy for each sub-

model am′

n

with different functionalities (inner accuracy for

fitting and explaining), and overall prediction accuracy am
(prediction accuracy) powered by an importance-adjust factor,

d to adjust the importance of prediction accuracy in overall

system performance. For example, accuracy of system in Fig. 4

is calculated by both the accuracy of NS resource allocation

model and explain model LIME/SP-LIME.

Legal commercial DL model should not use confidential

personal data without permitted by users. Transparency τ(m)
is a rate of visible features to all input features and that

of sensitive information encryption. The data used in model

training may contain personal or confidential information, that

affects data privacy in 6G communication, but encryption

algorithm (e.g. Hash) could be imported to convert the original

data into training set without losing information and will be

studied in future research. In [15], Glass et al indicate that the

participation of human users can also be seen as part of system

transparency, which will be quantified as a part of emotional

trust introduced later.

Complexity C(m) is highly dependent on the inner al-

gorithms of models with different structures and processing

logic. In formula 2, G is a set of all learning models (DT,

NN, DNN, DRL, etc.), gn is the model type of m′

n, g ∈ G;

function ω quantifies the structural complexity for sub-models

(for DT, the depth; for DNN, the number of hidden layers);

function Ω calculates the complexity indicator for sub-model

m′, based on its model type gn; a balance of complexity should
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be considered in Ω when multi-models cooperating to make

explanations and decisions, we take the average complexity of

sub-models in this article.

Assume the complexity C(m) is stable, models with low

accuracy in each sub-model will not have the ability to gener-

ate high accuracy in overall prediction. Models with high inner

accuracy, but low in overall prediction will have lower physical

trust. Whilst, if the complexity of the model could be reduced

with the same performance, the physical trust will rise to

indicate the advancement. Issuers should make improvements

based on their prototype project by argmax(P (m)) and using

the physical trust as an evolutionary indicator.

B. Emotional Trust from Human Experts and End Users

The emotional trust parameter E(m) can not directly be

sensed and analysed from the physical structure of model

m, but can be sensed from emotion changes collected by

brain-machine interactions in future 6G environment [8], or

a questionnaire on user experiences. In order to quantify

emotional trust, the testing institution needs to organise a

test group with q participants {t1, t2..., tq} ∈ T . Daily trust

baseline indicates the willingness of trust for each individual,

and could affect their choice in emotional trust test (emotional

changes will make people highly or lowly willing to trust).

Continuous testing of the individual baseline is necessary

that those with unstable moods should not participate in the

emotional trust test [8]. As shown in equation 3, accepted

testing data γ(t) will be fine-tuned by a factor l(t) based on

the willingness gap between the daily baseline and long-term

baseline of individual participants.

E(m) =
1

q

∑

t∈T

l(t)γ(t) (3)

The models with soft decision tree are important for vi-

sual recognition, which is a critical element in real world

autonomous system safety and trust. As such, we envisage

that visual data is important in 6G mass autonomy support.

We analyze the physical trust of models from [12] (DNN, DT

and soft-DT) to demonstrate our framework, with assumptions

that the robustness and transparency of these models are the

same in Table I. We take function Ω for DT as a linear

function ΩDT (x) = 1/4x that the explainability of DT is

linearly influenced by it depth and a exponential function

ΩNN (x) = 2x for DNN according to the difficulty to open

network structures; and importance-adjust factor d = 2 as

demonstration. Please note that these are intended only as

proof of principle, the main contribution is the framework

itself rather than any specific algorithm or parameter settings.

TABLE I
PERFORMANCE TABLE FOR MODELS IN [12]

Models Accuracy DNN DT Physical Trust

DT 94.45% None Depth:8 0.22302
DNN 96.86% Hidden Layers:3 None 0.11727

DNN-sDT 99.22% Hidden Layers:3 Depth:4 0.19689

According to physical trust above, roughly, we consider the

pure decision tree as the best model that DNN is too difficult

to be explained, although the using of DNN-sDT significantly

prompt the accuracy of overall model, its physical trust result

influenced by the complexity indicator with the intervention of

DNN, but considering robustness, transparency and emotional

trust of models in real-use, the conclusion could be different

for specific tasks. As for precision machining, high accuracy

is the most significant; for large-scale systems like heavy

industry, equipment, labor and material dispatch, the overall

explainability is important that human supervisor could fine-

grained monitor the overall processes and states. Chemical

plant and vehicle transport systems, both explainability and

precision are needed, and scenarios in this area highly depend

on physical trust.

IV. TESTING PROTOCOL FOR 6G MASS AUTONOMY

With the explainability of learning models guarantee trans-

parency, KPI quantifies the trust of learning models, we pro-

posed a trust testing protocol in Fig. 5 for smart products, both

initial trust test (before it launched in real use) and continuous

trust test (after implement in real-world environment) should

be completed to guarantee security and legality. The rating of

learning models should be completed by qualified third-party

institutions using a uniformed criterion rather than the product

issuer.

Trust Band in dashed box of Fig. 5 is designed to justify

which level of trust does the model achieve, layered from

high to low, as ’totally trusted’; ’totally trusted with risk’;

’highly trusted’; ’partly trusted’; ’low quality’ and ’fail’.

Totally trusted level contains models that could directly affect

human safety (like auto-break in 6G autonomous vehicles),

should achieve high accuracy and none failures while running;

in continuous trust testing of totally trusted models, once

failure observed by AI supervisor, the model will be layer-

downed into ’totally trusted with risk’, and the failure case

will be reported to human supervisors to decide whether the

product needs rebuilding. But in some processing industries,

high accuracy is more necessary then trust band (e.g. precision

machining), for whom, the trust band could be ’highly trust’,

with high accuracy but allow low probability of failures.

The newly released product should be analysed by the

issuer, and upload the testing request to the third-party insti-

tution, with a packet contains: the product, its demo/running

data, expected method of explainability and trust band. A

group of experts will be organised to define the participation

of different layer users in emotional test, based on the ex-

plainability methods introduced above, for example, AI-based

transport control will need raw explanations in 70% cases,

and 30% summative explanations, the test group should be

allocated 70% developers and experts, and 30% trained users.

By analysing the monitored data from the 6G test environment,

whether the smart product is accepted or not will depend on

the trust report generated from the physical test result and

the emotional trust test result. Once accepted, the model will

be implemented into real-world environment and be handed

over to continuous trust supervision mentioned earlier; if not
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Fig. 5. Trust Testing Flow Chart for New Released AI Models and Algorithms.

accepted, or human supervisors define the model is risked after

’totally trusted’ model labeled as ‘totally trusted with risk’,

the model issuer should recall the product, modified it, and

re-request for trust testing.

V. CONCLUSION AND FURTHER RESEARCH

In this article, we are the first to attempt to quantify trust

of AI in a future wireless communication and 6G context, and

outline the KPIs and testing protocols to guide its development

to work alongside legal frameworks and standards. Here, we

do assume a technology agnostic approach for 6G, adding a

trust brokerage alongside current and new wireless technolo-

gies. The KPI and test protocol guarantee universality that the

KPI and testing protocol could be used in all learning models

and scenarios. We outline a number of promising local and

global XAI methods, ranging from post-hoc explainability to

integrated design. Our proposed KPIs factor in both AI model

accuracy and complexity, as well as their explainability and

human emotional trust.

For future research, the measurement of model complexity

ω and Ω in function 2 based on different algorithm structures

should be defined at finer scales and these functions need to

catch up with the rapid development of AI. The importance

of applying brain-machine interactions in emotional trust is

significant, and the influence factor l(t) in function 3 needs to

be clearly defined based on the long-term emotional trust gap.
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