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Appendix 1 – Environmental Models 

 

A1.1  Gravity Model 
The gravitational attraction of the Earth is by far the strongest influence in near-
Earth space, and approximates a spherical field. In this simplification, the attractive 
force vector between the Earth and a body in near-Earth space has a magnitude of... 
 

2
r

GMm
F =  

 
...in which G  is the universal gravitational constant, M  is the mass of the Earth, m  

is the mass of the body and r  is the distance between the body and the centre of 
the Earth.  

 
 

A1.1.1  Spherical Harmonic Effects 
A1.1.1.1  Zonal Harmonics 
This simple model ignores the fact that the Earth is not a uniform sphere. In reality, 
the shape of the Earth approximates more closely an oblate spheroid with an 
oblateness of 1 part in 298.257. This oblateness arises because the Earth is rotating 
about its polar axis, generating a centrifugal force which increases with co-latitude. 
 
The equatorial bulge of the Earth tends to strengthen the gravitational attraction at a 

given geocentric altitude above the equator. This phenomenon is known as the 
2

J  

effect, after Sir Harold Jeffreys.  
 

 
 

Figure A1-1  Sir Harold Jeffreys 
 

2
J  is, however, just the strongest term in a series of zonal harmonics which describe 

the variation of the magnitude of the gravitational force vector in near-Earth space. 
The complete expansion of the magnitude of the force vector at a given latitude φ  

with respect to these harmonics is estimated as follows, after the geopotential 
equation set out by mit.edu (2007). 
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The value of the 
n

J  terms in the expansion must be determined by examination of 

the orbits of low-drag spacecraft. The first few terms are... 
 
 

2
J  1082626 x 10-9 

3
J  -2530 x 10-9 

4
J  -1624 x 10-9 

5
J  -245 x 10-9 

6
J  543 x 10-9 

 
 

The 
n

P  terms in the expansion are the Legendre polynomials, the first few terms (
0

P  

and 
1

P  neglected) and general form of which are as follows... 
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Each term describes a different variation in the gravity field. For example, the 
2

J  

effect describes the equatorial bulge, 
3

J  describes a tendency towards a three-

petalled profile, 
4

J  towards a four-petalled profile, and so on. 

 
 
A1.1.1.2  Sectoral and Tesseral Harmonics 
As well as zonal harmonics, which produce bands of constant deviation from the 
spherical field along lines of latitude, there are sectoral and tesseral harmonics. 
These harmonics produce a similar effect with varying longitude, which is denoted by 
λ . To calculate their effect, the harmonic approximation must be expanded further 

to accommodate some new terms. 
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The normalised constants 
ml

C
,
 and 

ml
S

,
 (in which lm ≤ ) are analogous to the 

n
J  

terms, and have been calculated in the same way. The first few are as follows... 
 
 

l  m  C  S  

2 1 -1 x 10-9 -3 x 10-9 
2 2 2438 x 10-9 -1399 x 10-9 
3 1 2029 x 10-9 250 x 10-9 
3 2 904 x 10-9 -616 x 10-9 
3 3 723 x 10-9 1415 x 10-9 

 
 
The Legendre expansion itself must also be expanded more fully to provide terms of 
degree l  and order m , again with lm ≤ . The first few terms and the general form 

are as follows... 
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Finally, the normalising factor 
ml

N
,
 can be given as follows... 
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Incidentally, a harmonic is known as a sectoral harmonic when ml = , and as a 

tesseral harmonic when ml ≠ .  

 
 

A1.1.1.3  The Sum of the Zonal, Sectoral and Tesseral Harmonics 
The effect of zonal, sectoral and tesseral harmonics on the magnitude of the 
gravitational force vector may be illustrated by considering their effect on the shape 
of the geoid. The geoid is simply a three dimensional shape, the surface of which has 
a constant gravitational potential. If there were no tides, currents or winds, sea level 
across the globe would conform to the geoid. 
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Figure A1-2 below illustrates the different effects of the harmonics. Zonal harmonics 
produce variation with latitude, sectoral harmonics produce variation with longitude 
and tesseral harmonics produce variation in both. 
 

 
 

Figure A1-2  Zonal, sectoral and tesseral spherical harmonics 

 
The WGS-84 gravity model has harmonics to degree and order 180, but in practice a 
good gravity model, such as the Goddard Earth Model 10B described by Lerch 
(1981), will go to degree and order 36 and describe the surface of the geoid to an 
accuracy of 1 m.  
 
An approximation of the surface of the geoid is found in Figure A1-3. 
 
 

 
 

Figure A1-3  The geoid, adapted from fredonia.edu (2006) 

 
The red area in the north Atlantic illustrates a region where the geoid rises to about 
65 m above a perfect oblate spheroid with oblateness equal to 1 part in 298.257. 
The purple area south of India represents a dip to 104 m below the perfect spheroid. 
This implies strong gravity over the north Atlantic and weak gravity south of India. 
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A1.1.2  Non Spherical Harmonic Effects 
Until recently, it had been observed that the geoid was becoming progressively more 

spherical, in particular due to a gradual reduction in the strength of the 
2

J  

harmonic. This was, and still is, thought to be due to the ongoing upward motion (or 
isostatic rebound) of the north polar region, which until the end of the Pleistocene 
(approximately 15,000 years ago) had been pressed downwards by the weight of 
vast ice sheets. The south polar region was less affected because the Southern 
Ocean prevented the ice sheets from spreading beyond the Antarctic continent.  
 
However, it has been observed by Cox (2002) that this process reversed in 1998 and 
the Earth has been growing more oblate ever since. The causes of this phenomenon 
are not fully understood at present, although a redistribution of the oceans due to 
changing current patterns may be to blame. In particular, increased melt rates of the 
northern ice cap may be strengthening fresh south-bound currents such as the 
Labrador and West Greenland current.  
 
 

A1.1.3  The Simulation Model 
The MathWorks provide a model (WGS-84) in their Aerospace Blockset which goes to 
degree and order 180, but licensing is very expensive and the extra calculation 
involved is appreciable. During the simulations of the deorbit device one copy of this 
model was used as a control, but the vast majority were carried out using a much 

simplified model which evaluates the 
2

J  term only.  

 

The 
2

J  term is perhaps 500 times stronger than the next strongest harmonic and is 

also stronger than the lunisolar perturbations up to the altitude of GEO. It is 
therefore reasonable to assume that the perturbations caused by these factors will 
be negligible in LEO. This assumption is borne out by the similar behaviour found in 

response to the control WGS 84 model and the simplified 
2

J -only model. 

 
To simplify the determination of a usable force vector, the grad operator is removed 
and the following approximation used. This approximation will give a good 
approximation of the vertical component of force at the expense of neglecting the 
horizontal component. 
 
 

( )




















−= ∑

∞

=2

2
sin1

n

n

n

n
P

r

R
J

r

GMm
F φ  

Appendix 1 – Environmental Models > Gravity Model > Non Spherical Harmonic Effects  



 220 

A1.2  Atmosphere Model 
The aerodynamic load experienced by any device moving through the upper 
atmosphere will be proportional to the density of the rarefied gas found there, but 
according to King-Hele (1987) this density is notoriously difficult to predict.  Density 
variation exhibits some regularity in response to generally predictable factors such as 
altitude, solar activity, time of year, time of day and the local latitude; but also 
occurs in response to largely unpredictable factors such as the geomagnetic index 
and the presence and strength of any El Niño effect.  

 
 

A1.2.1  Factors affecting Atmospheric Density 
A1.2.1.1  Behaviour in response to Altitude 
According to King-Hele (1987), altitude is the single most important factor 
influencing the density of the atmosphere. Density falls from an almost constant 
value of 1.225 kg/m3 at sea level (with perhaps 2% variation in deep Atlantic 
depressions) to 1 g/km3 at between 400 km and 600 km, depending on the state of 
the factors described above.  
 
As one ascends through the lower atmosphere, turbulence thoroughly mixes all the 
different gas species and ensures homogeneity. However, at 90 km to 100 km 
turbulence begins to weaken, fading out completely at an altitude known as the 
turbopause. Above this level the constituent gases tend to separate into fractions 
according to their molecular weights. 
 
This stratified structure tends to interrupt the expected continuous exponential 
reduction in density and separates it into a series of different exponential decay 
zones, each fading seamlessly into the next. As would be expected, the denser 
species such as nitrogen and atomic oxygen predominate at lower altitudes (up to 
approximately 170 km and 500 km respectively), with helium and hydrogen 
becoming increasingly important at higher altitudes. 
 
 
A1.2.1.2  Behaviour in response to Solar Activity 
The sun exhibits an eleven-year activity cycle, characterised by a rapid rise in activity 
for approximately four years, followed by a more gradual decline. The activity is 
primarily defined by the F10.7 index which may, over the course of a typical cycle, 
progress from 80 x 104 Jy up to 220 x 104 Jy, followed by a slow reduction back to 
the original level.  
 
The eleven-year solar cycle has been recorded since the 1600s because it is closely 
tied to the number and latitude of the easily-observable sunspot population. As a 
result of this long recorded history, the solar cycle which peaked in 2000 – 2001 was 
designated cycle # 23 and detailed predictions for the F10.7 index over the course of 
that cycle were made beforehand by NASA (1996). 
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Figure A1-4 Solar activity prediction for Cycle 23 (reproduced from NASA (1996)) 

 
High solar activity is associated with large numbers of high-energy photons. These 
photons heat the atmosphere, causing the lower strata to expand upwards and 
increase the ambient density in LEO. 
 
In previous years, high values of the F10.7 index have been associated with 3-, 8- and 
20-fold increases in atmospheric density at 250 km, 400 km and 600 km respectively. 
 

 
A1.2.1.3  Behaviour in response to Time of Year 
In a typical year, after the effects of solar activity have been removed, the 
atmospheric density shows maxima in April and late October and minima in January 
and July. The second annual maximum and minimum tend to be stronger than the 
first, and the strength of the effect as a whole is inversely proportional to the solar 
activity level.  
 
 
A1.2.1.4  Behaviour in response to Time of Day 
As the sun rises over any region of the Earth’s atmosphere, it heats the gases and 
causes thermal expansion. As before, this causes the lower layers of the atmosphere 
to expand upwards, increasing the density at higher altitudes. 
 
The peak density at any altitude above approximately 200 km tends to occur at 
around 1400 h, whilst the minimum density occurs at around 0400 h. The daytime 
peak is better defined than the night-time trough, as illustrated in Figure A1-5, which 
has been adapted from King-Hele (1987). 
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Figure A1-5  Daily variation in atmospheric density in an equatorial orbit, adapted 

from King-Hele (1987) 

 
 
A1.2.1.5  Behaviour in response to Latitude 
The density of the upper atmosphere at a given point in time is a function of latitude, 
not due to any inherent effect of latitude itself but rather due to the effect of the 
seasons.  
 
It has already been stated that the atmosphere becomes denser at altitude due to 
the thermal expansion of the lower layers, an effect which is naturally more 
pronounced during the summer months. Increased density may therefore be 
expected over the summer hemisphere. 
 
A1.2.1.6  Behaviour in response to Geomagnetic Planetary Index 
The geomagnetic planetary index (ap) is a measure of the disturbance in the Earth’s 
magnetic field caused by transient events such as solar flares and coronal mass 
ejections. Although the average value of this index exhibits a very weak correlation 
with the F10.7 index over the eleven year cycle, its main variation is on an hour-to-
hour basis, over which fluctuations 10 times greater than the cyclical variation may 
occur. 
 
Disturbances in the Earth’s magnetic field induce electrical currents in the 
atmosphere, which heat it and increase the density at high altitudes. The largest of 
these events may boost density by a factor of 8 at 600 km, but the effect is always 
transient and fades away within a few hours, probably not to be repeated for several 
weeks or months. 
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A1.2.2  Summary of Atmospheric Density 
The density of the upper atmosphere may be expected to decrease as one ascends, 
but the rate of decrease will be reduced at periods of high solar activity. In addition, 
density will be increased where local heating occurs due to the thermal expansion of 
the lower layers. Finally, density will be higher than average in spring and autumn, 
and lower in winter and summer. 
 
These effects are deeply intertwined. For example, according to King-Hele (1987) the 
diurnal variation may cause the peak density during the day to be 1.1 times the 
average value at 200 km, 1.5 times the average at 400 km, 1.7 times the average at 
600 km and 1.5 times the average at 800 km. However, those values only apply at 
times of low solar activity – at other times factors of 1.1, 1.3, 1.5 and 1.6 would be 
more accurate. The annual variation must also be taken into account, remembering 
that the strength of this variation is dependant on the solar activity as well. Finally, 
fluctuations caused by transient solar events can swamp all of the above effects, 
albeit only for a few hours. 
 
 

A1.2.3  The Simulation Model 
The simulation model which attempts to predict this behaviour is based upon the 
MSIS-90 mode (NASA (2005)), which is in turn a revised version of the MSIS-86 
model described by Hedin (1987). The MSIS, or Mass Spectrometer Incoherent 
Scatter, models are based on observations of the motion of spacecraft and the 
measurements of several incoherent scatter radars.  
 
The MSIS-90 model seeks to calculate the effects of each individual gas species and 
then sum the result to obtain the total density, as well as other parameters such as 
pressure and temperature. Although the results agree well with observations, there 
has been some disagreement with regard to the densities of individual species, such 
as the discussion of the densities of He and O+ given by Uy (1997). 
 
 
A1.2.3.1  The MSIS-90 Look-Up Table 
The MSIS-90 model code is a very long file, and is only available in FORTRAN. To 
include the MSIS model in a simulation of the performance of the deorbit device in 
its current form would therefore result in very slow simulations because the long 
FORTRAN file would have to be called at each timestep. To avoid this problem, the 
FORTRAN file has been pre-run for 75,600 key conditions, distributed according to 
the following breakpoints. 
 
Solar Activity   F10.7 = 100 x 10

4 Jy, 150 x 104 Jy and 200 x 104 Jy. 
Time of Year   Date = 1st Jan, 1st Mar, 1st May, 1st Jul, 1st Sep, 1st Nov. 
Time of Day   Time = 0000 h, 0400 h, 0800 h, 1200 h, 1600 h, 2000 h. 
Latitude  Lat = 90°S, 60°S, 30°S, 0°, 30°N, 60°N 90°N. 
Altitude  Alt = 200 km – 700 km, in 5 km steps. 
 
The variation of the ap index was neglected due to its high degree of unpredictability, 
and a value of 15 was used throughout. 
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The densities predicted can then be written to a five-dimensional Simulink Look-Up 
Table. This Look-Up Table contains 75,600 unique data points, which increases to 
102,900 when the data is expanded to cover complete daily and annual cycles. Each 
data point represents the density predicted by the MSIS-90 model for a particular 
combination of altitude, hour-angle, latitude, month and solar activity. 
 
The data within the Look-Up Table is presented in a much-reduced form in Figure 
A1-6. The three columns represent data for low, medium and high levels of solar 
activity (F10.7 = 100 x 10

4 Jy, 150 x 104 Jy and 200 x 104 Jy), whilst the six rows refer 
to the time of year (1st January, 1st March, 1st May etc.). 
 

 

 
 

Figure A1-6  Simplified contents of the MSIS-90 Look-Up Table 

 
 
To examine the effect of latitude, time of day and altitude, Figure A1-7 focuses on 
the data for the 1st of May at a time of medium solar activity. 
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Figure A1-7  Part of the simplified contents of the MSIS-90 Look-Up Table 

 
Each of the seven bars contains data for a specific latitude, starting at 90°N at the 
top and progressing to 90°S at the bottom. Each bar is then a representation of the 
predicted density throughout the course of a day, from local midnight at the bottom 
to local midnight at the top. The altitude increases left-to-right from 200 km to 700 
km. 
 
Each band of colour represents a 10-fold variation in density, from the order of 1 x 
10-10 kg/m3 in the red zone to the order of 1 x 10-15 kg/m3 in the purple zone. 
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A1.3  Magnetic Model 
The extra damping requirement of the deorbit device, over and above that which can 
be generated by aerodynamic forces, is met by means of interaction with the Earth’s 
magnetic field.  
 
The flux density induced by a magnetic field may be given by... 
 

HB
rel

µµ
0

=  

 
...in which B  is the flux density in Tesla; 

0
µ  is the permeability of free space (1.257 

x 10-6 Farads per metre); 
rel

µ  is the relative permeability of the body, which is 

simply a multiplier on 
0

µ ; and H  is the magnetic field strength in amps per metre.  

 

 

A1.3.1  Spherical Harmonic Effects 
Like the gravity field, the magnetic field can be described by spherical harmonics. 
The coefficients known as l  and m  in the gravitational expansion are known in 

geomagnetic circles as Gauss coefficients after Carl Gauss, who evaluated them to 
the fourth order and degree in 1838.  
 

 

 
 

Figure A1-8 Carl Gauss 

 
A1.3.1.1  Intensity, Declination and Inclination 
The evaluation of the expansion of the Gauss coefficients reveals the strength and 
direction of the magnetic field, which is usually defined by intensity, declination and 
inclination. Intensity is the flux density measured in nT, whilst declination and 
inclination are the angles by which the geomagnetic north-seeking flux lines deviate 
from local true north and local horizontal respectively. Positive declination indicates a 
variance to the east, whilst positive inclination indicates the flux is dipping below the 
horizontal. 
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A1.3.1.1.1  Intensity 
The total sea-level flux density, in nT, predicted by the 2005 US/UK World Magnetic 
Model is shown in Figure A1-9. The maximum values near the magnetic poles are in 
the region of 60,000 nT, whilst the minimum values found in the South Atlantic 
anomaly are below 25,000 nT. By way of comparison, a typical fridge magnet 
produces a flux density of about 5 mT, or around 100 times the background field.  
 

 
Figure A1-9 – Magnetic Flux Density 

 
The flux density decreases with altitude to about 100 nT at geostationary altitude, 
but at this level it is heavily and dynamically influenced by the sun’s more powerful 
field. In the LEO regime the field is reasonably stable, but the intensity at 600 km 
falls by a factor of approximately two compared to the sea-level intensity. 
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A1.3.1.1.2 Declination 
The sea-level declination angle predicted by the 2000 US/UK World Magnetic Model 
is as shown in Figure A-10. 

 

 
Figure A1-10 – Magnetic Declination Angle 

 
A1.3.1.1.3 Inclination 
The sea-level inclination angle predicted by the 2000 US/UK World Magnetic Model is 
as shown in Figure A-11. 

 

 
Figure A1-11 – Magnetic Inclination Angle 
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A1.3.2  Non Spherical Harmonic Effects 
A1.3.2.1  Geological Variation 
The Earth’s magnetic field has varied greatly throughout geological time, with the 
field (and magnetic poles) reversing completely every 300,000 years or so. Each 
reversal takes about 10,000 years to complete, during which time the field intensity 
drops to around 10% of its normal strength. As a reversal approaches the field may 
exhibit increasing numbers of excursions, where the field strength briefly weakens 
and the magnetic poles wander erratically towards the equator before normality is 
restored. 
 
The current period of ‘normal’ polarity, which has persisted for 730,000 years, is 
termed the Brunhes normal chron. This extended duration, although above average, 
is by no means exceptional. In the Cretaceous period a normal chron (the 
Cretaceous normal superchron) persisted for 35 million years, and in the Permian 
period a reversed chron (the Kiaman reversed superchron) persisted for some 50 
million years. 
 
These variations have been of great importance in geological research, but take 
place over much too long a timescale to have any influence on the performance of 
the deorbit device. 
 
A1.3.2.2  Short Term (secular) Variation 
Over the course of the past few hundred years, the declination of the field at London 
has varied between 11° E and 25° W, whilst the field intensity has fallen by around 5 
% per century. This corresponds to the magnetic field moving at a rate of 
approximately 1 metre per hour relative to the geographic surface.   
 
On a timescale of years, the field may experience jerks in the secular variation, 
where the rate of change rises for a few months before returning to normal. Some 
recent jerks occurred in 1925, 1969 and 1978.  
 
These secular variations, even during a jerk period, take place over much too long a 
timescale to have any influence on the performance of the deorbit device. 
 

A1.3.3  The Simulation Model 
The simulation model is based on the 2005 IGRF models available from NOAA 
(2006), which calculate the magnetic field parameters using an expansion of degree 
and order 10.  
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A1.3.3.1  The IGRF Look-Up Table 
A Look-Up Table similar to that used for the atmospheric density information was 
constructed to hold the data on the strength, declination and inclination of the 
magnetic field generated by the IGRF model. Part of the data (the sea level field 
strength only) within the Look-Up Table is presented in a much-reduced form in 
Figure A1-12. 
 
Because the magnetic field is not as volatile as the atmosphere, does not vary as 
much with altitude, and leads to smaller torques than the aerodynamic effects the 
Look-Up Table used to codify it the magnetic field can be proportionally coarser. 
 
The IGRF Look-Up table therefore only evaluates the field at every 30° of latitude 
and 60° of longitude for altitudes of 200 km, 400 km and 600 km; thus incorporating 
105 data points of which just 90 are unique. 
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Figure A1-12  Simplified, reduced contents of the IRGF Look-Up Table. Compare 

with the data presented in Figure A1-9. 
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Appendix 2 – Matlab m-files 

 

A2.1   Boom.m 
% BOOM - A program to calculate the required skin thickness and 

% resultant mass of an inflated boom of given radius able to 

% withstand a given Bending Moment. 
% 
% Call Syntax: 
% Boom(Moment,r,YS,Design_Efficiency,SG,R,Temp_Shadow,Temp_Sunlit) 
% 
% Where Moment = Failure Bending Moment, r = radius of boom, YS =  

% Yield Stress of the boom material, Design_Efficiency = Fraction of  

% boom material strength you want to use, SG = density of boom  

% material, R = Specific Gas Constant of inflating gas, Temp_Shadow =  

% temperature in shadow and Temp_Sunlit = temperature in sunlight. 
% 
% Some Rs... Air 287, Hydrogen 4130, Carbon Dioxide 189  
% 
% Example of a kapton-skinned hydrogen-filled boom: 
% Boom(2,0.03,41000000,0.75,1.4,4130,123,470) 
% ------------------------------------------------------------------ 
function Boom = 

BOOM(Moment,r,YS,Design_Efficiency,SG,R,Temp_Shadow,Temp_Sunlit) 
% Initialise variables 
t = 0.00000001; 
Efficiency = 1; 
Iteration_Count = 0; 
% Add thickness incrementally until material is working at an 

acceptable 
% efficiency 
while (Efficiency > Design_Efficiency) 
% Outer tube diameter 
dout = 2*r; 
% Inner tube diameter 
din = (2*r) - (2*t); 
% Moment of inertia 
I = (pi*(dout^4 - din^4))/64; 
% Calculate the maximum stress due to the applied bending moment 
Sigma = Moment*r/I; 
% Equate this to the Axial Stress due to pressure and solve for 

pressure required in shadow, 
% (minimum pressure condition) because the compression surface will 

fail when Compressive Bending  
% stress exceeds the Tensile Axial Stress 
Pressure_shadow = Sigma*t*2/r; 
% As the boom enters sunlight, assume temperature rises from 

Temp_Shadow to 
% (Temp_Sunlit + Temp_Shadow)/2. Rho, V and R remain constant 
Pressure_sunlit = (Temp_Sunlit/Temp_Shadow)*Pressure_shadow; 
% At maximum stress point on the tension surface, the Axial Stress is 

Sigma 
% + pressure Axial Stress 
Axial_Stress = ((r-t)*Pressure_sunlit/2*t) + Sigma; 
% And pressure Hoop Stress is... 
Hoop_Stress = ((r-t)*Pressure_sunlit)/t; 
% So equivalent stress is... 
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Von_Mises_Stress = sqrt((Axial_Stress^2) + (Hoop_Stress^2) - 

Axial_Stress*Hoop_Stress); 
% Material Strength Usage 
Efficiency = Von_Mises_Stress/YS; 
% Add increment of t 
t = t + 0.00000001; 
% Count 
Iteration_Count = Iteration_Count + 1; 
end 
t 
Boom_Mass_per_metre = 2*r*pi*t*SG; 
Gas_Density = Pressure_sunlit/(R*Temp_Sunlit); 
Gas_Mass_per_metre = pi*r*r*Gas_Density; 
Total_Mass_per_metre = Boom_Mass_per_metre + Gas_Mass_per_metre 
Percentage_of_which_is_gas = 

(Gas_Mass_per_metre/Total_Mass_per_metre)*100 
Pressure_sunlit_PSI = Pressure_sunlit*0.0001450377 
Pressure_shadow_PSI = Pressure_shadow*0.0001450377 
Iteration_Count 
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A2.2   ConeTotal.m 
% CONETOTAL - A program to calculate the  
% torques and forces due to atmospheric forces  
% and SRP on a cone in LEO. The mass of the  
% cone is considered to be concentrated at the apex. 
% The convex surface is assumed to be silvered, the concave 
% surface to be black. 
% 
% Call Syntax: 
% ConeTotal(alt,area,theta,alphadot,opa) 
% 
% alt = altitude (km) area = area (m.m) 
% theta = cone half-angle (rad) 
% alphadot = pitch rate (rad/s), opa = opaquicity(0.001 - 0.999) 
% 
% -------------------------------------------------------------------

---- 
% 
function ConeTotal = CONETOTAL(alt,area,theta,alphadot,opa) 
alpha = 0; 
while alpha < 3.2 
alpha 
% Calculate orbital parameters (rho estimated) 
rho = (3.*10.^32)*((alt.*1000).^-7.8667); 
SRP = 4.6.*10.^-6; 
ref = opa; 
abso = opa; 
grav = 6.67.*10.^-11; 
MoE = 5.98.*10.^24; 
V = (grav.*MoE./(alt.*1000 + 6380000)).^0.5; 
% Calculate cone parameters 
length=sqrt((area./(pi.*sin(theta)))); 
r = length.*sin(theta); 
axiallength = length.*cos(theta); 
% Calculate flow parameters 
beta = pi-alpha; 
A = (sin(theta))*(cos(alpha)); 
B = (cos(theta))*(sin(alpha)); 
if (alpha~=0) 
if (alpha~=pi) 
psiL = acos(tan(theta)./tan(alpha)); 
end 
end 
% REGIME 1 
if((alpha<=theta)&(alpha>=-theta)) 
Regime = 1; 
% 
% AERODYNAMIC 
% Restoring Torque 
aF1r = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF1r = quad(aF1r,0,pi,[],[],A,B); 
aRestoring = (2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntF1r; 
% Damping Torque 
aF1d = inline('(A - B.*cos(psi)).*cos(psi).*cos(psi)','psi','A','B'); 
aIntF1d = quad(aF1d,0,pi,[],[],A,B); 
aDamping = -(length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF1d; 
% Body Drag 
aF1i = inline('((A - B.*cos(psi)).^2)','psi','A','B'); 
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aIntF1i = quad(aF1i,0,pi,[],[],A,B); 
aDrag = ((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF1i); 
% Body Lift 
aF1l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF1l = quad(aF1l,0,pi,[],[],A,B); 
aLift = ((length.^2).*sin(theta).*cos(theta).*rho.*V.*V.*-aIntF1l); 
% 
% SRP - SPECULAR REFLECTION 
% Restoring Torque 
srF1r = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
srIntF1r = quad(srF1r,0,pi,[],[],A,B); 
srRestoring = (2./3).*(length.^3).*sin(theta).*2.*ref.*SRP.*srIntF1r; 
% Body Drag 
srF1i = inline('((A - B.*cos(psi)).^2)','psi','A','B'); 
srIntF1i = quad(srF1i,0,pi,[],[],A,B); 
srDrag = 

((length.^2).*sin(theta).*sin(theta).*2.*ref.*SRP.*srIntF1i); 
% Body Lift 
srF1l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
srIntF1l = quad(srF1l,0,pi,[],[],A,B); 
srLift = ((length.^2).*sin(theta).*cos(theta).*2.*ref.*SRP.*-

srIntF1l); 
% 
% Results 
Aero_Restoring_Torque = aRestoring; 
Aero_Damping_Torque = aDamping; 
Aero_Body_Drag = aDrag; 
Aero_Body_Lift = aLift; 
SRP_Restoring_Torque = srRestoring; 
SRP_Body_Drag = srDrag; 
SRP_Body_Lift = srLift; 
% 
% REGIME 2 
elseif(((alpha>theta)&(alpha<=(pi/2))) | ((alpha<(-theta))&(alpha>=(-

pi/2)))) 
Regime = 2; 
% 
% AERODYNAMIC 
% Restoring Torque 
aF2r = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF2r = quad(aF2r,psiL,pi,[],[],A,B); 
aRestoring = (2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntF2r; 
% Damping Torque 
aF2d = inline('(A - B.*cos(psi)).*cos(psi).*cos(psi)','psi','A','B'); 
aIntF2d = quad(aF2d,psiL,pi,[],[],A,B); 
aDamping = -(length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF2d; 
% Body Drag 
aF2i = inline('((A - B.*cos(psi)).^2)','psi','A','B'); 
aIntF2i = quad(aF2i,psiL,pi,[],[],A,B); 
aDrag = ((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF2i); 
% Body Lift 
aF2l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF2l = quad(aF2l,psiL,pi,[],[],A,B); 
aLift = ((length.^2).*sin(theta).*cos(theta).*rho.*V.*V.*-aIntF2l); 
% 
% SRP - SPECULAR REFLECTION 
% Restoring Torque 
srF2r = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
srIntF2r = quad(srF2r,psiL,pi,[],[],A,B); 
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srRestoring = (2./3).*(length.^3).*sin(theta).*2.*ref.*SRP.*srIntF2r; 
% Body Drag 
srF2i = inline('((A - B.*cos(psi)).^2)','psi','A','B'); 
srIntF2i = quad(srF2i,psiL,pi,[],[],A,B); 
srDrag = 

((length.^2).*sin(theta).*sin(theta).*2.*ref.*SRP.*srIntF2i); 
% Body Lift 
srF2l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
srIntF2l = quad(srF2l,psiL,pi,[],[],A,B); 
srLift = ((length.^2).*sin(theta).*cos(theta).*2.*ref.*SRP.*-

srIntF2l); 
% Results 
Aero_Restoring_Torque = aRestoring; 
Aero_Damping_Torque = aDamping; 
Aero_Body_Drag = aDrag; 
Aero_Body_Lift = aLift; 
SRP_Restoring_Torque = srRestoring; 
SRP_Body_Drag = srDrag; 
SRP_Body_Lift = srLift; 
% 
% REGIME 3 
elseif(((alpha<(pi-theta))&(alpha>(pi/2))) | ((alpha>(-

pi+theta))&(alpha<(-pi/2)))) 
Regime = 3; 
% 
% OUTSIDE 
% AERODYNAMIC 
% Restoring Torque 
aF3ro = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF3ro = quad(aF3ro,psiL,pi,[],[],A,B); 
aRestoring_Out = 

(2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntF3ro; 
% Damping Torque 
aF3do = inline('(A - 

B.*cos(psi)).*cos(psi).*cos(psi)','psi','A','B'); 
aIntF3do = quad(aF3do,psiL,pi,[],[],A,B); 
aDamping_Out = -(length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF3do; 
% Body Drag 
aF3io = inline('((A - B.*cos(psi)).^2)','psi','A','B'); 
aIntF3io = quad(aF3io,psiL,pi,[],[],A,B); 
aDrag_Out = 

((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF3io); 
% Lift Force 
aF3lo = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF3lo = quad(aF3lo,psiL,pi,[],[],A,B); 
aLift_Out = ((length.^2).*sin(theta).*cos(theta).*rho.*V.*V.*-

aIntF3lo); 
% 
% SRP - SPECULAR REFLECTION 
% Restoring Torque 
srF3ro = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
srIntF3ro = quad(srF3ro,psiL,pi,[],[],A,B); 
srRestoring_Out = 

(2./3).*(length.^3).*sin(theta).*2.*ref.*SRP.*srIntF3ro; 
% Body Drag 
srF3io = inline('((A - B.*cos(psi)).^2)','psi','A','B'); 
srIntF3io = quad(srF3io,psiL,pi,[],[],A,B); 
srDrag_Out = 

((length.^2).*sin(theta).*sin(theta).*2.*ref.*SRP.*srIntF3io); 
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% Body Lift 
srF3lo = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
srIntF3lo = quad(srF3lo,psiL,pi,[],[],A,B); 
srLift_Out = ((length.^2).*sin(theta).*cos(theta).*2.*ref.*SRP.*-

srIntF3lo); 
% 
% Outside Results 
Aero_Restoring_Torque_Out = aRestoring_Out; 
Aero_Damping_Torque_Out = aDamping_Out; 
Aero_Body_Drag_Out = aDrag_Out; 
Aero_Body_Lift_Out = aLift_Out; 
SRP_Restoring_Torque_Out = srRestoring_Out; 
SRP_Body_Drag_Out = srDrag_Out; 
SRP_Body_Lift_Out = srLift_Out; 
% 
% INSIDE 
% AERODYNAMIC 
% Restoring Torque 
aF3ri = inline('((s.^2).*(((A - 

B.*cos(psi)).^2).*cos(psi))).*((s)>(length.*(sin(acos((-(-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta)))   -   ((((-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta))).^2) - 4.*((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-

((axiallength.*sin(beta))./r)).^2) - ((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0.5))./(2.*(((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2) + 

((cos(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia

llength','beta','r'); 
aIntF3ri = 

dblquad(aF3ri,0.0001,psiL,0,length,[],[],A,B,length,axiallength,beta,

r); 
aRestoring_In = - 2.*sin(theta).*rho.*V.*V.*aIntF3ri; 
% Damping Torque 
aF3di = inline('((s.^3).*(A - 

B.*cos(psi)).*cos(psi).*cos(psi)).*((s)>(length.*(sin(acos((-(-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta)))   -   ((((-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta))).^2) - 4.*((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-

((axiallength.*sin(beta))./r)).^2) - ((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0.5))./(2.*(((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2) + 

((cos(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia

llength','beta','r'); 
aIntF3di = 

dblquad(aF3di,0.0001,psiL,0,length,[],[],A,B,length,axiallength,beta,

r); 
aDamping_In = 4.*sin(theta).*rho.*V.*alphadot.*aIntF3di; 
% Body Drag 
aF3ii = inline('((s).*((A - 

B.*cos(psi)).^2)).*((s)>(length.*(sin(acos((-(-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta)))   -   ((((-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta))).^2) - 4.*((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 
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(cos(beta).*(cos(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-

((axiallength.*sin(beta))./r)).^2) - ((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0.5))./(2.*(((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2) + 

((cos(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia

llength','beta','r'); 
aIntF3ii = 

dblquad(aF3ii,0.0001,psiL,0,length,[],[],A,B,length,axiallength,beta,

r); 
aDrag_In = - (2.*sin(theta).*sin(theta).*rho.*V.*V.*aIntF3ii); 
% Body Lift 
aF3li = inline('((s).*((A - 

B.*cos(psi)).^2).*cos(psi)).*((s)>(length.*(sin(acos((-(-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta)))   -   ((((-2.*(-

((axiallength.*sin(beta))./r)).*(cos(beta))).^2) - 4.*((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-

((axiallength.*sin(beta))./r)).^2) - ((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0.5))./(2.*(((-

(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) + 

(cos(beta).*(cos(psi))./(sin(psi))))).^2) + 

((cos(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia

llength','beta','r'); 
aIntF3li = 

dblquad(aF3li,0.0001,psiL,0,length,[],[],A,B,length,axiallength,beta,

r); 
aLift_In = - (2.*sin(theta).*cos(theta).*rho.*V.*V.*-aIntF3li); 
% 
% SRP - TOTAL ABSORPTION 
% Restoring Torque 
AreaOpen = pi.*r.*r.*cos(beta); 
OpenForce = abso.*SRP.*AreaOpen; 
MomentArm = axiallength.*sin(beta); 
saRestoring_In = -OpenForce.*MomentArm; 
% Body Drag 
saDrag_In = -OpenForce.*cos(beta); 
% Body Lift 
saLift_In = OpenForce.*sin(beta); 
% 
% Inside Results 
Aero_Restoring_Torque_In = aRestoring_In; 
Aero_Damping_Torque_In = aDamping_In; 
Aero_Body_Drag_In = aDrag_In; 
Aero_Body_Lift_In = aLift_In; 
SRP_Restoring_Torque_In = saRestoring_In; 
SRP_Body_Drag_In = saDrag_In; 
SRP_Body_Lift_In = saLift_In; 
% 
% Results 
Aero_Restoring_Torque = Aero_Restoring_Torque_Out + 

Aero_Restoring_Torque_In; 
Aero_Damping_Torque = Aero_Damping_Torque_Out + 

Aero_Damping_Torque_In; 
Aero_Body_Drag = Aero_Body_Drag_Out + Aero_Body_Drag_In; 
Aero_Body_Lift = Aero_Body_Lift_Out + Aero_Body_Lift_In; 
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SRP_Restoring_Torque = SRP_Restoring_Torque_Out + 

SRP_Restoring_Torque_In; 
SRP_Body_Drag = SRP_Body_Drag_Out + SRP_Body_Drag_In; 
SRP_Body_Lift = SRP_Body_Lift_Out + SRP_Body_Lift_In; 
% 
% REGIME 4 
else 
Regime = 4; 
% 
% AERODYNAMIC 
% Restoring Torque 
aF4r = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF4r = quad(aF4r,0,pi,[],[],A,B); 
aRestoring = - (2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntF4r; 
% Damping Torque 
aF4d = inline('(A - B.*cos(psi)).*cos(psi).*cos(psi)','psi','A','B'); 
aIntF4d = quad(aF4d,0,pi,[],[],A,B); 
aDamping = (length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF4d; 
% Drag Force 
aF4i = inline('((A - B.*cos(psi)).^2)','psi','A','B'); 
aIntF4i = quad(aF4i,0,pi,[],[],A,B); 
aDrag = - ((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF4i); 
% Lift Force 
aF4l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B'); 
aIntF4l = quad(aF4l,0,pi,[],[],A,B); 
aLift = - ((length.^2).*sin(theta).*cos(theta).*rho.*V.*V.*-aIntF4l); 
% 
% SRP - TOTAL ABSORPTION 
% Restoring Torque 
AreaOpen = pi.*r.*r.*cos(beta); 
OpenForce = abso.*SRP.*AreaOpen; 
MomentArm = axiallength.*sin(beta); 
saRestoring = -OpenForce.*MomentArm; 
% Body Drag 
saDrag = -OpenForce.*cos(beta); 
% Body Lift 
saLift = OpenForce.*sin(beta); 
% 
% Results 
Aero_Restoring_Torque = aRestoring; 
Aero_Damping_Torque = aDamping; 
Aero_Body_Drag = aDrag; 
Aero_Body_Lift = aLift; 
SRP_Restoring_Torque = saRestoring; 
SRP_Body_Drag = saDrag; 
SRP_Body_Lift = saLift; 
end 
% 
% QUOTIENTS 
ARQ = Aero_Restoring_Torque./(rho.*V.*V); 
ADQ = Aero_Damping_Torque./(rho.*V.*alphadot); 
ABD = Aero_Body_Drag/(rho.*V.*V); 
ABL = Aero_Body_Lift/(rho.*V.*V); 
SRRQ = SRP_Restoring_Torque./(opa.*SRP); 
SRBD = SRP_Body_Drag./(opa.*SRP); 
SRBL = SRP_Body_Lift./(opa.*SRP); 
% 
i = 10.*alpha; 
% 
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quotient(1,round(i+1))=ARQ; 
quotient(2,round(i+1))=ADQ; 
quotient(3,round(i+1))=ABD; 
quotient(4,round(i+1))=ABL; 
quotient(5,round(i+1))=SRRQ; 
quotient(6,round(i+1))=SRBD; 
quotient(7,round(i+1))=SRBL; 
% 
alpha = alpha + 0.1; 
end 
csvwrite('Quotients.csv',quotient) 
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A2.3   Deflect.m 
% DEFLECT - A program developed to calculate the deflection of  
% the struts on a deorbit device 
% 
% Call Syntax: 
% deflect(Mu,L,Theta,EI) 
% 
% ------------------------------------------------------------------ 
function deflect = deflect(Mu,L,Theta,EI) 
End_S = L.*sin(Theta).*cos(pi./4); 
End_D = L; 
Count2 = 1; 
while (Count2 < 9) 
d_eff_boom = atan(End_D./L); 
ThetaBoom = (Theta) - d_eff_boom; 
End_X_undeflected = End_S; 
End_X_deflected = (L.*sin(Theta - d_eff_boom)).*cos(pi./4); 
Count = 1; 
Psi = 1; 
while (Count < 100000) 
    Psi = acot(((End_S.*Mu).*(log(tan(Psi./2))))./- 

    (Mu.*End_X_deflected)); 
    Count = Count + 1; 
end 
Psi; 
End_Y_deflected = (End_X_deflected.*(-log(sin(Psi))))./((pi./2)-Psi); 
d_eff_web = atan(End_Y_deflected./End_S); 
ThetaWeb = atan(End_S./(L.*cos(Theta))); 
Theta_eff = ((Theta - d_eff_boom) + (ThetaWeb - d_eff_web))./2; 
Mu_eff = Mu.*sin(Theta_eff); 
End_T = 1./((1./(Mu_eff.*End_X_deflected)).*((pi./2) - Psi)); 
End_F = 2.*End_T.*cos(pi./4).*sin(Psi); 
P = 0.5.*End_F.*L; 
Qo = 2.*End_T.*cos(pi./4).*cos(Psi); 
k = sqrt(P./(EI)); 
C1 = cos(k.*L); 
C2 = sin(k.*L); 
CA3 = 1 - cos(k.*L); 
CA4 = (k.*L) - sin(k.*L); 
CA5 = (((k.^2).*(L.^2))./2) - CA3; 
CA6 = (((k.^3).*(L.^3))./6) - CA4; 
y = ((-Qo./((k.^2).*P))*((C2.*CA4 - C1.*CA5)./C1)) –  

((-Qo./((k.^3).*P.*L)).*((C2.*CA5 - C1.*CA6)./C1)); 
if (y > 0) 
disp('Super-buckling load. Aborting...') 
break 
else 
End_D = abs(y); 
Count2 = Count2 + 1; 
end 
end 
Area_Proj = (2.*End_S)^2 
Def = End_D./L 
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Appendix 3 – Simulink mdl-files 

A3.1   Equatorial_Plane.mdl 
This version of Equatorial_Plane.mdl has been set up to run 50 simulations in 
parallel, and, to prevent clashes arising from signal dimension mismatches, it was 
necessary to have 50 versions of the MSIS-90 Look-Up Table. These are truncated at 
the right. 
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A3.2   Six_DOF.mdl 
Blocks entitled ‘Positive Buffer’ and ‘Window Buffer’ contain the same routing as their 
counterparts in Equatorial_Plane.mdl. 
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A3.3   Reentry.mdl 
Blocks entitled ‘X’ are simply signal crossovers. 
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Appendix 4 – Large Demonstrators 
It was discovered during the construction of the practical demonstrators that solid 
NiTiNOL elements with diameters of a few millimetres cannot be cantilevered more 
than about 0.5 m from the central hub before they sag under gravity. This is not a 
problem in space, but it does make the Earth-bound investigation of the different 
deployment mechanisms very difficult. 

 

NiTiNOL is available in a stiffer tubular form, but the cost is perhaps 100 times 
greater than for solid elements. Therefore, an alternative method was developed to 
construct larger demonstrators. This involved using five NiTiNOL elements braced in 
parallel by lightweight nodes. During the service flexion of the structure large 
stresses are placed upon the nodes, and so after failed experiments with cork, butyl 
and acrylic, aluminium shim washers obtained from Bombardier Aerospace (Shorts) 
were found to be suitable.  

 

Methods of bonding the NiTiNOL to the nodes investigated included super-gluing, 
resin and putty epoxying, JB-welding, soldering and brazing, but in all cases the 
flexion of the structure caused the joints to fail. Ultimately, only slow-cure Araldite 
was found to be effective, and even so failure is increasingly likely after 10 – 20 
flexions of the structure.  

 

Despite these difficulties, the cantileverable range of the NiTiNOL elements was 
extended to approximately 1.2 metres. 

 

 
 

Figure A4-1 Detail of the five-core NiTiNOL booms developed for larger 

demonstrators. The aluminium shim washers and the Araldite bonds are visible 
under the black primer which was applied to aid photography. 
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Appendix 5 – Design Tools and Product   
     Information 

 

A5.1   ADAM 
The ADAM booms supplied by Able Engineering Inc. may be sized by means of this 
design tool, sourced from their website at aec-able.com (2006). 

 

 
 

Figure A5-1 ADAM boom design tool, supplied by Able Engineering Inc. 
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A5.2    STEMs 
The STEM systems shown here have been obtained from the Northrop Grumman 
website (northropgrumman.com (2006)). 

 
A5.2.1    STEM JIB 
 

 
 

Figure A5-2 STEM JIB data sheet, supplied by Northrop Grumman Inc. 
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A5.2.2    TIP DRUM 

 

 
 

Figure A5-3 TIP DRUM data sheet, supplied by Northrop Grumman Inc. 
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A5.2.3    MICROSAT 

 

 
 

Figure A5-4 MICROSAT data sheet, supplied by Northrop Grumman Inc. 
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A5.2.4    BI-STEM 

 

 
 

Figure A5-5 BI-STEM data sheet, supplied by Northrop Grumman Inc. 
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A5.3   CTMs 
This information regarding CTMs has been obtained from the literature of SENER 
Ingeniera Y Sistemas, via the research of Broughton (2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A5-6 CTM data sheet, reproduced from Broughton (2003) 
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A5.4   Telescopic Masts 
The Telescopic Masts shown here have been obtained from the Northrop Grumman 
website (northropgrumman.com (2006)). 

 

 
 

Figure A5-7 Telescopic Mast data sheet, supplied by Northrop Grumman Inc. 
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A5.5   CoilABLE Masts 
The CoilABLE masts supplied by Able Engineering Inc. may be sized by means of 
these diagrams, sourced from their website at aec-able.com (2006). 
 

 

 
 

 

Figure A5-8 CoilABLE mast design diagrams, supplied by Able Engineering Inc. 
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  A5.6  MSP-430 
 

 
 

Figure A5-9 MSP-430 Controller data sheet, supplied by Texas Instruments Inc. 
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  A5.7  MHX-920 

 

Figure A5-10 Radio Transceiver data sheet, supplied by Microhard Systems Inc. 
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 A5.8  ST 1130 N 

 

 
 
Figure A5-11 Solenoid data sheet, supplied by the Bicron Electronics Company 
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Appendix 6 – Effect of Different GSIMs 
The deorbit device has been in large part designed with reference to the deorbit 
times calculated by the Simulink models Equatorial_Plane.mdl and Six_DOF.mdl. 
Both of these models made the assumption that any impinging atmospheric particles  
lose all velocity normal to the drag sail but maintain their full tangential velocity. 

 

This Gas-Surface Interaction Model (GSIM) was chosen because it represents the 
least possible interaction between the drag sail and the rarefied flow, and thus any 
conclusions drawn from it regarding the performance of the drag sails will definitely 
be achieved in reality and may well be exceeded. However, in practice the interaction 
between the rarefied flow and the drag sail will be greater because there will be 
some degree of particle reflection, which will have both specular and diffuse 
elements, as well as tangential velocity losses. The precise degree of interaction 
depends on a great number of variables such as the gas species, the nature of the 
surface, the impingement velocity and the temperature. These vary to such an 
extent that any GSIM which is reasonably accurate for one section of the deorbit may 
well be unusable elsewhere. 

 

Fortunately this need not affect the design of the deorbit device because it appears 
that different GSIMs have a scaling rather than differentiating effect of the deorbit 
times, leaving the optimum design point effectively unchanged. This is illustrated by 
Figure 8-1, which shows the average deorbit times from 650 km under a GSIM of the 
opposite extreme -  i.e. one where the incoming particles are specularly reflected. It 
can be seen that the optimum apex half-angle remains at approximately 1.4 radians. 

 

 

Figure A6-1 Double-interaction Deorbit Times 

"Double Interaction" Average Deorbit Times from 650 km. 90 kg / 90 m
2
 Drag Sail 
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