Appendix 1 - Environmental Models

A1.1 Gravity Model

The gravitational attraction of the Earth is by far the strongest influence in nearEarth space, and approximates a spherical field. In this simplification, the attractive force vector between the Earth and a body in near-Earth space has a magnitude of...

$$
F=\frac{G M m}{r^{2}}
$$

...in which G is the universal gravitational constant, M is the mass of the Earth, m is the mass of the body and r is the distance between the body and the centre of the Earth.

A1.1.1 Spherical Harmonic Effects A1.1.1.1 Zonal Harmonics

This simple model ignores the fact that the Earth is not a uniform sphere. In reality, the shape of the Earth approximates more closely an oblate spheroid with an oblateness of 1 part in 298.257. This oblateness arises because the Earth is rotating about its polar axis, generating a centrifugal force which increases with co-latitude.

The equatorial bulge of the Earth tends to strengthen the gravitational attraction at a given geocentric altitude above the equator. This phenomenon is known as the J_{2} effect, after Sir Harold Jeffreys.

Figure A1-1 Sir Harold Jeffreys
J_{2} is, however, just the strongest term in a series of zonal harmonics which describe the variation of the magnitude of the gravitational force vector in near-Earth space. The complete expansion of the magnitude of the force vector at a given latitude ϕ with respect to these harmonics is estimated as follows, after the geopotential equation set out by mit.edu (2007).

$$
F=-\nabla \frac{G M m}{r}\left\{1-\sum_{n=2}^{\infty} J_{n}\left(\frac{R}{r}\right)^{n} P_{n}(\sin \phi)\right\}
$$

The value of the J_{n} terms in the expansion must be determined by examination of the orbits of low-drag spacecraft. The first few terms are...

$$
\begin{array}{ll}
J_{2} & 1082626 \times 10^{-9} \\
J_{3} & -2530 \times 10^{-9} \\
J_{4} & -1624 \times 10^{-9} \\
J_{5} & -245 \times 10^{-9} \\
J_{6} & 543 \times 10^{-9}
\end{array}
$$

The P_{n} terms in the expansion are the Legendre polynomials, the first few terms (P_{0} and P_{1} neglected) and general form of which are as follows...

$$
\begin{aligned}
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& \ldots \\
& P_{n}(x)=\left(\frac{1}{2^{n} n!}\right)\left(\frac{d^{n}}{d x^{n}}\right)\left(x^{2}-1\right)^{n}
\end{aligned}
$$

Each term describes a different variation in the gravity field. For example, the J_{2} effect describes the equatorial bulge, J_{3} describes a tendency towards a threepetalled profile, J_{4} towards a four-petalled profile, and so on.

A1.1.1.2 Sectoral and Tesseral Harmonics

As well as zonal harmonics, which produce bands of constant deviation from the spherical field along lines of latitude, there are sectoral and tesseral harmonics. These harmonics produce a similar effect with varying longitude, which is denoted by λ. To calculate their effect, the harmonic approximation must be expanded further to accommodate some new terms.

$$
F=-\nabla \frac{G M m}{r}\left\{1-\sum_{n=2}^{\infty} J_{n}\left(\frac{R}{r}\right)^{n} P_{n}(\sin \phi)+\sum_{l=2}^{\infty} \sum_{m=1}^{l}\left(\frac{R}{r}\right)^{l} P_{l, m}(\sin \phi)\left(\bar{C}_{l, m} \cos m \lambda+\bar{S}_{l, m} \sin m \lambda\right) N_{l, m}\right\}
$$

The normalised constants $\bar{C}_{l, m}$ and $\bar{S}_{l, m}$ (in which $m \leq l$) are analogous to the J_{n} terms, and have been calculated in the same way. The first few are as follows...

l	m	\bar{C}	\bar{S}
2	1	-1×10^{-9}	-3×10^{-9}
2	2	2438×10^{-9}	-1399×10^{-9}
3	1	2029×10^{-9}	250×10^{-9}
3	2	904×10^{-9}	-616×10^{-9}
3	3	723×10^{-9}	1415×10^{-9}

The Legendre expansion itself must also be expanded more fully to provide terms of degree l and order m, again with $m \leq l$. The first few terms and the general form are as follows...
$P_{2,1}(x)=3 x\left(1-x^{2}\right)^{\frac{1}{2}}$
$P_{2,2}(x)=3 x\left(1-x^{2}\right)$

$$
P_{l, m}(x)=\left(\frac{\left(1-x^{2}\right)^{\frac{m}{2}}}{2^{l} l!}\right)\left(\frac{d^{l+m}}{d x^{l+m}}\right)\left(x^{2}-1\right)^{l}
$$

Finally, the normalising factor $N_{l, m}$ can be given as follows...

$$
N_{l, m}=\left\{\frac{2(l-m)!(2 l+1)}{(l+m)!}\right\}^{\frac{1}{2}}
$$

Incidentally, a harmonic is known as a sectoral harmonic when $l=m$, and as a tesseral harmonic when $l \neq m$.

A1.1.1.3

The Sum of the Zonal, Sectoral and Tesseral Harmonics
The effect of zonal, sectoral and tesseral harmonics on the magnitude of the gravitational force vector may be illustrated by considering their effect on the shape of the geoid. The geoid is simply a three dimensional shape, the surface of which has a constant gravitational potential. If there were no tides, currents or winds, sea level across the globe would conform to the geoid.

Figure A1-2 below illustrates the different effects of the harmonics. Zonal harmonics produce variation with latitude, sectoral harmonics produce variation with longitude and tesseral harmonics produce variation in both.

Figure A1-2 Zonal, sectoral and tesseral spherical harmonics
The WGS-84 gravity model has harmonics to degree and order 180, but in practice a good gravity model, such as the Goddard Earth Model 10B described by Lerch (1981), will go to degree and order 36 and describe the surface of the geoid to an accuracy of 1 m .

An approximation of the surface of the geoid is found in Figure A1-3.

Figure A1-3 The geoid, adapted from fredonia.edu (2006)
The red area in the north Atlantic illustrates a region where the geoid rises to about 65 m above a perfect oblate spheroid with oblateness equal to 1 part in 298.257. The purple area south of India represents a dip to 104 m below the perfect spheroid. This implies strong gravity over the north Atlantic and weak gravity south of India.

A1.1.2 Non Spherical Harmonic Effects

Until recently, it had been observed that the geoid was becoming progressively more spherical, in particular due to a gradual reduction in the strength of the J_{2} harmonic. This was, and still is, thought to be due to the ongoing upward motion (or isostatic rebound) of the north polar region, which until the end of the Pleistocene (approximately 15,000 years ago) had been pressed downwards by the weight of vast ice sheets. The south polar region was less affected because the Southern Ocean prevented the ice sheets from spreading beyond the Antarctic continent.

However, it has been observed by Cox (2002) that this process reversed in 1998 and the Earth has been growing more oblate ever since. The causes of this phenomenon are not fully understood at present, although a redistribution of the oceans due to changing current patterns may be to blame. In particular, increased melt rates of the northern ice cap may be strengthening fresh south-bound currents such as the Labrador and West Greenland current.

A1.1.3 The Simulation Model

The MathWorks provide a model (WGS-84) in their Aerospace Blockset which goes to degree and order 180, but licensing is very expensive and the extra calculation involved is appreciable. During the simulations of the deorbit device one copy of this model was used as a control, but the vast majority were carried out using a much simplified model which evaluates the J_{2} term only.

The J_{2} term is perhaps 500 times stronger than the next strongest harmonic and is also stronger than the lunisolar perturbations up to the altitude of GEO. It is therefore reasonable to assume that the perturbations caused by these factors will be negligible in LEO. This assumption is borne out by the similar behaviour found in response to the control WGS 84 model and the simplified J_{2}-only model.

To simplify the determination of a usable force vector, the grad operator is removed and the following approximation used. This approximation will give a good approximation of the vertical component of force at the expense of neglecting the horizontal component.

$$
F=\frac{G M m}{r^{2}}\left\{1-\sum_{n=2}^{\infty} J_{n}\left(\frac{R}{r}\right)^{n} P_{n}(\sin \phi)\right\}
$$

A1.2 Atmosphere Model

The aerodynamic load experienced by any device moving through the upper atmosphere will be proportional to the density of the rarefied gas found there, but according to King-Hele (1987) this density is notoriously difficult to predict. Density variation exhibits some regularity in response to generally predictable factors such as altitude, solar activity, time of year, time of day and the local latitude; but also occurs in response to largely unpredictable factors such as the geomagnetic index and the presence and strength of any El Niño effect.

A1.2.1 Factors affecting Atmospheric Density A1.2.1.1 Behaviour in response to Altitude

According to King-Hele (1987), altitude is the single most important factor influencing the density of the atmosphere. Density falls from an almost constant value of $1.225 \mathrm{~kg} / \mathrm{m}^{3}$ at sea level (with perhaps 2% variation in deep Atlantic depressions) to $1 \mathrm{~g} / \mathrm{km}^{3}$ at between 400 km and 600 km , depending on the state of the factors described above.

As one ascends through the lower atmosphere, turbulence thoroughly mixes all the different gas species and ensures homogeneity. However, at 90 km to 100 km turbulence begins to weaken, fading out completely at an altitude known as the turbopause. Above this level the constituent gases tend to separate into fractions according to their molecular weights.

This stratified structure tends to interrupt the expected continuous exponential reduction in density and separates it into a series of different exponential decay zones, each fading seamlessly into the next. As would be expected, the denser species such as nitrogen and atomic oxygen predominate at lower altitudes (up to approximately 170 km and 500 km respectively), with helium and hydrogen becoming increasingly important at higher altitudes.

A1.2.1.2 Behaviour in response to Solar Activity

The sun exhibits an eleven-year activity cycle, characterised by a rapid rise in activity for approximately four years, followed by a more gradual decline. The activity is primarily defined by the $\mathrm{F}_{10.7}$ index which may, over the course of a typical cycle, progress from $80 \times 10^{4} \mathrm{Jy}$ up to $220 \times 10^{4} \mathrm{Jy}$, followed by a slow reduction back to the original level.

The eleven-year solar cycle has been recorded since the 1600s because it is closely tied to the number and latitude of the easily-observable sunspot population. As a result of this long recorded history, the solar cycle which peaked in 2000-2001 was designated cycle \# 23 and detailed predictions for the $F_{10.7}$ index over the course of that cycle were made beforehand by NASA (1996).

Figure A1-4 Solar activity prediction for Cycle 23 (reproduced from NASA (1996))
High solar activity is associated with large numbers of high-energy photons. These photons heat the atmosphere, causing the lower strata to expand upwards and increase the ambient density in LEO.

In previous years, high values of the $F_{10.7}$ index have been associated with $3-, 8$ - and 20 -fold increases in atmospheric density at $250 \mathrm{~km}, 400 \mathrm{~km}$ and 600 km respectively.

A1.2.1.3 Behaviour in response to Time of Year

In a typical year, after the effects of solar activity have been removed, the atmospheric density shows maxima in April and late October and minima in January and July. The second annual maximum and minimum tend to be stronger than the first, and the strength of the effect as a whole is inversely proportional to the solar activity level.

A1.2.1.4 Behaviour in response to Time of Day

As the sun rises over any region of the Earth's atmosphere, it heats the gases and causes thermal expansion. As before, this causes the lower layers of the atmosphere to expand upwards, increasing the density at higher altitudes.

The peak density at any altitude above approximately 200 km tends to occur at around 1400 h , whilst the minimum density occurs at around 0400 h . The daytime peak is better defined than the night-time trough, as illustrated in Figure A1-5, which has been adapted from King-Hele (1987).

Figure A1-5 Daily variation in atmospheric density in an equatorial orbit, adapted from King-Hele (1987)

A1.2.1.5 Behaviour in response to Latitude

The density of the upper atmosphere at a given point in time is a function of latitude, not due to any inherent effect of latitude itself but rather due to the effect of the seasons.

It has already been stated that the atmosphere becomes denser at altitude due to the thermal expansion of the lower layers, an effect which is naturally more pronounced during the summer months. Increased density may therefore be expected over the summer hemisphere.

A1.2.1.6
 Behaviour in response to Geomagnetic Planetary Index

 The geomagnetic planetary index $\left(a_{p}\right)$ is a measure of the disturbance in the Earth's magnetic field caused by transient events such as solar flares and coronal mass ejections. Although the average value of this index exhibits a very weak correlation with the $F_{10.7}$ index over the eleven year cycle, its main variation is on an hour-tohour basis, over which fluctuations 10 times greater than the cyclical variation may occur.Disturbances in the Earth's magnetic field induce electrical currents in the atmosphere, which heat it and increase the density at high altitudes. The largest of these events may boost density by a factor of 8 at 600 km , but the effect is always transient and fades away within a few hours, probably not to be repeated for several weeks or months.

A1.2.2 Summary of Atmospheric Density

The density of the upper atmosphere may be expected to decrease as one ascends, but the rate of decrease will be reduced at periods of high solar activity. In addition, density will be increased where local heating occurs due to the thermal expansion of the lower layers. Finally, density will be higher than average in spring and autumn, and lower in winter and summer.

These effects are deeply intertwined. For example, according to King-Hele (1987) the diurnal variation may cause the peak density during the day to be 1.1 times the average value at $200 \mathrm{~km}, 1.5$ times the average at $400 \mathrm{~km}, 1.7$ times the average at 600 km and 1.5 times the average at 800 km . However, those values only apply at times of low solar activity - at other times factors of $1.1,1.3,1.5$ and 1.6 would be more accurate. The annual variation must also be taken into account, remembering that the strength of this variation is dependant on the solar activity as well. Finally, fluctuations caused by transient solar events can swamp all of the above effects, albeit only for a few hours.

A1.2.3 The Simulation Model

The simulation model which attempts to predict this behaviour is based upon the MSIS-90 mode (NASA (2005)), which is in turn a revised version of the MSIS-86 model described by Hedin (1987). The MSIS, or Mass Spectrometer Incoherent Scatter, models are based on observations of the motion of spacecraft and the measurements of several incoherent scatter radars.

The MSIS-90 model seeks to calculate the effects of each individual gas species and then sum the result to obtain the total density, as well as other parameters such as pressure and temperature. Although the results agree well with observations, there has been some disagreement with regard to the densities of individual species, such as the discussion of the densities of He and O^{+}given by Uy (1997).

A1.2.3.1 The MSIS-90 Look-Up Table

The MSIS-90 model code is a very long file, and is only available in FORTRAN. To include the MSIS model in a simulation of the performance of the deorbit device in its current form would therefore result in very slow simulations because the long FORTRAN file would have to be called at each timestep. To avoid this problem, the FORTRAN file has been pre-run for 75,600 key conditions, distributed according to the following breakpoints.

Solar Activity
Time of Year
Time of Day
Latitude
Altitude
$\mathrm{F}_{10.7}=100 \times 10^{4} \mathrm{Jy}, 150 \times 10^{4} \mathrm{Jy}$ and $200 \times 10^{4} \mathrm{Jy}$.
Date $=1^{\text {st }}$ Jan, $1^{\text {st }}$ Mar, $1^{\text {st }}$ May, $1^{\text {st }}$ Jul, $1^{\text {st }}$ Sep, $1^{\text {st }}$ Nov.
Time $=0000 \mathrm{~h}, 0400 \mathrm{~h}, 0800 \mathrm{~h}, 1200 \mathrm{~h}, 1600 \mathrm{~h}, 2000 \mathrm{~h}$.
Lat $=90^{\circ} \mathrm{S}, 60^{\circ} \mathrm{S}, 30^{\circ} \mathrm{S}, 0^{\circ}, 30^{\circ} \mathrm{N}, 60^{\circ} \mathrm{N} 90^{\circ} \mathrm{N}$.
Alt $=200 \mathrm{~km}-700 \mathrm{~km}$, in 5 km steps .

The variation of the a_{p} index was neglected due to its high degree of unpredictability, and a value of 15 was used throughout.

The densities predicted can then be written to a five-dimensional Simulink Look-Up Table. This Look-Up Table contains 75,600 unique data points, which increases to 102,900 when the data is expanded to cover complete daily and annual cycles. Each data point represents the density predicted by the MSIS-90 model for a particular combination of altitude, hour-angle, latitude, month and solar activity.

The data within the Look-Up Table is presented in a much-reduced form in Figure A1-6. The three columns represent data for low, medium and high levels of solar activity ($\mathrm{F}_{10.7}=100 \times 10^{4} \mathrm{Jy}, 150 \times 10^{4} \mathrm{Jy}$ and $200 \times 10^{4} \mathrm{Jy}$), whilst the six rows refer to the time of year ($1^{\text {st }}$ January, $1^{\text {st }}$ March, $1^{\text {st }}$ May etc.).

Figure A1-6 Simplified contents of the MSIS-90 Look-Up Table

To examine the effect of latitude, time of day and altitude, Figure A1-7 focuses on the data for the $1^{\text {st }}$ of May at a time of medium solar activity.

Figure A1-7 Part of the simplified contents of the MSIS-90 Look-Up Table
Each of the seven bars contains data for a specific latitude, starting at $90^{\circ} \mathrm{N}$ at the top and progressing to $90^{\circ} \mathrm{S}$ at the bottom. Each bar is then a representation of the predicted density throughout the course of a day, from local midnight at the bottom to local midnight at the top. The altitude increases left-to-right from 200 km to 700 km.

Each band of colour represents a 10 -fold variation in density, from the order of 1 x $10^{-10} \mathrm{~kg} / \mathrm{m}^{3}$ in the red zone to the order of $1 \times 10^{-15} \mathrm{~kg} / \mathrm{m}^{3}$ in the purple zone.

A1.3 Magnetic Model

The extra damping requirement of the deorbit device, over and above that which can be generated by aerodynamic forces, is met by means of interaction with the Earth's magnetic field.

The flux density induced by a magnetic field may be given by...

$$
B=\mu_{0} \mu_{\text {rel }} H
$$

...in which B is the flux density in Tesla; μ_{0} is the permeability of free space (1.257 $\times 10^{-6}$ Farads per metre); $\mu_{\text {rel }}$ is the relative permeability of the body, which is simply a multiplier on μ_{0}; and H is the magnetic field strength in amps per metre.

A1.3.1 Spherical Harmonic Effects

Like the gravity field, the magnetic field can be described by spherical harmonics. The coefficients known as l and m in the gravitational expansion are known in geomagnetic circles as Gauss coefficients after Carl Gauss, who evaluated them to the fourth order and degree in 1838.

Figure A1-8 Carl Gauss

A1.3.1.1 Intensity, Declination and Inclination

The evaluation of the expansion of the Gauss coefficients reveals the strength and direction of the magnetic field, which is usually defined by intensity, declination and inclination. Intensity is the flux density measured in nT , whilst declination and inclination are the angles by which the geomagnetic north-seeking flux lines deviate from local true north and local horizontal respectively. Positive declination indicates a variance to the east, whilst positive inclination indicates the flux is dipping below the horizontal.

A1.3.1.1.1 Intensity

The total sea-level flux density, in nT, predicted by the 2005 US/UK World Magnetic Model is shown in Figure A1-9. The maximum values near the magnetic poles are in the region of $60,000 \mathrm{nT}$, whilst the minimum values found in the South Atlantic anomaly are below $25,000 \mathrm{nT}$. By way of comparison, a typical fridge magnet produces a flux density of about 5 mT , or around 100 times the background field.

Figure A1-9 - Magnetic Flux Density
The flux density decreases with altitude to about 100 nT at geostationary altitude, but at this level it is heavily and dynamically influenced by the sun's more powerful field. In the LEO regime the field is reasonably stable, but the intensity at 600 km falls by a factor of approximately two compared to the sea-level intensity.

A1.3.1.1.2 Declination

The sea-level declination angle predicted by the 2000 US/UK World Magnetic Model is as shown in Figure A-10.

Figure A1-10 - Magnetic Declination Angle

A1.3.1.1.3 Inclination

The sea-level inclination angle predicted by the 2000 US/UK World Magnetic Model is as shown in Figure A-11.

Figure A1-11 - Magnetic Inclination Angle

A1.3.2 Non Spherical Harmonic Effects
 A1.3.2.1 Geological Variation

The Earth's magnetic field has varied greatly throughout geological time, with the field (and magnetic poles) reversing completely every 300,000 years or so. Each reversal takes about 10,000 years to complete, during which time the field intensity drops to around 10% of its normal strength. As a reversal approaches the field may exhibit increasing numbers of excursions, where the field strength briefly weakens and the magnetic poles wander erratically towards the equator before normality is restored.

The current period of 'normal' polarity, which has persisted for 730,000 years, is termed the Brunhes normal chron. This extended duration, although above average, is by no means exceptional. In the Cretaceous period a normal chron (the Cretaceous normal superchron) persisted for 35 million years, and in the Permian period a reversed chron (the Kiaman reversed superchron) persisted for some 50 million years.

These variations have been of great importance in geological research, but take place over much too long a timescale to have any influence on the performance of the deorbit device.

A1.3.2.2 Short Term (secular) Variation

Over the course of the past few hundred years, the declination of the field at London has varied between $11^{\circ} \mathrm{E}$ and $25^{\circ} \mathrm{W}$, whilst the field intensity has fallen by around 5 \% per century. This corresponds to the magnetic field moving at a rate of approximately 1 metre per hour relative to the geographic surface.

On a timescale of years, the field may experience jerks in the secular variation, where the rate of change rises for a few months before returning to normal. Some recent jerks occurred in 1925, 1969 and 1978.

These secular variations, even during a jerk period, take place over much too long a timescale to have any influence on the performance of the deorbit device.

A1.3.3 The Simulation Model

The simulation model is based on the 2005 IGRF models available from NOAA (2006), which calculate the magnetic field parameters using an expansion of degree and order 10.

A1.3.3.1 The IGRF Look-Up Table

A Look-Up Table similar to that used for the atmospheric density information was constructed to hold the data on the strength, declination and inclination of the magnetic field generated by the IGRF model. Part of the data (the sea level field strength only) within the Look-Up Table is presented in a much-reduced form in Figure A1-12.

Because the magnetic field is not as volatile as the atmosphere, does not vary as much with altitude, and leads to smaller torques than the aerodynamic effects the Look-Up Table used to codify it the magnetic field can be proportionally coarser.

The IGRF Look-Up table therefore only evaluates the field at every 30° of latitude and 60° of longitude for altitudes of $200 \mathrm{~km}, 400 \mathrm{~km}$ and 600 km ; thus incorporating 105 data points of which just 90 are unique.

Figure A1-12 Simplified, reduced contents of the IRGF Look-Up Table. Compare with the data presented in Figure A1-9.

Appendix 2 - Matlab m-files

```
A2.1 Boom.m
BOOM - A program to calculate the required skin thickness and
% resultant mass of an inflated boom of given radius able to
% withstand a given Bending Moment.
%
% Call Syntax:
% Boom(Moment,r,YS,Design_Efficiency,SG,R,Temp_Shadow,Temp_Sunlit)
%
% Where Moment = Failure Bending Moment, r = radius of boom, YS =
% Yield Stress of the boom material, Design_Efficiency = Fraction of
boom material strength you want to use, SG = density of boom
% material, R = Specific Gas Constant of inflating gas, Temp_Shadow =
temperature in shadow and Temp_Sunlit = temperature in sunlight.
Some Rs... Air 287, Hydrogen 4130, Carbon Dioxide 189
%
Example of a kapton-skinned hydrogen-filled boom:
Boom(2,0.03,41000000,0.75,1.4,4130,123,470)
%
function Boom =
BOOM(Moment,r,YS,Design_Efficiency,SG,R,Temp_Shadow,Temp_Sunlit)
% Initialise variables
t = 0.00000001;
Efficiency = 1;
Iteration_Count = 0;
% Add thickness incrementally until material is working at an
acceptable
% efficiency
while (Efficiency > Design_Efficiency)
% Outer tube diameter
dout = 2*r;
% Inner tube diameter
din = (2*r) - (2*t);
% Moment of inertia
I = (pi*(dout^4 - din^4))/64;
% Calculate the maximum stress due to the applied bending moment
Sigma = Moment*r/I;
% Equate this to the Axial Stress due to pressure and solve for
pressure required in shadow,
% (minimum pressure condition) because the compression surface will
fail when Compressive Bending
% stress exceeds the Tensile Axial Stress
Pressure_shadow = Sigma*t*2/r;
% As the boom enters sunlight, assume temperature rises from
Temp_Shadow to
% (Temp_Sunlit + Temp_Shadow)/2. Rho, V and R remain constant
Pressure_sunlit = (Temp_Sunlit/Temp_Shadow)*Pressure_shadow;
% At maximum stress point on the tension surface, the Axial Stress is
Sigma
% + pressure Axial Stress
Axial_Stress = ((r-t)*Pressure_sunlit/2*t) + Sigma;
% And pressure Hoop Stress is...
Hoop_Stress = ((r-t)*Pressure_sunlit)/t;
% So equivalent stress is...
```

```
Von_Mises_Stress = sqrt((Axial_Stress^2) + (Hoop_Stress^2) -
Axial_Stress*Hoop_Stress);
% Material Strength Usage
Efficiency = Von_Mises_Stress/YS;
% Add increment of t
t = t + 0.00000001;
% Count
Iteration_Count = Iteration_Count + 1;
end
t
Boom_Mass_per_metre = 2*r*pi*t*SG;
Gas_Density = Pressure_sunlit/(R*Temp_Sunlit);
Gas_Mass_per_metre = pi*r*r*Gas_Density;
Total_Mass_per_metre = Boom_Mass_per_metre + Gas_Mass_per_metre
Percentage_of_which_is_gas =
(Gas_Mass_per_metre/Total_Mass_per_metre)*100
Pressure_sunlit_PSI = Pressure_sunlit*0.0001450377
Pressure_shadow_PSI = Pressure_shadow*0.0001450377
Iteration_Count
```

```
A2.2 ConeTotal.m
% CONETOTAL - A program to calculate the
% torques and forces due to atmospheric forces
% and SRP on a cone in LEO. The mass of the
% cone is considered to be concentrated at the apex.
% The convex surface is assumed to be silvered, the concave
% surface to be black.
%
% Call Syntax:
% ConeTotal(alt, area,theta, alphadot,opa)
%
% alt = altitude (km) area = area (m.m)
% theta = cone half-angle (rad)
% alphadot = pitch rate (rad/s), opa = opaquicity(0.001 - 0.999)
%
%
%
function ConeTotal = CONETOTAL(alt,area,theta,alphadot,opa)
alpha = 0;
while alpha < 3.2
alpha
% Calculate orbital parameters (rho estimated)
rho = (3.*10.^32)*((alt.*1000).^-7.8667);
SRP = 4.6.* * 0.^-6;
ref = opa;
abso = opa;
grav = 6.67.*10.^-11;
MoE = 5.98.*10.^24;
V = (grav.*MoE./(alt.*1000 + 6380000)).^0.5;
% Calculate cone parameters
length=sqrt((area./(pi.*sin(theta))));
r = length.*sin(theta);
axiallength = length.*cos(theta);
% Calculate flow parameters
beta = pi-alpha;
A = (sin(theta))*(cos(alpha));
B = (cos(theta))*(sin(alpha));
if (alpha~=0)
if (alpha~=pi)
psiL = acos(tan(theta)./tan(alpha));
end
end
% REGIME 1
if((alpha<=theta)&(alpha>=-theta))
Regime = 1;
%
% AERODYNAMIC
% Restoring Torque
aFlr = inline('((A - B.*Cos(psi)).^2).* cos(psi)','psi','A','B');
aIntFlr = quad(aF1r,0,pi,[],[],A,B);
aRestoring = (2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntFlr;
% Damping Torque
aFld = inline('(A - B.*Cos(psi)).*cos(psi).*cos(psi)','psi','A','B');
aIntF1d = quad(aF1d,0,pi,[],[],A,B);
aDamping = -(length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF1d;
% Body Drag
aFli = inline('((A - B.* Cos(psi)).^2)','psi','A','B');
```

```
aIntF1i = quad(aF1i,0,pi,[],[],A,B);
aDrag = ((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF1i);
% Body Lift
aF1l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
aIntF1l = quad(aF1l,0,pi,[],[],A,B);
aLift = ((length.^2).*sin(theta).**os(theta).*rho.*V.*V.*-aIntF1l);
%
% SRP - SPECULAR REFLECTION
% Restoring Torque
srFlr = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
srIntF1r = quad(srF1r,0,pi,[],[],A,B);
srRestoring = (2./3).*(length.^3).*sin(theta).*2.*ref.*SRP.*srIntF1r;
% Body Drag
srF1i = inline('((A - B.*cos(psi)).^2)','psi','A','B');
srIntF1i = quad(srF1i,0,pi,[],[],A,B);
srDrag =
((length.^2).*sin(theta).*sin(theta).*2.*ref.*SRP.*srIntF1i);
% Body Lift
srF1l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
srIntF1l = quad(srF1l,0,pi,[],[],A,B);
srLift = ((length.^2).**in(theta).*cos(theta).*2.*ref.*SRP.*-
srIntF1l);
%
% Results
Aero_Restoring_Torque = aRestoring;
Aero_Damping_Torque = aDamping;
Aero_Body_Drag = aDrag;
Aero_Body_Lift = aLift;
SRP_Restoring_Torque = srRestoring;
SRP_Body_Drag = srDrag;
SRP_Body_Lift = srLift;
%
% REGIME 2
elseif(((alpha>theta)&(alpha<=(pi/2))) | ((alpha<(-theta))&(alpha>=(-
pi/2))))
Regime = 2;
%
% AERODYNAMIC
% Restoring Torque
aF2r = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
aIntF2r = quad(aF2r,psiL,pi,[],[],A,B);
aRestoring = (2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntF2r;
% Damping Torque
aF2d = inline('(A - B.*cos(psi)).*cos(psi).*cos(psi)','psi','A','B');
aIntF2d = quad(aF2d,psiL,pi,[],[],A,B);
aDamping = -(length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF2d;
% Body Drag
aF2i = inline('((A - B.*cos(psi)).^2)','psi','A','B');
aIntF2i = quad(aF2i,psiL,pi,[],[],A,B);
aDrag = ((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF2i);
% Body Lift
aF2l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
aIntF2l = quad(aF2l,psiL,pi,[],[],A,B);
aLift = ((length.^2).*sin(theta).**os(theta).*rho.*V.*V.*-aIntF2l);
%
% SRP - SPECULAR REFLECTION
% Restoring Torque
srF2r = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
srIntF2r = quad(srF2r,psiL,pi,[],[],A,B);
```

```
srRestoring = (2./3).*(length.^3).*sin(theta).*2.*ref.*SRP.*srIntF2r;
% Body Drag
srF2i = inline('((A - B.*Cos(psi)).^2)','psi','A','B');
srIntF2i = quad(srF2i,psiL,pi,[],[],A,B);
srDrag =
((length.^2).*sin(theta).*sin(theta).*2.*ref.*SRP.*srIntF2i);
% Body Lift
srF2l = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
srIntF2l = quad(srF2l,psiL,pi,[],[],A,B);
srLift = ((length.^2).*sin(theta).*cos(theta).*2.*ref.*SRP.*_
srIntF2l);
% Results
Aero_Restoring_Torque = aRestoring;
Aero_Damping_Torque = aDamping;
Aero_Body_Drag = aDrag;
Aero_Body_Lift = aLift;
SRP_Restoring_Torque = srRestoring;
SRP_Body_Drag = srDrag;
SRP_Body_Lift = srLift;
%
% REGIME 3
elseif(((alpha<(pi-theta))&(alpha>(pi/2))) | ((alpha>(-
pi+theta))&(alpha<(-pi/2))))
Regime = 3;
%
% OUTSIDE
% AERODYNAMIC
% Restoring Torque
aF3ro = inline('((A - B.*Cos(psi)).^2).*cos(psi)','psi','A','B');
aIntF3ro = quad(aF3ro,psiL,pi,[],[],A,B);
aRestoring_Out =
(2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntF3ro;
% Damping Torque
aF3do = inline('(A -
B.*cos(psi)).*cos(psi).*cos(psi)','psi','A','B');
aIntF3do = quad(aF3do,psiL,pi,[],[],A,B);
aDamping_Out = -(length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF3do;
% Body Drag
aF3io = inline('((A - B.*Cos(psi)).^2)','psi','A','B');
aIntF3io = quad(aF3io,psiL,pi,[],[],A,B);
aDrag_Out =
((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF3io);
% Lift Force
aF3lo = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
aIntF3lo = quad(aF3lo,psiL,pi,[],[],A,B);
aLift_Out = ((length.^2).*sin(theta).*cos(theta).*rho.*V.*V.*_
aIntF3lo);
%
% SRP - SPECULAR REFLECTION
% Restoring Torque
srF3ro = inline('((A - B.*cos(psi)).^2).*cos(psi)','psi','A','B');
srIntF3ro = quad(srF3ro,psiL,pi,[],[],A,B);
srRestoring_Out =
(2./3).*(length.^3).*sin(theta).*2.*ref.*SRP.*srIntF3ro;
% Body Drag
srF3io = inline('((A - B.*Cos(psi)).^2)','psi','A','B');
srIntF3io = quad(srF3io,psiL,pi,[],[],A,B);
srDrag_Out =
((length.^2).*sin(theta).*sin(theta).*2.*ref.*SRP.*srIntF3io);
```

```
% Body Lift
srF3lo = inline('((A - B.* cos(psi)).^2).*cos(psi)','psi','A','B');
srIntF3lo = quad(srF3lo,psiL,pi, [], [],A,B);
srLift_Out = ((length.^2).*sin(theta).*cos(theta).*2.*ref.*SRP.*_
srIntF3lo);
%
% Outside Results
Aero_Restoring_Torque_Out = aRestoring_Out;
Aero_Damping_Torque_Out = aDamping_Out;
Aero_Body_Drag_Out = aDrag_Out;
Aero_Body_Lift_Out = aLift_Out;
SRP_Restoring_Torque_Out = srRestoring_Out;
SRP_Body_Drag_Out = srDrag_Out;
SRP_Body_Lift_Out = srLift_Out;
%
% INSIDE
% AERODYNAMIC
% Restoring Torque
aF3ri = inline('((s.^2).*(((A -
B.*}\operatorname{cos}(\textrm{psi})).^2).* cos(psi))).*((s)>(length.*(sin(acos((- (-2.* (-
((axiallength.*sin(beta))./r)).*(cos(beta))) - ((()-2.*(-
((axiallength.*sin(beta))./r)).*(cos(beta))).^2) - 4.*((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-
((axiallength.*sin(beta))./r)).^2) - ((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0.5) )./(2.*(((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2) +
((cos(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia
llength','beta', 'r');
aIntF3ri =
dblquad(aF3ri,0.0001,psiL,0, length, [], [],A,B,length,axiallength,beta,
r);
aRestoring_In = - 2.*sin(theta).*rho.*V.*V.*aIntF3ri;
% Damping Torque
aF3di = inline('((s.^3).*(A -
B.* cos(psi)).*cos(psi).* cos(psi)).*((s) > (length.*(sin(acos((- (-2.* (-
((axiallength.*sin(beta))./r)).*(cos(beta))) - ((((-2.*(-
((axiallength.*sin(beta))./r)).*(cos(beta))).^2) - 4.*((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(\operatorname{cos}(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-
((axiallength.*sin(beta))./r)).^2) - ((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0. 5) )./(2.*(((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2) +
((cos(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia
llength','beta', 'r');
aIntF3di =
dblquad(aF3di,0.0001,psiL, 0, length, [], [],A,B,length, axiallength,beta,
r);
aDamping_In = 4.*sin(theta).*rho.*V.*alphadot.*aIntF3di;
% Body Drag
aF3ii = inline('((s).*((A -
B.* cos(psi)).^2)).*((s)>(length.*(sin(acos((- (-2.* (-
((axiallength.*sin(beta))./r)).*(cos(beta))) - ((()-2.*(-
((axiallength.*sin(beta))./r)).*(cos(beta))).^2) - 4.*((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
```

```
(cos(beta).*(cos(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-
((axiallength.*sin(beta))./r)).^2) - ((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0.5))./(2.*(((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2) +
((\operatorname{cos}(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia
llength','beta', 'r');
aIntF3ii =
dblquad(aF3ii,0.0001,psiL, 0, length, [], [],A,B,length,axiallength,beta,
r) ;
aDrag_In = - (2.*sin(theta).*sin(theta).*rho.*V.*V.*aIntF3ii);
% Body Lift
aF3li = inline('((s).*((A -
B.* cos(psi)).^2).* cos(psi)).*((s)>(length.*(sin(acos((- (-2.*(-
((axiallength.*sin(beta))./r)).*(cos(beta))) - ((((-2.*(-
((axiallength.*sin(beta))./r)).*(\operatorname{cos(beta))).^2) - 4.*((-}
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2 + ((cos(beta)).^2)).*(((-
((axiallength.*sin(beta))./r)).^2) - ((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2))).^0.5))./(2.*(((-
(((cos(beta)).*axiallength.*(tan(beta)))./(r.*sin(psi)) +
(cos(beta).*(cos(psi))./(sin(psi))))).^2) +
((cos(beta)).^2))))))./(sin(psi))))','psi','s','A','B','length','axia
llength','beta', 'r');
aIntF3li =
dblquad(aF3li,0.0001,psiL,0,length, [], [],A,B,length, axiallength,beta,
r);
aLift_In = - (2.*sin(theta).* cos(theta).*rho.*V.*V.*-aIntF3li);
%
% SRP - TOTAL ABSORPTION
% Restoring Torque
AreaOpen = pi.*r.*r.*cos(beta);
OpenForce = abso.*SRP.*AreaOpen;
MomentArm = axiallength.*sin(beta);
saRestoring_In = -OpenForce.*MomentArm;
% Body Drag
saDrag_In = -OpenForce.*cos(beta);
% Body Lift
saLift_In = OpenForce.*sin(beta);
%
% Inside Results
Aero_Restoring_Torque_In = aRestoring_In;
Aero_Damping_Torque_In = aDamping_In;
Aero_Body_Drag_In = aDrag_In;
Aero_Body_Lift_In = aLift_In;
SRP_Restoring_Torque_In = saRestoring_In;
SRP_Body_Drag_In = saDrag_In;
SRP_Body_Lift_In = saLift_In;
%
% Results
Aero_Restoring_Torque = Aero_Restoring_Torque_Out +
Aero_Restoring_Torque_In;
Aero_Damping_Torque = Aero_Damping_Torque_Out +
Aero_Damping_Torque_In;
Aero_Body_Drag = Aero_Body_Drag_Out + Aero_Body_Drag_In;
Aero_Body_Lift = Aero_Body_Lift_Out + Aero_Body_Lift_In;
```

```
SRP_Restoring_Torque = SRP_Restoring_Torque_Out +
SRP_Restoring_Torque_In;
SRP_Body_Drag = SRP_Body_Drag_Out + SRP_Body_Drag_In;
SRP_Body_Lift = SRP_Body_Lift_Out + SRP_Body_Lift_In;
%
% REGIME 4
else
Regime = 4;
%
% AERODYNAMIC
% Restoring Torque
aF4r = inline('((A - B.* cos(psi)).^2).*cos(psi)','psi','A','B');
aIntF4r = quad(aF4r,0,pi,[],[],A,B);
aRestoring = - (2./3).*(length.^3).*sin(theta).*rho.*V.*V.*aIntF4r;
% Damping Torque
aF4d = inline('(A - B.* cos(psi)).*cos(psi).*cos(psi)','psi','A','B');
aIntF4d = quad(aF4d,0,pi, [], [],A,B);
aDamping = (length.^4).*sin(theta).*rho.*V.*alphadot.*aIntF4d;
% Drag Force
aF4i = inline('((A - B.*Cos(psi)).^2)','psi','A','B');
aIntF4i = quad(aF4i,0,pi,[],[],A,B);
aDrag = - ((length.^2).*sin(theta).*sin(theta).*rho.*V.*V.*aIntF4i);
% Lift Force
aF4l = inline('((A - B.* cos(psi)).^2).*cos(psi)','psi','A','B');
aIntF4l = quad(aF4l,0,pi,[],[],A,B);
aLift = - ((length.^2).*sin(theta).*cos(theta).*rho.*V.*V.*-aIntF4l);
%
% SRP - TOTAL ABSORPTION
% Restoring Torque
AreaOpen = pi.*r.*r.*cos(beta);
OpenForce = abso.*SRP.*AreaOpen;
MomentArm = axiallength.*sin(beta);
saRestoring = -OpenForce.*MomentArm;
% Body Drag
saDrag = -OpenForce.*cos(beta);
% Body Lift
saLift = OpenForce.*sin(beta);
%
% Results
Aero_Restoring_Torque = aRestoring;
Aero_Damping_Torque = aDamping;
Aero_Body_Drag = aDrag;
Aero_Body_Lift = aLift;
SRP_Restoring_Torque = saRestoring;
SRP_Body_Drag = saDrag;
SRP_Body_Lift = saLift;
end
%
% QUOTIENTS
ARQ = Aero_Restoring_Torque./(rho.*V.*V);
ADQ = Aero_Damping_Torque./(rho.*V.*alphadot);
ABD = Aero_Body_Drag/(rho.*V.*V);
ABL = Aero_Body_Lift/(rho.*V.*V);
SRRQ = SRP_Restoring_Torque./(opa.*SRP);
SRBD = SRP_Body_Drag./(opa.*SRP);
SRBL = SRP_Body_Lift./(opa.*SRP);
%
i = 10.*alpha;
%
```

```
quotient(1,round(i+1))=ARQ;
quotient(2,round(i+1))=ADQ;
quotient(3,round(i+1))=ABD;
quotient (4,round(i+1))=ABL;
quotient(5,round(i+1))=SRRQ;
quotient (6,round(i+1))=SRBD;
quotient(7,round(i+1))=SRBL;
%
alpha = alpha + 0.1;
end
csvwrite('Quotients.csv', quotient)
```

```
A2.3
    Deflect.m
% DEFLECT - A program developed to calculate the deflection of
% the struts on a deorbit device
%
% Call Syntax:
% deflect(Mu,L,Theta,EI)
%
function deflect = deflect(Mu,L,Theta,EI)
End_S = L.**sin(Theta).*cos(pi./4);
End_D = L;
Count2 = 1;
while (Count2 < 9)
d_eff_boom = atan(End_D./L);
ThetaBoom = (Theta) - d_eff_boom;
End_X_undeflected = End_S;
End_X_deflected = (L.*sin(Theta - d_eff_boom)).*cos(pi./4);
Count = 1;
Psi = 1;
while (Count < 100000)
    Psi = acot(((End_S.*Mu).*(log(tan(Psi./2))))./-
    (Mu.*End_X_deflected));
    Count = Count + 1;
end
Psi;
End_Y_deflected = (End_X_deflected.*(-log(sin(Psi))))./((pi./2)-Psi);
d_eff_web = atan(End_Y_deflected./End_S);
ThetaWeb = atan(End_S./(L.*cos(Theta)));
Theta_eff = ((Theta - d_eff_boom) + (ThetaWeb - d_eff_web))./2;
Mu_eff = Mu.*Sin(Theta_eff);
End_T = 1./((1./(Mu__eff.*End_X_deflected)).*((pi./2) - Psi));
End_F = 2.*End_T.*}\operatorname{cos}(pi./4).**sin(Psi);
P = 0.5.*End_F.*L;
Qo = 2.*End_T.* cos(pi./4).* cos(Psi);
k = sqrt(P./(EI));
C1 = cos(k.*L);
C2 = sin(k.*L);
CA3 = 1 - cos(k.*L);
CA4 = (k.*L) - sin(k.*L);
CA5 = (((k.^2).* (L.^2))./2) - CA3;
CA6 = (((k.^3).* (L.^3))./6) - CA4;
Y = ((-QO./((k.^2).*P))* ((C2.*CA4 - C1.*CA5)./C1)) -
((-Qo./((k.^3).*P.*L)).* ((C2.*CA5 - C1.*CA6)./C1));
if (y > 0)
disp('Super-buckling load. Aborting...')
break
else
End_D = abs(y);
Count2 = Count2 + 1;
end
end
Area_Proj = (2.*End_S)^2
Def = End_D./L
```


Appendix 3 - Simulink mdl-files

A3.1
Equatorial_Plane.mdI
This version of Equatorial_Plane.mdl has been set up to run 50 simulations in parallel, and, to prevent clashes arising from signal dimension mismatches, it was necessary to have 50 versions of the MSIS-90 Look-Up Table. These are truncated at the right.

A3.2 Six_DOF.mdI

Blocks entitled 'Positive Buffer' and 'Window Buffer' contain the same routing as their counterparts in Equatorial_Plane.mdl.

A3.3 Reentry.mdl

Blocks entitled 'X' are simply signal crossovers.

Appendix 4 - Large Demonstrators

It was discovered during the construction of the practical demonstrators that solid NiTiNOL elements with diameters of a few millimetres cannot be cantilevered more than about 0.5 m from the central hub before they sag under gravity. This is not a problem in space, but it does make the Earth-bound investigation of the different deployment mechanisms very difficult.

NiTiNOL is available in a stiffer tubular form, but the cost is perhaps 100 times greater than for solid elements. Therefore, an alternative method was developed to construct larger demonstrators. This involved using five NiTiNOL elements braced in parallel by lightweight nodes. During the service flexion of the structure large stresses are placed upon the nodes, and so after failed experiments with cork, butyl and acrylic, aluminium shim washers obtained from Bombardier Aerospace (Shorts) were found to be suitable.

Methods of bonding the NiTiNOL to the nodes investigated included super-gluing, resin and putty epoxying, JB-welding, soldering and brazing, but in all cases the flexion of the structure caused the joints to fail. Ultimately, only slow-cure Araldite was found to be effective, and even so failure is increasingly likely after $10-20$ flexions of the structure.

Despite these difficulties, the cantileverable range of the NiTiNOL elements was extended to approximately 1.2 metres.

Figure A4-1 Detail of the five-core NiTiNOL booms developed for larger demonstrators. The aluminium shim washers and the Araldite bonds are visible under the black primer which was applied to aid photography.

Appendix 5 - Design Tools and Product Information

A5.1
 ADAM

The ADAM booms supplied by Able Engineering Inc. may be sized by means of this design tool, sourced from their website at aec-able.com (2006).

Figure A5-1 ADAM boom design tool, supplied by Able Engineering Inc.

A5. 2

STEMs

The STEM systems shown here have been obtained from the Northrop Grumman website (northropgrumman.com (2006)).

A5.2.1
 STEM JIB

Figure A5-2 STEM JIB data sheet, supplied by Northrop Grumman Inc.

Figure A5-3 TIP DRUM data sheet, supplied by Northrop Grumman Inc.

A5.2.3 MICROSAT

Figure A5-4 MICROSAT data sheet, supplied by Northrop Grumman Inc.

Figure A5-5 BI-STEM data sheet, supplied by Northrop Grumman Inc.

A5. 3 CTMs

This information regarding CTMs has been obtained from the literature of SENER Ingeniera Y Sistemas, via the research of Broughton (2003).

Mast Size		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Height (mm)		22	43	63	93	133
Width						
(mm)						

mast to provide signal and power to any payloads/experiments placed on the top with each specific customer requirements. A flat cable can be implemented also in the pays power to any payloads/experiments placed on the top. manufacturing method is used, then, it provides tubes of unlimited length. The CTM
design has been performed in a flexible way to provide scalable sizes to be compatible backlash free at any intermediary position, from zero to fully deployed. The mast can be
manufactured in metal and composite (CRFP), in both cases a continuous drum into a small volume package. A drive system pulls the tube by the edge to deploy,
and rotates the drum to retract. This approach leads to a mast fully operational and The CTM is a b

Collapsible Tubular Mast (CTM)

Figure A5-6 CTM data sheet, reproduced from Broughton (2003)

A5.4
 Telescopic Masts

The Telescopic Masts shown here have been obtained from the Northrop Grumman website (northropgrumman.com (2006)).

Figure A5-7 Telescopic Mast data sheet, supplied by Northrop Grumman Inc.

A5.5 CoilABLE Masts

The CoilABLE masts supplied by Able Engineering Inc. may be sized by means of these diagrams, sourced from their website at aec-able.com (2006).

Figure A5-8 CoilABLE mast design diagrams, supplied by Able Engineering Inc.

A5.6 MSP-430

Figure A5-9 MSP-430 Controller data sheet, supplied by Texas Instruments Inc.

A5.7 MHX-920

		$\rightarrow 189 \rightarrow 2 \mathrm{Cl}(888))^{181}$ 87000 HN 'ํIINของร eqz xog XNITH	
		U0! ! Bulolul locluo	
		sovsingerid uapeloy rocue - -20	uoppopy
		-Eep syoum pue fub6ol itio eulrrey 'ISSy 'ergessiuel 'sowod pepsapey s premoz	8513806eic
		ydu bopur sem 'spowsy 'Elssy ussa'ussy 	20¢5004 9eubls
	coz uaxo	-suel 'ead or nad wal reserder puewoysonos 	sppow 6uge.odo
sopewos wns fuepd espong	OH vaxo		
sampozasy	col uaro		
			induthort
suolido jepjo		sdopr $0 ¢ z$ ¢ s scacoe	erya prea ereas
panoxde olzsse x 	spenoxioy	10. 7	
		aport	URO werals
	suopuswia	(ugrob) ML © Mucol 'mut	javod jnano
sues ce xoxdoy	अВ¢क्य	$t-31=898 \times 5$ wap 0h- 	Angraves
20sc+as 200	ношu\%yus		
(011 uogdo) yWs exanay ' Cow	2ppouico exiayy		${ }^{\text {a }}$ (uey
		vomyusens hox queuid	vaxatiouz era
		\propto ипиํํㅆ	จputero Culddo
			swened Buidioh
/98nzezse 'xanes q วanee		शcapeps iesn 91	sumukes pueg
	sempon دico	(auldion kaventery	poumew Gupeons
(001 uaydo sestoance 090 N 'OOASS of 50N		2HW EZ6-206	Kowntay
			$026 \times H W$

Figure A5-10 Radio Transceiver data sheet, supplied by Microhard Systems Inc.

A5.8 ST $1130 \mathbf{N}$
(-) BICRON Electronics Company

ST1130N

Pull Type
Tubular Solenoid $0.43^{\circ} \mathrm{Di}$. $\times 1.2^{\circ} \mathrm{L}$
$(11 \mathrm{~mm} \times 30.5 \mathrm{~mm})$

Specifications:

Insulation:	Class ${ }^{*} A^{\prime \prime}\left(105^{\circ} \mathrm{C}\right)$ standard ${ }^{4}$
Coil Termination: 28 ANG flying leads per drawing ${ }^{+}$
Plunger linkage:	Yoke ${ }^{4}$
Plunger pole face: .	60° conical ${ }^{+}$
Solenoid weight:0.59oz [17g]
Plunger weight:0.11oz [3.2g]
Dielectric Strength: .	1000VAC for one minute
Operating temperature range:	$-20^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C}$

Coil Dat a:						
	100\% Duty - 4W		25\% Duty - 16 W		10\% Duty - 40 W	
Voltage (VDC)	Resistance (Ω)	Part Number	Resistance (Ω)	Part Number	Resistance (Ω)	Part Number
3	23	ST 1130 N 0300	056	ST 1130 N 0325	0.23	ST1130N0310
6	9.0	ST 1130 N0600	2.3	ST1130N0625	09	ST1130N0610
12	36.0	ST1130N1200	9.0	ST $1130 \mathrm{~N}_{1} 225$	36	ST1130N1210
24	144	ST 1130 N 2400	36.0	ST1130N2425	14.4	ST1130N2410

Notes: Solonoid shown in enargizedposition Dimensions listidarefor wiwence onk, Dimensions shown in inches and [mm]
50 Barlow Street • Canaan,CT 05068 • Tel: 860-824-5125 • Fax: 860-824-1137 • www.Soleno id com • info ω Solenoid.com on 2002 -12ess

Figure A5-11 Solenoid data sheet, supplied by the Bicron Electronics Company

Appendix 6 - Effect of Different GSIMs

The deorbit device has been in large part designed with reference to the deorbit times calculated by the Simulink models Equatorial_Plane.mdl and Six_DOF.mdl. Both of these models made the assumption that any impinging atmospheric particles lose all velocity normal to the drag sail but maintain their full tangential velocity.

This Gas-Surface Interaction Model (GSIM) was chosen because it represents the least possible interaction between the drag sail and the rarefied flow, and thus any conclusions drawn from it regarding the performance of the drag sails will definitely be achieved in reality and may well be exceeded. However, in practice the interaction between the rarefied flow and the drag sail will be greater because there will be some degree of particle reflection, which will have both specular and diffuse elements, as well as tangential velocity losses. The precise degree of interaction depends on a great number of variables such as the gas species, the nature of the surface, the impingement velocity and the temperature. These vary to such an extent that any GSIM which is reasonably accurate for one section of the deorbit may well be unusable elsewhere.

Fortunately this need not affect the design of the deorbit device because it appears that different GSIMs have a scaling rather than differentiating effect of the deorbit times, leaving the optimum design point effectively unchanged. This is illustrated by Figure 8-1, which shows the average deorbit times from 650 km under a GSIM of the opposite extreme - i.e. one where the incoming particles are specularly reflected. It can be seen that the optimum apex half-angle remains at approximately 1.4 radians.

Figure A6-1 Double-interaction Deorbit Times

