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Abstract

Architected piezoelectric materials with controlled porosity are of interest for applications such as 

hydrophones, miniature accelerometers, vibratory sensors, and contact microphones. Current 

analytical modeling approach cannot be readily applied to design architected periodic piezoelectric 

foams with tunable properties while exhibiting elastic anisotropy and piezoelectric activity. This 

study presents micromechanical-finite element (FE) models to characterize the electromechanical 

properties of architected piezoelectric foams. The microstructure with zero-dimension (3-0 foam, 

spherical porosity) and one-dimensional (3-1 foam, cylindrical porosity) connectivity were 

considered to analyze the effect of porosity connectivity on the performance of piezoelectric foam. 

3D FE models of the 3-0 and 3-1 foams were developed and using the intrinsic symmetry of porous 

structures simplified mixed boundary conditions (MBCs) equivalent to periodic boundary 

conditions (PBC) were proposed. The proposed approach is simple and eliminates the need of 

tedious mesh generation process on opposite boundary faces on the micromechanical model of 

porous microstructures with PBCs. The results obtained from the proposed micromechanics-FE 

models were compared with those obtained by means of the analytical models based on 
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micromechanics theories, and FE models with PBCs reported in the literature for both 3-0 and 3-

1 type foams. An excellent agreement was observed. The computed effective elastic, piezoelectric 

and dielectric properties and corresponding figure of merit (FOM) revealed that piezoelectric 

foams with 3–0 connectivity exhibit enhanced hydrostatic FOM as compared to piezoelectric 

foams with 3–1 connectivity. It is concluded that spherical porosity is more suitable to hydrophone 

applications.

Keywords: finite element analysis; electromechanical properties, architected porous materials, 

unit cell method, piezoelectric materials.

1. Introduction

Architected piezoelectric composites and foams owing to their unique electromechanical 

properties are of interest in wide range of actuators, sensors, medical devices, hydrophones and 

echo-cardiogram (Marselli et al., 1999). Piezoelectric composite have been produced by adding 

one or more constituents (Topolov and Bowen, 2008) while piezoelectric foam are produced by 

introducing controlled porosity (Hikita et al., 1983) in bulk piezoelectric materials. Piezoelectric 

foams with architected porosity can enhance signal-to-noise ratio, lower acoustic impedance, 

enhanced piezoelectric charge, voltage coefficients and hydrostatic figure of merit (FOM) (Khan 

et al., 2019). For example, piezoelectric foams showed higher hydrostatic FOM as compared to 

monolithic PZT for a similar hydrophone design (Geis et al., 2000). For various industrial and 

structural applications there is a need to explore various design of piezoelectric foam with tunable 

electromechanical properties through numerical experimentations.

The design of the piezoelectric foams are highly dependent on the spatial distribution of the 

porosity or its connectivity in a different direction (Newnham et al., 1978). Several experimental 

studies were conducted to understand the role of connectivity of porosity on the electromechanical 
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properties of piezoelectric foams, such as, enclosed porosity (i.e.,3-0  foam) (Haun and Newnham, 

1986; Kara et al., 2003; Ueda et al., 2010) cylindrical porosity (i.e.,3-1 foam) (Bast and Wersing, 

1989); and open-foam like porosity (i.e.,3-3 type foam) (Lee et al., 2007; Nagata et al., 1980). 

These experiments conclude that porosity enhances the piezoelectric sensitivity of the piezoelectric 

foams.

Various analytical models were developed to predict the electromechanical properties of porous 

piezoelectric materials by considering simplified porosity configurations (3-0 and 3-1 types) 

(Banno, 1985), (Martin L. Dunn and Taya, 1993), (Mikata, 2001), (Bowen and Topolov, 2003). 

Current analytical models cannot be readily applied to compute electromechanical characteristics 

of architected periodic piezoelectric foams and composites exhibiting elastic anisotropy and 

piezoelectric activity.

Several researchers employed topology optimization techniques and the homogenization method 

to improve the performance of piezoelectric materials by designing new topologies of unit cells. 

Silva, Kikuchi, and co-workers (Silva et al., 1997), (Silva et al., 1998) proposed a topology 

optimization technique of finding the distribution of material and voids phases in a periodic unit 

cell that can optimize electromechanical efficiency of architected piezoelectric materials. Sigmund 

et al (Sigmund et al., 1998) employed the topology optimization method to design architected 

piezoelectric materials with optimal performance characteristics for hydrophone applications and 

their design proposed optimal three-dimensional anisotropic porous matrix microstructure.

Several micromechanical models based on finite element analysis were developed for predicting 

electromechanical properties of 3-0, 3-1 and 3-3 type porous piezoelectric materials and hence 

addressed more complex microstructures (Kar-Gupta and Venkatesh, 2008). These studies 

concluded that electromechanical properties of porous piezoelectric materials depend on level of 
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porosity, pore shape, orientation and distribution, cellular interconnectivity and poling direction. 

Piezoelectric metamaterials and piezoelectric architected materials (e.g., (Iyer et al., 2015)) are the 

potential subclasses of porous piezoelectric materials. It is because their microstructure in any 

porosity configuration (such as 3-0, 3-1 and 3-3) can be tailored to produce new innovative 

material designs with optimum multifunctionality required for specific applications (Wadley, 

2006). 

Currently, the designing of the piezoelectric foams and composite are performed using the unit 

cell (UC) homogenization method using periodic boundary conditions (PBCs) (Kar-Gupta and 

Venkatesh, 2008), (Iyer and Venkatesh, 2010). The application of PBCs requires UC periodicity 

and continuity of the displacements and the electrical potential, i.e., the difference of the 

displacements and electric potential for the corresponding points on the two opposite boundary 

surfaces should be specified. In this work, the symmetry of the periodic microstructure was 

recognized and an explicit mixed traction-displacement boundary conditions (BCs) for UCs were 

proposed while incorporating the continuity of electric electrical charge and displacement field to 

obtain the effective electromechanical properties of architected periodic piezoelectric foam and 

composites. The proposed approach is simple as there is no need to create a similar mesh on 

opposite faces of the unit cell, which require special consideration and added extra complexity in 

the modeling procedure of some complex architected porous microstructures. This study presents 

a micromechanical modeling and finite-element based computational homogenization framework 

to compute the electromechanical properties of architected periodic piezoelectric foam. As an 

example, 3D finite element models are developed to characterize the effects of porosity and 

constituents’ material anisotropy on the electromechanical properties of 3-0 and 3-1 type 

piezoelectric foam.
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2. Architecture of Porous Piezoelectric Materials

We consider two typical periodic architected microstructures i.e., a 3-0 and 3-1 type 

piezoelectric foams with zero-dimension and one-dimensional connectivity, respectively. In 3-0 

type and 3-1 type foams, the spherical and cylindrical porosity is embedded in an active 

piezoelectric matrix material, respectively. Figures 1 (a) and (b) show the architecture of 3-0 and 

3-1 type piezoelectric foams with the direction of the poling axis. The piezoelectric matrix is made 

of piezoelectric system of BaTiO3 (poled in 3-direction).  We have considered BaTiO3 in this study 

because there has been considerable interest in the community to explore the porous BaTiO3 in 

hydrophone (Iyer and Venkatesh, 2011) and energy harvesting applications (Roscow et al., 2015, 

2017, 2018).

1(x)

2(y)

3(z)
(a) (b)

Poling Direction

Figure 1. Architecture of Porous piezoelectric materials a) Spherical Porosity b) Cylindrical 

Porosity. 

From a practical point of view, uniform poling can be possible in 3-1 type PMs (Getman and 

Lopatin, 1996) but poling 3-0 type PMs in a uniform manner could be a challenging task. It is 

anticipated that due to the presence of complex pore shape during the processing of poling the 

applied electric field concentrates in the low-permittivity pores region, which leads to an 
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inhomogeneous electric field distribution throughout the cellular structure (Padurariu et al., 2012). 

Thus, some regions may remain un-poled or be poled in a direction that is different from the 

direction that is originally intended in the poling process. Recently, Zhang et al. (Zhang et al., 

2018) examined the influence of pore volume fraction and morphology on the polarization-electric 

field behaviour of ferroelectric materials. It has been shown that the introduction of a low 

permittivity pore in a high-permittivity ceramic matrix lead to a broadening of the electric field 

distribution in the ceramic component and a decrease in the electric field experienced by the 

ceramic due to a concentration of the electric field in the lower permittivity pore region.

3. Constitutive Model of Piezoelectric Material and Architected Foam

The constitutive equations of monolithic piezoelectric material are assumed to be linear and 

can be written in compacted matrix strain-charge form as (Yang, 2006):

              (1){ {𝜀}
{𝐷}} = [ [𝑆]𝐸 [𝑑]

[𝑑]𝑇    [𝛋]𝜎]{{𝜎}
{𝐸}}

Where  are the field variables, and denote the strain tensor, stress tensor, {𝜀}, {𝜎}, {𝐷}, and {𝐸}

electric displacement vector, and electric field vector, respectively. The material constants [𝑆𝐸],

, and   denotes the compliance tensor, dielectric tensor and the piezoelectric strain tensor, [𝜅𝜎] [𝑑]

respectively. The superscripts E and  indicate that the values of materials constants are measured 𝜎
at zero or constant electric field and zero or constant stress, respectively. The components of stress 

and strain tensor can be written in Voight notation, as  and 𝜎 = {𝜎1,𝜎2,𝜎3,𝜎4,𝜎5,𝜎6}𝑇 𝜀 =

. The superscript ‘T’ denotes the transpose. The third order piezoelectric strain {𝜀1,𝜀2,𝜀3,𝜀4,𝜀,𝜀6}𝑇
tensor and fourth order compliance tensor can be reduced in matrix form as and 𝑑𝑖𝑘𝑙 = 𝑑𝑖𝑏 𝑆𝑖𝑗𝑘𝑙 =

, respectively. Further discussion regarding the piezoelectric material notations and its behavior 𝑆𝑎𝑏
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can be found in (Yang, 2006). For transversely isotropic piezoelectric solid, the compliance, the 

piezoelectric, and the dielectric matrices involves 11 independent coefficients. The constitutive 

equation can be written in expanded matrix form as (Berger et al., 2006):

    (2){
𝜀1𝜀2𝜀3𝜀4𝜀5𝜀6𝐷1𝐷2𝐷3

} = [
𝑆𝐸11 𝑆𝐸12 𝑆𝐸13 0 0 0 0 0 ―𝑑31𝑆𝐸12 𝑆𝐸22 𝑆𝐸23 0 0 0 0 0 ― 𝑑32𝑆𝐸13 𝑆𝐸23 𝑆𝐸33 0 0 0 0 0 ― 𝑑33

0 0 0 𝑆𝐸44 0 0 0 ― 𝑑24 0

0 0 0 0 𝑆𝐸55 0 ― 𝑑15 0 0

0 0 0 0 0 𝑆𝐸66 0 0 0

0 0 0 0 𝑑15 0 𝛋𝜎11 0 0

0 0 0 𝑑24 0 0 0 𝛋𝜎22 0𝑑31 𝑑32 𝑑33 0 0 0 0 0 𝛋𝜎33

]{
𝜎1𝜎2𝜎3𝜎4𝜎5𝜎6𝐸1𝐸2𝐸3

}
The Eq. (1) can be used to represent the effective response of the architected piezoelectric foam 

by considering the volume average of the piezoelectric field variables, which can be written in 

compacted matrix form (Martínez-Ayuso et al., 2017), i.e., 

       (3){ {𝜀}
{𝐷}} = [ [𝑆]𝐸 [𝑑]

[𝑑]𝑇    [𝛋]𝜎]{{𝜎}
{𝐸}}

where,  are the effective strains, stresses, electric displacement, and {𝜀}, {𝜎}, {𝐷}, and {𝐸}

electric field. Based on Eq. (3), the complete characterization of the effective electromechanical 

properties of architected piezoelectric foam requires quantifying 45 independent material 

constants, i.e., 21 effective elastic compliance, 18 effective piezoelectric and 6 effective dielectric 

constants.

4. Analytical Model

The micromechanical modeling approach was used by Dunn and Taya (Martin L. Dunn and Taya, 

1993; M. L. Dunn and Taya, 1993) to determine the effective electromechanical properties of a 

two-phase piezoelectric composite and porous piezoelectric materials as a function of volume 

fraction/porosity and typical microstructures of secondary phase including continuous cylinder, 
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ribbon-like, and ellipsoidal. Next, we briefly describe the theoretical approach used to model the 

effective electromechanical behavior of porous piezoelectric materials. The piezoelectric materials 

constitutive relations described in Eq (1) can be represented as

       (4)Σ𝑖𝐽 = 𝐸𝑖𝐽𝑀𝑛𝑍𝑀𝑛
Where are not tensors and represents the electro-elastic moduli matrix. 𝑍𝑀𝑛, Σ𝑖𝐽, and E𝑖𝐽𝑀𝑛 E𝑖𝐽𝑀𝑛 

where lowercase subscripts take on the range 1,2,3 while upper case subscripts take on the range 

1,2,3,4. In terms of the field variables discussed in Eq (1), 

       (5)𝑍𝑀𝑛 = { 𝜀𝑚𝑛,  (𝑀 = 1,2,3)―𝜙,𝑛,  (𝑀 = 4)

       (6)Σ𝑖𝐽 = {𝜎𝑖𝑗,  (𝐽 = 1,2,3)𝐷𝑖,  (𝐽 = 4)

       (7)E𝑖𝐽𝑀𝑛 = {
𝐶𝑖𝑗𝑚𝑛,  (𝐽,𝑀 = 1,2,3)𝑒𝑛𝑖𝑗,  (𝐽 = 1, 2, 3; 𝑀 = 4)𝜎𝑖𝑚𝑛,  (𝐽 = 4;𝑀 = 1, 2, 3)𝜅𝑖𝑛,  (𝐽,𝑀 = 4)

where , , and  are the stress, strain, electric displacement, and electric potential gradient, 𝜎𝑖𝑗 𝜀𝑖𝑗 𝐷𝑖, 𝜙,𝑖
respectively. The effective behavior of two-phase perfectly bonded piezoelectric composites can 

be related by using the volume average of the piezoelectric field variables ( , , and 𝜎𝑖𝑗 𝜀𝑖𝑗 𝐷𝑖, 𝜙,𝑖)
       (8)𝚺 = 𝑬 𝐙
       (9)𝚺 = (1 ― 𝑐)𝚺𝟏 + 𝒄𝚺𝟐
     (10)𝐙 = (1 ― 𝑐)𝐙𝟏 + 𝒄𝐙𝟐

Where the overbar represents the volume average of a quantity and bold letter denote matrix (9 x 

1 or 9 x 9) quantities. The  denotes the volume fraction of the porous phase and subscript 1 and 2 𝑐
denote the two piezoelectric phases, where 1 represent the matrix phase. Using the constitutive 

relation of each phase and Eq. (8)- (10), the effective electro-elastic moduli can be represented as
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     (11)𝐄 = 𝐄𝟏 + (1 ― 𝑐)(𝐄𝟐― 𝐄𝟏)𝑨
Where A is the strain-potential gradient concentration matrix which related the average strain and 

potential gradient in phase 2 to that in the composite, which can be defined according to Mori-

Tanaka (Mori and Tanaka, 1973) effective medium theory as

     (12)𝐀 = [𝑰 + (1 ― 𝑐) 𝑺 𝑬―𝟏𝟏  (𝐄𝟐― 𝐄𝟏)] ―𝟏
where S is the constraint tensor and is a function of only the shape of the inclusion and the electro-

elastic moduli of the matrix. For porous materials   and the effective electro-elastic moduli E2 = 0

reduce to

     (13)𝐄 = 𝐄𝟏{𝑰 ― 𝑐 [𝑰 ― (1 ― 𝑐) 𝑺 ] ―𝟏}

The expression of effective electro-elastic moduli depends on , c and shape of the architecture E1

shape through the constraint tensor S. The S is the coupled electro-elastic tensor analogous to 

Eshelby’s tensor and can be expressed in terms of surface integrals over the unit sphere (M. L. 

Dunn and Taya, 1993) and its components are determined explicitly for 3-0 type porosity 

(ellipsoidal inclusions (Dunn, 1994), spherical inclusion (Mikata, 2001)), and for 3-1 type porosity 

(Martin L. Dunn and Taya, 1993) in a transversely isotropic matrix. For 3-1 type porosity, the non-

zero components of the piezoelectric Eshelby’s tensor S are explicitly obtained as

     (14)S1111 = S1111 = (5𝐶11 + 𝐶12) (8𝐶11)

     (15)S1212 = S2121 = S1221 = S2112 = (3𝐶11 ― 𝐶12) (8𝐶11)

     (16)S1313 = S3131 = S1331 = S3113 = S2323 = S3232 = S2332 = S3223 = 1 4

     (17)S1122 = S2211 = (3𝐶12 ― 𝐶11) (8𝐶11)

     (18)S1133 = S2233 = (𝐶13) (2𝐶11)

     (19)S1143 = S2243 = (𝑒31) (2𝐶11)
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     (20)S4141 = S4242 = 1 2

For 3-0 type spherical porosity, the explicit expressions for the non-zero components of 

piezoelectric Eshelby’s tensor S were determined by Mikata (Mikata, 2001). There were 38 non-

zero components of constraint tensor, so for brevity we are not presenting the explicit expressions.

5. Micromechanical Modeling of Architected Porous Piezoelectric Materials

In this study, we have extended our previously developed micromechanical-FE 

homogenization framework (Khan and Abu Al-Rub, 2017) for porous elastic solids to periodic 

architected piezoelectric materials. A mixed boundary conditions equivalent to PBC are developed 

and applied on a unit cell (UC) to fully characterize the effective electromechanical properties of 

periodic architected piezoelectric materials based upon the properties of base materials and 

topological configuration in the UC.

Finite element models of 3-0 and 3-1 type piezoelectric foam are generated by varying the 

porosity values ranging from 0-50% with spherical and cylindrical porosity embedded in an active 

piezoelectric matrix material, respectively. Figure 2 (a) and (b) show a representative UC of both 

3-0 and 3-1 type piezoelectric foams, which are assumed to be poled longitudinally (poled along 

the z-axis) and to be made of Barium Titanate (BaTiO3). The commercial finite element analysis 

software ABAQUS© was used to carry out the analysis and assumed that all regions in the UC of 

piezoelectric foam are uniformly poled in a specific direction. The electromechanical properties 

of BaTiO3 are given in Table 1 (Kar-Gupta and Venkatesh, 2006). Figure 2 also shows the example 

of the UC showing 6 boundary faces with respect to the axes-directions. Each UC has meshed with 

10-noded quadratic piezoelectric tetrahedron elements (C3D10E). Each node in the FE model has 

a total four degree of freedom, three displacements ( ) and one electrical potential ( ). To 𝑢1,𝑢2,𝑢3 𝜙
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avoid rigid body motion under electrical loading, the location of arbitrary points A, B, and C are 

also shown that are constrained specifically that will be discussed later.

Z-

Z+

Point A

Y+

Y-

X+

X-

Point B

Point C

Z-

Z+

Point A

Y+

Y-

X+

X-

Point B

Point C

Figure 2. Example of a UC showing 6 boundary faces with respect to the axes directions and 

meshed UC with 10-noded quadratic piezo-electric tetrahedron elements (C3D10E). (a) spherical 

porosity, (b) cylindrical porosity 

Table 1. Properties of the model piezoelectric system of BaTiO3 (poled in 3-direction)

Properties BaTiO3𝐸1 = 𝐸3 (GPa) 109.9𝐸3 (GPa) 105.2𝐺13 = 𝐺23 (GPa) 43.86𝐺12 (GPa) 42.4𝜈12 = 𝜈21 0.297𝜈13 = 𝜈23 0.319𝜈31 = 𝜈32 0.305𝑑15 = 𝑑24 (p m/V) 260

(b)

(a)
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Periodic boundary conditions (PBCs) are usually imposed on UC to determine the effective 

responses of infinitely repeating patterns of periodic architecture ((Kanit et al., 2003), (Khan and 

Muliana, 2009), (Choudhry et al., 2016)). PBCs yield acceptable results as compared to the ones 

obtained from homogeneous traction or displacement boundary conditions ((Jiang et al., 2002), 

(Xia et al., 2003)). Ensuring the continuity of displacements and the electrical potential and 

periodicity of UC, Xia et al. (Xia et al., 2003) derived PBCs in terms of normal average stretches 

and contractions ( ) of the UC and shear deformations ( ), i.e.,, 1, 2,3j

ic i j  ,j

ic i j

 where  means along the positive  direction (x, y, z) (x, y, z) ( , 1, 2,3)j j j

i i iu u c i j    j
jX

and  means along the negative  direction. Similarly, the PBCs for the electric potential are j
jX

given by , where  is the applied (x, y, z) (x, y, z) (x ) ( 1, 2,3)j j j j

i i iE x i        𝐸𝑖 
macroscopic electric field.

The PBCs requires that the difference of the displacements for the corresponding points on the two 

opposite boundary surfaces should be specified, which requires sometime a tedious mesh 

 𝑑31 = 𝑑32 (p m/V) -78

 𝑑33 (p m/V) 190𝜅𝜀11 = 𝜅𝜀22 (n C/V m) 12.8

 𝜅𝜀33 (n C/V m) 15.1

Permittivity of free space, 𝜅0

Density, 𝜌 (𝑘𝑔/𝑚3)

8.85x10-12

5700

Page 13 of 28

http://mc.manuscriptcentral.com/jimss

Journal of Intelligent Material Systems and Structures



13

generation process when architected periodic microstructures is complex. For periodic 

microstructures, Li (Li, 2008) derived a set of mixed boundary conditions that is equivalent to 

PBCs to compute their elastic response. Recently, Khan and Khan (Khan and Khan, 2019) 

extended Li’s (Li, 2008) work and incorporated continuity of electric electrical charge to derive 

the complete set of mixed B.Cs and obtained effective electromechanical properties of architected 

periodic piezoelectric foams, as given in Table 2. To compute effective electroelastic moduli, the 

volume average of the piezoelectric field variables is needed. Therefore, the average stress and 

strain were obtained by volume (V) integration over the UC, such that:

          (21)   1 1
, , , ,ij ij ij ij

V V

x y z dV x y z dV
V V

     

Analogously the average electric fields and electrical displacements are defined by

(22)   1 1
, , , ,i i i i

V V

E E x y z dV D D x y z dV
V V

  

Using traction continuity one can find that the average stress is represented by

 (23) no summation on j
ij

ij

j

R

A
 

Using electrical charge continuity, the average electric displacement is represented by

(24)
i

i

i

q
D

A


Eq. (23) demonstrates that the average stress over the UC can be simply obtained by dividing the 

resultant tractions ( ) on the boundary surfaces from the areas ( ) of the corresponding ijR jA

boundary surfaces. Eq. 8 demonstrates that the average electrical displacement over the UC can 
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be simply obtained by dividing the resultant charge ( ) on the boundary surfaces from the areas iq

( ) of the corresponding boundary surfaces.iA

Table 2. Complete set of boundary conditions with computation formulae to determine 

electromechanical coefficients.

Load 

Case

Coefficie

nts
X- X+ Y- Y+ Z- Z+ Relation𝑢𝑖/ 𝜙 𝑢𝑖/ 𝜙 𝑢𝑖/ 𝜙 𝑢𝑖/ 𝜙 𝑢𝑖/ 𝜙 𝑢𝑖/ 𝜙

1 𝑆𝐸11,𝑆𝐸12𝑆𝐸13,𝑑𝐸31

0 / 0 𝑢1/ 0 0 / 0 ―/ 0 0 / 0 ―/ 0 ,𝜀1/𝜎1  𝜀2/𝜎1

,𝜀3/𝜎1  𝐷3/𝜎1

2 𝑆𝐸21,𝑆𝐸22𝑆𝐸23,𝑑𝐸32

0 / 0 ―/ 0 0 / 0 𝑢2/ 0 0 / 0 ―/ 0 ,𝜀1/𝜎2  𝜀2/𝜎2

,𝜀3/𝜎2 𝐷3/𝜎2

3 𝑆𝐸31,𝑆𝐸32𝑆𝐸33,𝑑𝐸33

0 / 0 ―/ 0 0 / 0 ―/ 0 0 / 0 𝑢3/ 0 ,𝜀1/𝜎3  𝜀2/𝜎3

,𝜀3/𝜎3  𝐷3/𝜎3

4 𝑆𝐸44,𝑑𝐸24

𝑢2 = 0𝑢3 = 0

/0

𝑢2 = 0𝑢3 = 0

/0

𝑢1 = 0𝑢3 = 0

/0

𝑢1 ≠ 0𝑢3 = 0

/0

𝑢3 = 0

/0

𝑢3 = 0

/0

,𝜀4/𝜎4𝐷2/𝜎4

5 𝑆𝐸55,𝑑𝐸15

𝑢2 = 0𝑢3 = 0

/0

𝑢2 = 0𝑢3 = 0

/0

𝑢2 = 0

/0

𝑢2 = 0

/0

𝑢1 = 0𝑢2 = 0

/0

𝑢1 ≠ 0𝑢2 = 0

/0

,𝜀5/𝜎5𝐷1/𝜎5

6 𝑆𝐸66

𝑢1 = 0

/0

𝑢1 = 0

/0

𝑢1 = 0𝑢3 = 0

/0

𝑢1 = 0𝑢3 = 0

/0

𝑢1 = 0𝑢2 = 0

/0

𝑢1 = 0𝑢2 ≠ 0

/0

𝜀6/𝜎6

7 𝑑𝜎15,𝜅𝜎11
∗ / 0 ―/ 𝜙 ―/ ― ―/ ― ―/ ― ―/ ― ,𝜀5/𝐸1𝐷1/𝐸1

8 𝑑𝜎24,𝜅𝜎22
―/ ― ―/ ― ∗ / 0 ―/ 𝜙 ―/ ― ―/ ― ,𝜀4/𝐸2𝐷2/𝐸2

9 𝑑𝜎31,𝑑𝜎32𝑑𝜎33,𝜅𝜎33

―/ ― ―/ ― ―/ ― ―/ ― ∗ / 0 ―/ 𝜙 , 𝜀1/𝐸3 𝜀2/𝐸3

,𝜀3/𝐸3 𝐷3/𝐸3

*Points A, B and C are constrained on respective faces (having zero electric potential) to avoid 

rigid body motion.

6. Results and Discussion

To completely characterize the elastic, piezoelectric and dielectric properties of architected 

piezoelectric foam, the nine load-case are applied to the UCs as shown in Table 2. The BCs were 
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applied such that for each load case there is only one non-zero component of effective stress and 

electric field vector remains on the right side of the Eq. (2). For each load case, the computation 

of some of the typical electromechanical coefficients are also shown in Table 2. Results of these 

loading cases can yield 45 independent constants required to completely characterize an 

architected piezoelectric foam. Once the compliance tensor , dielectric tensor ,  and the [𝑺𝑬] [𝜿𝝈]

piezoelectric strain tensor   are determined, the following relations are used to obtain the other [𝒅]

constants that can be used to evaluate the performance of the porous piezoelectric materials.

     (25)
      

           

1

1

, , ,

, , , .

 



 







                    

                          

TE E E

TD E D D D

C S e d C d e

S S d g C S g h S h e

where , , , , ,  are the stiffness tensor for zero electric displacement, D  C
D  S  e     g  h

compliance tensor for zero electric displacement, piezoelectric stress tensor, dielectric strain 

tensor, piezoelectric voltage constants, and piezoelectric current constants, respectively.

Next, we evaluated the electromechanical properties of the UC and compared our computed 

coefficients values with the ones reported in the literature. Here, we compared our results with Iyer 

and Venkatesh (2010) and Ronit and Venkatesh (2006), who studied a similar 3-0 and 3-1 type 

piezoelectric foam, respectively, but employed PBCs to compute the effective properties. 

Moreover, we also compared our results with the analytical solutions of Dunn and Taya (1993) 

and Mikata (2001) for 3-1 and 3-0 type piezoelectric foam, respectively. It is emphasized here that 

we have compared only those results which are available in the literature. For both 3-0 and 3-1 

foams, we applied the load and boundary conditions as per nine loading cases shown in Table 2 to 

compute the components of , , and   matrices and then using Eq. (25) evaluate  the [𝑺]𝑬 [𝒅] [𝜿]𝝈
components of  and  matrices.[𝑪]𝑬 [𝒆]
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For the calculation of the effective compliance matrix coefficients , , and , the 𝑆𝐸11,𝑆𝐸12  𝑆𝐸13 𝑑𝐸31

boundary conditions have to be applied to the UC in such a way that, except the stress in the 

direction-1 ( ), all other macroscopic stresses and gradients of electric potential ( ) become zero. 𝜎1 𝐸𝑖
We prescribed a displacement in x direction on surface X+ as shown in Figure 3 (a) and (b). The 

overall strain is computed by dividing the prescribed displacement from the length of the UC along 

the direction-1. For the calculation of the average stress  over the UC, we simply divided the 𝜎1

resultant tractions ( ) on the boundary surfaces along direction-1 from the areas ( ) of the 𝑅𝑖𝑗 𝐴𝑖
corresponding boundary surfaces. Using these total average values, the coefficients , , 𝑆𝐸11,𝑆𝐸12  𝑆𝐸13

and  can be computed using the matrix form of Eq. (3). Due to zero stresses and electric fields 𝑑𝐸31

except along direction-1, the first row become . Then from second, third and ninth row, 𝑆𝐸11 = 𝜀1 𝜎1

the other coefficients can be calculate as , , and . Figure 3 (c) 𝑆𝐸12 = 𝜀2 𝜎1 𝑆𝐸13 = 𝜀3 𝜎1 𝑑𝐸31 = 𝐷3 𝜎1

and (d) illustrates the variation of the stiffness coefficients  and with porosity in the 3-0 and 𝐶𝐸11 𝐶𝐸12

3-1 type piezoelectric foam. This figure shows that the elastic properties are anisotropic and exhibit 

similar trends for both type of foams. It is demonstrated that the piezoelectric material designed 

with 3-0 connectivity exhibit higher stiffnesses as compared to materials with 3-1 connectivity for 

the range of porosity considered. The variation shows highly nonlinear dependence on the porosity 

and found in reasonably good agreement with the FE results obtained using the PBCs and 

analytical solutions. In addition to other piezoelectric performance, the effect of porosity 

connectivity is important to consider for mechanical performance of piezoelectric foams.
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Figure 3: Boundary condition for axial mechanical loading perpendicular to poling direction for (a) 3-0 type-, 

and (b) (3-1) type foam. Variation in the stiffness constants with porosity in the piezoelectric foam (c)  (d) 𝑪𝑬𝟏𝟏
.𝑪𝑬𝟏𝟐

For the calculation of the effective coefficients  we prescribed a displacement in z direction on 𝑆𝐸33

surface Z+ as shown in Figure 4(a) and (b) such that except the stress in the direction-3 ( ), all 𝜎3

other macroscopic stresses and gradients of electric potential ( ) become zero. This set of 𝐸𝑖
boundary conditions allows us to compute the effective compliance matrix coefficients ,𝑆𝐸31,𝑆𝐸32  𝑆𝐸33

(a) (b)

(c) (d)

Case 1 - Axial mechanical loading transverse to the poling direction (x-axis)
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, and . Due to zero stresses and electric fields except along direction-3, the third row become 𝑑𝐸33 𝑆𝐸33

. The variation of the C33 with porosity obtained from the proposed BCs and PBC are = 𝜀3 𝜎3

shown in Figure 4. Excellent agreement was found with both analytical solution and FE results 

obtained using the PBCs. Contrary to   and  the  results show mild non-linear reduction 𝐶𝐸11 𝐶𝐸12 𝐶𝐸33

as a function of increase in porosity for both 3-0 and 3-1 foam. Here the 3-1 connectivity showed 

higher stiffness as compare to the 3-0 connectivity due to the reason that the poling direction is 

along the z-axis foam and 3-1 type connectivity has cylindrical (through hole) porosity parallel to 

the direction of the poling.
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Case 3 - Axial mechanical loading along to the poling direction (x-axis)
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Figure 4: Boundary condition for axial mechanical loading along poling direction for (a) 3-0 type-, and (b) (3-

1) type foam. (c) Out of plane stiffness constant  variation with porosity in the piezoelectric foam.𝑪𝑬𝟑𝟑
Next, we determined the piezoelectric coupling constants. The piezoelectric strain coefficients  𝑑𝐸15

was determined when we prescribed an electric potential along the direction-1 on surface X+ 

directions, as shown in Figure 5 (a) and (b). The variation in the shear-coupling-based piezoelectric 

properties with respect to porosity is shown in Figure 5 (c). Excellent agreement was found with 

the FE results obtained using the PBCs but reasonable agreement with the analytical solutions. In 

general, the piezoelectric properties of architected materials are independent of the topology of the 

microstructure, for example in honey comb structures (Iyer et al., 2015). However, a significant 

dependence on the topology is observed in the piezoelectric properties for both 3-0 and 3-1 type 

piezoelectric foam. It is also observed that 3-0 piezoelectric exhibit strong dependence on porosity 

on the piezoelectric sensitivity to shear-type piezoelectric properties as compared to 3-1 

connectivity.
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Figure 5: Variation in the overall piezoelectric constants with porosity in the 3-0 type piezoelectric foam.

Next we compared the principal normal piezoelectric , and dielectric  constants, which were 𝑑𝜎33 𝜅𝜎33

obtained by prescribing an electric potential along the direction-3 on surface Z+ as shown in Figure 

6 (a) and (b). The variation of principal normal piezoelectric constants with respect to porosity is 

shown in Figure 6 (c). A significant dependence on the topology is observed in the piezoelectric 

properties for both 3-0 and 3-1 type piezoelectric foam, but the normal-based piezoelectric 

properties show almost linear dependence on the porosity. Figure 6 (d) showed the effective 

dielectric properties under constant stress as a function of porosity for 3-0 and 3-1 type foam. The 

dielectric constants exhibit linear dependence and their values are decreased with an increase in 

the porosity. However similar to longitudinal stiffness constants C33, the longitudinal piezoelectric 

and dielectric constants with 3-1 connectivity exhibit higher performance as compared to materials 

with 3-0 connectivity for the range of porosity considered. Results obtained from the proposed 

BCs are in excellent agreement with the results those obtained from FE results with PBCs and 

analytical solutions.
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Figure 6: Variation in the overall dielectric constants with porosity in the 3-0 type piezoelectric foam.

7. Effective Figure of Merit

Porous piezoelectric materials are of interest in various industrial applications, such as 

hydrophones, ultrasound imager, and their performance in these applications are evaluated based 

on effective figure of merit. For hydrophones applications, the figure of merits that have direct 

relevance are hydrostatic strain coefficient ( , hydrostatic figure of merit 𝑑ℎ = 𝑑31 + 𝑑32 + 𝑑33) 𝑑ℎ𝑔ℎ
, acoustic impedance , electromechanical thickness mode  𝑤𝑖𝑡ℎ 𝑔ℎ = 𝑔31 + 𝑔32 + 𝑔33 𝑍 = [𝜌C𝐸

33]
1 2

coupling factor  (Kar-Gupta and Venkatesh, 2006).𝑘𝑡 = [1 ― C𝐸
33 C𝐷

33]
1 2

= 𝑒33 [𝜅𝜀33C𝐷
33]

1 2

Figure 7 presents the variation of the selected figures of merit with increasing porosity for the 3-0 

and 3-1 type piezoelectric foam. All the FOMs have shown an enhanced response for 3-0 type 

Case 9 – Potential gradient along the poling direction (z-axis)
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piezoelectric foam and showed strong dependence on the porosity. All the figure of merits results 

obtained from the proposed approach are in excellent agreement with the ones those obtained from 

FE results obtained using the PBCs as shown in Figure 7. 

The hydrostatic strain coefficient dh is almost independent of the porosity for 3-1 foam, while the 

hydrostatic strain coefficient dh shows a linear variation of porosity for 3-0 foam and increased 

with the increase of the porosity as shown in Figure 7 (a). Next we analyzed the hydrostatic figure 

of merit . For 3-1 foam the hydrostatic strain coefficient shows a very mild effect on the 𝑑ℎ𝑔ℎ
variation of porosity and shows linear dependence with an increase slightly with the increase of 

porosity. However, 3-0 foam shows nonlinear dependence on the porosity and increase 

significantly with an increase in the porosity as shown in Figure 7 (b). The large enhancement in 

the  is obtained due to the inverse relationship between   and . Therefore, an increase 𝑑ℎ𝑔ℎ 𝑔33 𝜅33

of porosity can cause a decrease in the dielectric constant results an increase in . 𝑔ℎ
The acoustic impedance Z generally decreases with an increase in the porosity. Figure 7 (c) shows 

that for both 3-0 type and 3-1 type piezoelectric foam the Z follows linear relation with the increase 

of the porosity. These computational studies are agreed well with the experimental observations 

(Bast and Wersing, 1989) and have shown a similar trend in the Z values with an increase of 

porosity and confirmed that the 3-0 foam strongly dependent on the porosity as compare to 3-1 

foam. Figure 7 (d) shows the electromechanical coupling constant for both 3-0 and 3-1 type foam. 

Both foams show an increase in coupling constant values with an increase in the porosity but 3-1 

foam shows little stronger dependence on the porosity as compared to 3-0 foam.

In comparison to their bulk constituent, both 3-0 and 3-1 piezoelectric foam exhibit an enhanced 

response. The 3-0 foam exhibit significant increase in their hydrostatic figure of merit. These 

enhancements are coupled with decrease in the acoustic impedance values. The hydrostatic figure 

Page 23 of 28

http://mc.manuscriptcentral.com/jimss

Journal of Intelligent Material Systems and Structures



23

of merit and acoustic impedance are the two most important transducer parameters for the design 

of hydrophones. From the point of view of transducer design, the Z-  relation is very important. 𝑑ℎ𝑔ℎ
With the increase of porosity, an increase in the  are accompanied by the decreases in acoustic 𝑑ℎ𝑔ℎ
impedance. This combination of increased sensitivity-based figures of merit and reduced acoustic 

impedance is unique, as it is impossible to realize using piezo-composites or bulk PMs (M. L. 

Dunn and Taya, 1993). Using topology optimization, Sigmund et al (Sigmund et al., 1998) 

optimized porous microstructure design and showed enhanced performance of  and  over 𝑑ℎ 𝑑ℎ𝑔ℎ
pure piezoceramics. Thus, it is possible to design piezoelectric with controlled porosity with the 

desirable electro-mechanical characteristics.
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Figure 7: Variation in figures of merit with porosity in the 3-0 type piezoelectric foam. (a) hydrostatic 

strain coefficient, (b) hydrostatic figure of merit, (c) acoustic impedance (d) electromechanical coupling 

constant.

The FE results show that the mechanical and piezoelectric properties of the piezoelectric materials 

can be optimized by tailoring the porosity of 3-0 type piezoelectric foam and thus a unique 

combination of tunable properties can be realized as required in various practical applications. The 

interplay between architecture connectivity and material anisotropy leads to a wide range of 

architecture-dependent elastic, piezoelectric and dielectric properties that differ substantially from 

the properties of the architecture base material. The FE results have confirmed excellent 

electromechanical properties of the 3-0 piezoelectric foam. The presented approach showed that 

novel design of piezoelectric foam with controlled architected porosity can be designed that are 

desirable in unique devices for sensing or actuating applications.

8. Conclusions

A micromechanical-finite element homogenization approach is presented to compute the 

electromechanical properties of the architected periodic piezoelectric foam with controlled 

porosity of spherical and cylindrical shape, with 3-0 and 3-1 type connectivity, respectively. A set 

of mixed boundary conditions equivalent to a periodic boundary conditions for architected periodic 

piezoelectric foam with certain symmetries are used to ensure that the displacements and the 

electric potential of a UC are compatible across its boundaries with that of the adjacent UCs. 

Results show that the 3-0 type piezoelectric foam exhibits a unique combination of properties 

which cannot be realized by bulk piezoelectric materials and 3-0 type foam offer moreover 

enhanced hydrostatic figure of merit as compared to piezoelectric foams with 3–1 connectivity, 

and more suitable to hydrophone applications. The variation of elastic, piezoelectric and dielectric 
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properties of 3-0 and 3-1 foams with porosity were computed, and compared with the analytical 

solutions of both 3-0 and 3-1 foams that were obtained using micromechanics theory, and finite-

element homogenization results that were obtained by employing the periodic boundary 

conditions. Excellent agreement between the proposed modeling approach and the ones obtained 

using analytical, and FE results available in the literature showed that the proposed modeling 

approach is simpler and flexible for the calculation of the effective electro-mechanical properties 

of architected piezoelectric foam with tunable properties while exhibiting elastic anisotropy and 

piezoelectric activity.
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