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Abstract: A typical pulsed thermography procedure results in a sequence of infrared images that

reflects the evolution of temperature over time. Many features of defects, such as shape, position,

and size, are derived from single image by image processing. Hence, determining the key frame

from the sequence is an important problem to be solved first. A maximum standard deviation of the

sensitive region method was proposed, which can identify a reasonable image frame automatically

from an infrared image sequence; then, a stratagem of image composition was applied for enhancing

the detection of deep defects in the key frame. Blob analysis had been adopted to acquire general

information of defects such as their distributions and total number of defects. A region of interest of the

defect was automatically located by its key frame combined with blob analysis. The defect information

was obtained through image segmentation techniques. To obtain a robustness of results, a method of

two steps of detection was proposed. The specimen of polyvinyl chloride with two artificial defects

at different depths as an example was used to demonstrate how to operate the proposed method for

an accurate result. At last, the proposed method was successfully adopted to examine the damage of

carbon fiber-reinforced polymer. A comparative study between the proposed method and several

state-of-the-art ones shows that the former is accurate and reliable and may provide a more useful

and reliable tool for quality assurance in the industrial and manufacturing sectors.

Keywords: long pulse thermography; infrared image sequence; blob analysis; region of interest;

standard deviation

1. Introduction

The health monitoring of materials and structures plays a vital role in the fields of aerospace,

industry, medical, and construction [1,2]. In many major projects, even minor material defects may

cause major hidden danger. Therefore, nondestructive testing (NDT) technology provides a strong

technical guarantee for the safety of material structure. As a new nondestructive testing technology,

pulsed thermal nondestructive testing (TNDT) is widely used in the detection of defects in materials

and structures due to its large detection area, fast detection speed, detection convenience, and cheap

equipment [3]. Researchers can obtain the continuous change process of the transient temperature field

on the material surface through the infrared thermal imager. A sequence of infrared images expresses

the evolution of temperature intuitively. The method of digital image processing is applied to assess
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and analyze the information of the defect quantitatively such as the location, shape, and size of the

defect. To quantify the size of defects has been one of the most critical processes in the infrared-based

nondestructive defect detection. It is the deterministic factor for the acceptance or rejection of the

specimen during the quality control process. Despite the popularity for using the thermographic

technique as an efficient method for defect detection, there are still a number of outstanding issues that

are under active research.

First of all, an inspector needs to select the frame that best represents the material defect information

from hundreds of infrared images. There are rare research studies on the qualitative index of frame

number selection at present. Generally, this had been proceeded through the identification of the

image frames that exhibited substantial surface temperature contrast between the defect area and the

sound region [4]. There is an element of subjectivity in these approaches. Tashan et al. [5] pointed out

that the quantification of the defect size was critically dependent on the selection of the appropriate

time frame of the thermogram for defect evaluations. It was concluded that in order to obtain a more

accurate dimensions of the defect, it was necessary to analyze the infrared thermal image with the

largest temperature difference contrast or immediately thereafter by analyzing the defect results at

different distances and inspection times. Kabouri A. et al. [6] selected the frames that depicted the

largest average surface temperature of the specimen as the candidate image frame data. However,

the robustness of the image frame sequence selection methodology has been shown to be generally

poor, and the proposed method of selecting an infrared sequence key frame has poor accuracy in the

final defect extraction.

In the next place, raw images are usually not suitable for accurate material assessment [7]. In order

to further obtain the defect information of the material damage, the image needs to be digitally processed.

However, the contrast of infrared images is commonly low and normally accompanied with significant

blurred edges, especially those associated with structural defects such as cracks [8,9]. A number of

factors such as uneven heating, precision of the equipment, electro-magnetic radiation (emission)

from the background etc. are the main contributions that reduce the contrast of the thermogram

significantly [10,11]. Undoubtedly, this is an additional challenge to the qualitative and quantitative

identification and evaluation of defects especially when the thermographic technique is employed

for the NDE. There have been two main ways for processing infrared images: the non-uniformity

correction method [12–14] and the detailed enhancements of infrared images. Hansan [15] pointed

out that the median filter had better edge retention characteristics on the basis of noise removal

capability particularly when imagery contains the edge feature of the defects. Meanwhile, on the basis

of keeping the size of the defect area unchanged, morphological opening operation that smoothens

the boundary of the defect and eliminates small spikes has been reported. Wang [16] applied the

Levenberg–Marquardt iterative algorithm for denoising, thereby improving the contrast of the thermal

data. More recent work has been using bionic intelligence algorithms for denoising and then the edge

detection of defect features through the ant colony algorithm [17] after the time derivative profile is

polynomial fitted. A more advanced hybrid method that integrates the simulation annealing algorithm

(SA) and Nelder–Mead simplex search method (NM) for the quantification of the sizes and depths

of subsurface defects of the carbon fiber-reinforced plastic (CFRP) laminate materials has also been

attempted with good results [18]. Grys [19] showed that the error for defining the defect boundaries

followed the finite spatial resolution of the numerical model in the Otsu’s segmentation method

is rather significant. Sreeshan [20] adopted the watershed technique and Gabor filtering to detect

defects, and good results have been obtained. Furthermore, there are a number of image segmentation

techniques available for the quantitative recognition of defects, e.g., the iterative threshold method,

the maximum entropy method, the minimum error method, the Otsu method, and the minimum

deviation method; however, none of them is capable of extracting defect features automatically without

the need for operator intervention. Although the Otsu method has been shown to be more capable of

extracting defects even for those in different depths [21], it still cannot realize the extraction of defect

features automatically.
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Feature extraction is another critical step in the image based on NDE for defect detection. There are

two main approaches that have been used for the quantitative detection of defect size: (i) the analysis of

the surface temperature field data and (ii) through the digital processing of the image data. One of the

most classical ways for the quantitative assessment of defect dimensions and the extraction of the defect

temperature profile is using the Wetsel and McDonald’s temperature field analysis method through

the full width at half maxima (FWHM) of the defect feature [22]. This is still a popular method being

used for defects characterization [23,24]. Olga [25] improved the method by using the time derivative

of the surface temperature distribution to determine the defect size through the half-height tangent

method. Duan [26] demonstrated the use of the signal to noise ratio (SNR) analysis of the temperature

distribution profile for the assessment of physical property of defects: when the SNR of the observed

thermal anomaly is larger than 15, then the feature is considered as induced by defects. In the second

approach of defects analysis which focuses more on digital processing of infrared images, a sparse

principal component thermography (SPCT) method had been proposed to enhance the contrast of

the defect induced thermal anomaly with respect to the background and the noise of the imaging

sensor [27]. At present, the most mainstream method of defect representation (area) is still using the

equivalent pixel ratio method [5,6], which estimates the defect area through the number of image

pixels of the defect image. The equivalent length ratio for each pixel can be calibrated by using the

known dimension of the specimen.

Based on the outstanding issues as outlined above, this work attempts to address the automatic

selection of suitable image frames from an infrared image sequence for processing and to characterize

the defects of the material robustly and accurately under the long pulse thermographic experimental

configuration. The workability of the proposed method is demonstrated by the detection of artificial

defects in polyvinyl chloride (PVC), and the feasibility and accuracy of this method are verified by the

impact damage detection of carbon fiber-reinforced plastics (CFRP).

2. Theory and Methods

2.1. Principle of Long Pulse Thermography

In the application of pulsed infrared nondestructive testing, the heat diffusing across a media

is susceptible to the property of the media as well as to environmental factors. In the Cartesian

coordinates, the transient temperature T (x, y, z) is in an unsteady state, and in the absence of an

internal heat source, it is a function of space and time. For an arbitrary interface S with a corresponding

volume V in the media (see Figure 1a,b), the temperature gradient in the normal direction of a small

element on the closed surface of S can be written as follows:

∂T

∂n
=
∂T

∂x
cosα+

∂T

∂y
cos β+

∂T

∂z
cosγ (1)

where α, β, and γ are the angles between the normal vector
→
n and the X-axis, Y-axis, and Z-axis,

respectively. According to the Fourier law, the heat flows through the dS in unit time can be expressed by:

q = −λ
[

∂T

∂x
cosα+

∂T

∂y
cos β+

∂T

∂z
cosγ

]

dS (2)

where λ is the thermal conductivity of the media (W/(m·K)). The double integral is computed based on

the above formula and it is then converted into triple integral as follows:

Q =
y

V
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+
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)]

. (3)
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In contrast, according to the basic concept of heat conduction, the total amount of heat contained in the

volume V is:

QV =
y

V

cρT(x, y, z, τ)dV (4)

where c is the specific heat capacity of infinitesimal (J/(kg·◦C)), and ρ is the density of infinitesimal

(kg/m3). The diffusion of T over the volume V per unit time is:

qV =
y

V

cρ
∂T

∂τ
dV. (5)

Equations (3) and (5) are different mathematical forms of the same physical quantity, leading to the

following equation:

cρ
∂T

∂τ
= λ

(

∂

∂x

(

∂T

∂x

)

+
∂

∂y

(

∂T

∂y

)

+
∂

∂z

(

∂T

∂z

))

. (6)

Therefore, the three-dimensional unsteady heat conduction differential equation becomes:

∂2T(x, t)

∂x2
+
∂2T(y, t)

∂y2
+
∂2T(z, t)

∂z2
=

1

α

∂T(x, t)

∂t
(7)

where T (x, t) is the temperature of the spot x at the time t and it is a property of the coefficient

of thermal diffusivity that has been used for measuring the heat transfer and storage ability of the

material. Equation (7) gives the form of three-dimensional heat transfer (diffusion) function. It is

generally difficult to find the analytical solution because of the complexity of the actual solution

conditions. Therefore, this equation is often simplified to the form of one-dimensional heat conduction

in practice. While the one-dimensional heat conduction theory cannot explain all the thermal

phenomena, the one-dimensional heat conduction model derived from the heat transfer differential

equations can provide approximate solution to problems [28] in most of our experiments (such as

thickness measurement). Under given initial boundary conditions, the function of thermal energy

propagating in the medium can be obtained by solving the heat conduction equation.

𝑞 = ∭ 𝑐𝜌 𝑑𝑉
𝑐𝜌 = 𝜆 + +

𝜕 𝑇(𝑥, 𝑡)𝜕𝑥 + 𝜕 𝑇(𝑦, 𝑡)𝜕𝑦 + 𝜕 𝑇(𝑧, 𝑡)𝜕𝑧 = 1𝛼 𝜕𝑇(𝑥, 𝑡)𝜕𝑡
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S V

n

γ
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α

ds
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(a)                         (b)                         (c) 

𝜕 𝑇(𝑥, 𝑡)𝜕𝑥 = 1𝛼 𝜕𝑇(𝑥, 𝑡)𝜕𝑡

Figure 1. Schematic diagram of heat conduction theory: (a) Solid model; (b) Diagram of infinitesimal

analysis; (c) A slab of specimen is excited by a pulsed heat source.

Now, suppose a sheet of isotropic material with a thickness of x2 along the x-axis direction, as shown

in Figure 1c. At the lower part of the sheet is a pit defect x1 deep from the surface. Assume that the

temperature is uniform across the cross-section perpendicular to the x-axis, which means that there is
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no heat exchange between the sheet and the ambient environment and there is no heat source in the

bulk of the sheet material. When the specimen is excited by a heat pulse Q which is then absorbed by

the object surface, the transient temperature of the specimen varies as a function of the coordinates x

and time t according to the heat diffusion equation:

∂2T(x, t)

∂x2
=

1

α

∂T(x, t)

∂t
(8)

where α is the thermal diffusivity. To simplify the calculation, α can be regarded as a constant.

Heat is applied to the surface of the test object at t = 0. Assuming at T (x, 0), the energy absorbed

by the object surface is Q; then, the heat transfer Equation (8) at any position x≫ 0 is solved as:

T(x, t) =
Q

2
√
απt

exp

(

−
x2

4αt

)

. (9)

2.2. Maximum of Sandard Deviation of Sensitive Region Method (MSDSRM)

Equation (9) indicates that the propagation of the Q can be affected by the presence of defects in

the bulk of the material, and that different defects at different depths would have different character

times for affecting the distribution of temperature of specimen at the surface. When it happens,

the rate of heat diffusion into the bulk of the specimen is perturbed by the presence of defects, and this

manifests as a gradual emerging and then disappearing of heat as a function of time. When the object

is monitored by a heat sensor such as a thermal camera, the time frame of the thermal images will be

a good indicator for pinpointing the physical location of the defects inside the bulk of the specimen.

Therefore, the selection of a appropriate image frames from the thermographic image sequence will

allow one to assess the shapes and areas of different defects at different depths readily. However,

the key issue for the identification of a suitable frame from thousands of infrared frame sequence seems

to be non-trivial. Consider there is one subsurface defect in the simplistic example, as shown in Figure 2.

α α  𝑥 ≫ 0
𝑇(𝑥, 𝑡) = √ 𝑒𝑥𝑝 −

 

𝐴 ∪ 𝐵 = 𝐼
𝑝 ∈ 𝐴) 𝑝 ∈ 𝐵) 𝑝 ∈ 𝐴 ∩ 𝐵

I 
C 

A B 

Figure 2. Schematic diagram to illustrate the sensitive area (C) of defects (A) in the specimen (I).

Suppose the specimen is described as a full set I and a defect inside the bulk of specimen is

depicted by a subset A, such that the sound area (i.e., defect-free) inside I is the complementary set

of A, which is called B. Obviously, A∪ B = I. If any small segment of the defect edge is arbitrarily

selected, the small local area surrounding the selected edge segment is called a sensitive region and it

is depicted as C in Figure 2.

In this example, all image pixels of the thermogram (p) belong to two types of elements, that is,

local defect pixels (p ∈ A) and local non-defective pixels (p ∈ B). When p ∈ A∩B, p is on the local defect

boundary. Assume that the size of the sensitive region in this example varies from 10 × 10 pixels to

15 × 15 pixels such that it contains enough pixels to include two different types of pixels that are not too

large or too small to define the defect boundary. In this example, all pixels inside the sensitive region are

represented by ps. When the thermal wave front is diffused into the sensitive region, the temperature

of ps is increased significantly due to the presence of the dislocation defect in the sensitive region.

Since the sensitive region is slightly larger than the defect boundary, the statistics of ps, such as the
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standard deviation of all pixels in ps, is expected to vary in large magnitude when the thermal wave

front is approaching (i.e., heating) and exiting (i.e., cooling) of the defect boundary.

The insertion diagram in Figure 3 describes the process of recording the change of the surface

temperature of the specimen in the form of sequence diagram. The curve of Figure 3 shows the standard

deviation of the sensitive area as a function of the time, and the time can be replaced with a frame

number. The peak of the standard deviation–time curve at Fmax depicts the maximum temperature

differences between the defect and non-defect pixels. Therefore, the appropriate image frame can

be abstracted for further image processing; thereby, the characteristics of the defect can be assessed

accordingly. This methodology, which is known as the maximum of standard deviation of sensitive

region method (MSDSRM), has been utilized for the automatic detection of defects in the specimen in

this paper.

0 100 200 300 400 500 600 700 800 900 1000
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ti

o
n

Fmax

Figure 3. The history of standard deviation of the sensitive area with time.

2.3. Automatic Defect Detection Framework (ADD)

A two-step detection method for the automatic detection of defect (ADD) is depicted as a block

diagram in Figure 4. A multi-image enhancement strategy is used to enhance the ability to detect

deeper defects. The first step is the preliminary exploration of the defect, and on this basis, the second

accurate detection is conducted to ensure the detection accuracy.

Note that there are two mechanisms that further guarantee the proposed ADD algorithm is fully

automatic without the need of operator intervention for the selection of thermal frame image for

processing, nor the need to determine the ROI (region of interest) dimension for defect diagnosis.

Firstly, the MSDSRM selects suitable thermal frames for defect extraction, as described in this section.

Secondly, the blob analysis has three functions as follows: (i) The blob analysis offers the basic

information such as the defect distribution and the total number of defects; (ii) The edge of the defect

in a blob can help locate the exact location of the sensitive areas. (iii) The blob analysis in conjunction

with the MSDSRM allows the determination of the ROI for defect segmentation.
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Read the images that are ordered 

by time frame in sequence 

End 

YES 

Output 

NO 

Step = Step + 1 

Step ≥ 2 

Combine a new image with all extracted defects 

For each ROI, extract the defect with the Otsu 

ROIs are obtained based on combining the blob 

analysis with the frames selected by MSDSRM 

Apply the MSDSRM to find out a reasonable frame 

Extract the edge of defect in each blob 

Apply Blob analysis and obtain defects information 

Convert the image into a binary image by 

threshold segmentation 

Filter the image by median filter to get rid of noise 

Step = 1 

Composite a new image based on the 
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Image is Grey? 
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determined by the peak of temperature-time curve 

Convert images 

into grey 

NO 

Figure 4. Block diagram for extraction of defects automatically and accurately.
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3. Material and Experiments

3.1. Material

A PVC plate that has two flat-bottomed defects artificially fabricated at different depths is used as

the main specimen in this paper (see Figure 5). The PVC has dimensions of 152 mm × 110 mm × 3 mm,

and the two defects #1 and #2 have maximum width of 9 mm and 3 mm width at the narrow point with

a semicircle tip with a diameter of 3.00 mm, as shown in Figure 6. The lengths of #1 and #2 grooves are

101 and 100 mm, respectively. The depths of #1 and #2 defects are 1.50 and 1.00 mm, respectively.

Figure 5. Photos of a polyvinyl chloride (PVC) test specimen: (a) The surface backs to IR camera;

(b) The surface facing the IR camera.

 

(a) 

 

(b) 

 

(c) 

 

 

Figure 6. Schematics of PVC test specimen: (a) Main view: Distribution of defects; (b) Right View:

Depth of defect #1; (c) Left View: Depth of defect #2.
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3.2. Experimental Setup: Long Pulse Thermography System

The synchronized infrared image acquisition system that has been employed in this work is

schematically illustrated in Figure 7. The infrared imager in the system is an uncooled InfraTec

VarioCAM® HD980 (made in Germany) with a detector resolution of 1024 × 768 and a maximum

acquisition frequency of 30 Hz. The excitation source is composed of four 400 W halogen lamps.

The controller controls the synchronization of excitation and acquisition. During the process of the

experiment, the halogen lamps are triggered by software to generate pulsed radiations toward the

test object. The infrared camera is simultaneously triggered to start recording as soon as the pulsed

radiation is initiated.

 

 

PC 
IR Camera 

Specimen 

Halogen 

Lamps 

Figure 7. Synchronized infrared image acquisition system.

3.3. Typical Thermogram

As shown in Figure 7, the infrared sequence was captured by a transmission mode, where excitation

and an IR camera are located on the opposite side (the four halogen lamps in the bottom of the excitation

box are used as the excitation sources). Figure 8 depicts samples of the 1000 frames of thermograms

acquired at a frame rate of 30 Hz after a 3 s of heat pulse is irradiated toward the specimen, as described

in Section 3.1. The heating and the cooling process can be seen vividly from Figure 8. It is seen that the

thermal accumulation at the defects #1 and #2 began to appear at the 41st and 64th frames, respectively.

Both defects can be seen clearly from the 125th to 225th frames, and their edges are subsequently seen

to diffuse away at about the 575th frame.
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1000th 575th 400th 

90th 160th 

300th 

125th 

225th 181st 

64th 1st 41st 

Figure 8. Distribution of temperature field on the surface of the PVC test object in the sequence.

4. Data Post-Processing

4.1. Image Composition and Its Image Processing

It can be seen from Figure 8 that not all frames from the obtained image sequence are suitable to

carry out image processing for defect detection. The shallower defect appears earlier and brighter than

the deeper one and has an advantage in the picture. To detect the deeper defect, a stratagem of image

composition is proposed. Suppose that an infrared image sequence includes n images marked as I{i},

where i = 1, 2, 3 . . . n, and each image has a size of w × h. Select m images randomly from an interval

(a, b) of the sequence, where 1 < a < b < n is marked as Ic{j} and j = 1, 2, 3 . . . m. The composition is

based on the maximum gray value of the m images for each pixel. The composition image enhances

the gray value of defects, especially the deeper one, and it can guarantee to detect all defects by image

processing, as whole or partial. The values of a can be determined by the frame rate (f = 30 Hz) and

impulse duration (t = 3 s); then, a = t * f = 90. The surface temperature of the shallower defect with

time could be monitored by the infrared image sequence. There is a curve of temperature with time or

frame in Figure 9. We can select the peak frame as the value of b. In this experiment, the value of b is

224. Therefore, the suitable frame range is (90, 224). We randomly select m frames from the interval

(90, 224). If the deeper defect cannot be detected or the partially detected is too small, the value of m

should be increased to be sure that a defect corresponds to a blob. We find that m = 10 provides enough

feature information, and the composition result is shown in Figure 10.
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Figure 9. The surface temperature of the shallower defect with frame.

 

 

 

Figure 10. Image composition.

There are some factors, such as the non-uniformity of excitation and fringe effect of specimen,

which may influence images detected by an infrared camera. The noise will affect the image composition.

To reduce noise, a filter should be applied to the image composition. A 3-by-3 median filter is carried out

to the image composition shown in Figure 10 and the result can be seen in Figure 11a. Then, the image

is segmented by Otsu’s method as represented as Figure 11b.

  
(a)                               (b) 

 

 

Figure 11. Image processing of image composition: (a) Median filter; (b) Segmentation by Otsu’s method.

The extracted defect shape indicates that the obtained defect #1 is similar to the artificial defect,

while the segmentation of defect #2 is obviously smaller than the real one and the root portion of the

wedge groove has not been extracted, because defects #1 and #2 have different burial depths and

their temperatures of heating to cooling process are out of sync. Under the excitation of 3 s optical

pulses, defect #1 with shallow burial depth transferred heat more quickly to the surface of the specimen

than defect #2 (with deeper burial depth), thus accumulating more heat on the surface. The higher
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temperature is reflected by the greater gray value in the corresponding area of the thermogram.

The gray value of defect #1 plays a dominant role in the binary image segmentation of the entire image,

leading to an incomplete extraction of defect #2. Even though defect #1 can be extracted completely

with its shape similar to the real one, the relative error in area of the resulting defect is as high as

27.08% (see Table 1). This suggests that the value of binary threshold (0.47) of the full image by the

Otsu method is not optimal for both defects. It is important to seek a ROI for every defect. We will

discuss ROI determination in a later section.

Table 1. Statistics of defect parameters on image composition processing.

Defect Number Object Threshold Defect Number Defect Pixel Relative Error

#1 Image
composition

0.47
#1 4286.5 27.08%

#2 #2 2188.3 34.47%

4.2. Primary Detection of Defects

4.2.1. Blob Analysis

The blob analysis is used in the binary image, Figure 11b, by the blob analysis package in MATLAB.

Defect regions are divided as blobs marked as red rectangles in Figure 12a. Features such as area

(i.e., the number of pixels), center of gravity, or the orientation of a blob or blobs are calculated.

Each blob contains one defect that is abstracted as a whole or portion (see the white line in Figure 12b).

Moreover, a blob and a defect are one-to-one correspondence, so we can deal with blobs in turn

equaling the process defects one by one. At last, the edges are abstracted by a canny operator for the

further localization of the sensitive region.

  
(a)                               (b) 

Figure 12. Blob analysis and edge extraction in each blob: (a) Blob analysis; (b) Edge abstracted by

Canny operator.

4.2.2. Frame Determined by MSDSRM

For each segmented defect region, the proposed MSDSRM is used to determine a suitable frame to

calculate the defect boundary. A sensitive region, as shown in Figure 13, is randomly located based on

the edge of the detected defect, and its size is also randomly selected from a range in (10, 15) × (10, 15)

as mentioned above. Through monitoring the history of standard deviation of the sensitive region

with time in the infrared image sequence, we can get the curve of standard deviation of the sensitive

region vs. time as shown in Figure 14. It shows the standard deviations for the two defect regions

for the whole set of the infrared image sequence (1000 frames). Defect #1 reaches its peak standard

deviation of 44.45 at Frame 178, while defect #2 reaches its peak standard deviation 25.47 at Frame

199. Therefore, we consider that Frame 178 is reasonable for extracting defect #1 and Frame 199 is

reasonable for extracting #2.
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Figure 13. Single sensitive region on each defect is randomly selected.
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Figure 14. A suitable frame for each defect is determined by the maximum of sandard deviation of

sensitive region method (MSDSRM) using single sensitive region.

4.2.3. Determination of ROI and Extraction of Defects

ROI centers its corresponding blob and expands around it. For example, the blob is expanded

twice its size in four directions i.e., up, down, left, and right, respectively. At the same time, ROI is

restrained by the specimen boundary and its neighbor blobs.

Figure 15 is a sketch of ROI based on blob and restrained by constraints, where the yellow area

is a blob, and it expands the blue rectangle, but the red dotted portion is ROI due to the specimen

boundary and neighbor blobs.

 

 

 

 

Figure 15. A sketch of the region of interest (ROI) based on the blob and restrained by constraints.

The ROIs for each defect are determined as shown in Figure 16a,c, which are selected by the

MSDSRM. After a median filter, defects #1 and #2 are respectively extracted by automatic threshold

segmentation with the value of 4.6 and 3.6 determined by the Otsu method, as shown in Figure 16b,d.

The relative errors are 2.08% and 2.91% for defects #1 and #2 respectively, as seen in Table 2. The value

of threshold is important in image segmentations, which can influence the integrality and veracity of
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the results. The Otsu method based on the maximum of between-cluster variance is always considered

an optimal method of thresholds for automatic selection. It will divide the processing image into

two categories, i.e., background and objectives. The optimal threshold is obtained by searching the

maximum between-cluster variance. Comparing the data in Tables 1 and 2, the threshold changes

very little from 0.47 to 0.46 for #1 and to 0.36 for #2, but the error of defect #1 decreases from 27.08% to

2.08%, and the error of defect #2 reduces to 2.91%, which is incomplete extraction after processing the

full image, as shown in Figure 11b. At last, the two segmentation images are combined as a whole

(see Figure 16e). The semicircular arc of the defect tip can be extracted accurately.

  
(a)                                  (b) 

  
(c)                                     (d) 

 
(e) 

Ο Δ

Figure 16. Defect extraction of primary detection: (a) ROI of defect #1 from Frame 178; (b) Segmentation

of defect #1; (c) ROI of defect #1 from Frame 199; (d) Segmentation of defect #2; (e) Composition

segmentation images as a whole.

Table 2. Statistics of defect parameters using a single sensitive region.

Defect Number Frame Threshold Defect Pixel Relative Error

#1 178 0.46 3443.1 2.08%
#2 199 0.36 3242.1 2.91%

4.2.4. Performance Analysis of Primary Detection Results

To assess the performance of primary detection results, 100 independent experiments were

conducted to extract each defect. Each composition image was synthesized by 10 random frames from

the interval (90, 224) of the infrared sequence, and the location and size of the sensitive regions in each

experiment were randomly selected, too. Figure 17 shows the discrete distribution map of the deviation

of the extracted defect area from the ground truth. The symbols “O” and “∆” in the figure represent

defects #1 and #2, respectively. From the figure, we can see that the frame selected by MSDSRM ranges

within (155, 205) less than 50 frames. We have obtained a very narrow range from the original image

sequence of 1000 frames, so it is a good primary detection. Defect #1 is the shallow defect, and there is

a tendency that the relative error gradually increases with time. However, there is no regularity for

#2. Moreover, there are serious overlaps of frames for different defects at different depths. There are

two reasons for this phenomenon: one is that the edge extracted from the composite image is not

the exact boundary of the defect, especially for the deep one shown as Figure 11b, which is smaller

than the true; the other is that single sensitive region chosen randomly is not always representative of
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the whole standard deviation around the defect due to the non-uniformity of excitation. Under the

same excitation, the heat transmission speed in the defect area varies with the burial depth. For the

defect with a shallow burial depth, the corresponding surface temperature rises faster, taking less

time to form a temperature difference area coinciding with the defect shape. In contrast, the defect

with a deeper burial depth takes more time to form a temperature difference area coinciding with the

defect shape. The best image for processing defect #1 should be a frame in sequence ahead of that for

processing defect #2. So, the results of primary detection should be improved further to maintain the

results’ robustness.
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Figure 17. Discrete distribution of relative deviation of defect area for 100 times primary detection.

4.3. Secondary Detection of Defects

4.3.1. Improvement of Detection Results

The sensitive region for further detection can be selected from the edge of the detected defect

base on the primary detection of defect edge as seen in Figure 16e. To alleviate the effect of heating

inhomogeneity of the specimen, the average value of standard deviation of multiple sensitive areas is

calculated instead of the single one. Two sensitive region selection methods are discussed:

(i) Uniform selection (Figure 18a): sensitive regions are followed one by one along the edge of

the defect. The total number of sensitive regions is determined by the perimeter of the defect

extracted at the primary detection. The size of the sensitive region is set to 10 × 15 pixels.

(ii) Random selection (Figure 18b): thirty sensitive areas are randomly selected from the edge of the

defect. The size of the sensitive region is randomly decided within the range of (10, 15)× (10, 15) pixels.

 

 

  
(a)                          (b) 

 

 

Figure 18. Two sensitive regions selection methods: (a) Multiple sensitive areas selected uniformly;

(b) 50 multiple sensitive areas selected randomly.
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Figure 19 shows the standard deviations for the two defect regions for the whole set of the infrared

image sequence (1000 frames). The results yield smother curves than the traditional measurement

(see Figure 14), and the peak value of a given curve becomes easier to identify. For example, for uniform

selection (Figure 19a), defect #1 reaches its peak standard deviation 45.37 at Frame 164, while defect #2

reaches its peak standard deviation 26.22 at Frame 183; for random selection (Figure 19b), defect #1

reaches its peak standard deviation 45.99 at Frame 166, while defect #2 reaches its peak standard

deviation 26.08 at Frame 186.
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Figure 19. The MSDSRM to select a suitable frame for each defect: (a) Curves of standard deviation vs.

time based on uniform selection of sensitive regions; (b) Curves of standard deviation vs. time based

on random selection of sensitive regions.

It can be seen that for each defect, two methods produce similar results, which suggests both

methods work well. However, such results differ a lot with the two defects because the two defects

have different depths. The peak standard deviation indicates that the defect and non-defect areas have

reached the maximum degree of differentiation in that frame. As a result, that frame should be selected

to extract the defect boundary. Therefore, we consider that Frame 164 is reasonable for calculating defect

#1 and Frame 183 is reasonable for calculating #2, by uniform selection of sensitive regions, while Frame

166 is suitable for defect #1 and Frame 186 is suitable for defect #2 by random selection. The secondary

detection results are shown as statistics in Table 3, which improve the result of primary detection (Table 2).
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Table 3. Statistics of defect parameters using multiple sensitive regions.

Defect Number
Uniform Selection Random Selection

Frame Defect Pixel Relative Error Frame Defect Pixel Relative Error

#1 164 3404.7 0.94% 166 3384.2 0.33%

#2 183 3420.8 2.44% 186 3430.5 2.73%

4.3.2. Analysis of Robustness

To assess the stability and reliability of the proposed automatic method, 100 independent

experiments were performed. The results are shown in the scatter diagram Figure 20a,b by uniform

selection and random selection, respectively. From Figure 20a, we can see that Frame 164 has a relative

frequency of 100% to extract defect #1, and Frame 182 (56%), Frame 183 (40%), and Frame 186 (4%) are

chosen for defect #2 using uniform selection. Figure 20b shows that using random selection, the suitable

frames for #1 and # 2 are (164, 173) and (173, 193), respectively. The frames from the random selection

scheme are more fluctuated than those from the uniform selection scheme, as expected. In either

case, the frame selected for extracting defect #1 is ahead of those selected for extracting defect #2.

This situation is consistent with Equation (7).
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Figure 20. The scatter diagram of the experiment conducted 100 times: (a) The scatter diagram of

the experiment conducted 100 times by uniform selection; (b) The scatter diagram of the experiment

conducted 100 times by random selection.
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Figure 21 shows the discrete distribution map of the relative deviation of the extracted defect area

from the actual size. The symbols “O” and “∆” in Figure 21 represent defects #1 and #2, respectively.

By uniform selection, defect #1 can be accurately detected with 0.42% relative error and the error of #2

is within 2.5%, as shown in Figure 21a. From Figure 21b, the errors of defect #1 are all within 1.1% and

those of #2 are within 3.2%. All in all, the MSDSRM with multiple sensitive regions is very useful for

selecting an appropriate thermogram for extracting defects at different depths.
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Figure 21. Discrete distribution of relative deviation of defect area: (a) Discrete distribution of relative

deviation of defect area using uniform selection; (b) Discrete distribution of relative deviation of defect

area using random selection.

5. Discussion and Analysis

5.1. Influence of Size of Sensitive Region on Detection Results

To obtain a suitable frame from the sequence, the sensitive regions play an important role because

the frame image is selected by the peak of the curve of the standard deviation of the sensitive regions

vs. frames. We choose the shape of the sensitive region as a rectangle. Suppose the size is w × h,

where w is the width of the rectangle and h is the height of the rectangle, respectively. The width is

along to the detected edge of the defect, while the height is perpendicular to the local edge. Note that

the detected edge might not be the exact true edge, such as the edge detected for defect #2 at the
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bottom of Figure 13, which is very different from the actual boundary. The influence of the size of

the sensitive region on detection results in the primary detection and secondary detection phases are

further investigated below.

5.1.1. Influence of Size of Sensitive Region in the Primary Detection

The setup of a single sensitive region during the primary detection is shown in Figure 13. We adopt

a random method to locate a point on the extracted edge; then, we fix the point and sample the sensitive

region size from 3 × 3 pixels, generally expending to 15 × 15 pixels around the point. That is, both the

width and the height are changed from 3 pixels to 15 pixels. The step size change in both the width

and height is 1 pixel, so there are 169 test areas in total.

The standard deviations are calculated for every sensitive region in each image in the sequence,

and the time history curves of standard deviation are obtained similar to the curves in Figures 14 and 19.

All peaks of the curve are collected to obtain the maximum standard deviation surface of different

defects related to the sensitive regions with different widths and heights, as shown in Figure 22.

Figure 22a,b are the surfaces corresponding to defect #1 and #2, respectively, and they have same

shapes except that the values of standard deviation in Figure 22a are larger than those in Figure 22b.

From these two figures, it can be seen that the values of standard deviation varying with height are

larger than with width. It shows that the sensitive region change in height is more sensitive than in

width, i.e., the direction of perpendicular to edges is much more sensitive than along the edges.
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Figure 22. The maximum standard deviation surface related to width and height: (a) The maximum

standard deviation surface for #1; (b) The maximum standard deviation surface for #2.

Due to each maximum of standard deviation corresponding to a frame, the selected frames are

shown in Figure 23a,b for defect #1 and defect #2, respectively. For defect #1, all the selected frames are

in the interval of (165, 196), which are similar to the results shown in Figure 17 and can be used as a

suitable frame to carry out the primary detection. However, not all of the selected frames are suitable

for defect extraction, and 5.92% of the results (10 data) should be eliminated because defects cannot

be fully displayed. Frame 347 and Frame 646 in the middle and late stage of thermal diffusion are

frequently chosen when the height of the size of the sensitive region is the minimum of 3. As mentioned

before, the gray value of defect #1 plays a dominant role in the binary image segmentation of the entire

image, leading to a complete extraction of defect #1 but incomplete extraction of defect #2. The results

show that the higher the precision of defect boundary extraction, the less affected by the size of the

sensitive area.
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Figure 23. The 3D scatter diagram of selection frames with the sensitive region size variation: (a)

The 3D scatter diagram of selection frames for #1; (b) The 3D scatter diagram of selection frames for #2.

5.1.2. Influence of Size of Sensitive Region in the Secondary Detection

From the above discussion, all the sizes of the sensitive region from 3 × 3 pixels to 15 × 15 pixels

can be sampled to seek a suitable frame in the secondary detection when a relative correct result

is acquired in the primary detection. To discuss the influence of size of the sensitive region in the

secondary detection, 100 independent experiments were done as in the previous section.

For uniform sampling, the size of each sensitive area sampling is the same, but the size is no

longer fixed as the front. Instead, the size is randomly determined from 3 × 3 pixels to 15 × 15 pixels

in 100 experiments. The results are shown in the scatter diagram shown in Figure 24a. Compared

with the results of Figure 20a obtained by a fixed size of 15 × 10, it can be seen that the diversity of

results is greater than that of previous results. Especially for defect #1, it is no longer only one value

for Frame 164, and more frames are selected in the interval (161, 173). Among the results, Frame 164

and Frame 170 are chosen with large probability.
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Figure 24. Cont.
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Figure 24. The scatter diagram of the experiment conducted 100 times to be compared with Figure 19:

(a) The scatter diagram of the experiment conducted 100 times by uniform selection; (b) The scatter

diagram of the experiment conducted 100 times by random selection.

For random sampling, the parameters were set as the previous section except that the size

of sensitive region variation range is enlarged from 3 × 3 pixels to 15 × 15 pixels instead of from

10 × 10 pixels to 15 × 15 pixels, and the results are shown in Figure 24b. Compared with the previous

results (see Figure 20a), the range of frames found in the two statistical experiments was similar,

except that defect #1 was slightly larger. This indicates that size has little influence on random sampling.

5.2. Compare with Other Frame Selection Methods

5.2.1. Maximum Temperature Difference Method

In many cases of defect detection, the image with the largest temperature contrast is used,

i.e., the image where the temperature difference between the defective area and the sound surface is

the largest [4]. To have an accurate defect size, there is a need to analyze the specific IR image captured

at tmax (time that records ∆Tmax) or immediately after it [5], and the method is called the maximum

temperature difference method (MTDM), which give a method of how to determine a key frame from

the image sequence as an original image to image processing.

A number of sampling areas were taken at the defect area and the non-defect area to eliminate

the influence of thermal excitation unevenness, as shown in Figure 25. The average temperature

of different areas and the temperature difference between the defect area and non-defect area was

calculated respectively, and the course curves of the average temperature difference over time were

drawn, as shown in Figure 26. According to the peak values of curves, Frame 188 and Frame 196 were

captured for the extraction of defects #1 and #2, respectively.

Δ

 

 

 

#1
#2

Figure 25. Schematic diagram of defect area and sound area sampling.
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Figure 26. The curves of average temperature difference between the defect area and sound area over time.

After image processing, the relative data were counted in the Table 4 and were compared with

our proposed method (data in Section 4), as shown in Table 5. Both the acquired frames for each defect

and their relative errors by MTDM are equivalent to the preliminary results of our proposed method

(MSDSRM), and the accuracy is much lower than that of our method of secondary detection.

Table 4. Statistics of defect parameters using the maximum temperature difference method.

Defect Number Frame Threshold Defect Pixel Relative Error

#1 188 0.42 3525.5 4.52%
#2 196 0.44 3191.9 4.42%

Table 5. Compared the results of MSDRM with those of maximum temperature difference method

(MTDM) for PVC specimen.

Defect
Number

MSDSRM

MTDM
Single Selection

Multiple Uniform
Selection

Multiple Random
Selection

Frame Error Frame Error Frame Error Frame Error

#1 (158, 193) [0.25%, 4.94%] 164 0.42% (164, 173) [0.24%, 1.06%] 188 4.52%

#2 (160, 203) [1.05%, 5.37%] 182,183,186 [0.94%, 2.44%] (173, 193) [0.47%, 3.15%] 196 4.42%

5.2.2. Maximum Temperature Elevation Method

Ahmed Kabouri [6] adopted the maximum temperature elevation method (MTEM) to obtain a

frame image from a sequence of thermal image for image processing. He thought that only the image

acquired when the temperature reaches its maximum elevation is considered, i.e., at the time tmax

corresponding to the maximum of transmitted heat and therefore a maximum of information. Using

MTEM, Frame 385 was selected based on the peak of the curve of temperature elevation over time,

which is presented in Figure 27. However, at Frame 385, the image has obvious heat diffusion and

the defect tip has disappeared, so it is obviously not a suitable frame. Therefore, this method is not

suitable for processing our sequential images.
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Figure 27. The curve of average temperature elevation over time and the acquired frame image.

6. Application

Carbon fiber-reinforced polymer (CFRP) has been widely used in many fields because of its

excellent material properties. The impact of external energy or the mutual contact between materials

will produce different degrees of impact damage on CFRP. The delamination defect inside the material

is often greater than the surface damage. In this section, the method proposed by us will be used to

extract the internal stratification defect of the impact damage.

6.1. Information of Specimen of Impact Damage on CFRP Laminate

6.1.1. Specimen Appearance

The size of the CFRP board is 150 mm × 100 mm × 3.89 mm. The test block is unidirectional

lamination with the lamination direction [45/−45/0/−45/45/−45/45/90]. A falling weight impact test was

adopted. The impact point was located at the center of the carbon fiber impact damage, and the impact

energy was 72.19 J. The appearance of the impact damage is shown in Figure 28.

-

 

 

Figure 28. The specimen of impact damage of carbon fiber-reinforced plastics (CFRP).

6.1.2. Internal Delamination Defect Detected by Ultrasonic Testing (UT)

To verify the correctness of infrared detection, the specimen was firstly detected by the ultrasonic

testing of water immersion. A V312 water-immersion focused ultrasound probe was used (OLYMPUS

Corporation, Japan). The piezoelectricity chip size of the ultrasonic transducer is 6.35 mm, the probe

emission frequency is 10 MHz, and the focal length of the probe in water is 11.684 mm. During the
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experiment, the mechanical transmission controls the ultrasonic water-immersion probe to automatically

scan the test block in the X and Y direction. According to the material characteristics of the specimen

and the thickness of the specimen, the ultrasonic bottom echo imaging method was adopted. Set the

equipment parameters as follows: the pulse voltage was 200 V, the gain of the system was set to 21 dB,

the scanning speed was 40 mm/s, and the step interval was 0.2 mm. The experiment took 42 min

in total. The scanning result is shown in Figure 29a. The region of interest is selected as shown in

Figure 29b and the delamination defect is extracted after image processing, as shown in Figure 29c.

The calculated damage area is 1836 mm2.

   
            (a)                      (b)            (c) 

1st 118th 100th 

142nd 160th 186th 

192nd 213rd 242rd 

Figure 29. Delamination defect detected by UT and its extraction: (a) Delamination defect detected by

UT; (b) ROI; (c) Defect segmentation.

6.2. Impact Damage on CFRP Laminate Detected by Long-Pulse Thermography

6.2.1. Experiment of Long Pulse Thermography

The specimen of CFRP was detected by long-pulse infrared thermal wave where the detection

method was the transmission method. The relevant parameters were set as follows: the pulse excitation

time was 5 s, the acquisition frequency was 30 Hz, and a total of 500 frames were collected. Some frames

of the sequence are shown in Figure 30.
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Figure 30. Cont.
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Figure 30. Delamination defect detected by long-pulse thermography.

6.2.2. Data Post-Processing with MSDSRM

Since there is only one impact damage, blob analysis is not required. A frame is randomly selected

to display the image with a relatively complete defect, such as the 150th frame, as shown in Figure 31a.

The binarized image was obtained through median filtering and threshold segmentation (see Figure 31b),

and then the sensitive region was located according to the extracted edge. The sensitive regions were

uniformly sampled, as shown in Figure 31c. Based on the regions, the curve of the average standard

deviation vs. time can be obtained, as shown in Figure 31d. We found that the variation of the curve of

the CFRP specimen is more complex than the previous curve of the PVC specimen. The reason is that the

structure of CFRP includes multiple layers, while PVC is single layer. According to our proposed method

MSDSRM, Frame 164 was obtained at peak time, as shown in Figure 31e. At last, the defect was extracted

as illustrated in Figure 31f, and the damage area was calculated to be 1765.17, which is near the value

detected by UT. However, there exists some difference in the defect shape extracted by IR and by UT.

Figure 31. Delamination defect extracted by MSDSRM: (a) ROI of Frame 150; (b) Binary image; (c) Sensitive

areas selected; (d) Curves of standard deviation vs. time based on random selection of sensitive regions;

(e) ROI of Frame 164; (f) Defect segmentation.
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6.2.3. Data Post-Processing with MTDM

As shown in Figure 32a, there are six small regions selected for temperature sampling in the defect

area and sound area in the picture, respectively. The average temperature of the two large areas is

calculated respectively, and the draw temperature difference curve is presented in Figure 32b. From the

figure, it can be seen that the maximum temperature difference occurs at Frame 304, so the 304th frame is

captured for defect extraction. After image processing on the ROI in Frame 304 (see Figure 32c), the defect

is extracted by MTDM, as shown in Figure 32d, and its shape is similar to that of Figure 31f extracted

by MSDSRM, but the area of the former is smaller than that of the latter. The relevant data statistics are

shown in Table 6, where the relative error is compared with the detected area 1836.99 mm2 by UT.
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Figure 32. Delamination defect extracted by MTDM: (a) Schematic diagram of defect area and sound

area sampling; (b) The curves of average temperature difference between the defect area and sound

area over time; (c) ROI in Frame 304; (d) Defect extraction.
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Table 6. Comparison of the results of MSDRM and MTDM for CFRP specimen.

Method Frame Defect Pixel Area (mm2) Relative Error

MSDSRM 164 6073.6 1765.17 3.91%
MTDM 304 3298.8 958.73 47.81%

7. Conclusions

It is challenging to accurately acquire the defective areas with different depths on PVC materials

with minimum human intervention. In this paper, we developed an effective approach to accurately

detect defects with different depths on a PVC specimen. The whole process was made automatic, and no

human intervention was required. We firstly quantitatively analyzed the relationships between defect

depth, temperature, and time. Then, we proposed the maximum of standard deviation of the sensitive

region method (MSDSRM) to decide the best frame to calculate defect boundaries, which answered a

key question in thermographic defect detection. By integrating blob analysis and the Otsu method,

we further proposed a fully automated process to extract defect areas. As a result, our study should

offer a great help in non-destruction defect detection and quality assurance.

Further effort will be focused on extracting defects in ordinary temperature fields. For example,

it may be possible to combine the MSDSRM with a temperature field processing technique such as

FWHM to determine the defect size through the analysis of the surface temperature field. Furthermore,

our study assumes that the infrared images have enough contrast for image processing processes such

as defect contour extraction and binary segmentation, and we are aware that such a condition might

not always be feasible in practice. Therefore, some pre-processing will be needed, which might affect

the detection accuracy.
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