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Abstract: Despite the numerous band selection (BS) algorithms reported in the field, most if not all have

exhibited maximal accuracy when more spectral bands are utilized for classification. This apparently

disagrees with the theoretical model of the ‘curse of dimensionality’ phenomenon, without apparent

explanations. If it were true, then BS would be deemed as an academic piece of research without real

benefits to practical applications. This paper presents a spatial spectral mutual information (SSMI)

BS scheme that utilizes a spatial feature extraction technique as a preprocessing step, followed by

the clustering of the mutual information (MI) of spectral bands for enhancing the efficiency of the

BS. Through the SSMI BS scheme, a sharp ’bell’-shaped accuracy-dimensionality characteristic that

peaks at about 20 bands has been observed for the very first time. The performance of the proposed

SSMI BS scheme has been validated through 6 hyperspectral imaging (HSI) datasets (Indian Pines,

Botswana, Barrax, Pavia University, Salinas, and Kennedy Space Center (KSC)), and its classification

accuracy is shown to be approximately 10% better than seven state-of-the-art BS schemes (Saliency,

HyperBS, SLN, OCF, FDPC, ISSC, and Convolution Neural Network (CNN)). The present result

confirms that the high efficiency of the BS scheme is essentially important to observe and validate

the Hughes’ phenomenon in the analysis of HSI data. Experiments also show that the classification

accuracy can be affected by as much as approximately 10% when a single ‘crucial’ band is included or

missed out for classification.

Keywords: band selection; spatial spectral band selection; hyperspectral imaging; classification; mutual

information; curse of dimensionality; Hughes phenomenon; accuracy-dimensionality characteristics

1. Introduction

Hyperspectral imaging (HSI) that exploits both spectral and spatial features of the scene [1,2],

has made it a powerful technique for applications such as geographical mapping [3], classifications [4],

and target detections [5,6], in multidisciplinary fields of agricultural [7], food industry [8], medical [9],

and security [10], sectors. The usefulness of HSI mainly stems from the very detailed spectral

information of the scene that it provides; however, it is also one of the drawbacks of HSI for achieving

a high degree of classification or detection accuracy when it has high spectral dimension. For a

model with a high dimensional (spectral) feature space, it will require a very high number of training

samples to train the model properly due to the high degree of freedom in the model according to
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Hughes [1]. This is so-called ‘curse of dimensionality’ that manifests itself by the presence of a ‘bell’

shaped accuracy-dimensionality relationship of the classification model when it is trained under a

limited amount of data. This means that the theoretical accuracy limit of the model will be reduced

as the dimensionality of the data is increased further. One common way to rectify this drawback

is the introduction of an effective band selection (BS) scheme, wherein a model is built such that a

few image bands that contain rich information in the context of the objective of the task are selected

or extracted from the scene for further processing. Due to the advantage of BS that enhances the

end-to-end throughput of HSI significantly, a great many different schemes of BS have been proposed

in the past couple decades within the HSI community [2,11–16].

The common goal amongst all these various streams of BS algorithm is to provide a robust

extraction of the essential information of the scene. Approaches such as the maximization of spectral

mutual information [17–29], decomposition of spectral information through sparsity [30–35], spectral

unmixing [36–38], or related techniques such as variance-based optimizations [39–52], have been widely

studied in the last two decades. Recent concepts that utilize both spatial and spectral information have

shown improved classification performance over the spectral centric of BS schemes [53–55]. There are

various different methodologies for implementing these concepts in BS: Clustering based [13,56–64],

deep learning methods [65–70], machine learning methods [71–74], and a hierarchy of several

methodologies combined together [75,76], have been widely reported. Furthermore, some of these

require supervision in which training data are needed to optimize the model [77,78], while others are

unsupervised without the need of prior information. One of the most outstanding problems in BS is the

determination of the most appropriate number of bands that are needed to optimize the performance

of the classification/detection task. Many algorithms require the user to specify the desired dimension,

and the work on the virtual dimensionality [79], is still a matter of intensive research.

Despite the numerous amount of BS research in the field [2–13], the classification performances of

these reported results are all exhibiting a ‘knee’-shaped accuracy-dimensionality curve, i.e., the accuracy

of the classification increases steadily when more bands are utilized for the classification. Moreover,

existing BS algorithms are all showing a maximum classification accuracy when all the spectral

bands are utilized. These results apparently suggest that Hughes’ prediction may not be correct,

or alternatively, there may be factors that have prevented this ‘bell’-shaped accuracy-dimensionality

characteristic curve to be observed. (i) The number of training data is abundant enough to train the

very high degree of freedom of the classification model sufficiently. (ii) The reported BS schemes are

not efficient enough to reveal the intrinsic (i.e., theoretical) accuracy-dimensionality characteristics.

(iii) An ‘ideal’ dataset in which all bands possess an equal extent of information has been assumed in

the Hughes theoretical modeling; however, this ideal dataset is never realized in the real world. Hence,

the shape of the accuracy-dimensionality plot of the real world data is heavily dependent on how

the bands are selected; for example, the successive selection of more bands will enhance the accuracy

only when the selected bands are highly informative. (iv) Other factors such as the Fisher criterion,

which arises from issues of classes overlapping, Cover′s reasoning, which concerns with the number

of training size with respected to the dimensionality of the dataset, and other imaging artefacts such

as sensor noise, spectral mixing, etc., which may also prevent the Hughes phenomenon from being

observed from the real-world data.

To ensure that the last factor does not dominate the classification accuracy characteristic, six

widely studied publicly available HSI datasets have been adopted here, and the result is subsequently

compared with respect to 7 other state-of-the-art BS algorithms. To maintain the integrity of the dataset

as much as possible (see Section 2.1 for more information), a spatial-based preprocessing technique is

applied here to assign all non-informative bands (noisy and/or featureless bands) to the bottom (i.e.,

least) priority list for the band selection. One objective of this work is to propose a spatial spectral

band selection scheme for enhancing the classification efficiency and with a view to understanding

the origin of why the curse of dimensionality phenomenon is so difficult to observe in the real-world

data. The focus of the present paper is to address factors (ii) and (iii) above; hence, a BS scheme that
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utilizes both spatial and spectral information for enhancing the classification accuracy of hyperspectral

imagery has been designed. The BS scheme utilizes a spatial feature extraction as a preprocessing

step, followed by a basic mutual information (MI) spectral feature-based BS. This is named as a spatial

spectral mutual information (SSMI) scheme, and its performance is then compared directly with the

basic MI BS.

The layout of the paper is as follows. Section 1 outlines the background of the work related to

the topic of band selection, and the motive/objective of the research are outlined. Section 2 describes

the principles and algorithm of the proposed SSMI method together with an outline of the working

principles of seven state-of-the-art competing BS algorithms. Then, the datasets to be studied in this

work and the assessment metric are briefly presented. Section 3 presents the classification performance

of the proposed SSMI and the seven competing BS algorithms over six HSI datasets. Section 4 presents

a discussion of how sensitive the classification accuracy is when ‘crucial’ bands are added or omitted.

Section 5 concludes the paper by highlighting the importance of the efficiency of band selection schemes

and how can it be assessed more meaningfully in future research directions.

2. Methods and Materials

2.1. Spatial Preprocessing Method

The main concept in band selection is to establish the methodology to allow the most informative

bands in the dataset to be extracted for further processing. Informative bands in the context of land-use

classification applications are those that contain rich features within the band to allow different types

of objects to be discriminated throughout the scene. In spatial terms, the informative bands are those

that are rich in morphological features. There are numerous ways to achieve this objective for the

selection of highly informative bands from the spatial perspective, e.g., through the similarities of

neighborhood pixels [54], the construction of a matrix-based margin-maximization using the local

spatial pixel neighborhood information [55], and also the extraction of saliency spatial feature through

a simplistic edge detection methodology [80].

Inspired by the simple yet effective methodology by using edge detections for the extraction of

morphology features from each band [80], this concept has been adopted in this work as the spatial

preprocessing technique. The objective of this spatial preprocessing is to remove spectral bands that

are low in morphological features, i.e., non-discriminative bands. Given a hyperspectral image that

consists of N bands B = (B1, B2, . . . , BN), the morphology of the bands can be approximated by using

edge detection:

Ei = Edge (Bi) (1)

where Ei is the edge feature map of the band Bi, and Edge(.) is the edge detector operator, which can

be Canny detectors, Sobel detectors, etc. There are various options to classify the edge feature maps

into highly structured maps and distinguish them from the featureless low morphological maps.

One straightforward means is to rank the Ei by comparing it with respect to the mean of all Ei:

Ci = Corr (Ei, E)

and

E =mean(Ei) (2)

The Corr(.) is the correlation function, and an abrupt change of Ci will give an indication of the

threshold boundary between the highly structured and the featureless morphological maps. In this

work, all bands below this threshold are reassigned to the bottom of the selection list, and the highly

structured bands are then passed onto the next stage of spectral processing. The validity of this

formulation is more applicable to high-quality datasets (i.e., high signal-to-noise ratio) of scenes with a

very small portion of low reflectance objects such as water or hard shadows.
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2.2. Spectral Band Selections Using Mutual Information (MI)

Entropy has been a quantity that has been widely used in communication, computing,

cryptography, and many other data-related applications. Entropy is a measure of the unpredictability

of the state, so it is not only the content of the state but also how the state is chosen that determines its

entropy. Given a variable K and that the probability of the event Ki is p(Ki), the amount of information

I(Ki) acquired due to the observation of the event Ki according to Shannon [81], is defined as:

I(Ki) = log

(

1

p(Ki)

)

= − log(p(Ki) (3)

The entropy (H) of the variable K for ∀K, K ∈ [K1 . . .Ki . . .Kn], (represented by H(K)) is the expectation

value of the information function I(K), i.e., the expectation of the probability (p(K)) for choosing

elements of K:

H(K) = −
∑

i

p(Ki) log p(Ki) (4)

A large entropy H(A) means that A is very unpredictable, and the averaged amount of the

information conveyed by the identification of A is large. In band selection (BS), the band image

can be considered as A, and the pixels in the band are represented by Ai. Thus, the entropy can

be used for encoding the information of every band in the dataset by using Equation (4) [21–29].

An alternative methodology has been using joint entropy between two variables A and B [17,82–85].

From Equation (3), the joint information of variables A and B is given by the mutual information (MI)

I(A,B), which is in the form of:

I(A, B) =
∑

A, B

p(A, B) log
p(A, B)

p(A) × p(B)

I(A, B) = H(A) + H(B) −H(A, B) (5)

where p(A) and p(B) are the marginal probability distributions of variables A and B, respectively, and

p(A, B) is the joint probability distribution of variables A and B. Equation (5) implies that the I (A,B)

can be used to measure the similarity of two variables A and B. If A and B are two spectral bands in the

image, the I(A, B) measures the independency (or similarity) of (the information convey in) these two

bands. In the case when one variable is chosen to be the reference data, and the other variable is the

band images of the scene, then the joint information of I(A,B) measures how close (in the context of

information) the band images are with respect to the reference data such as the labeled data that have

been used previously [17].

2.3. Spatial Spectral Mutual Information Band Selections (SSMI)

The spatial spectral band selections method that is to be utilized in this work is the combination

of the spatial preprocessing outlined in Section 2.1 and it cascades the output into the spectral band

selection using mutual information as discussed in Section 2.2. In this paper, the marginal probabilities

of the bands are estimated from the normalized band pairs, and their corresponding entropies are

then calculated by using Equation (4). The joint entropy is subsequently evaluated for each pair of

adjacent image bands, and the mutual information (MI) of the image pair (i.e., the I(A, B)) is evaluated

according to Equation (5). Then, the numerous presentation (i.e., the value) of the I(A, B) (i.e., Mutual

Information) for all band pairs of the dataset are ranked in ascending order, and the topmost ones

represent the most informative bands, with all noisy/featureless bands at the bottom of the list. Then,

this selection list is utilized for the BS. This algorithm is termed as spatial spectral mutual information

(SSMI), and the pseudo-code of the proposed method is outlined in the Algorithm 1 (see Table 1 for

more information).
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Table 1. Pseudo-code of the proposed spatial spectral mutual information (SSMI) method.

Algorithm 1: Spatial Spectral Mutual Information (SSMI)

Input: Im = (x,y,B), threshold;
Output: MI

% In Matlab format %
%% Spatial preprocessing %%
B = (B1 . . . BN)
E = Edge (Im(Bi , . . . ,BN))
mE =mean(E)
Ci = Corr(E,mE)
CiRank = sort(Ci,’descent’)
%either manual or automatic threshold
CiSelect = CiRank(1:threshold)
%% Spectral band selection
ImSpec = Im(x,y,CiSelect)
S = size(CiSelect)
% Joint entropy evaluation
For i = 1: S

%choose adjacent image pair
Impair(i) = [ImSpec(:,:,i),ImSpec(:,:,i+1)] %normalise joint histogram
H(i) = Impair(i)/sum(sum(Impair(i)))
%joint entropy
JE(i) = −sum(H(i).*(log2(H(i))));
MI(i) = (entropy(Im(:,:,i))+entropy(Im(:,:,i+1)) − JE(i))/JE(i)

end

2.4. Competing Band Selection Algorithms

In this study, seven state-of-the-art BS algorithms have been selected from the literature for a direct

comparison with the classification performance of the proposed SSMI algorithm. The working principles

of these algorithms are briefly outlined in the following subsections to let the readers understand the

difference between these competing methods with respect to the one that we propose here.

2.4.1. Saliency Bands and Scale Selection (SBSS)

The SBSS (Saliency Bands and Scale Selection) [86], method utilizes both spatial and spectral

information for its band selection. The principle of the method is to identify the saliency of each band

through the numbers of the extrema points of the Hessian matrix of the band image.

2.4.2. HyperBS

This algorithm utilizes the correlation relationship of bands to split or merge according to their

mutual correlations [87]. With a user-defined threshold, spectral bands are split when the correlation of

a pair of bands are below the threshold. Otherwise, they will be merged to reduce the dimensionality

of the hyperspectral image.

2.4.3. SLN (Single-Layer Neural Networks)

This is a neural network-based algorithm [88], which assigns the weight of the neurons according

to the correlations of the cross-entropy of the bands. One advantage of this method is that the bands

with the highest and lowest weight values are selected, and the selection is class dependent.

2.4.4. OCF (Optimal Clustering Framework)

The OCF [13], is a framework that is designed to extract the abundance of the contributions from

the bands toward different classes of the image data. The framework involves an arbitrary clustering

method such as K-Means, which clusters the input image into an arbitrary number of classes to initiate
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the process. Then, the contributions of the bands toward each cluster are evaluated and they are then

clustered into groups, and the final selected bands are extracted from these band contribution clusters.

2.4.5. E-FDPC (Enhanced Fast Density-Peak-Based Clustering)

The E-FDPC [61], method is based on a cluster ranking principle similar to that of the OCF

technique. It is known that the points at the cluster center possess the largest local density (i.e., high

number of points) and intra-cluster distances. FDPC uses this fact to locate the center of clusters of

spectral bands through ranking the similarity matrix of band pair according to their products of the

local densities and the intra-cluster distances. The FDPC method is highly empirical, and the enhanced

version E-FDPC updates the local density function to eliminate tuning parameters. The selected bands

are those at the top of the rank, thus excluding the highly correlated bands that are at the bottom of

the list.

2.4.6. ISSC (Improved Sparse Subspace Clustering)

The ISSC [32], makes use of the compressive sensing technique, which has been widely used

for finding the atoms (i.e., endmembers) of the dictionary. This method finds a few atoms in the

spectral domain such that other bands can be reconstructed through a linear combination of these

‘spectral’ atoms. As in compressive sensing, the atoms are found by minimizing the L2 norm of the

reconstructed bands with respect to the raw data. Then, a similarity matrix between a pair of sparse

band vectors is constructed through the sparse coefficients of both vectors. Then, the similarity matrix

is segmented into clusters, and the bands that are closest to the center of the clusters are chosen as the

most informative bands. The concept is similar to both OCF and E-FDPC but different in methodology.

2.4.7. CNN (Convolutional Neural Network)

This band selection method [89], is based on a 5-layer CNN network that consists of 3 convolution

layers, 2 fully connected layers, and a final softmax layer. The network is firstly trained through a

substantial amount of band images as training data. Subsequently, it extracts features from each test

band image, and the weight of the neurons is updated depending on whether the predicted label is

correctly or incorrectly classified. Then, the network combines all models into an ensemble, and the

mostly weighted bands are selected by voting.

2.5. HSI Datasets Employed in This Paper

Six widely studied publicly available datasets—namely, the Pavia University, Indian Pines, Barrax,

Salinas, Kennedy Space Center, and Botswana [90], have been employed in this work for the validation

of the proposed SSMI BS method. The Barrax dataset was acquired during the 1999–2006 VALERI

campaigns [91]. This dataset was acquired by the DAIS sensor over the 5 km × 5 km Barrax site

in Albacete, Spain. It consists of 400 × 400 pixels and 128 bands with 18 classes of vegetation and

crops [91,92]. The Pavia University hyperspectral dataset was acquired by the ROSIS sensor during

a flight campaign over Pavia, northern Italy. The ground sampling distance (GSD) is 1.3 m, and the

dataset dimension is 340 × 610 pixels with 103 bands. The Indian pines dataset has been one of

the most widely studied imagery in the remote sensing research. It was acquired by the AVIRIS

(Airborne Visible/Infrared Imaging Spectrometer) sensor, and the imagery contains 145 × 145 pixels

with 224 bands ranging from 400 to 2500 nm. There are 4 bad bands and low signal to noise (SNR)

bands due to water absorptions such as those between (104–108), (150–163), and also the band 220:

They have all been removed before the data analysis. The Salinas scene was collected by the 224-band

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor over Salinas Valley, California, and it

is characterized by high spatial resolution of GSD 3.7 m with 86 lines and 83 samples. Similar to

that of the Indian Pines image, 20 water absorption bands between the (108–112), bands, (154–167),

bands, and the 224 band have been removed, leaving 204 bands for data analysis. The Kennedy

Space Center (KSC) dataset was acquired by the AVIRIS sensor in Florida on the 23 March 1996.
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The imagery was acquired at high altitude of 20 km with a GSD of 18 m. The dataset consists of

521 × 614 pixels in 224 bands covering a spectral region of 400–2500 nm with a narrow 10 nm FWHM

per band. After removing water absorption and low SNR bands, there are 176 bands remaining for data

analysis [93]. The Botswana dataset was acquired by the Hyperion sensor (EO-1) on the 31 May 2001,

and it has dimensions of 1476 × 256 pixels in 220 bands. The GSD of Botswana is 30 m, which is the

least spatial resolution over the other 5 datasets that have been employed in this study. After removing

noisy and water absorption bands, there are 145 good quality bands remaining for data analysis [94,95].

The pseudo-RGB picture and the ground truth (GT) classification of these 6 datasets are presented

in Figure 1, and the class information such as the size and nature of each class is tabulated in Table 2. It is

noted that all datasets have reasonable class sizes except for the Botswana, which has an average class

size of 232. The standard deviation of class sizes in Botswana is 67, which is 3 times smaller than that of

the Indian Pines (STD = 650). In the Botswana data, all class sizes are relatively uniform, which can be

seen from the GT map shown in Figure 1d. In other words, the averaged overall accuracy (OA) of this

dataset will give a better indication of how the band selections affects the classification performance.

 

 

− −

Figure 1. Shows the pseudo-RGB images (in the first and third columns) and their corresponding

ground truth (GT) classification maps (in the second and fourth columns) for all the datasets utilized in

this study: (a) Indian Pines, (b) Barrax, (c) Pavia University, (d) Botswana, (e) Kennedy Space Center

(KSC) and (f) Salinas. Note that neither the dataset nor the GT has been modified such that the results

presented in this work can be compared directly with those reported in the literature.

2.6. Experimental Configuration and Metrics for Assessing Classification Performances

Throughout this work, all experimental runs were repeated five times to obtain an average of the

accuracy and standard deviations of the classification results. Most of the experimental runs used 10%

of training data per class, and the classification was performed using SVM and also KNN.

In this study, the overall accuracy (OA) and the Kappa coefficient have been adopted as the

assessment metrics for the indication of the classification performance as the result of band selections.

The OA is calculated by the sum of the correctly classified pixels from each class and the ratio of this

sum with the total number of pixels of all classes in the reference GT map. Thus, the OA can be skewed

by ‘easy’ targets or/and large class sizes in the dataset. The kappa statistic is a measure of the overall

agreement of the classification accuracy. It is used to control the instances that may have been correctly
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classified by chance. This can be calculated using both the observed (total) accuracy and the random

accuracy: Kappa = (total accuracy − random accuracy)/(1 − random accuracy).

Table 2. Tabulates the class sizes and the nature of the class for all six datasets that have been utilized

in this study. It is to note that the class sizes of the Botswana dataset are relatively uniform with an

average size of 237 pixels over all classes in this data set.

Class

Pavia University Indian Pines Barrax Salinas KSC Botswana

Class Label
Number

of
Samples

Class Label
Number

of
Samples

Class Label
Number

of
Samples

Class
Label

Number
of

Samples

Class
Label

Number
of

Samples

Class
Label

Number
of

Samples

1 Asphalt 6631 Alfalfa 46 Alfalfa 20606
Brocoli
Green

weeds_1
391 Scrub 875 Water 270

2 Meadows 18649 Corn-not ill 1428
Corn (two

leaves)
13839

Corn
_senesced

green
_weeds

1343
Willow
swamp

279
Hippo
grass

101

3 Gravel 2099 Corn mint ill 830
Corn (five

leaves)
4921

Lettuce
_romaine

4wk
616

Cabbage
palm

hammock
294

Floodplain
grasses 1

251

4 Trees 3064 Corn 237
Corn (six
leaves)

2063
Lettuce

_romaine
5wk

1525
Cabbage
palm/oak
hammock

290
Floodplain
grasses 2

215

5
Painted

metal sheets
1345 Grass-pasture 483 Beet 5496

Lettuce
_romaine

6wk
674

Slash
pine

185 Reeds 1 269

6 Bare soil 5029 Grass-trees 730 Legumes 298
Lettuce

_romaine
7wk

799
Oak/broad

leaf
hammock

263 Riparian 269

7 Bitumen 1330
Grass-

pasture
-mowed

28 Wheat 11554
Hardwood
swamp

121 Fire scar 2 259

8
Self-blocking

bricks
3682

Hay-
windrowed

478
Experimental

plots
(legumes)

4965
Graminoid

marsh
496

Island
interior

203

9 Shadows 947 Oats 20
Experimental

plots
(papaver)

5118
Spartina
marsh

598
Acacia

woodlands
314

10
Soybean-not

ill
972 Lignose 1972

Cattail
marsh

465
Acacia

shrublands
248

11
Soybean
mint ill

2455 Vineyard 949
Salt

marsh
482

Acacia
grasslands

305

12 Soybean-clean 593 Test plots 3245
Mud
flats

578
Short

mopane
181

13 Wheat 205
Lysimeter

station
534 Water 1066

Mixed
mopane

268

14 Woods 1265
Water body

site
62

Exposed
soils

95

15
Buildings

-Grass
-Trees-Drives

386
Non

-irrigated
barley

26132

16
Stone-Steel

-Towers
93

Irrigated
barley

976

17 Bare soil 11357

18
Ploughed

soil
1196

3. Results

3.1. Band Selection (BS) Using Spectral Information Only

As outlined in Section 2, band selection (BS) using spectral information alone may not be able to

extract essence information from hyperspectral data effectively. Figure 2 depicts the classification result

by SVM using two typical classical BS schemes: (a) mutual information (MI)-based (see Section 2.2 for

more information) [17,26,28], and (b) the deep learning CNN technique [89], for the classification of

three arbitrarily selected datasets (Indian Pine, Botswana, and Barrax) to illustrate the effectiveness

of BS that utilizes only spectral information. The results were the average of five repeated runs,

and the training data was 10% throughout. It is seen that both figures exhibit a similar trend of

behavior: the classification accuracy is seen to improve steadily when a greater number of bands

are utilized for the classification until all of the bands of the imagery are exhausted. It is seen that

the peak accuracy is saturated at the point when all the bands have been used for the classification.

A similar trend has been seen over the many BS papers reported in the literature [2–13], which makes

one speculate why the well-known bell shape of the accuracy-dimensionality curve predicted by
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Hughes [1], has not been observed from any experiments so far. Hughes analysis has shown that the

theoretical accuracy of a model scales non-linearly with the dimensionality of the dataset: the accuracy

should be improved when more spectral bands are utilized for the classification, and furthermore,

increasing the dimensionality of the data for classification reduces the accuracy, especially when the

training data size is kept constant.

 

 

Figure 2. Shows the mean classification accuracy of two typical band selection (BS) algorithms as

a function of the number of bands used for the classification of three datasets. In all cases, 10% of

the training data per class have been used throughout all runs: (a) mutual information (MI)-based

algorithm [17,26], (b) Deep learning CNN algorithm [89]. The continuous increasing of accuracy with

the dimensionality makes one wonder why the Hughes’ accuracy-dimensionality phenomenon has not

been observed here.

The experimental results as shown in Figure 2 were performed by using a fixed training data size

of 10% per class throughout the experiment. Hence, there are two possibilities that may cause the

bell-shaped accuracy-dimensionality curve not observable from Figure 2: (i) the number of training

data that have been used in this experiment (10% training data) may be abundant enough for classifying

200 bands of data already; and (ii) the BS schemes adopted for this experiment are not effective enough

to reach the theoretical peak of accuracy which should occur when a moderate number of bands are
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used for the classification. To testify the validation of the first point, Figure 3 plots the overall accuracy

(OA) of the CNN-based algorithm for the experiments that have employed reduced training data of

5% and 3%, as shown in Figure 3a,b, respectively. It is seen that both plots exhibit the same trend

as that depicted in Figure 2, and these accuracy plots do not seem to saturate even when all bands

have been used for the classification. We have repeated the same experiment for 7 other BS algorithms

(see Section 2 for more details of these competing BS schemes) and have observed the same trend of

results, which will be presented in Section 3.2. These data may suggest that the absence of the Hughes′

accuracy-dimensionality classification characteristic in Figures 2 and 3 is not due to the excessive

amount of training data that has been utilized for the classification. The next step is to evaluate the

efficiency of the BS schemes in an attempt to understand whether it may be the cause for the absence

of the Hughes′ phenomenon in the present results. Note that the KNN classification results exhibit the

same trend as those shown in Figures 2 and 3, but they are not presented here for clarity.

 

′

′

′

Figure 3. The mean classification accuracy of the Convolutional Neural Network (CNN) BS algorithms

as a function of the number of bands used for the classification of the same datasets as in Figure 2

but with reduced training data to (a) 5% per class and (b) 3% per class. The trend of increasing the

accuracy with the dimensionality under such a small amount of training data may suggest that it is not

the ‘over-sufficient’ amount of training data that has been utilized here for causing the absence of the

Hughes’ accuracy-dimensionality characteristic in these experiments.

3.2. Band Selection (BS) Using Spatial and Spectral Information

As outlined in Section 2 (Method and Materials), that spatial information has been regarded

as an added advantage for the remote sensing data analysis, especially in applications related to
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ground-use classification. This section is devolved to the understanding of the result obtained from

the previous Section 3.1 and with a view to giving more insight into the query of why the Hughes′

accuracy-dimensionality characteristic has hardly been observed from the present results, and neither

has it been ever reported in the remote sensing literature. In the previous Section 3.1, it is suggested

that the effectiveness of the BS may be one of the issues responsible for observing the results shown in

Figures 2 and 3. Thus, in this section, other techniques such as the use of spatial features for improving

the effectiveness of band selections, and subsequently the enhancement of classification efficiency of

hyperspectral data analysis, are studied here.

As mentioned in Section 2.2, a basic BS scheme that utilizes the mutual information (MI) for the

selection of bands from hyperspectral datasets has been adopted in this study. The algorithm has been

a basic one that ranks the MI of each spectral band of the dataset, and then they are selected from the

top of the list for classification. Since this BS method utilizes spectral information only, a preprocessing

method that exploits spatial information for the elimination of low discrimination bands has been

added as a preprocessing technique prior to the MI band selection. This method is termed as ‘spatial

spectral mutual information (SSMI)’ (see Section 2.3), and the sole purpose of the spatial technique

is to eliminate bands that do not convey much information toward the morphological property of

the dataset for classification. Figure 4 plots the ranked correlation coefficients Ci of Equation (2),

and the abrupt change of Ci is detected as the threshold for band elimination. The abrupt change of the

slow-varying Ci has been implemented by moving point smoothing (typically 11 points) of the vector;

then, the breakpoint is detected by using the Matlab command ‘findchangepts’. Then, the remaining

bands are subsequently processed by the basic MI scheme as detailed in Section 2.2. The effectiveness

of the MI and the proposed SSMI for the classification of a couple well-studied datasets (Indian Pines

and Botswana) is shown in Figure 5.

 

′

Figure 4. The spatial preprocessing technique (see Section 2.3) eliminates the non-discriminative bands

through the abrupt change (blue arrow) of the correlation coefficients Ci of the edge map of each band,

w.r.t.: The mean of all the edge maps in the dataset (Indian Pines). The abrupt change of the ranked Ci

is detected automatically, and all bands beyond this point are discarded.
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Figure 5. The mean classification accuracy of two BS algorithms: the MI and the proposed spatial

spectral mutual information (SSMI), as function of the number of bands used for the classification:

(a) Indian Pine and (b) Botswana datasets. In both cases, a ‘bell’-shaped accuracy-dimensionality curve

similar to that predicted by Hugh [1], is seen, for the first time, from the experimental result of the

proposed SSMI scheme (in blue plot). This is in great contrast to the basic MI algorithm (in red plot),

which increases the accuracy steadily when more bands are utilized for classification.

The classification accuracy is seen to reach a peak at about 20 bands when the data are treated by

the proposed SSMI, and then, the accuracy is reduced steadily after the peak, when more bands are

added to it. This behavior confirms to the Hughes’ prediction, and it is believed that this result may

represent the first experimental evidence to confirm the validation of Hughes’ theory. Similar to the

results presented in Figures 2 and 3, the training data that have been utilized in this experiment is also

10% per class for the classification of both datasets (Indian Pines and Botswana). It is also noted that

the classification performance of the MI BS scheme, which is shown in red trace in Figures 4 and 5,

is completely different from that of the SSMI result (in blue trace). Since both methods, the MI and

the proposed SSMI, are fundamentally the same algorithms, it is interesting to find out why the

SSMI exhibits such dramatic results with an enhancement of classification by about 12–15% better
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when a small number of bands (e.g., at approximately 20 bands) have been used for classification.

Figure 6 plots the I(A, B) (see Equation (5) of the Indian Pines scene, which reveals that the I(A, B) of

bands that are processed through SSMI (i.e., after the spatial treatment) have approximately 2 times

higher contrasts (i.e., the peak and valley) than those processed by the MI. This may be one of the

reasons why SSMI performs so much better than the MI counterpart even though the underlying

principles of both techniques are literally the same. As an example, the red and black solid square

markers shown in Figure 6 depict the bands that have been chosen by the MI and the SSMI respectively,

when the dimensionality is set to 5 (bands). One significant difference between these 2 sets of selected

bands is that the MI method chooses band 86 instead of the higher MI bands between 110 and 140.

The consequence of this ‘erratic’ band selection is the drop of the OA by approximately 15% with

respect to the SSIM, which scores an OA of 83% (see Figure 5a). The credit of this improvement is

solely due to the elimination of the low morphological (non-discriminative) bands through the spatial

feature analysis.

 

Figure 6. Depicts the I(A, B) of the bands of the Indian Pines dataset given by the MI (red plot) and

SSMI (blue plot) BS methods. Note that the SSMI that utilizes both spatial and spectral information

enhances the contrast of the I(A, B) by as much as approximately 200% in comparison to the basic MI

BS without spatial preprocessing.

The robustness of the proposed SSMI is further testified by examining its band selection capability

with respect to seven other competing algorithms (see Section 2 for details): (a) Saliency, (b) HyperBS,

(c) SLN, (d) OCF, (e) FDPC, (f) ISSC, and (g) CNN. All experiments were conducted under the same

configurations of (i) 10% per class of training data, (ii) experiments were repeated 5 times, and (iii) all

experiments were classified by the same classifier (SVM). Again, the KNN results have been omitted

here for clarity. The classification results of six HSI datasets, namely the Botswana, Indian Pines,

Barrax, KSC, Salinas, and Pavia University, are presented in Figure 7. It is seen from the figure that

the proposed SSMI achieves the best performance over all 7 competing algorithms, with a peaked

classification accuracy at about 20 selected bands over all six datasets. None of the 7 competing

algorithms exhibit a ‘bell’-shaped accuracy-dimensionality characteristic curve, except for the proposed

SSMI method and the ISSC, which also exhibits a weak ‘bell’ shape (see Figure 7c). At the selected

bands of about 20, the SSMI BS scheme achieves an enhanced averaged accuracy with respect to the

mean of the 7 competing algorithms over 6 datasets that is approximately 10.5% better than all the

competing algorithms employed in this study. This result may give evidence that the ‘knee’ shape of

the accuracy-dimensionality curve generally seen from the BS schemes published in the literature may

be predominately caused by the inefficiency of the reported BS algorithm. Further work along this line

of research will be reported in the forthcoming publication. We have obtained a similar trend of results
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when the Kappa coefficients are used for assessing the goodness of the SSMI band selection scheme.

To maintain the clarity of the paper, the plot of the Kappa coefficients is not presented here.

 

 

′

Figure 7. The classification performances of the proposed SSMI and seven other competing algorithms

for the classification of 6 datasets (a) Botswana, (b) Indian Pines, (c) KSC, (d) Barrax, (e) Salinas, and (f)

Pavia University. In all cases, the training data sizes were kept at 10% per class and every data point

involves 5 repeated experimental runs. The averaged enhancement of the classification by the proposed

SSMI with respect to the mean of the 7 competing algorithms over 6 datasets at the selected bands of 20

is approximately 10.5%.

It is noted from Figure 7 that the peak classification accuracies for all datasets are seen to occur at

about the same number of bands (i.e., at approximately 20 bands), despite the rather distinct different

characteristics among the datasets that have been employed in this study. For example, the Pavia

dataset contains 4 classes of manmade materials that are quite different in the spectral perspective

from that of the natural vegetation scene in the rest of the datasets. However, according to the Hughes

analysis, it is indicated that the peak of the classification accuracy is a function of the measurement

complexity (i.e., the dimensionality of the data) as well as the number of the training sample that is

required to define a class in the dataset [1]. Hughes′ analysis is valid only when the datasets concerned

are noiseless, have a minimum of subpixel mixing, and also all spectral bands carry the same extent

of information. Through the proposed SSMI BS method, all the datasets that are employed in this

study have been treated such that the noisy bands and also those that are not rich in information have



J. Imaging 2020, 6, 87 15 of 23

been put to the bottom of the band selection list. All other bands have been ranked in the order of

the information contained in the band; thereby, the relative difference of the band information for

any band in the list with respect to the most informative ones (i.e., the one at the top list) is more or

less similar over all the 6 datasets. This may be one of the contributive factors for the observation of

the peak accuracy at approximately 20 bands over all the datasets, as depicted in Figure 7, and more

detailed investigation for further understanding this query is in progress.

The Hughes analysis indicates that the peak accuracy varies with the number of the training

sample. The OA of all datasets that have been classified by SVM using 10% and 3% training data are

shown in Figure 8a,b respectively. It is clear that the centers of the peak accuracies for the classification

using 3% training data (Figure 8b) have been shifted rather significantly with respect to that of the

10% training. The shift of the peak accuracy can be seen better in Figure 8c,d, where the OA of the

Pavia and Indian Pines datasets classified by SVM (and KNN) using the 10% and 3% training data are

overlaid together for better visualization of the shift of the classification accuracy peak. The shift of the

peak in the Indian Pines data set (Figure 8d) is consistent with all the subplots presented in this figure,

and it is noted that there is a subtle difference between the SVM and the KNN result.

 

 

Figure 8. Plots the overall accuracy (OA) for the classification of all six datasets after band selections

using the proposed SSMI algorithm: (a). SVM under 10% training data; (b). SVM under 3% training

data; (c). the overlay of OA for the classification of the Pavia dataset by SVM using 10% and 3% training

data; (d) as in (c) but for the Indian Pines datasets and also to compare with that by using the KNN

classifier at 3% training data.

To understand further how the SSMI enhances the classification accuracy, Figures 9 and 10 display

the false color classification maps of 3 randomly chosen datasets (Indian Pines, Pavia University,

and the Salinas), which have been processed through the MI and the proposed SSMI BS schemes.

The presented classification maps are the results for the selected bands of 20 where the peak of the
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accuracy occurs. Figure 9 displays the classification result of the complete scene, while the zoom-in of

the classification maps that highlights the enhanced classification ability of the SSMI is presented in

Figure 10. It is quite clear from both figures that the classification capability of the SSMI is over 10%

(see Figure 5 above) better than the counterpart MI algorithm, which only utilizes spectral information

for band selection.

 

 

Figure 9. The false color classification maps of three datasets: (a,d): Indian Pines, (b,e): Pavia University,

(c,f): Salinas; obtained by SVM classification (10% training) through the MI BS scheme (Upper panel)

and the proposed SSMI method (Lower panel), which exhibits a substantial reduction of false alarms.

 

 

Figure 10. The zoom-ins of the false color classification maps in Figure 9 to highlight the substantial

reduction of classification false alarms in the classes (circled) when the bands are selected through

the SSMI BS method. Left column (a,c): Portion of Indian Pine, Right column (b,d): Pavia University

dataset. The classification results using bands selected by the MI BS (Upper panel) and those proposed

by the SSMI BS scheme (Lower panel).

4. Discussions

According to the results presented in the last section, it is clear that the elimination of the

non-discriminative bands are essentially important for enhancing the classification accuracy. It is also

observed that not only the elimination of counter-productive bands is critical, the method for the
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selection from the ensemble of informative bands is also important, too. As an example, Figure 11a

plots three trials of band selections schemes (for 5 bands) for the classification of the Indian Pine data,

and the corresponding effects of the selections of these bands to the OA are shown in Figure 11b.

The square marker dictates where the bands are taken from: the green, red, and black square markers

which represent the bands that have been selected by the MI (i.e., the spectral BS scheme), the bands

as according to the trial set (#1) and the trial set (#2), respectively. The trial sets #1 and #2 are two

manually modified band sets with an objective to monitor the effects of replacing or omitting particular

bands to the OA when the classification is performed by using these trial sets of bands. As discussed

in Section 3, the bands that are selected by the MI BS scheme (depicted by green markers in Figure 11a)

have the lowest OA (at 72% for the selection of 5 bands), which is due mainly to the selection of band

86, which has the lower I(A,B) than the other 5 main band clusters. The inclusion of band 128 in set (#1)

(red square marker) increases the OA by approximately 7% w.r.t. that using the selected bands by the

MI BS scheme. Furthermore, the inclusion of the band 71 in set (#2) (black square marker) increases the

OA by approximately 12.5% over that of the MI BS result. This is surprised to observe the significant

influence of the OA as much as >10% by the inclusion or missing out of a single band. Thus, these data

further support the result of the previous section that more work is needed to study how the efficiency

of the band selection scheme can be optimized.

 

Figure 11. Demonstrates the significant influence of the classification accuracy of the Indian Pines data

by the inclusion or missing of crucial bands: (a) Illustrate the 5 board clusters of I(A, B) and to indicate

which bands have been selected or deselected according to the 3 selection schemes of (i) by MI BS

algorithm (in green marker), (ii). Manual trial set #1 (in red marker), (iii). Manual trial set #2 (in black

marker). (b) Illustrates the significant influence of the OA (as much as 10%) when one ‘crucial’ band is

selected for classification at the dimensionality of 5 band (see text for details).
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5. Conclusions

One of the main objectives of this paper is to study why the ‘curse of dimensionality’ (or so-called

Hughes’ phenomenon) [1], has not been observed experimentally so far, despite numerous reports

on the subject of band selection (BS) in the hyperspectral imaging (HSI) analysis. In the literature,

the accuracy-dimensionality curves are commonly reported in the form of a ‘knee’ shape, instead of the

theoretically predicted ‘bell’-shaped characteristic. The query of why the theoretical prediction has not

been observed remains to be an open question till now. Possible answers have been prescribed: (i) the

number of training data is abundant enough to train the high degree of freedom of the classification

model, or (ii) the reported BS schemes are not efficient enough to reveal the intrinsic (i.e., theoretical)

accuracy-dimensionality characteristics.

To address the first factor, a series of experiments that utilized a successive reduction of training

data, in the range of 10%, 5%, and 3% for the classification of datasets with small class sizes (e.g.,

Botswana) have been performed. The accuracy-dimensionality curves of these experiments have been

unchanged and they remain in ‘knee’-shape forms. This shows that it is not the training data that have

caused the Hughes’ theoretical prediction to be unobservable in these experiments.

To study the second possibility, a band selection (BS) scheme that utilizes both spatial and spectral

information for enhancing the classification accuracy of hyperspectral imagery (HSI) has been designed.

The BS scheme utilizes a spatial feature extraction as a preprocessing step, followed by a basic mutual

information (MI) spectral feature-based BS method, which is known as the spatial spectral mutual

information (SSMI) scheme. The classification result has revealed that the accuracy-dimensionality

characteristic of the basic MI BS always exhibits a ‘knee’ curve that is independent of the amount of

training data. In contrast, the classification through the enhanced SSMI BS scheme always shows a

sharp ‘bell’-shaped accuracy-dimensionality curve with a peak at the dimensionality of about 20 bands.

Then, the experiment is repeated for 6 HSI datasets (Indian Pines, Botswana, Barrax, Pavia University,

Salinas, and KSC) to compare them with 7 other state-of-the-art BS schemes (Saliency, HyperBS, SLN,

OCF, FDPC, ISSC, and CNN). In all cases, the experiments were conducted under 10% training data and

the SVM (and KNN) classifiers have been employed for classification. The accuracy-dimensionality

characteristic of all 7 BS schemes exhibit the same ‘knee’ shape, and only the proposed SSMI method

reveals a ‘bell’-shaped accuracy-dimensionality curve that features a peaked accuracy at about 20 bands.

At the peak, the enhancement of the accuracy is approximately 10% better than all 7 BS algorithms over

6 datasets that have been employed in this study. Based on this result, one likely answer of why the

Hughes′ phenomenon is only observable from the proposed SSMI may well be due to the enhancement

of the classification accuracy through the better efficiency of the SSMI BS scheme.

A further experiment has indicated that the classification accuracy can be affected as significant at

approximately 10%, when a single band is included or missed out for classification. The present result

has pointed out one key issue for the future research in BS: how can the efficiency of band selection be

optimized, and what assessment metric should be used for the indication of the efficiency of band

selection? It is obvious from the present study that the incremental improvement of classification

accuracy that has been conventionally adopted for the indication of the goodness of band selection

algorithm is not sufficient enough to reveal the intrinsic integrity of the proposed band selection scheme.
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