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Abstract: In this paper, a three-dimensional thermal response model is developed to investigate the 

thermal behavior of carbon epoxy composite impacted directly by propane flame. The model is 

established in consideration of heat transfer and energy conservation in which the heat transfer is 

in the form of anisotropic heat conduction, absorption by matrix decomposition and diffusion of 

gas. Arrhenius equation is utilized to present the decomposition process of the materials. The 

diffusion equation for the decomposition gas is included for mass conservation. The thermal 

response model is implemented with the UMATHT and USDFLD subroutines via ABAQUS code, 

from which the temperature, density, decomposition degree and decomposition rate can be 

extracted to analysis the process of material decomposition by finite element simulation. The model 

shows its capability to analysis the evolution of a carbon epoxy composite in fire by the comparison 

between the numerical and experimental results. Furthermore, the numerical results show that 

thermal conductivities in different directions of fiber have a significant influence on the heat transfer. 

In addition, the relationship between the decomposition degree and temperature is correlated with 

depths, as well as the peak value of decomposition rate and the time to reach that. 

Keywords: thermal response; carbon fiber reinforced epoxy laminates; decomposition; finite 

element analysis 

1. Introduction 

In recent years, carbon fiber reinforced polymer (CFRP) composites have been widely used to 

construct components of airplane, such as fuselage, wing and so on [1,2] due to its excellent properties, 

such as lightweight, high specific strength, good corrosion and fatigue resistance [3-5]. However, fire 

is one of the major security threats in its application. In July 2013, a Boeing 787 airliner caught fire at 

Heathrow airport in London because of the failure of ELT device close the tail of the fuselage, which 

led to the skin and frame of carbon fiber epoxy composite fuselage suffering serious thermal damage 

with significant resin loss and soot deposits [6].  

In most cases, although the thermal conductivity of polymer matrix composites is lower than 

that of traditional metals, a series of physical and chemical changes occur in the environment of high 

temperature or exposure to flame directly, such as thermal softening, resin pyrolysis or even 

oxidization of fiber reinforced materials, resulting in the deformation and failure of composite 

structures. At the same time, toxic gases, smoke and fumes can be released during the process of the 

decomposition reaction of composite materials in fire, which will seriously threaten the safety of 

passengers [7]. As a result, some requirements of airworthiness concerning to the composites used in 

commercial airplane were established by FAA to ensure their safety in use. For instance, specific 

condition 25-348-SC [8] requires composite wing and fuel tank to endure an external fuel-fed pool 

fire for at least 5 minutes. Moreover, AC 20-107B [9] indicates that the flame retardant and fire-

resistant requirements of composite structures should be taken into account in the design of 

composite structures, as well as the exposure of composite materials to temperatures exceeding the 

maximum operating temperature. Therefore, it is essential to evaluate the thermal behavior of 

composites in fire and improve the fire resistance, especially for carbon epoxy laminates in aerospace 
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industry. As a result, the numerical model for thermal response is always needed for engineering 

practice. 

Many researchers have worked on predicting the thermal response of polymer composites 

decomposing at high temperatures using different mathematical models. Henderson et al. [10] 

proposed a one-dimensional thermal response model for composites with measured temperature-

related thermo-physical parameters and reaction kinetic parameters in consideration of matrix 

pyrolysis and gas diffusion in the thickness direction, in which the predicted temperature 

distribution of the glass fiber/phenolic resin composite under one-sided heating agreed well with the 

experimental results. Furthermore, by taking into account the thermochemical expansion [13] in the 

thickness direction of the material and the flow and accumulation of decomposition gases, the 

transient thermal model was improved by Henderson and Wiecek [11,12]. Based on that model, Mike 

and Vizzini [14] established a three-dimensional thermal model of composites in consideration of  

the accumulation of material energy and anisotropic heat transfer for carbon fiber/epoxy resin 

composite exposed to heat flux 17.6 kW/m2. Florio et al. [15] established a thermal model of ablative 

glass-filled composites with regard to matrix decomposition, expansion, and the heat exchange 

caused by the thermal imbalance between the decomposition gas and the solid material. Mouritz et 

al. [16] reviewed the research progress of structural response modeling of polymer composites under 

fire, and summarized the analytical models of thermal, chemical, physical and failure processes 

affecting the structural response of composites in fire. Steven [17] presented a framework for the 

response modeling of composites applied in combined mechanical loading and fire conditions, 

focusing on the response of composites prior to the decomposition temperature. 

With the rapid development of modern design and analysis tools, commercial finite element 

software is used more and more widely to simulate the thermal response of composite materials in 

fire. Shi et al. [18,19] predicted the thermomechanical behavior of a silica/phenolic composite, and 

investigated spatially dependent temperature and pore pressure, displacement ,and stress contours 

using COMSOL-Multiphysics commercial finite element software for the coupled temperature-

diffusion-deformation problem, and proposed a model including the surface ablation module and 

volumetric ablation module to predict the ablation behavior of SiFRP composites. Zhang [20] 

exploited a three-dimensional model using ABAQUS commercial software, which included the 

influence of orthotropic viscoelasticity and pyrolysis to predict the thermomechanical behavior and 

compression failure of polymer-based composites subjected to compression and thermal loading. 

Rizk et al. [21] developed a three-dimensional thermal model for sandwich panels with 

glass/polyester skins and balsa core, defining the thermal behavior of materials using the UMATHT 

subroutine, in order to predict the evolution of the temperature gradient across a sandwich composite 

structure exposed to fire. LUO et al. [22-25] established a thermomechanical damage model and 

developed a finite element method using UMATHT and UMAT in ABAQUS, in order to solve the 

thermal and mechanical equations for glass–phenolic composite materials subject to high 

temperature and thermal radiative environments in consideration of the carbonization of sandwich 

composites, the decomposition of resins, the reduction of elastic modulus, and the delamination of 

panels and cores. Juhyeong Lee et al. [26] performed nonlinear finite element simulations to 

characterize lightning-induced thermal damage in AS4/3506 carbon/epoxy composites with metallic 

and nonmetallic protection layers, in which matrix thermal decomposition in composites subjected 

to 40 kA peak currents were estimated using ABAQUS. Pauline T et al. [27-29] developed a three 

dimensional thermochemical model using SAMCEF software to predict the temperature profile, the 

mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 

composite) exposed to fire. However, the process of charring and the characterization and regularity 

of the decomposition of carbon epoxy laminates exposed to fire is yet to be discussed and 

summarized. 

In the present study, a transient thermal response finite element model of a carbon epoxy 

composite exposed to fire in consideration of anisotropic heat transfer, polymer decomposition and 

pyrolysis gas convection is established based on user subroutine of the finite element code ABAQUS 



 

in order to demonstrate the process of decomposition comprehensively. Firstly, heat transfer 

equation, decomposition rate equation, and continuity equation are applied to describe the thermal 

response of carbon epoxy composite exposed to fire, and are implemented in a finite element code 

using the user subroutine to define a material's thermal behavior (UMATHT). Secondly, The FE 

model of carbon fiber/epoxy composite laminates exposed to heat flux on one-side was established 

using the thermophysical parameters of material and boundary condition given in reference [28]. The 

temperature profiles are computed in order to prove the validity of the model by comparing the 

predicted results and the experimental data [29]. Lastly, the decomposition degree and the rate of 

decomposition of carbon epoxy composite are calculated by implementation of the updating of 

density using the user subroutine to redefine field variables (USDFLD) at any time, which can play 

an important role in gaining thorough insight into the thermal behavior, and summarizing the 

characterization and regularity of the decomposition of carbon epoxy laminates exposed to fire. 

2. Theoretical Model 

2.1. Three-Dimensional Heat Transfer 

The heat transfer equation for composites when the gas flows in one direction is as follows Eq. 

(1), according to the following assumptions [10]: 

1. There is no accumulation of decomposition gases in the solid material; 

2. No thermo-chemical expansion of volume; 

3. Thermal equilibrium between the decomposition gas and the solid material. 
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pgh C T=   are solid enthalpy, enthalpy of gases, respectively; Q  is 

decomposition heat. The first term indicates the rate of internal energy change per unit volume. The 

second term shows the conduction flux. The thermal conductivity in the three mutually 

perpendicular directions, ( 1,2,3)ik i = , contained in this term is a function of both temperature and 

the stage of decomposition of the material. The convection of energy resulting from the gaseous 

products flowing back through the char structure is given by the third term. The rate of heat 

generation or consumption resulting from the decomposition is represented by the last term. 

Definitely, the rate of introduction of this energy is affected by the rate of decomposition. If the 

decomposition process is endothermic, the heat of decomposition is negative; otherwise the heat of 

decomposition is positive. According to the description in [26], the decomposition reaction of the 

epoxy resin herein is endothermic. 

2.2. Modeling Decomposition 

The Arrhenius equation can draw the influence of temperature on the rate of decomposition 

reaction [30]. In this paper, only consider pyrolysis of resin, which is given by: 
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where v d  ,  ,   are the instantaneous density, the virgin density, and the decomposed density, 

respectively; R 8.314( / )J gmol K=   is universal gas constant. A is rate constant, E is activation energy, 

and n is the order of pyrolysis reaction. These parameters are essential to describe the pyrolysis 



 

process. The Arrhenius parameters A, n, and E can be obtained by using thermos-gravimetric analysis 

(TGA) tests. 

If ignore the accumulation of gases, and consider only flows in the thickness direction, the 

conservation of mass represents: 

gm

z t

 
= −

 
 (3) 

2.3. Thermal Properties at Different Material States 

Temperature and the decomposition state of the material influence thermal conductivity and 

specific heat capacity. The materials have different thermal properties in the three states of the 

material (original, decomposing and decomposed). The thermal properties in the original state and 

in the decomposed state can be determined by thermal tests, such as DSC and LFA. The mixing rule 

[30] can calculate the thermal properties in the decomposing state, given as follows: 

( ) ( )/d v dF    = − − ; (4) 

 (1 ) ( 1,2,3) i vi dik Fk F k i= + − = ; (5) 

(1 )v dC FC F C= + − , (6) 

where ( 1,2,3)iv dik ik =,   are thermal conductivities of virgin and decomposed material in three 

coordinate directions. v dC C,  are specific heat capacities at virgin and decomposed states. F is 

residual weight fraction of material to original material, while decomposition degree equals one 

minus F. 

2.4. Thermal Boundary Conditions 

For the purpose of numerically reproducing the experimental setup, a thermal flux has been 

applied as boundary condition to the heated surface, as shown in Eq. (7): 

( ) ( )d,0 conv

4

ra SSS Sq q T h T T  
= − + −  (7) 

The boundary condition corresponded to the unexposed surface of the material is shown in the 

Eq. (8): 

( ) ( )4
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4
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Eq. (7) and Eq. (8) have considered the radiation and convective heat fluxes towards the 

environment. In the boundary equations above, 
rad

q


 represents the radiant heat flux. S  is 

emissivity, which was set to be 0.99 and 0.95 for the exposed surface and the rear surface according 

to the literature[31], respectively.   is Stefan-Boltzmann Constant. ST  is the temperature of the 

exposed surface. T  is assumed constant as the temperature of ambience and equal to 295K 

according to the literature[27]. rear
T  is the temperature of the unexposed surface. conv

h  is the 

convection heat flux coefficient of the exposed surface, and estimated to be 80 W/(m2K) according to 

the literature [31]. rear
h  is the convection heat flux coefficient of the unexposed surface, and assumed 

to be 25 W/(m2K) according to the literature [32]. 

3. Finite Element Implementation 

3.1. Experiemental description and Finite Element Model 



 

According to the experiment information and thermal parameters presented in the literature 

[27,29], the finite element model and computation procedure were developed via ABAQUS code. A 

carbon/epoxy laminate, whose size is 150 mm × 150 mm × 4 mm, has been manufactured using 

unidirectional (UD) prepregs, which is often used in aircraft for primary and secondary structures,  

with a stacking of [0]S (UD). The fibres and resin used in these prepregs are T700GC carbon fibres 

and M21 epoxy resin from Toray industry and Hexcel industry respectively. The properties of 

T700/M21 are shown in Table 1.  

According to the description in the standard of ISO2685:1998(E), the coupon of T700/M21 is 

impacted by the calibrated propane flame providing the one-sided heat flux of 116 kW/m2 for 5 min. 

Although this is different from the cone calorimeter test[33,34], the stability of fire was demonstrated 

by Pauline [27]. During the test, the specimen is placed in a vertical orientation and at a distance of 

75 mm from the burner nose. Experimental setup is shown in Figure 1. The. It should be noted that 

the area of the impacted region in the experiment on the exposed surface is 100 mm × 100 mm, while 

the rest of the exposed surface is covered by a heat shield, which is a heat insulated region, as shown 

in Fig 2a. This insulated shield has good mechanical characteristics and is thermally stable. For the 

measurement of the temperature, three K-type thermocouples with a diameter of 0.25 mm are 

embedded at the center of the plane at z = 1, 2, and 3 mm from the exposed surface, and another K-

type thermocouple is attached to the center of the back face, as shown in Figure 2b.  

The FE model was established using DC3D8 units, and the total number of elements is 14,400. 

The direction of the fiber is defined to x direction, and the thickness direction of the coupon is defined 

to z direction. A nonuniform heat flux was imposed on the impacted region of the surface as shown 

in Figure 3, which was determined according to the heat flux mapping in the test [27]. And it was 

achieved by subroutine, using a double-ellipse function to represent the variation of heat flux from 

the centre to the edge gradually and the asymmetry caused by buoyancy. 

 

FIG.1.  Experimental setup [29] 



 

      

(a)                                       (b) 

FIG.2.  (a) Division of regions on the heated surface; (b) Distribution of thermocouples in thickness 

direction  

 

FIG.3.  The asymmetrical distribution of heat flux on the impacted region 

3.2. User Subroutine Development 

The following items must be defined and updated in the subroutine UMATHT: the heat flux 

vector f  and its variation with respect to temperature and spatial gradients of temperature; internal 

energy per unit mass U  and its variation with temperature and spatial gradients of temperature; 

the solution-dependent state variables at the end of the increment must be updated to their values. 

The components of the heat flux and spatial gradients in user subroutine UMATHT are in directions 

that depend on the use of local orientations. The decomposition equation is implemented into heat 

transfer UMATHT using finite forward difference to update the remaining density of material. 



 

Table 1. Material properties for T700/M21 composites [28] 

Parameter Value 

Virgin Density/ kg·m-3 1575 

Char Density/ kg·m-3 1165 

Virgin Thermal Conductivity in thickness/ W·m-1·K-1 0.61391+1.1113×10-3T 

Virgin Thermal Conductivity in plane/ W·m-1·K-1 7.4675×10-3T+2.7811 

Char Thermal Conductivity in thickness/ W·m-1·K-1 0.12317+3.7323×10-4T+1.1841×10-9T3-

6.6846×10-7T2 

Char Thermal Conductivity in plane/ W·m-1·K-1 1.4421+4.0682×10-3T-2.2242×10-6T2 

Virgin Specific Heat/ J·kg-1·K-1 687.31+2.8773T 

Char Specific Heat/ J·kg-1·K-1 662.53+2.599T+5.132×10-7T3-2.0761×10-3T2 

Specific Heat of Gases/ J·kg-1·K-1 1256.6+1.0610T+3.5977×10-7 T3-9.2485×10-4 

T2 

Activation Energy E/ J·mol-1 181.73×103 

Order of Reaction n 1.344 

Pre-exponential Factor A/ 1·s-1 3.15×1011 

Heat of Decomposition/ J·kg-1 107.32×103 

 

Eq. (1) is recast by expanding the first term using differentiation rules and combining the heat 

convection term using Eq. (3), yielding the final form of heat transfer equation for finite element 

implementation: 
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The basic energy balance is: 

d d d
V S V

U V q S r V = +   , (10) 

where V is the volume of the solid material with surface area S ,   is the density of the material, 

U  is the material time rate of the internal energy, q  is the heat flux per unit area of the body 

flowing into the body, and r  is the heat supplied externally into the body per unit volume.  

A heat flux vector f  is defined such that: 

•q = −f n  (11) 

where n  is the unit outward normal to the surface S . Introducing the above relation into the 

energy balance equation and using the divergence theorem, as the following relation is obtained: 

d d df
xV V V

U V V r V 
= − +

    (12) 

The internal energy U , the heat flux vector f , and their variation with respect to temperature 

and to spatial gradients of temperature are the interface variables provided by UMATHT for 

numerical implementation [35]. UMATHT must define these variables and update their values at the 

end of the increment. 

Combining Eq. (9) with Eq. (12), yielding the time rate of the internal thermal energy and the 

heat flux vector: 
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Introducing the finite difference approximation, the incremental form of Eq. (13) is given by: 
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Eq. (15) is used to update the internal energy at the end of time increment ( )U t t+   using the 

energy at the beginning of the time increment ( )U t . 

( ) ( )U t t U t U+ = +  (16) 

When the internal energy is a function of time, temperature, remaining density and its partial 

derivative with respect to special coordinates, the derivative of the total internal energy as a function 

of time is given by: 
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Compare terms in Eq. (17) and Eq. (13), yielding: 
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Based on Eq. (14), the partial derivative of heat flux vector with respect to temperature and 

temperature spacial gradient can be expressed by: 
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(21) 

The Figure 4 shows the flow chart of the calculation. When the resin matrix in the composite 

material does not decompose, the decomposition degree is 0; when the resin matrix is completely 

carbonized, the decomposition degree is 1. In the subroutine, the decomposition degree and 

decomposition rate of the material were obtained by kinetic equation, and stored in the state variable 

array STATEV(), the state variable STATEV(1) was updated and passed to the subroutine USDFLD 

to obtain the decomposition rate. The internal thermal energy of the material and the conducted heat 

flux were calculated by the UMATHT module. And the changed heat was transferred to the ABAQUS 

thermal analysis module to obtain an updated temperature field and decomposition rate field, which 

was continuously cycled and iterated by superimposing the time increment, until the end of the 

analysis step to get the final temperature field, decomposition rate field, and so on. 
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FIG.4.  Flow chart of the thermal response calculation 



 

4. Results and discussion 

4.1. Field of Temperature 

Figure 5 shows that a comparison between the computed and measured temperature profiles 

of T700/M21 composites at the center of plane at z = 1, 2, 3 and 4 mm. It suggests that at the beginning 

of test there is an obvious temperature rise at all four depths. This is because when the coupon whose 

thickness is only 4 mm is exposed to the heat flux of 116 kW/m2, heat can be rapidly transmitted to 

the back. Latterly, the rates of temperature rise at z = 1 and 2 mm begin to decrease, the temperature 

rises slowly, while the temperatures at z = 3 and 4 mm are almost steady, which has been in a state of 

heat equilibrium. The calculated values of temperature at z = 1, and 2 mm are in good agreement with 

the experimental data due to the high accuracy of the inputs of virgin material and the appropriate 

initial boundary, as indicated by Pauline Tranchard [29]. But that at 3 mm and 4 mm are 

overestimated compared with the experimental ones after 50s, which is similar to the predictions by 

Pauline Tranchard. The reason may be that the heat exchanging between the laminates and gas 

released from the decomposition and the interaction between the materials surface and out-gassing 

were not taken into account. Additionally, it was indicated that there was a lack of accuracy of the 

temperature measurement [29]. 
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FIG.5.  Comparison of the computed and measured results of the temperature profile of T700/M21  

Figure 6a and 6b show the temperature contours of FE model at 100 s and 300 s, respectively. At 

100 s, the temperature of most impacted region on the exposed surface reaches the pyrolysis 

temperature of T700/M21, which is higher than that of insulated region obviously. Since heat can be 

transmitted from the impacted region to the insulated region in the plane direction of the coupon, the 

region where temperature exceeds the pyrolysis temperature enlarges from the center towards the 

periphery gradually. It should be indicated that the coupon is stacked with unidirectional prepreg 

by unidirectional layup, so the thermal conductivity in the x direction is higher than that in the y 

direction, leading to the discrepancy of temperature along the x and y directions, namely an 

asymmetric distribution of temperature. Therefore, in the insulated region, the area where the 

temperature changes obviously in the x direction is larger than that in the y direction. On the other 

hand, the heat is gradually transmitted from the exposed surface to the back in the thickness direction, 

and the temperature exhibits a gradient distribution. The maximum temperature increases with 

heating time, up to 651 °C at 300 s. 



 

 

(a) 100 s 

 

(b) 300 s 

FIG.6.  Temperature contours of 1/4 FE model at different moments 

Figure 7a and 7b show that the temperature distribution at different times on the symmetric line 

of x and y direction of the exposed surface respectively, wherein the range of -50mm~+50 mm belongs 

to the impacted region, and that of ±50~±75 mm belongs to the insulated region. At 20 s, an obvious 

temperature rise of the impacted region on the exposed surface has occurred relative to the insulated 

region, and the temperature at the center is the highest. However, in the insulated region there is an 

obvious temperature gradient close to the boundary between two regions. Generally, the temperature 

in both regions are constantly rising with heating time, but that in the impacted region rises much 

more than the insulated one. The reason is that the temperature in the impacted region mainly 

depends on by the heat flux of external propane flame, but that for the insulated region is dominated 

by heat conduction from the impacted region to the insulated one. Furthermore, the lower the 

temperature is, the smaller the thermal conductivity is. Consequently, the conducted heat is relatively 

less in the insulated region, namely the temperature change in the insulated region is smaller. In 

addition, the temperature rise along the x direction in the insulated region is higher than that along 

the y direction, and the temperature gradient on the symmetric line in the x direction is smaller than 



 

that in the y direction. This is due to the difference of thermal conductivity in x and y direction. The 

temperature curve at 300 s in the y direction on the exposed surface is almost unchanged 

corresponding to that at 200 s, but in the x direction the temperature change close to the edge of 

coupon is still remarkable due to the higher thermal conductivity. 
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(a)                                       (b) 

FIG.7.  Temperature distribution along the symmetric line on the exposed surface 

Figure 8 shows the rate of temperature rise at the center of the plane at z = 1, 2, 3 and 4 mm. They 

rise up rapidly first and then decreases, and finally approach zero, which corresponds to the slope of 

temperature profile in Figure 5. It suggests that the peaks of the rate of temperature rise at different 

depths are different. The deeper away from the exposed surface, the smaller the peak of the rate of 

temperature rise. Namely, the rates of temperature rise at z = 1, 2, 3 and 4 mm reached their peak 

values of 16.61 °C/s, 9.25 °C/s, 7.68 °C/s and 7.33 °C/s at 2 s, 6 s, 13 s, and 14 s, respectively. After that, 

the rates of temperature rise at different depths gradually decrease with heating time. For this, the 

first reason is that the temperature rise leads to the enhancement of heat dissipation capacity of the 

coupon. The second is when the temperature reaches the pyrolysis temperature, the pyrolysis 

reaction occurs, which absorbs the heat to some extent. The last one is that the diffusion of pyrolysis 

gas takes the heat to the surface partly. 
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FIG.8.  Rate of temperature rise of the center at different depths over time  

4.2. Density and decomposition degree 

Figure 9 shows the density of solid material with increasing heating time at the center of the 

plane at z = 1, 2, 3 and 4 mm. Firstly, according to Figure 5, the temperature at z = 1 and 2 mm reaches 

the critical pyrolysis temperature at 54 s and 63 s, respectively, and then the pyrolysis reaction occurs. 

And then, the discrepancy among the material densities at four depths increases with time, because 



 

pyrolysis reaction at different depths occurs in succession with time. The farther away from the 

exposed surface, the lower the degree of decomposition, so the higher the material density at any 

time. Finally, the material at z = 1, and 2 mm become a state of fully charring, that is, the densities 

reach to that of the carbonized material at 139 s, 196 s, respectively. In contrast, although pyrolysis 

reaction at z = 4 mm also occurred, the material does not become a state of complete charring up to 

300 s, and the densities are just between the virgin and the char densities. 
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FIG.9.  Density of the center at different depths over time  

Figure 10a and 10b show contours of decomposition degree of FE model at 100 s and 300 s 

respectively, which is defined in section 2.3, namely “1-F”. The decomposition degree of 0 represents 

that the material density is the virgin density, and the decomposition degree of 1 represents that the 

material density is the char density. At 100 s, the materials in the range from -20 to 20 mm has become 

the state of complete charring, and the density in this zone reduces to the char density, namely the 

decomposition degree is 1. The fully carbonized area in the impacted region continues to enlarge with 

time towards the boundary between two regions, but the decomposition degree in the insulated 

region does not rise almost. Therefore, the area in which the pyrolysis reaction is in process shrinks 

with time. In addition, in the thickness direction the decomposition degree decreases with depth. 

This means that the decomposition front shifts from the exposed surface to the back. At 300 s, most 

materials in the impacted region has become the fully charring state, and the border of the fully 

decomposed region is very close to the boundary between the impacted and insulated regions. The 

results shown in reference [29] also indicates that the density of the material in the impacted region 

reduces to the char density at the end of test. Therefore, it is considered that calculated results in this 

paper has a good consistency with the experimental results. 

 
(a) 100 s                                       (b) 300 s 

FIG.10.  Contours of decomposition degree at different times 



 

Figure 11a and 11b show the decomposition degree of T700/M21 along the symmetric line in x 

and y direction on the exposed surface at different moments respectively. Pyrolysis reaction has 

occurred in the impacted region at 50 s. The maximum decomposition degree, which is located at the 

center of the exposed surface, is 3 % at this time, while there is almost no decomposition in the 

insulated region. Then, the decomposition degree in the impacted region increases with time, namely 

the material density decreases to the char density. Specially, it is shown that there is a significant 

change of decomposition degree in the vicinity of 50 mm. This is because the heat shield works well 

in preventing the material in insulated region from being impacted by the heat flux of external 

propane flame directly, and the critical pyrolysis temperature cannot be achieved just by the heat 

conduction of materials. Therefore, there is discrepancy of density of materials, namely difference of 

decomposition degree. This also can be implied from the results in Figure 7. 

Figure 12 shows the decomposition degree of T700/M21 with temperature at the center of plane 

at z = 1, 2, 3 and 4 mm, which is similar to the typical TG curves of polymer composites. The materials 

at z = 1 and 2 mm has decomposed completely at 522 °C and 501 °C respectively, but complete 

decomposition is not achieved at z = 3 and 4 mm up to the end of test, where decomposition degrees 

are 98.2 % and 75.2 % at 300 s, respectively. It is important to be noted that when the temperature at 

different depths reaches the same temperature, decomposition degrees of the materials are different. 

At any temperature, the closer to the exposed surface, the lower the decomposition degree. And when 

the same decomposition degree at different depths is achieved, the material temperature values are 

different. Namely, the farther away from the exposed surface, the lower the temperature. This is 

because when the same temperature or decomposition degree of material is achieved, the rates of 

temperature rise at different depths are different, while the pyrolysis reaction of epoxy resin is 

affected by the rate of temperature rise. Smaller the rate of temperature rise, more adequate the 

pyrolysis reaction of epoxy resin is. From another point of view, the higher the rate of temperature 

rise, the higher the temperature required for material pyrolysis [36]. 
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FIG.11.  Decomposition degree along symmetric line on the exposed surface at different heating 

moments 
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FIG.12.  Decomposition degree with temperature at different depths  

4.3. Decomposition Rate 

Figure 13 shows the decomposition rates of T700/M21 composites with time at the center of the 

plane at z = 1, 2, 3 and 4 mm. The decomposition rate can represent the intensity of pyrolysis reaction 

as well as the rate of mass change of the material. The respective peaks of decomposition rate of the 

materials at z = 1, 2, 3 and 4 mm, which are achieved at 92 s, 108 s, 122 s, 129 s respectively, are 

2.69 %/s, 1.76 %/s, 1.07 %/s, and 0.59 %/s. It suggests that the peak values of decomposition rate 

gradually decrease with depth, and the time to reach the peak of decomposition rate gradually is 

delayed with depth, too. This is due to the different rates of temperature rise at different depths.  

Figure 14 shows the decomposition rate of T700/M21 composites with temperature at the center 

of the plane at z = 1, 2, 3 and 4 mm, which is similar to the typical DTG curves of polymer composites. 

The respective peaks of decomposition rate of the materials at z = 1, 2, 3 and 4 mm are achieved at 

477 °C, 461 °C, 443 °C, 425 °C. It suggests that the temperatures at which the material at different 

depths reach the peak of the decomposition rate are different, and the further away from the exposed 

surface, the lower the temperature at which the peak of the decomposition rate is reached. The reason 

is when the peaks of decomposition rate of material at different depths are achieved, the rates of 

temperature rise are different. The closer to the exposed surface, the higher the rate of temperature 

rise, which leads to the maximum decomposition rate of the composite to move toward the higher 

temperature. On the other hand, it is noted that the temperature range of pyrolysis reaction is 

widened with the rate of temperature rise, which is also indicated in reference [37]. 

0 50 100 150 200 250 300

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
ec

o
m

p
o

si
ti

o
n

 r
at

e 
(s

-1
)

Time (s)

 1 mm

 2 mm

 3 mm

 4 mm

FIG.13. Decomposition rate over time  

at different depths 

0 100 200 300 400 500 600

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
ec

o
m

p
o

si
ti

o
n

 r
at

e 
(s

-1
)

Temperature (℃)

 1mm

 2mm

 3mm

 4mm

 

FIG.14. Decomposition rate with 

temperature at different depths 

 



 

5. Conclusions 

In consideration of anisotropic heat transfer, polymer decomposition and gas diffusion, a 

transient three-dimensional FE model for carbon fiber/epoxy composites impacted directly by flame 

was established via ABAQUS code to simulate and discuss the thermal response, such as the field of 

temperature, density, decomposition degree and rate of decomposition, which has been proved to be 

valid by the comparison between the experimental and numerical results. In that, the process of 

polymer decomposition and pyrolysis gas diffusion were implemented in the UMATHT and 

USDFLD subroutines. This method of simulation is valuable for the application for aircraft industry, 

providing an effective numerical method for fireproof and thermal protection design of composite 

structure. Importantly, in this work the comprehension for thermal behavior of carbon epoxy 

laminates in fire was strengthened, and the following characteristics and regularities of the heat 

transfer and pyrolysis can be drawn. 

1. Due to the effect of direction of layup and thermal conductivity on the heat transfer, in the 

insulated region, the areas affected along x and y directions are different, and temperature rise 

on the symmetric line in the x direction is higher than that in the y direction. Moreover, the 

temperature gradient on the symmetric line in the x direction is smaller than that in the y 

direction. In the thickness direction, the deeper away from the exposed surface, the smaller the 

peak of the rate of temperature rise.  

2. With increasing heating time, the completely charring area in the impacted region expands 

towards the boundary between two regions, but the decomposition degree in the insulated 

region almost does not rise. When the same decomposition degree is achieved at different depths, 

the farther from the exposed surface, the lower the temperature. From another view, at any 

temperature, the closer to the exposed surface, the lower the decomposition degree. 

3. With increasing depth, since there are different rates of temperature rise, the peak values of 

decomposition rate at different depths gradually decrease, as well as the time to reach the peak 

of decomposition rate gradually is delayed. In addition, the further away from the exposed 

surface, the lower the temperature at which the peak of the decomposition rate is reached. 
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