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ABSTRACT 113 L i a n ‘ V n i

The effect on the mycoflora, succession and deterioration of straw quality over a 

range of environmental conditions, including 0.75 to 0.98 water activity (aw), 10- 

30°C and pH 4.4-6.4 were investigated. Isolation and colonisation of natural 

mycoflora and individual fungal species were significantly influenced by 

temperature x aw x pH interactions (P <0.05). Generally, the least growth 

occurring at 0.75 aw and 10°C, and the maximum at 0.98 aw and 30°C. Small scale 

respiratory apparatus was modified to measure respiration of the natural mycoflora 

and five individual species (Alternaria alternata, Cladosporium cladosporioides, 

Eurotium amstelodami, Fusariwn culmorum and Pénicillium aurantiogriseum) on 

wheat straw for the first time. Respiratory activity significantly increased with 

increasing temperature and aw {P <0.05). At the highest temperature (30°C) there 

was almost a linear increase, whereas at the lowest temperature (10°C), a lag time 

occurred prior to increased respiratory activity. Maximum dry matter losses 

(DML) were found to be 3.40 % at 30°C and 0.98 aw. Dry matter losses were found 

to change with storage period, and temperature x aw interactions. Significant loss 

of the carbohydrate components {P <0.05), assuming no loss of true lignin, was 

observed at 20°C when the apparent lignin content rose with increasing aw and, 

once 0.90 aw had been reached, remained at 140 % of the starting value. Of three 

biocides (Adesol 20, Busan 881 and Lastil 40), Lastil 40 was found to be most 

effective in vitro and on straw of significantly reducing fungal populations. Field 

trials with biocides and Nutri-Shield® at different storage moisture contents 

demonstrated that wads of straw on the surface of the top bales of the stack at 15 

and 23 % moisture content provided the most effective storage treatment and 

significantly conserved the straw quality {P <0.05). All of the treatments, except 

wads of straw in nets, had increased apparent lignin contents, which showed that 

degradation had occurred.
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CHAPTER 1 

I N T R O D U C T IO N

A

LITERATURE REVIEW

1



1.1 WHEAT STRAW COMPOSITION

Wheat straw consists of leaf sheaths, stems, nodes and senesced leaves after the 

crop has been harvested. The major components of straw are cellulose and 

hemicellulose which contribute 75-80% of the dry weight (Harper and Lynch, 

1985), the remaining constituents are lignin (14%) and water soluble components 

that make up 10% of the straw weight and include 5% of the total carbon (Harper 

and Lynch, 1981).

Straw from different crops has a similar composition to that of wheat straw, unless 

it is not fully mature, when the proportions of water soluble materials are greater. 

In straw, about 50% wet weight of the cellulosic fraction does not appear to be 

bound to the lignin and its degradation proceeds fairly rapidly following the 

priming action of the water-soluble components. The remaining cellulosic fraction 

appears to be bound to the lignin and is less available, although this fraction is 

generally degraded before the lignin.

Cellulose is a linear polymer made of glucose subunits linked by (3-1,4 glucosidic 

bonds. Each glucose residue is related by 180° relative to its neighbour and the 

basic repeating unit is called cellobiose. The chain lengths vary between 100 and 

14,000 residues. These cellulose chains form numerous intra- and inter-molecular 

hydrogen bonds, which account for the formation of rigid, insoluble microfibrils.

Microfïbrils are orientated in parallel and form highly ordered crystalline domains 

interspersed by more disordered amorphous regions (Beguin and Aubert, 1994). 

The role of cellulose is exclusively structural and the high tensile strength enables 

plant cells to withstand osmotic pressure and mechanical stress.



Hemicelluloses, like cellulose, are polymers of anhydro-sugar units linked by 

glycosidic bonds. Unlike cellulose, it is composed of more than one kind of sugar 

unit, with xylan and glucomannans as the main sugars. Hemicellulose molecules 

are much shorter and branched and as a result are usually non-crystalline. Lignin is 

a highly branched, random polymer generated by the free-radical condensation of 

aromatic alcohols (Gold et al., 1989). Lignin is less easily degraded than 

hemicellulose or cellulose by micro-organisms.

1.2 MYCOFLORA OF STRAW PRE AND POST-HARVEST

The mycoflora of wheat straw changes continuously. Microbial colonisation 

initially starts as soon as the cereal plant emerges and continues during growth, 

senescence, harvesting and storage. In temperate climates fungi colonising straw 

before harvest are referred to as field fungi and those growing after harvest as 

storage fungi (Christensen and Kaufmann, 1969). Some fungi have also been 

classified as intermediates between field and storage groups, for example 

Fusarium species (Pelhate, 1968) which can initiate spoilage at intermediate 

moisture contents.

The most common field fungi include species of Cladosporium, Alternaria, 

Epicoccum, Verticillium, pink and white yeasts and Aureobasidium (Lacey, 

1980a). Harvested straw is often colonised by low levels of storage fungi 

depending on the weather conditions at harvest (Magan, 1988a). Under conducive 

environmental conditions the storage fungi can initiate spoilage.
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About one hundred species have been isolated from wheat straw in previous 

research. Fungal populations slightly vary depending on whether the crop is a 

freshly harvested standing crop, chopped or baled. Research by Magan (1988a) 

found that the standing crop had a fungal population of 2.77xl07 colony forming 

units (CFUg'1), with the bacterial population larger by a factor of 10, whereas 

baled straw had a population of 1.69xl06 CFUg'1. Mouldy straw may contain up to 

109 actinomycetes and 108 fungal CFUg"1. When disturbed these substances can 

give rise to 109to 1010 spores m"3 air (Lacey, 1968). Research by Kotimaa (1990) 

found that 3.7 x 106 CFUm'3 air were released from straw samples in Finland.

In wet straw, field fungi often dominate causing predominant spoilage. The 

dominant storage fungi include Aspergillus, Pénicillium and Eurotium species. 

These micro-organisms are able to initially utilise the water-soluble components 

of straw enabling the production of cellulases which can initiate cellulose 

breakdown and considerably alter the fibre structure. Thus this change in 

lignocellulosic structure will affect fibre quality and limit its industrial uses.

After storage, straw samples could be classified microbiologically as good (up to 5 

x 106 actinomycetes and with fungal populations of 106 CFUg'1 dry weight), 

mouldy (up to 2 x 107 actinomycetes and with fungal populations of 2 x 107 CFU 

g '1 dry weight) and very mouldy (up to 8 x 108 actinomycetes and 9 x 107 fungal 

CFUg'1 dry weight) (Lacey, 1968) . The occurrence of different types of fungi 

during storage are dependent on the environmental conditions; particularly water 

availability and temperature. At lower water availability the fungi include 

Eurotium repens, E.amstelodami, Aspergillus versicolor and A.candidus (Lacey, 

1980a).
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With higher water availability and heating large numbers of the species 

Rhizomucor pusillus, Absidia ramosa and Aspergillus fumigatus are present after 

several days of storage. A.fumigatus is able to grow over an extremely wide 

temperature range from 15°C to 55°C. These fungi die and are replaced by 

Humicola lanuginosa, Chaetomium thermophile and Pénicillium dupontii during 

the maximum heating phase. During the cooling phase A.fumigatus reappears, 

joined by Fusarium culmorum, Sporotrichum thermophilum and Coprinus sp. 

(Chang and Hudson, 1967). Chaetomium spp. will grow abundantly in damp straw 

in the absence of heating (Chang and Hudson, 1967). Under damp conditions, the 

microflora develops in a similar way to that in hay (Pelhate and Agosin, 1985). 

Many of the fungi isolated are able to utilise cellulose, hemicellulose and a range 

of simple sugars.

Previous research on fungal colonisation of straw has predominantly concentrated 

on decomposition after incorporation into the soil environment (Harper and Lynch, 

1981 ; Harper and Lynch, 1985 ; Robinson et a l,  1993; 1994) or other crops such 

as barley grain, (Flannigan, 1978; Clarke and Hill, 1981) wheat compost (Chang 

and Hudson, 1967) or bagasse (Sandhu and Sidhu, 1980).

Research by Magan and Lynch (1986) investigated the cellulolytic activity of 10 

soil fungi that colonise cereal crop residues. They found that F.culmorum and 

Trichoderma harzianum, common fungal contaminants of straw, colonised straw 

pieces best at high water availability (-0.7 MPa). Trichoderma spp. degraded 

cellulose, the degradation decreasing with water availability in the range -0.7 to -

2.8 MPa at 20°C. Work by Lacey (1980a) and Magan (1988a) considered fungal 

colonisation and decomposition of straw in the absence of soil, but possible



differences in fungal populations from different cultivars still needs to be 

examined.

1.3 PROBLEMS ARISING FROM STORAGE CONDITIONS

Agricultural products and residues, in particular cereals and oil seeds, are 

normally held under storage for variable periods of time. During storage growth of 

fungi on straw can result in its degradation and loss of dry matter. Mould growth 

in harvested grain can cause a decrease in germinability, a change in nutrient 

content and quality, the possible production of mycotoxins, and support the 

growth of a mycoflora that can become a health hazard to man and animals (Tuite 

and Foster, 1979).

Similar effects are experienced for cereal residues. The reason that fungi cause so 

much damage relative to other micro-organisms in stored materials is their ability 

to grow at low moisture levels, much below the level at which bacteria can 

multiply (Pitt, 1975).

Proper long term storage has become both a microbiological and engineering 

problem. In most cases a drying regime will reduce the moisture level below that 

value suitable for mould spore germination on cereal grain. Following this, the 

material needs to be placed under storage conditions where environmental control 

by engineering practice will maintain the moisture level at the correct value. 

Cereal residues, however, are considered to be a waste product, and do not 

undergo this treatment as it is not economically viable. Therefore extensive 

knowledge of all the factors that affect fungal growth on cereal residues has not
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been investigated thoroughly. Only by producing high value products from these 

waste materials will this problem be rectified. Losses due to post-harvest diseases 

are comparatively easy to estimate but data are limited (Harvey, 1978). Losses due 

to poor storage conditions of cereal residues are more difficult to estimate and 

little information is known about the extent of losses at on-farm sites. Cereal 

residues, for example cereal straws, are stored in large high density bales. The 

difficulty that arises from this, is that the extent of microbial growth and losses 

incurred from it, within the bales are not easily observed from the exterior. Also 

within large volumes of stored material changing environmental conditions allows 

the entry of water and can lead to migration of moisture, condensation and the 

formation of moist pockets.

Under such conditions fungal spore germination, growth and proliferation can 

occur. An additional problem demonstrated by Lacey (1974,1980b) was that very 

damp hay can spontaneously heat resulting in the establishment of thermophilic 

actinomycetes. The extent of loss of dry matter of cereal residues depends mainly 

on two important environmental conditions, moisture content and temperature, 

during storage (Magan, 1988a). There have been few studies on straw but more 

extensive research into dry matter losses of hay in relation to moisture content is 

available. Rees (1982) found that during haymaking up to 30% of the dry matter 

present initially can be lost. Kuntzel et al. (1976) added anhydrous ammonia to 

moist hay and this treatment reduced losses in the stored hay.

Research into the extent of dry matter losses of wheat straw and other cereal 

straws has mainly concentrated on the decomposition when incorporated into a 

soil environment and composting. Magan et al. (1989) investigated the effect



various water contents had on decomposition of straw in soil. They found that 

after six months 50% dry matter loss had occurred in wet soil, whereas only about 

a half of this had occurred in dry soil. Broder and Wagner (1988) studied the 

decomposition of com, wheat and soybean residuals in soil and determined that 

soybean had the most rapid rate of decomposition, followed by com then wheat. 

This suggests that each material has its own rate of decomposition.

Research by Chang (1967) investigated losses in mass from wheat straw compost. 

He found that straw had lost over half of its dry weight after 60 days and the 

greatest rate of loss occurred over the first 5 days. The loss of total dry weight 

could be almost completely accounted for by the loss in hemicellulose and 

cellulose.

Laboratory scale experiments have shown that over a three month period, losses in 

dry matter in wheat straw stored without soil, above 25% moisture content can 

reach 15-25% (Magan, 1988a). Sain and Broadbent (1975) found that up to 10% 

dry matter was lost from rice straw at 16-17% moisture content when stored at 

between 10-25°C. However, little research has been performed on dry matter 

losses of wheat straw under various storage conditions, and as yet there has been 

no research under large scale and on-farm conditions.

1.4 MOISTURE CONTENT AND WATER ACTIVITY

The rate of colonisation of straw by fungi is determined by the prevailing 

environmental conditions, particularly water availability and temperature. The 

simplest measure of water in straw is moisture content (Christensen and
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Kaufmann, 1969) which is expressed as a percentage of the wet or dry weight of 

the straw. Although moisture content describes the amount of the water in a 

material it does not indicate its availability to micro-organisms. Instead 

equilibrium relative humidity (ERH), water activity (aw) and water potential 

provide better measures of the availability of water to the micro-organism (Griffin, 

1982).

The water activity of a substance is defined as the ratio of the vapour pressure of 

water over a substrate to that over pure water at the same temperature and pressure 

(Lacey, 1980b). Numerically aw is the same as ERH, but is expressed as a 

proportion of one rather than as a percentage. It provides a measure of the 

availability of water in a substrate to organisms growing on it. Conventionally 

water activity in straw is expressed on a scale of 0-1, where 1 is pure water. The 

relationship between aw and moisture content can be expressed by a moisture 

sorption isotherm, which has a sigmoid curve relationship. For each agricultural 

substrate the moisture sorption isotherm will vary. Varieties of the same crop can 

also slightly differ in their moisture sorption characteristics (Pixton and 

Warburton, 1977). The relationship between aw and moisture content will also 

change with temperature (Ken-Youn Li and Torres, 1993).

Moisture sorption isotherm curves are subject to the hysteresis effect. Hills et a l 

(1996) have recently provided an explanation for this phenomenon. During the 

desorption of an initially water saturated porous material forces dictate that air 

first penetrates larger pores before smaller pores. Conversely during an adsorption 

experiment frictional forces in the throats and necks dictate that water first enters 

the large pores before smaller pores or throats. Implying that at intermediate water



contents there are more water filled large pores in adsorption than in desorption, 

therefore it would be expected that the adsorption isotherm would give higher aw 

than desorption at the same water content. This difference is considered as the 

hysteresis effect.

There has been extensive research into the effect aw has on a variety of cereal 

products; on rice straw (Sain and Broadbent, 1975), on wheat (Duggal and Muir, 

1981; Myrold et t i r / . ,  1981; Magan and Lacey, 1984a; Magan and Lynch, 1986; 

Magan, 1988a;) and on other cereal residues (Bartholomew and Norman, 1944; 

Snow et a l,  1944; Magan and Lacey, 1984b).

Some studies have also examined the effect of aw x temperature interactions on 

decomposition of materials by fungi (Ayerst, 1964; Duggal and Muir, 1981; Smith 

and Hill, 1982; Magan and Lacey, 1984b; Magan, 1988a,b). However, there has 

been little research into the effect of both factors on stored wheat straw in the 

absence of soil. More detailed and accurate knowledge is needed in this area, 

especially on the potential rates of losses and decomposition, during storage under 

different aw x temperature conditions.

Some research has been performed on the effect these factors have on individual 

fungal species. For example work by Luard and Griffin (1981) investigated the 

effect of water potential on fungal growth and turgor, and found that large positive 

turgor potentials were maintained in all species even when the external potential 

severely inhibited growth. Smith and Hill (1982) studied the influence of aw and 

temperature on growth of Aspergillus restrictus and A.versicolor and found that 

A.restrictus grew faster than A.versicolor at lower aw.

10



Gervais et al. (1993) determined the effect medium hydration had on the growth of 

Trichoderma viride and discovered that addition of silica gel to the medium 

proved to be limiting to fungal growth. More research needs to be concentrated on 

the interactions of fungi under various environmental conditions in cereal straw.

1.5 TECHNIQUES TO DETECT MYCOFLORA

In order to establish the rate of deterioration and thus losses in dry matter caused 

by the mycoflora on cereal residues, effective and efficient methods to detect the 

fungi are required. Different methods of assessing the mycoflora of cereal straw 

yield information on different aspects of colonisation and the use of two or more 

will often give complementary information. The choice of method employed 

should be governed by the nature of the investigation.

Lacey (1980a) investigated the microflora of straw and methods of assessment. He 

divided the methods into four areas; direct plating, direct observation, culture of 

washings and culture of spores suspended in air. Direct plating of tissue allows the 

proportion of pieces colonised by different species to be assessed. When preceded 

by washing or surface sterilisation (Sauer and Burroughs, 1986) it enables 

isolation of the fungi growing internally. Direct examination of fungi using light 

microscopy can provide much information on the types and distribution and the 

form of their growth on plant material when either incubated in a humid chamber 

or freshly harvested.
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Washings of plant material and plating of the serial dilutions have been 

established for a long time, but there are many variations of the method. Dilutions 

may initially be prepared by shaking, pounding or maceration. The resulting 

suspension may be spread-plated on the surface of solidified agar media or pour- 

plated by mixing with molten agar then poured or microscopically examined. The 

problem with this method, is that efficiency of washing can vary with each method 

and cells may be killed by the heat of the molten agar (Flannigan, 1974). Also 

pipetting may not transfer material proportionally from one dilution to the next.

Culture of spores suspended in air can be achieved by two main methods. These 

are suspending spores in air in a sedimentation tunnel and trapping with a cascade 

impactor or using an Anderson sampler, which is particularly suitable for 

assessing species with spores that become easily airborne, especially 

actinomycetes.

Lacey and Dutkiewicz (1976a,b) have shown that the Anderson sampler is a more 

effective method for spore capture than the sedimentation chamber. Chang and 

Hudson (1967) were interested in the fungi of wheat straw compost and used the 

same techniques, except for the spore capture method. Hay has a similar 

mycoflora to wheat straw and the same methods have been employed by Lacey 

and Dutkiewicz ( 1976b).

Research by Flannigan (1978), Sandhu and Sindu (1980), Clarke and Hill (1981), 

Magan and Lacey (1985), Magan (1988a,b) and Robinson et a l  (1994) have all 

used some of the methods discussed by Lacey (1980a), for the determination of
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mycoflora from a variety of materials; including barley grain, wheat grain and 

bagasse.

A variety of alternative techniques to those previously employed have been 

developed by several researchers. Schnurer and Rosswall (1982) investigated 

using fluorescein diacetate (FDA) hydrolysis as a measure of total microbial 

activity in soil and litter. They found that spectrophotometric determination of the 

hydrolysis of FDA was a simple, sensitive and rapid method for determining 

microbial activity in soil and litter and that hydrolysis was found to increase 

linearly with soil addition for both Fusarium culmorum and Pseudomonas 

denitrificans.

Until research by Newell and Fallon (1991) there were not any available methods 

for the measurement of instantaneous fungal growth rates in field samples of 

crops. This information is essential for the study of microbial dynamics in 

decomposition systems. Newell and Fallon (1991) devised a technique for 

estimating instantaneous growth rates for ergosterol containing fungi in field 

materials. The method was based on measuring rates of radiolabeled acetate 

incorporation into ergosterol. This experiment was carried out using standing dead 

grass. Tothill et al. (1992) investigated the relationship between fungal growth and 

ergosterol in wheat grain and found that some correlation between microscopic 

and visible moulding, ergosterol and CFUs.

Respiration has been used to measure metabolic activity in stored produce for a 

long period of time, by a variety of researchers. Respiration rate is affected by 

water availability, oxygen consumption, temperature, microbial contamination,
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mechanical damage, mite and insect infestation and the period and conditions of 

storage of the material, as demonstrated by a variety of researchers. The problem 

with total respiration values are that the two components; the degree of 

contribution of the fungal and material respiration remains controversial 

(Pomeranz, 1974). If cereal residues, such as cereal straws are used then the rate 

of respiration is due to the fungi present because the straw is a dead material. 

Respiration rates also vary with different cultivars, quality and age of material, 

period of the experiment and between the different methods of determining 

respiration. As dry matter is lost by the utilisation of carbohydrate during 

respiration, the data may also be used to measure dry matter loss.

At present there are a variety of methods employed to measure the rate of 

respiration. Hamer et al. (1991) used an innovative electrolytic respirometer 

designed by Tribe and Maynard (1989). This was designed to monitor respiration 

in soil and enabled continuous monitoring of oxygen uptake and measurement o f 

total carbon dioxide production at different aw levels and temperatures. Hamer et 

al. (1991) and Lacey et al. (1994) used the system to study respiration of cereal 

grains (wheat, barley and oilseeds) at different aw levels and temperatures.

Beare et a l  (1991) used the substrate-induced respiration (SIR) method for 

measuring fungal, bacterial and total microbial biomass on plant residues. The SIR 

method of Anderson and Domsch (1975,1978) was originally designed for use in 

soils and Beare et a l (1991) have optimised their method. The procedure involves 

short term measurement of respiration (4-5 hours) from soils following the 

addition of glucose. The rate of respiratory response over short time intervals was 

found to be proportional to chloroform-labile microbial biomass C.



Selective inhibitors, cycloheximide and streptomycin were added to soil sub

samples to define fungal and bacterial contributions, relative to the total glucose 

induced respiratory response. They believed SIR has several advantages; that it is 

simple and rapid, identifies active components of microbial biomass and allows 

separation of fungi and bacterial contributions to total respiration. The system, 

however, relies on induction of respiration and is thus not a true representation of 

natural decomposition, and environmental factors, e.g. avv and temperature, have 

not been considered.

Gokhale and Isaac (1984) used enzyme assays, manometric and oxygen electrode 

techniques, to determine oxygen exchange and cytochrome oxidase activity for 

measuring respiratory activity in isolated protoplasts of Aspergillus nidulans. 

These procedures were designed for specific respiratory rates of individual fungi 

and not as a method for measurement of total respiration of a crop material.

More recently Robinson et al. (1993) investigated nutrient and carbon dioxide 

release by interacting species of straw decomposing fungi. They measured fungal 

respiration by infra-red gas analysis, which detects carbon dioxide release. The 

advantages of the respirometer system are that large samples can be tested, 

temporal measurements under different steady state aw and temperature conditions 

are possible, monitoring of data is automatic and consistent results are obtained, 

as demonstrated by Hamer et al. (1991).
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1.6 CURRENT USES OF WHEAT STRAW

In the United Kingdom the average amount of cereal straw remaining after a crop 

has been harvested is about 6 t ha *1. As a result of this, over 12 million tonnes of 

cereal straw are produced annually and just under half of this is surplus to 

requirements (Hughes, 1979). Some of the remaining 50% of cereal straw was 

traditionally used by livestock farmers for feeding and bedding. In the USA there 

are 75 million tonnes of straw available annually with similar excesses. Straw is 

thus generally considered to be a waste product, because transport to potential 

sites of utilisation is expensive due to its bulk and its slow rate of decomposition 

relative to liquid substrates. Consequently transporting straw could only be 

economic if it can be converted into high value products.

Open-field burning or baling and removal were the major means of disposal prior 

to legislation banning burning in 1993. After this legislation, there has been a 

trend to switch to alternative methods of straw disposal, including chopping and 

shallow burying of straw in soil prior to sowing; in order to conserve the organic 

matter and prevent environmental pollution caused by straw burning.

The presence of the incorporated straw in the soil can hinder subsequent crop 

establishment mechanically, including blocking of the drill coulters. Problems 

may also arise biologically, by pathogenic micro-organisms colonising the straw in 

wet weather creating an anaerobic environment which can lead to the production 

of phytotoxic organic acids (Lynch, 1977; Harper and Lynch, 1981).

Research by Broder and Wagner (1988) investigated microbial decomposition o f 

cereal residues in soil. They found that 47% of wheat residue decomposed over a
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period of 32 days with the predominant fungi being Trichoderma, Aspergillus and 

Pénicillium spp. This information is useful as the effects of incorporation of straw 

into soil need to be known so that optimisation of conditions can be achieved. An 

additional problem with incorporation of straw into soil is that it has been found 

that in southern Brazil some pathogenic fungi of economic importance can survive 

in surfaces of wheat residues until the next growing season (Fernandez, 1992).

Straw incorporation into the soil may also be beneficial, as it provides the major 

substrate input to the micro-organisms that inhabit the surface layers, and their 

beneficial activities include polysaccharide production which stabilises the soil. In 

the UK, however, the structural stability of soil is not a problem. In fact the 

presence of straw may account for up to 20% loss of grain after direct drilling in 

wet autumns (Lynch, 1983). In other countries incorporation of straw in soil is 

preferred to burning because the soils are structurally unstable and erosion by 

water and wind would otherwise occur if  straw was removed.

At present the main use of excess wheat straw, apart from incorporation into soil, 

is composting of straw that provides the substrate base for edible mushroom 

{Agaricus bisporus) production. A.bisporus accounts for 75% of the total 

mushroom production. Usually wood is used as a substrate base for 'oyster' 

mushrooms (Pleurotus spp.), however research by Kurtzman (1979) has shown 

that straw may also be utilised.

The UK mushroom industry uses only 200,000 tonnes of straw per year, a small 

proportion of the total straw produced. However, in 1979, the annual crop value
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reached £56 million, exceeding the value of the tomato crop (MAFF, 1981). The 

production of mushrooms is increasing at an annual rate of about 10% per annum 

(Delcaire, 1978) and thus utilisation of straw in this industry has increased. The 

used compost may also be used as horticultural and agricultural fertilisers and soil 

conditioners.

A recent development is the use of wheat straw as a raw material for particle 

board manufacture. The first wheat straw particle board plant was established in 

July 1996 at Wawpeton in south eastern North Dakota, valued at $15 million 

(Anonymous, 1996). The equipment was supplied by Daproma System in Sweden, 

a company that provides keyboard plants for companies that use alternative 

materials such as bagasse, to Ed Shorma’s cabinet and furniture business. The 

production goal of the plant is to contract with about twenty-five farmers to 

provide $3 million worth of straw annually and produce 1 tonne of 3/4 inch board 

for every 1.2 tonnes of straw.

1.7 POSSIBLE USES OF WHEAT STRAW

There are a variety of theoretical possible alternative uses for the excess wheat 

straw. These include a source of animal feed, a feedstock for fuel production, 

novel composts and use in the paper making industry. These will be discussed 

with reference to feasibility of production and most important of all, economic 

viability.

In order for straw to be used as an animal feed it has to be reduced to a finely 

divided state and / or it needs to be chemically pre-treated, usually with sodium
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hydroxide or ammonia. The chemical treatment involves the reduction in size, 

addition of sodium hydroxide and pelleting; the resulting product is known as 

nutritionally improved straw (NIS). The patent for the NIS process was filed in 

1971 and the first plant for production of 25,000 tonnes per annum opened in the 

UK at Kimbolton, Cambridgeshire in 1975 (Evans, 1980). The process needs to be 

carried out at manufacturing plants, therefore straw has to be transported to sites 

which adds to the cost. This process has been commercially accepted, although 

on-farm manufacture would be preferred.

An alternative to the chemical hydrolysis, which would be more environmentally 

friendly, would be to use micro-organisms. Semi-solid fermentation to produce 

animal feed has been achieved on straw. The semi-solid substrate was usually 

ryegrass straw, and as yet wheat straw has not been used. There are several 

advantages of semi-solid over submerged fermentation; the pH and temperature 

does not need to be rigorously controlled, no foaming occurs, aeration can be 

achieved by simple tumbling of the mass, no costly centrifugation is required and 

the absorptive properties of the material holds the nutritive substrates within the 

matrix which is made available to the micro-organisms directly. The cellulose 

decomposing fungi Trichoderma viride and white rot fungi have been used for this 

process. However, the technology involved is too complex for on-farm use.

Other simpler processes such as pre-treating barley straw with white rot fungi have 

been investigated (Latham, 1979) but the gains were small and would probably be 

uneconomical. Researchers in these areas have suggested a simple on-farm 

process that involves piles of straw which are ammoniated, inoculated and covered
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with black polythene sheets in a sheltered area and after incubation the straw 

could be dried, pelleted and fed to animals.

At present the procedure has not been tested and evaluated on-farm and there are 

dangers of the possibility of mycotoxin residues which would be harmful to the 

animals. Therefore, further research would be required in these areas to eliminate 

risks to animals and make the process economically viable for the use of cereal 

straw.

The main fuel products that could be produced from microbial fermentation of 

straw are alcohol and methane. In Brazil sugar cane is used as a feedstock for the 

production of alcohol quite successfully. Cellulose in straw, however, is much 

harder to ferment than the sucrose in sugar cane and as yet there has not been any 

evidence to suggest that straw would provide a possible and economic feedstock. 

Further extensive research would be required before this could be a feasible and 

economic option.

Methanogenesis, which is the production of methane from anaerobic fermentation 

has been widely investigated for a range of agricultural wastes (Hashimoto et al., 

1980). Nevertheless little work has been performed on the possibility of wheat 

straw being used as a feedstock for anaerobic fermentative bacteria. The rate of 

digestion of straw is known to be slow and limited. Digestion rates may be 

increased if  the straw is pre-treated with heat and chemicals. Unfortunately, this 

involves additional costs which may not make straw a suitable substrate for 

feedstock and not be viable economically.

20



In conventional composts, straw and animal wastes are mixed and the degradation 

process occurs naturally with little external control, resulting in a large variability 

in the quality of the end product. Due to these factors and economic reasons this is 

not a widespread use of straw. If compost quality could be easily and 

economically controlled, this may be a viable use of straw. Controlled 

environment composting is now being examined to efficiently control the process 

and produce a consistent level of quality.

Lynch and Harper (1983) found that by adding a mixed inoculum of a cellulolytic 

fungus and a nitrogen fixing bacterium onto wheat straw that the decomposition 

increased and it was envisaged that this technology could be applied on farm sites. 

However, trials in soil demonstrated that inocula did not increase the 

decomposition rates or nitrogen level significantly (Magan et a l,  1989).

Another possible use of this waste straw is its utilisation as a raw or constituent 

material for the paper making industry and is the main focus and overall aim of 

the DTI-Link project, as discussed later. About 10% of the fibre used to make 

paper world-wide each year is from nonwood plant fibres, including cotton, 

straws, canes, hemp and grasses. Non-vegetable fibres such as glass fibres and 

polyethylene are also used.

Straws from most edible grains are suitable for processing into pulp. The most 

important types are wheat, rice, barley and rye with yields typically about 35% for 

bleached grades to 65% for high yield pulps suited for linerboard or corrugating 

media. Straw has a low lignin content and due to this factor would be especially 

suited for fine papers.
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The soda process is the most common method of pulping of straw and 

anthraquinone is sometimes used with soda or Kraft pulping of straw. Straw fibre 

lengths are on average 0.5-2.5mm with diameters of 0.01-0.2mm and the straw 

hemicelluloses are mainly xylans. These characteristics make straw pulp similar to 

hardwood pulp.

Nonwood fibre sources were used for hundreds of years before wood was used as a 

source for papermaking. In the USA on average paper contains only about 2% of 

nonwood fibres. Globally, however, the use of nonwood fibre is increasing faster 

than wood fibre; this may be due to bans on burning of cereal straw, public 

awareness for the need to preserve natural forests and the abundance of straw as a 

waste product which is a cheap and economical alternative to wood pulp. Another 

factor is that at present the UK paper and board industry imports about £600 

million worth of wood pulp annually, therefore considerable savings could be 

achieved if  straw could be used as an alternative. Interest is being shown by 

several major companies in using straw as a raw material for paper pulp 

production for corrugated and bleached paper. Experience from straw pulping 

mills in Europe have demonstrated that straw is an acceptable pulp for corrugated 

paper making, that fully bleached straw pulp provides desirable properties for high 

quality papers and unbleached pulp adds stiffness to fluting material.

In the USA all corrugated medium was made from straw prior to the 1930’s. 

Around this time the chestnut blight made a lot of hardwood available, which was 

pulped successfully and made into corrugating board. By the end of the 1950’s 

most of the straw-using mills were closed or converted into hardwood-using mills. 

At present almost all corrugating medium is made from hardwood and/or recycled
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fibre in the USA. In contrast to this, Europe’s largest corrugated medium mill 

based at Saica, in Zaragoza, Spain uses pulp from wheat, oat, rye and barley straw 

with secondary fibre. The mill produces 1200 tonnes per day of medium 

containing 25% or 50% straw pulp, with the higher grade containing the larger 

percentage of straw pulp. Saica plans to double its capacity and incorporate straw 

into linerboard in the early 1990’s.

There are many factors that influence the suitability of raw material for the use in 

paper. These include the ease of pulping and yield of useful pulp, the availability 

and dependability of supply, the cost of collection and transportation of the fibre 

source, the fibre morphology, composition, strength, the presence of contaminants, 

such as silica and dirt and finally the seasonal nature of the supply, as storage to 

prevent decay is costly.

There are also problems that straw pulp mills can experience. These are that straw 

pulps have low drainage rates, so it takes more water and requires large washers 

which causes additional costs to the process. Chemical recovery of straw pulp 

liquors is complex and has not been practised until environmental pressures in the 

1980’s forced some mills to begin this practice. Since large quantities of water are 

required to wash pulps, large amounts of energy are needed to concentrate the 

dilute liquor from the brown stock washers. Fortunately about one half of the 

liquor can be pressed out of the pulp and undergo chemical recovery to avoid high 

evaporation costs. However, chemical recovery is interfered with by the silica 

content of the straw, although most of the silica is removed during alkaline 

pulping.
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There are a variety of problems with using wheat straw as a pulp source and some 

of the reasons why the USA replaced nonwood fibres with wood are summarised 

in Table 1.1. The moisture content of paper has an important effect on paper 

quality; therefore, paper properties must be measured under standard conditions 

of relative humidity (50%) and temperature (23°C). According to TAPPI T 402, 

paper should be placed in a hot, dry room (20-40°C at 10-35% relative humidity) 

before placement in the standard room so that the moisture content of paper 

approaches its equilibrium moisture content (EMC) by absorbing water from the 

atmosphere. A slightly higher EMC would be achieved if  the paper approached the 

EMC for a given relative humidity and temperature by giving off water due to the 

hysteresis effect.

It is important to know the rate of moisture loss or gain of paper to achieve 

equilibrium in order to understand how long to condition the samples. 

Manufactured paper immediately off the reel that has not been conditioned before 

testing may have a moisture content that is several percent below paper that has 

been conditioned in a standard room for an hour. Since properties of paper can 

significantly differ over a range of moisture contents, it would be expected that 

considerable problems in routine mill measurement and quality control of paper 

could be experienced.

Surprisingly, although the importance of controlling the relative humidity during 

paper making and the effect moisture contents have on paper properties has been 

known for some time, very little research has been done and the most recent and 

extensive publication giving paper properties as a function of moisture content 

was by Carson (1944).
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Table 1.1 The Advantages and Disadvantages of straw as a fibre source

Advantages Disadvantages

By-product from agriculture Transportation and storage problems

Cheaper than wood, as is a waste 

product

Straws are bulky and contain silica

Large annual crop Short harvest time of 1-2 months; thus 

heavy drain on capital

Needs little refining Degrades quite quickly, so high losses

Makes excellent filler, good printing 

and smoothness

Low drainage rates and thus low 

production rates
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Carson’s research showed that for four types of paper the strength properties may 

vary by as much as 40% with relative humidity changes that are within the range 

of normal conditions. They also investigated the effect of folding endurance in 

relation to various relative humidities and found that fold values may change by a 

factor of five. Moisture content also has an effect on the curling tendencies of 

paper; papers tend to curl when each side of the paper is at a different moisture 

content.

There is as yet no detailed published information on the differences in yield and 

quality of pulp for paper production from different species of cereal straw in the 

UK. There has also been no investigation into the differences in yield and quality 

obtained between different varieties of the same species.

There are a variety of tests to determine the mechanical properties of paper. 

However, currently there are no methods for predicting pulp quality and yield 

from an analysis of the raw material; but as the demand for alternatives to wood 

pulp increase an investigation into the correct storage of the raw materials will 

become vital.

Research into correct storage of raw materials, such as wheat straw is scarce. At 

the present time mould-free straw has only been required for chicken litter and 

fibre board, which are relatively low value products. However, as high value 

products begin to be demanded the need for consistently high quality raw 

materials will be crucial.
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There has been renewed interest by researchers into using wheat straw as a 

possible use of pulp for the paper industry. The removal of lignin from 

lignocellulosic plant material is essential for the production of high quality pulp. 

Usually sulphur containing chemicals are utilised for this process, however 

environmental awareness has led to the development of possible alternative 

techniques.

One area of research is the biological pre-treatment of the pulp by lignin 

degrading fungi, often referred to as biopulping and biobleaching. Research by 

Gionvannozzi-Sermanni et a l  (1994) demonstrated that enzymatic treatments of 

wheat straw for short periods of time reduced the beating time and improved 

freeness. Both of these effects lowered the energy requirements by more than 

50%. Since the lignin content of the straw is reduced after beating the chemical 

input for bleaching of the pulp can also be reduced. Thus this biotechnological 

approach results in easier pulping with less consumption of chemicals and energy.

Work by Jimenez et al. (1994) involved biological pre-treatments for bleaching 

wheat straw pulp. This research was instigated due to growing environmental 

concerns of the high polluting effects of lye wastes produced from chlorinated 

substances used in the process. Another approach is a chemical free pre-treatment 

process. Research by Kubikova et al. (1996) involved treating the straw biomass 

with hot compressed liquid water which resulted in almost all of the hemicellulose 

and up to 62% of the lignin being extracted from the lignocellulosic matrix. The 

remaining pulp consists of cellulose and residual lignin. As an additional benefit 

the water extract can act as a raw material, such as for fermentation and 

saccharification. Both areas of the research can be applied to the established



existing wood pulping industry, however in both cases research in these areas does 

not cover the initial quality of the straw. Lawther et al. (1996) have researched the 

effect of steam treatment on the chemical composition of wheat straw, particularly 

the importance of the polymeric components, which have the potential for 

development in a number of end-use industries.

At the present time there is little information on rates of spoilage and losses in 

quality of straw under different moisture and temperature conditions. The 

tolerance of spoilage and effects of quality for paper making have also not been 

investigated. Research by Wamukonya and Jenkins (1995) investigated the 

durability of wheat straw briquettes as a possible fuel for Kenya. They found that 

these briquettes were the least durable and expanded the most, compared to 

sawdust briquettes. However, a combination of the two materials improved 

durability. They concluded that further analysis and economical considerations 

would have to occur before this was a viable option.

Fuels from straw have proved extremely difficult to burn in most combustion 

furnaces, particularly those designed for power generation. Significant 

maintenance problems of straw biomass for energy occur, for example the rapid 

formation of unmanageable deposits comprising of complex silicates, sulphates 

and carbonates on fireside surfaces. This leads to reduction in facility efficiency, 

capacity and increased costs (Jenkins et al., 1996). To date none of the biomass 

power plants built in California can economically fire straw. In Denmark straw 

burning for fuel has been more successful, and more recently in the UK a new 

plant in Ely, Cambridge has been commissioned for this purpose (Gant, 1996). As
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this electricity plant is in the early stages of production its success has yet to be 

determined.

1.8 USE OF BIOCIDES IN THE PAPER INDUSTRY

Biocides are used in the paper industry quite extensively to control the activity of 

micro-organisms, particularly bacteria and fungi. There are three main problem 

areas with microbial growth as shown in Table 1.2. These micro-organisms grow 

around the paper machine and produce slime that consists of polysaccharides and 

proteins. This slime may break off in pieces and lead to actual holes in lighter 

weight papers, pitting of paper, and even breaks in the web which lead to very 

expensive downtime.

A number of fungi and bacteria will grow in various raw materials used to make 

paper including wheat straw. In order for micro-organisms to grow, the correct pH, 

temperature, water availability are required. As a rule the pH range is 2.5-8 for 

fungi and pH 6-8 for bacteria and the optimum temperature, generally 25°C. Some 

anaerobic micro-organisms grow in conditions where oxygen is absent and 

produce hydrogen sulphide, methane, or hydrogen, which have caused fatal 

explosions at mills. The sulphate using bacteria can also cause considerable 

corrosion at mills. Microbial growth may be increased by using recycled fibre, 

large amounts of starch and poor housekeeping.

Slime production may be controlled by good housekeeping and the use of 

biocides. The quantities of biocides usually added are from 0.05-1 kg per tonne of 

paper. There are two main types of biocides used, oxidising and organic biocides.
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Table 1.2 The problems with microbial growth in a pulping company.

Area Problem

Production Slime deposits:- 

Breaks 

Corrosion 

Felt plugging 

Odours

Reduced flows

Quality Holes and Spots:- 

Sheet odour 

Machine aesthetics 

Discoloration & Brightness losses 

Increased dirt count

Raw Materials Fibre degradation:- 

Additive contamination & Odour 

Reduction in strength properties 

Coating mass deterioration 

Fouling of probes
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Oxidising biocides include chlorine or chlorine dioxide. In papermaking systems 

below pH 6 chlorine exists as the highly effective HOC1 species and above pH 9 

the active species is OCV which is less effective. Chlorine dioxide is added at 500- 

2000 ppm at various stages of the process, although it quickly disappears from the 

system.

There are several organic acids used and these include quaternary ammonium 

salts, methylene bis-thiocyanates, brominated propionamides, carbamates, 

glutaraldehydes and finally the isothiazolins. Quaternary ammonium salts which 

contain alkyl, aryl or heterocyclic substituents of C8 - C25 are most effective under 

alkaline conditions, although they lose their effectiveness when lots of 

contaminants are present.

Methylene bis-thiocyanates are effective against sulphate reducing bacteria of the 

Desulfovibrio genus. However, they decompose in whitewater systems if  the pH is 

above 8. The brominated propionamides are broad spectrum biocides that are 

extremely potent. Carbamates are effective above pH 7 and occur as dialkyl or 

monoalkyl and those containing short chain alkyl groups are more toxic than long 

alkyl chains. The glutaraldehydes may react with the proteins of the micro

organisms and has two reactive aldehydes that readily react with amines.

Finally the isothiazolin group has an acute and broad activity, due to its mixture of 

two compounds. Sometimes two or more biocides are used together to produce a 

synergistic effect against the micro-organisms. At present there has been very little 

research into the effect biocides have on controlling fungal growth on wheat 

straw, let alone their effect on wheat straw used as a possible pulp source for
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papermaking. Initial research into the effectiveness of controlling microbial 

activity using chemicals was by Lacey (1974), who was interested in controlling 

and preventing moulding of sugar cane bagasse using propionic acid.

Work by Easson and Nash (1978) investigated the preservation of moist hay again 

using propionic acid and later, research by Lord and Lacey (1978), Lord et 

ûf/.(1981), Lacey et al. (1981), and Magan and Lacey (1986a,b) all investigated the 

effects of propionic acid on hay under various conditions. However, these 

chemicals are all fungistatic; i.e. they only inhibit the growth of fungi on contact 

and they may subsequently grow should the acid be lost by evaporation. Thus their 

effectiveness depends on efficient coverage of the substrate. Another problem with 

using propionic acid, apart from its toxicity to handlers, is that research by Lord et 

al. (1981) showed that from measurements of the disappearance of propionate 

from cultures of Paecilomyces variotii and Eurotium amstelodami that these 

species could metabolise propionic acid and thus allow other species to colonise 

the substrate, especially in under-treated pockets of hay.

Until research by Magan and Lacey (1986a) there was little knowledge of the 

ability of other organisms to tolerate or metabolise propionic acid-based 

preservatives. They found that the yeasts Candida guilliermondii and Hyphopichia 

burtonii were able to grow on and metabolise more than 100 mmol litre'1 of 

ammonium propionate, which was a similar concentration to that used by Lord et 

al. (1981). However, very few studies have considered preservative concentration 

x water availability effects on growth / inhibition of such spoilage fungi.
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Some research into the use of alternative biocides to propionates have been 

performed by several researchers (Grossbard and Harris, 1977). They investigated 

the effectiveness of the herbicide Gramoxone W in soil with respect to straw 

decay and found that it frequently delayed its decomposition. However, the effect 

on control of fungal growth on stored straw was not considered.

Lacey et al. (1981) investigated over one hundred different chemicals for 

preventing moulding of damp hay and found that fewer than a third showed any 

promise as a preservative and none met all of the criteria. However, 8-quinolinol 

showed some potential as an additive to propionate. Sulphur dioxide has been 

tested for its ability to control fungal growth on wheat grain. However, after an 

initial decrease in growth, for twenty eight days, little difference occurred when 

compared with control, so the threshold limits need to be carefully chosen 

(Magan, 1993). Research would have to be undertaken to establish whether this 

was a viable option for control of fungi on cereal straw.

At the current time there has been no research into the effect biocides have on 

cereal straw fibre quality, texture and tensile strength. This information will be 

essential if  the excess straw is to be used as a pulp source for papermaking. The 

paper industry has criteria for fibre quality, texture, tensile strength, colour and 

yield which they require. However, the effects of fungal spoilage have on these 

factors is to date unknown. It is vital that this information is determined, so that a 

consistent high quality raw material can be provided for the paper making 

industry.

33



1.9 AIMS AND OBJECTIVES OF RESEARCH

The main aim and objective of the project is to determine which economically 

viable treatments best preserve the value and quality of straw during storage. At 

the present time there is very little quantitative data on how rapidly microbial 

growth occurs in relation to the condition of the stored straw, what effect these 

micro-organisms have on straw properties and consequently the value of the straw 

and how microbial growth may be restricted and controlled by systems that will be 

feasible and economically viable. This project aims to answer these questions and 

ultimately to provide a consistently suitable high quality straw for the use as an 

industrial raw material. This raw material will hopefully be used to produce high 

value products which will be in demand by industry. It is estimated that the typical 

annual usage of straw may be 50,000 tonnes per processing plant and systems 

would need to be developed to ensure that a bulk store of 5,000 tonnes retains a 

consistent quality for the end use.

The problems with achieving a consistent standard of straw is that the extent of 

microbial growth within a bale is not easily observed from the exterior and 

conventional harvesting and storage methods can, especially during poor weather 

conditions, result in moulding and microbial degradation of the straw before it 

reaches the processing plant. This causes problems including difficulties in 

handling and breaking of the mouldy sections of the bales. It may also reduce fibre 

strength, pulp yield and problems with discoloration of unbleached pulp and / or 

increased bleaching costs if  used in papermaking. A further problem may be that 

unacceptable levels o f mould spores are produced, which operators are then 

exposed to.
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Economie storage and transport could only be achieved if  the cereal straw is 

compacted into large, high density bales. Unfortunately, large, high density bales 

are not conducive to good storage. This is especially the case when the straw has 

been baled too moist, because air movement and thus loss of moisture is very 

slow. Currently, the effects of moisture content, package density and crop 

temperature on microbial activity are not fully understood and without this 

quantitative information the best storage conditions cannot be determined. The 

cereal straw may be used for a variety of end uses, although the main area of 

interest is to use wheat straw as a possible pulp source for papermaking.

The overall objectives of this thesis are>

1. To isolate and identify the mycoflora of Winter wheat straw. The cultivars 

investigated were Ribband 1994-1996 and Beaver 1994.

2. To determine fungal succession on straw stored under various aw x temperature 

interactions and quantify the associated dry matter losses.

3. To determine the effects of various aw x temperature interactions on the rate of 

microbial spoilage.

4. To calculate the extent of spoilage and colonisation of the straw using 

respiration equipment under various environmental conditions.

5. Determine the efficacy of various biocides on the natural mycoflora and 

individual dominant fungi in vitro and on straw.
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6. Conduct a series of small and large scale field experiments to determine the 

effect of the best biocide treatments on control of fungal spoilage under 

different moisture contents and bale densities.
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CHAPTER 2 

GENERAL METHODS

&

MATERIALS
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2.1 PREPARATION AND STORAGE OF WHEAT STRAW

Two cultivais of winter wheat, Beaver (1994) and Ribband (1994, 1995 and 1996) 

were used in this study. In 1994 the cv. Beaver was obtained from a local farm in 

Newport Pagnall. The Ribband cultivai was used by all of the research partners, 

including Silsoe Research Institute (SRI) and Scottish Crops Research Institute 

(SCRI).

The wheat straw was chopped with Wilkinson sword secators into approximately 

10mm lengths for microbiological analysis and respiration studies. The straw was 

stored in a cold room at 4°C with less than 14% (wet basis) water content after

harvest, so that fungal growth could not occur. When analysing for microbial

contamination samples were handled inside a microbiological safety cabinet.

2.2 DETERMINATION OF THE MYCOFLORA OF WHEAT STRAW

The following general media were used in this study

(a) 2% Malt extract agar (MEA)

Distilled water 1L

Malt extract agar (Oxoid) 50g

Technical Lab M agar no. 2 (Oxoid) 5g

Chloramphenicol 5mg
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(b) 10% M alt salt agar (MSA) (For xerophilic fungi)

Distilled water 1L

Malt extract agar (Oxoid) 50g

Technical Lab M agar no. 2 (Oxoid) 5g

Sodium chloride (NaCl) 100g

Chloramphenicol 5 mg

(c) Czapek Dox agar (CZA)

Distilled water 1L

Czapek Dox agar (Oxoid) 45.4g

(d) Potato Dextrose agar (PDA)

Distilled water 1L

Potato dextrose powder (Oxoid) 50g

(e) 0.1% Agar diluent

Distilled water 1L

Technical Lab M no. 2 agar lg

(f) W heat straw  extract agar (WEA)
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Chopped straw (20g) was boiled in 1 litre of distilled water for 15 minutes. The 

extract was passed through muslin to exclude straw fragments and made up to 1 

litre with distilled water (Magan, 1988b). The stock solution was diluted 1:1 with 

distilled water to produce 1% straw extract broth.

The pH of straw extract was adjusted to pH 5.5 with 0.2M hydrochloric acid. 

Technical agar no.2 (Lab M 15g) and 5mg of an antibacterial agent 

(Chloramphenicol) was added to straw extract, prior to autoclaving.

(g) 2% Milled straw agar

Milled straw (10g) was added to 50g of Technical agar no.2 (Lab M) and dissolved 

in 1 Litre of distilled water. Chloramphenicol (5mg) was added as before and the 

medium autoclaved. All media used in this study was autoclaved at 121°C for 15 

minutes.

(h) Culture and Suspension media

Fungi were isolated and cultured on agar media in plastic 9cm Petri dishes, 

containing approximately 20ml of media. 2% MEA slopes in Universal bottles 

containing approximately 10ml of media were used to store pure cultures and kept 

at 0-4°C. Species of fungi were transferred to new MEA slopes every six months 

to maintain viability.

40



2 . 2 . 1  A d j u s t m e n t  o f  w a t e r  a c t i v i t y  ( a w )  i n  m e d i a

Glycerol solutions were used to adjust 2% MEA in the range 0.75 - 0.95 aw 

(Dallyn and Fox, 1980). Glycerol solutions were prepared according to the formula

G = ( M W x M C x S )

1000

Where G = weight of glycerol (g)

MW = molecular weight of glycerol (92.09)

MC = molal concentration of glycerol 

S = weight of solvent (g)

Table 2.1 demonstrates the molarity of glycerol solutions used to control 

equilibrium relative humidities (ERH) in media.

2 . 2 . 2  A d j u s t m e n t  o f  p H  i n  m e d i a

MEA (2%) was adjusted in the pH range 4.4-6.4 in 0.2 unit increments. For 

adjustments between pH 4.4-5.6 Mcllvaine’s buffer (1921) was used. In the range 

pH 5.8 - 6.4 the buffer of Gomori (1955) was used. Tables 2.2 and 2.3 respectively 

detail the method of preparation of the buffers.
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Table 2.1 M olarity of glycerol solutions used to control equilibrium relative 

humidities (ERH) in media (Dallyn and Fox, 1980).

W ater Activity M olarity of Glycerol

0.75 15.00

0 80 11.60

0.85 8.50

0.90 5.50

0.95 2.50
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Table 2.2 Citric acid - Na2HP0 4  buffer solutions used to modify the pH of

media in the range 4.4-S.6 (Mcllvaine, 1921).

PH x ml 0.1 M citric acid1 y ml 0.2 M Na2H P O /

4.4 55.90 44.10

4.6 53.25 46.75

4.8 50.70 49.30

5.0 48.50 51.50

5.2 46.40 53.60

5.4 44.25 55.75

5.6 42.00 58.00

1.Citric acid monohydrate, C6H807. H20, M.wt. 210.14; 0.1 M solution contains 21.01g /  L(x).

2.Na2HP04, M.wt. 141.98; 0.2 M solution contains 28.40g / L(y). 

x ml 0.1 M citric acid and y ml 0.2 M Na2HP04 were mixed.
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Table 2.3 Na2HP0 4  - NaH2P0 4  buffer solutions used to modify the pH of

media in the range 5.S-6.4 (Gomori, 1955).

PH x ml 0.2 M Na2H P 0 41 y ml 0.2 M NaH2P 0 42

5.8 4.0 46.0

6.0 6.15 43.85

6.2 9.25 40.75

6.4 13.25 36.75

1.NazHPO^ 2H2O, M.wt. 178.05; 0.2 M solution contains 35.61 g /  L.

2 .NaH2P04 . 2H2O, M.wt. 156.03; 0.2 M solution contains 31.21 g /  L.

x ml Na2HP04 . 2H2O, y ml NaH^PC .̂ 2H2O; diluted to 100 ml with water.
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2.3 ISOLATION AND ENUMERATION OF MYCOFLORA

2 . 3 . 1  D i r e c t  P l a t i n g

Initially the size of the pieces of straw to be used was determined from which 

species wopld develop and be enumerated easily. Wheat straw pieces were cut into 

1mm, 3mm, 5mm, 10mm and 15mm lengths. Five pieces of each length were 

placed aseptically onto each of three MEA and MSA plates. These plates were 

incubated for 7 days at 25°C (King et o r / . , 1984). Straw segments (Ig) were also 

washed in 9ml of 0.1% agar diluent and shaken for 1 minute. The straw was 

removed aseptically using tweezers and dried on Whatman filter paper No.l. A 

total of 5 washed pieces were transferred onto MEA and MSA and incubated for 7 

days at 25°C. All procedures were carried out in a laminar flow cabinet.

To determine the internal mycoflora wheat straw pieces were shaken for 20-30 

seconds in 95% ethanol, then transferred into 1% NaOCl and left for 1 minute. 

The straw pieces were rinsed with sterile water, dried and direct plated, 5 pieces 

per Petri plate. The three replicates were incubated for 7 days at 25°C (Sauer and 

Burroughs, 1986). The fungi growing from the straw pieces were enumerated and 

the frequency of isolation of individual and total species determined.

2 . 3 . 2  D i l u t i o n  p l a t i n g

Sub-samples of chopped straw (Ig) were added to 9ml of 0.1% agar diluent and 

shaken for 1 minute. A serial dilution series was prepared and 0.1ml of diluent 

was spread-plated with a glass spreader onto three replicate agar plates (Pitt, 1988;
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Magan, 1988a,b). All pipetting was carried out with 1ml and 200jal automatic 

pipettes (Gilson) with sterile disposable tips. Plates were incubated for 7-10 days 

before enumeration.

2 . 3 . 3  I d e n t i f i c a t i o n

Fungi isolated from straw were identified by examination of the following 

characteristics

(a) Microscopic observations of the ultrastructure.

(b)Recording colony characteristics, including colour, texture, reverse 

pigmentation and presence of exudate.

(c) Size of colony in millimetres.

Fungi were classified to genus level using standard texts (Samson et a l, 1981) and 

to individual species of Aspergillus (Raper and Fennell, 1965; Klich and Pitt, 

1988), Fusarium and Pénicillium (Pitt, 1988; Christenson et a l ,  1994). The 

colonies were then subcultured onto specialised media including MEA, CZA and 

PDA to aid in identification by enhancing growth characteristics and sporulation.

2 . 3 . 4  S t o r a g e  ^/Pénicillium s p e c i e s .

Spores from 14 day old colonies of Pénicillium species were removed using a 

sterile needle and inoculated into sterile bijou bottles containing 0.5ml ôf 0.1%
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agar diluent. The solutions were mixed and the contents stored at 0-4°C (Magan, 

1993).

2 . 3 . 5  S u b c u l t u r i n g  o f  s p e c i e s

The edge of growing mycelium from species on agar, after 7 days, was removed 

using a 3mm diameter cork borer and the plugs centrally transferred onto selective 

media, such as C£A, MEA and WEA. The plates were incubated at 25°C for 4 

days. For subculturing Pénicillium species, a sterilised loop 3mm diameter was 

used to remove the spore suspension and centrally inoculate agar. The plates were 

incubated at 25°C for 4 days.

2.4 ISOLATION OF DOMINANT FUNGAL POPULATIONS FROM 

WHEAT STRAW

2 . 4 . 1  E f f e c t  o f  T e m p e r a t u r e ,  a w  a n d  p H  o n  g r o w t h  o f  d o m i n a n t  f u n g i  i s o l a t e d  

f r o m  s t r a w

The wheat straw eultivar used in this experiment was cv. Beaver (1994) and cv. 

Ribband (1994,1995,1996). Straw pieces were prepared as described in section 

2.1. Direct plating and serial dilutions of straw pieces (5 per plate) were 

inoculated onto pH adjusted media in the range 4.4-6.4, with three replicates per 

treatment. The plates were incubated for 7 days over the temperature range 10°- 

30°C. The procedure was repeated using aw adjusted straw pieces plated onto 

adjusted media in the range 0.75-0.98 and incubated over the same temperature 

range.
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2 . 4 . 2  I n  V i t r o  S t u d i e s  u n d e r  a  r a n g e  o f  T e m p e r a t u r e ,  a w  a n d  p H  c o n d i t i o n s

The effect of temperature (10-30°C), pH (4.4-6.4) and aw (0.75-0.98) on the 

growth of dominant straw fungi was determined in vitro on pH/aw adjusted media. 

The species used in this experiment were the dominant species determined from 

the results in 2.4.2. The species used are shown in Table 2.4.

Agar plugs were removed from the growing margins of colonies of each species 

after 7 days of growth, using a 3mm diameter cork borer, except for Rhizomucor, 

Aspergillus and Pénicillium species. The plugs were placed in the centre of pH or 

aw-adjusted media and incubated for 7 days. For the Pénicillium, Aspergillus and 

Rhizomucor spp. spore suspensions were first prepared and using an inoculating 

loop with a diameter of 3mm the solutions were «centrally inoculated onto the 

media. All experiments were carried out with three replicates per treatment. The 

colonies were measured in two directions at right angles to each other daily for 7 

days. Growth rates were determined over the temperature range 10-30°C.

2 . 4 . 3  D é t e r m i n a t i o n  o f  M o i s t u r e  C o n t e n t ,  a w a n d  A d s o r p t i o n  I s o t h e r m s

Samples of chopped straw (Ig) were weighed in 25ml glass screw top bottles. A 

known amount of water was added to hydrate the samples, the bottles closed, 

shaken and allowed to equilibrate for 24 hours at 4°C. The bottled samples were 

then transferred to the desired temperature for 4 hours. Three replicates o f each 

treatment of moisture content were transferred to glass beakers and placed in the 

oven at 115°C for 24 hours.
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Table 2.4 Dominant species isolated from wheat straw.

Species

Alternaria alternata (Fr.) Keissler

Aureobasidium pullulans (de Bary) Arnaud

Cladosporium cladosporioides (Fres.) de Vries

Epicoccum nigrum (Link)

Eurotium amstelodami (Mangin) Thom and Church

Fusarium culmorum (W.G. Smith) Sacc.

Rhizomucor pusillus (Mich)

Pénicillium aurantiogriseum (Dierckx) Stolk and Samson

Pénicillium hordei (Stolk)

Sporobolomyces roseus (Kluyver and Van Niel)

Trichoderma harzianum (Rifai)
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Samples of straw were reweighed after cooling and the moisture content 

calculated using the formula

Moisture content = F- D x 100

F

where F = Fresh weight (g)

D = Dried weight (g)

Water activity was determined by placing sub-samples of straw from the above 

treatments and placing into the humidistat chamber (Humidistat IC II, Novasina 

A.G, Switzerland). The humidistat chamber was maintained at the temperature 

investigated (10-30°C) and the sample allowed to equilibrate. The readings were 

recorded until no change in value was obtained, this was usually after 4 hours. The 

aw during adsorption of different amounts of water was determined for the straw in 

order to determine the quantities of water necessary to hydrate straw for use in 

subsequent experiments.

Distilled water was added in volumes of 0-0.4 ml in 0.01 divisions per gram of 

straw, allowed to equilibrate and the moisture content and aw determined as 

previously explained. The adsorption isotherms of straw were determined for 10°- 

30°C by plotting aw against moisture content values. The moisture content for a 

given aw could then be obtained from the fitted curve.
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2.5 EFFECT OF ENVIRONMENTAL FACTORS ON FUNGAL 

RESPIRATION ON STRAW

2 . 5 . 1  R e s p i r o m e t e r  S y s t e m

A respirometer system designed by Tribe and Maynard (1989) consisted of glass 

leaching tubes (280 x 27mm) sealed with rubber bungs at each end and contained 

two fitted glass tubes and the electrolysis cell and sample within this system. This 

system was not ideal as the bungs had to be sealed with silicone to maintain air 

tightness, and had to be resealed when opening the system to change solutions.

This system would only allow about 5g of straw to be used which was not 

adequate for our purposes. The system was modified by using 500ml glass Duran 

bottles enabling 20g (dry weight) of chopped straw to be used. Plate 2.1 showed 

the schematic representation of one respirometer unit (see Appendix for modified 

system). The screw top caps had two holes 6mm x 6mm, which were 10mm apart. 

Inserted into these holes were the existing glass tubes used by Tribe and Maynard 

(1989), and these tubes were maintained in their positions by sealing with 

Araldite™ around the inner and outer surface between the cap and the tube, this 

also achieved an adequate airtight seal.

The existing polypropylene Y piece compensator bottle and Suba Seal caps were 

attached to the glass tubing. The internal assembly of the electrolysis cell and 

sample were the same as the old system, the only difference was that larger 

volumes of sample could be held in each respirometer unit.
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A

Plate 2.1 Schematic representation of one respirometer unit.

A )  D u r a n  b o t t l e  ( 5 0 0 m l ) ;  B )  p l a s t i c  s c r e w  l i d  f i t t e d  w i t h  t w o  g l a s s  t u b e s ;  C )  a l k a l i  

v e s s e l  ( S t e r i l i n  p o l y s t y r e n e  b i j o u  t u b e )  r e s t i n g  o n  s a m p l e ;  D i )  1 1 0  m m  g l a s s  t u b e ,  

1 0  m m  a b o v e  l i d ,  7 5  m m  b e l o w  l i d ,  u n d e r  e l e c t r o l y t e  s u r f a c e ;  D i i )  5 0  m m  g l a s s  

t u b e ,  2 0  m m  a b o v e  l i d ,  p r o j e c t i n g  2 0  m m  o u t w a r d s ;  E )  p o l y p r o p y l e n e  Y - p i e c e ;  F )  

c o m p e n s a t o r  b o t t l e ;  G i , i i )  S u b a  S e a l  c a p s  t h r o u g h  w h i c h  t h e  e l e c t r o d e  w i r e s  a r e  

t h r e a d e d ;  H )  e l e c t r o l y s i s  c e l l  ( S t e r i l i n  p o l y s t y r e n e  t e s t  t u b e )  c o n t a i n i n g  a c i d i f i e d  

C u S 0 4  e l e c t r o l y t e ;  I )  c a t h o d e  o f  c o p p e r  w i r e ;  J )  a n o d e  o f  p l a t i n u m  w i r e ;  K )  s t r a w  

s a m p l e ;  L )  h o l e  i n  c e l l  c a p .
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2 . 5 . 2  E f f e c t  o f  t e m p e r a t u r e  a n d  a w  o n  f u n g a l  r e s p i r a t i o n

For each experiment 15-30 respirometer units were used, consisting of various 

moisture contents with three replicates of each. Each unit was placed in a water 

bath container that had specially designed clips to hold the bottles in place, once 

the water bath was filled. It was possible to use a constant temperature room for 

some of the experiments, such that the bottles were held in the clips without any 

need for water. Straw was modified to 0.75-0.98 aw by addition of known amounts 

of water calculated from the moisture sorption isotherm curves. The temperatures 

used to investigate the effect on respiration were 10-30°C with three replicates for 

each treatment and the experiments repeated twice. The experiments were run for 

14 days and solutions changed when necessary.

2 . 5 . 3  E n u m e r a t i o n  o f f u n g a l  s p e c i e s  f r o m  r e s p i r a t i o n  s t u d i e s

At the end of each experiment sub-samples of straw from each respirometer bottle 

were assessed for visible moulding and inoculated onto glycerol-adjusted media, 

the same aw as the test conditions, for determination of the range of mycofiora 

present using direct and dilution plating. The remainder of each sample was frozen 

at -40°C and sub-samples sent to SCRI for lignin and cellulose analysis. Details o f 

the methods used by SCRI are in Section 2.5.4.
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2 . 5 . 4  M a t e r i a l s  a n d  m e t h o d s  o f  w o r k  c a r r i e d  o u t  a t  S C R I  

Preparation of straw samples

Upon receipt, the cereal straw samples (100 g) were dried in an oven at 50°C 

before being milled in a hammer mill to pass a 1 mm screen.

Determination of lignin contents

The lignin content of all straw and stored straw samples was determined by the 

acetyl bromide method (Morrison, 1972 a,b) as modified by liyama and Wallis 

(1988). The milled straw samples, in triplicate, were dissolved in 25 % acetyl 

bromide in acetic acid (v/v) containing 4 % perchloric acid (70 % v/v) by heating 

at 70°C for 30 minutes. After diluting to a suitable volume with NaOH/acetic acid, 

the absorption of the solution was determined at 280 nm and the lignin content 

determined from known standards.

Determination of non-cellulosic polysaccharide (NCP) contents

Straw samples (100 g) were weighed into glass vials and heated with water at 

70°C for 30 minutes to dissolve the small amount of sugars arising from the cell 

contents. After centrifuging and drying, the samples were then heated with 2 M 

trifluoroacetic acid (TEA) at 121°C for 1 hour to hydrolyse the NCP to their 

constituent monosaccharide residues. After centrifuging, aliquots were removed 

and their carbohydrate content was determined by the phenol-sulphuric acid 

method (Dubois et al., 1956). The standard used was D-xylose, the predominant 

neutral sugar present in the NCP fraction of cereal straw. The cellulose component 

of the straw is not soluble in 2 M TFA.
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Infrared spectra

Infrared spectra of straw and treated straw samples were recorded on a Bruker 

IF66 infrared spectrometer using a Diffuse Reflectance Infrared Transftiission 

(DRIFT) cell (Graseby Specac UK Ltd). The spectra were recorded over the range 

4000-400 cm '1, 500 interferograms being recorded for each sample, and the data 

were processed by the vector normalisation procedure. All spectra were 

background subtracted using KBr as the background. Plate 2.2 showed the DRIFT 

spectroscope equipment used for analyses of the straw samples at SCRI.

The DRIFT cell, shown in Plate 2.3 allows fibres to be analysed without any prior 

preparation. The sample (100 g) is simply cut into reasonably small pieces then 

placed into the sample cup (C). The sample is then levelled of with a spatula and 

analysed directly. For samples as coarse as chopped fibres, the background is run 

against a sample cup filled with Potassium bromide (KBr), or even better, a small 

piece of fine grade sandpaper that has been sputter-coated with aluminium 

(Bruker, UK; Personal communication). The incident IR radiation from the laser 

(A) is focused by mirror (B) on to the sample cup (C). When this encounters the 

sample, the surface heterogeneity causes the unabsorbed, or reflected, radiation to 

be scattered. This is focused by the second curved mirror (D) and directed to the 

detector (not shown). Although the detected radiation can often be weak, the use 

of FT allows the accumulation of multiple scans, improving the quality of the 

resultant spectrum.
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Plate 2.2 The DRIFT spectroscope used for fibre analyses at SCRL
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P l a t e  2 . 3  T h e  D R I F T  c e l l  u s e d  b y  S C R I .
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2 . 5 . 5  M e a s u r e m e n t  o f  r e s p i r a t o r y  a c t i v i t y  o f  c o m p o n e n t  f u n g a l  s p e c i e s  o n  s t r a w

The respiratory activity of A.alternala, C.cladosporioides, F.culmorum, 

E.amstelodami and P.aurantiogriseum were compared by inoculation of 

autoclaved sterile straw modified to 0.80-0.98 aw over the temperature range 10- 

25°C using the respirometer system. Agar plugs (5 per bottle) were removed from 

the growing margins of colonies of each species after 7 days of growth, using a 

5mm diameter cork borer after the aw of the straw had equilibrated for 24 hours. 

The agar plugs were weighed to determine the quantity of mycelia present. The 

experiments were run for 14 days and solutions changed when necessary.

2 . 5 . 6  E l e c t r o l y s i s  u n i t s  f o r  m e a s u r i n g  o f  o x y g e n  c o n s u m p t i o n

For each respirometer cell, 100g CuSO4.5 H20 were dissolved in 160ml 1 M H2SO4 

at 75°C and about 9ml were distributed into each electrolysis cell when 

temperature was 60-70°C. When the electrolysis cell was assembled the platinum 

anode tip was positioned slightly above the electrolyte meniscus. The standard 

charge of electrolyte in each cell had the capacity to produce approximately 175ml 

oxygen (dry NTP) at 25°C.

2 . 5 . 7  C a r b o n  D i o x i d e  d e t e r m i n a t i o n

The carbon dioxide evolved during respiration was absorbed into 5ml aliquots of 

2M sodium hydroxide solution in the tubes placed on the straw surface. Each tube 

had the capacity to absorb 220ml carbon dioxide (NTP). Sodium hydroxide tubes 

were replaced with new solutions when the tubes became cloudy in appearance 

indicating saturation of carbon dioxide. Sodium hydroxide solutions were removed

58



from the tubes and made up to 50ml with distilled water in volumetric flasks. The 

solutions (10ml) were titrated with standardised 2M HCL dispensed from a 10ml 

automatic burette (BDH) while stirring. The volume of acid required to adjust the 

solution to pH 8.3 indicated by a colour change of purple-red to colourless by the 

indicator 0.5% w / v phenolphthalein (BDH) in 95% ethanol was recorded. The 

solution was then titrated to pH 4 using a drop of methyl orange indicator (BDH) 

which changed colour from green to blue-grey.

The volume of carbon dioxide absorbed by the NaOH was calculated using the 

formula: -

Vcoz (dry, STP)=(V2 -Vi-(C2 -Ci))x 22.44

where VCo2 = volume (ml) of dry carbon dioxide absorbed at STP

Vi = volume (ml) HCL to pH 8.3 (sample) 

V2 = volume (ml) HCL to pH 4 (sample) 

Ci = volume (ml) HCL to pH 8.3 (control) 

C2 = volume (ml) HCL to pH 4 (control)

2 . 5 . 8  D a t a  S a m p l i n g

When the respiratory system was set up the electronic control unit (ECU) was 

switched on to supply current to each respirometer unit. The current flow in 

electrolysis cells were measured by a four channel multiplexed ammeter inside 

ECU and recorded with a BBC master series microcomputer with dual disc drive
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and monitor. The software for the BBC disc filing system (DFS) contained three 

programs to run the data sampler and plot or print data files. The program floppy 

5V4” disc and an empty formatted 5V4” disc for data collection were inserted into 

the dual disc drives.

Histograms were displayed on the monitor screen which showed respiration 

characteristics of the units at any one time. Data was recorded every 60 minutes 

for 14 days. At a later date the system was modified so that an IBM computer 

could be used to record the data.

2.6 EFFECT OF aw AND TEMPERATURE ON FUNGAL SUCCESSION ON 

STRAW

To compliment the respiratory work, the effect of aw x temperature interactions on 

the fungal succession and dry matter loss on straw was monitored over a period o f 

6 months. The method consisted of weighing Ig samples of chopped straw into 

10ml glass bottles, three replicates per microbial analysis and three for dry matter 

loss determination for each removal date (2, 4 and 6 months).

The straw samples were modified in the range 0.85-0.98 aw and stored at the 

temperatures 10°C, 15°C and 25°C. The bottles were placed in plastic storage 

boxes (250x250mm) which contained 400ml of glycerol solution in glass beakers 

at the same aw as the treatment condition used to maintain the correct ERH. These 

boxes were sealed with plastic lids and stored in incubators at the target 

temperature. Glycerol solutions were changed at monthly intervals. Samples were 

analysed at 2, 4 and 6 month intervals for mycoflora, using direct and dilution
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plating techniques. Dry matter losses (DML) were determined by weighing 

samples before and after drying in an oven at 115°C for 24 hours, and calculating 

dry matter loss using the following formula:-

% DML=100 - (fDmatdavO - DM of sample) x 100)

(DMatdayO)

Thus, the mean dry matter of unincubated hydrated samples at day 0 was always 

100%.

2. 7  USE OF BIOCIDES TO CONTROL FUNGAL ACTIVITY ON STRAW

2 . 7 . 1  I n  v i t r o  s t u d i e s  o n  e f f i c a c y  o f  b i o c i d e s  o v e r  t h e  t e m p e r a t u r e  r a n g e  1 0 - 3 0 ° C  

o n  f u n g a l  a c t i v i t y

In vitro studies using various biocides concentrated on three main experimental 

areas, these were:-

1. Control of natural mycoflora using biocides

2. Efficacy of biocide for controlling spore germination

3. Efficacy of biocide against mycelial growth

2 . 7 . 2  C o n t r o l  o f  n a t u r a l  m y c o f l o r a  o f  s t r a w  u s i n g  b i o c i d e s

Direct plating (5 per plate) and serial washings of straw were inoculated onto 

biocide adjusted media, concentrations of 0.8-100ppm. All experiments were
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carried out with three replicates per treatment and incubated for 7 days over the 

temperature range 10-30°C.

2 . 7 . 3  E f f i c a c y  o f  b i o c i d e s  f o r  c o n t r o l l i n g  s p o r e  g e r m i n a t i o n

Stock spore suspensions of fungi (see Table 2.4) were obtained from plates by 

flooding with 20ml of sterile 0.1% agar diluent and the agar surfaces gently 

rubbed with a surface sterilised glass spreader. The spore concentration was 

assessed using a haemocytometer and diluted as required. Each inoculant was 

diluted in 0.1% peptone water to give 3xl05 spores ml"1.

The inoculant diluent (0.1ml) was spread-plated onto biocide (Table 2.5) adjusted 

2% MEA media (0.8-1000ppm) and 2% MEA. The plates were incubated for up to 

7 days at the temperature range 10-30°C and 3mm plugs removed with cork borer 

and stained with lactophenol/cotton blue, three per treatment. The plugs were 

examined under the microscope for spore germination after 24 hrs and daily for 7 

days. Germination was considered to have occurred when the germ tube was equal 

to the diameter of the spore.

2 . 7 . 4  B i o c i d e  e f f i c a c y  a g a i n s t  m y c e l i a l  g r o w t h  o f  f u n g i

Agar plugs were removed from the growing margins of colonies of each species 

used (see Table 2.4) using a 3mm diameter cork borer, except for Rhizomucor, 

Aspergillus and Pénicillium species. The plugs were placed in the centre of 

biocide adjusted agar plates (concentration 0.8-100ppm) and incubated for 7 days.

62



Table 2.5 The active ingredients of the biocides used in experiments.

Name Active ingredients

Busan 52 (Buckman laboratories) 32% Potassium N-hydroxymethyl-N- 

methyldithiocarbamate

Busan 881 (Buckman laboratories) 14.7% Disodium 

cyanodithioimidocarbonate

20.3% Potassium N- 

methyldithiocarbamate

Adesol 20 (Coalite Chemicals) 23% Dioclyldimethyl ammonium 

chloride

20% Ethane diol 

5% Ethanol

Lastil 40 (Coalite Chemicals) 33.3% 2,4,6-Trichlorophenol 

6.7% Sodium hydroxide
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For the Pénicillium, Aspergillus and Rhizomucor spp. spore suspensions were first 

prepared and using an inoculating loop with a diameter of 3mm the solutions were 

centrally inoculated onto the media. For each species three replicates were 

prepared. The colonies were measured in two directions at right angles to each 

other daily for 7 days. Growth rates were determined for each species for all 

treatments and biocides (see Table 2.5) over the temperature range 10-30°C.

2 . 7 . 5  C o n t r o l  o f  f u n g a l  r e s p i r a t o r y  a c t i v i t y  o n  s t r a w  u s i n g  b i o c i d e s

To compliment experiments on fungal respiratory activity on straw, the efficacy of 

certain biocides on controlling respiration were undertaken. The range of biocides 

tested in this experiment were determined on the basis of the results from in vitro 

studies using biocides. The biocides used were Busan 881 (8-1000ppm), Lastil 40 

(lOOppm) and Adesol 20 (lOOppm) modified to 0.95 or 0.98 aw.

Straw was modified to the target aw by the addition of water (for controls) or 

biocide and water mixtures to obtain target biocide concentrations. The solutions 

were sprayed onto the straw with a hand-held atomiser and allowed to equilibrate 

for 24 hours at 4°C. The respirometer was set up as described in Section 2.5.2 and 

run for 14 days at 25°C.
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2.8 FIELD EXPERIMENTS

2 . 8 . 1  E x p e r i m e n t  t o  d e t e r m i n e  e f f i c a c y  o f  v a r i o u s  b i o c i d e s  ( O c t o b e r  1 9 9 5 - M a r c h  

1 9 9 6 )  ( N S 2 )

All field experiments were carried out at Northern Straw’s storage site at Great 

Heck, North Humberside. Eight bales (500kg on average, dimensions 1.70x2.5m) 

of the same moisture content (12% wet weight) were used for this experiment 

(cv.Ribband).

Three biocides were tested based on laboratory studies, these were Busan 881 250 

ppm (Buckman Laboratories), Adesol 20 100 ppm (Buckman Laboratories) and 

Lastil 40 100 ppm (Coalite Chemicals). The control bales were sprayed with water 

only. Each bale was sprayed with 15L of the appropriate biocides solution on the 

top surface of the bale using a hand-pump spray, so that the final moisture content 

achieved was 16% (wet weight basis).

Bales were stacked three bales high, so that each treated bale was exposed to the 

environment and positioned next to the existing stack. Plate 2.4 showed the stack 

layout. Samples for microbial analysis were taken at monthly intervals from six 

areas of the bale. At the end of the 6 month period 1m cores from the top of the 

bale through to the middle were taken using a coring device (designed by SRI) on 

a motorised tractor for microbial analysis using direct and dilution plating. 

Samples were sent to SCRI for cellulose and lignin analysis.
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IF F

Plate 2.4 The stack layout of the preliminary field experiment.
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2 . 8 . 2  E f f i c a c y  o f  b i o c i d e  a p p l i c a t i o n  o n  r e - b a l i n g  o f  s t r a w  a t  v a r i o u s  m o i s t u r e  

c o n t e n t s  ( M a r c h  1 9 9 6 - A u g u s t  1 9 9 6 ) ( N S 3 )

A  more detailed experiment was subsequently carried out to determine the effect 

of biocide (Lastil 40, lOOppm) treatment of entire bales and surface treatments in 

bales of different moisture contents (14, 16, 20 and 24% wet weight basis). 

Initially bales had to be screened for the correct starting moisture content using a 

portable moisture content probe (Delmhurst). Readings were taken from six 

positions in the bale to determine the average moisture content. The starting 

moisture content used was 12% (wet weight basis) this was chosen as the straw is 

relatively dry and less likely to have microbial deterioration already occurring. In 

total 79 bales were used for this experiment.

Unless otherwise stated the water/biocide mixture (Lastil 40 lOOppm) was sprayed 

on the straw swath using a spray attachment located on a motorised tractor, then 

re-baled. Each bale was labelled, weighed and measured at the beginning and end 

of the experiment (average weight 500kg and 1.70x2.50m), to determine their 

densities and calculate any dry matter loss resulting from the storage conditions. 

Table 2.6 and Figure 2.1 showed the treatment procedure and stack plan. 

Thermocouples were inserted into each of the bales that were to be sampled after 

150 days of storage to measure changes in temperature of the stack. The data was 

recorded onto a logger that could then be transferred to a computer (Plate 2.5).

67



Table 2.6 Treatment of bales in stack

M oisture content % Bale number Treatm ent

12 1-9 No biocide

12 11-19 Top bale sprayed

16 21-29 No biocide

16 31-39 Biocide

20 41-49 No biocide

20 51-59 Biocide

24 61-69 No biocide

24 71-79 Biocide
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Moisture content

w Vp ox

1-3 21-23 41-43 61-63

4-6 24-26 44-46 64-66

7-9 27-29 47-49 67-69

17-19 37-39 57-59 77-79

14-16 34-36 54-56 74-76

11-13 31-33 51-53 71-73

Bales surrounding stack

Figure 2.1 Plan of stack layout
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Plate 2.5 Data logger used to record temperature of bales during storage.
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The whole stack was built on a layer of non treated bales, so that the stack was 

four bales high. Throughout the experiment rainfall quantity was measured and 

recorded daily. Samples were collected at 50, 100 and 150 day intervals, using a 

coring device (designed by SRI) on a motorised tractor. Samples were analysed for 

microbial content at Cranfield University, the moisture content at SRI, cellulose 

and lignin analysis at SCRI and samples for pulping sent to Compak Ltd, 

Gainsborough.

2 . 8 . 3  I n v e s t i g a t i o n  o f  v a r i o u s  t r e a t m e n t s  t o  i m p r o v e  s t r a w  q u a l i t y  d u r i n g  s t o r a g e  

( S e p t e m b e r  1 9 9 6 - F e b r u a r y  1 9 9 7 )  ( N S 4 )

A  more refined experiment was carried out based on the findings from the 

previous two field experiments. All of the straw baled was from a field containing 

only the Ribband cultivar (1996) so that the cultivar was not another variable 

when explaining results. Two moisture contents defined as dry and wet treatments 

15% and 23% respectively were used. All treatments were carried out prior to 

baling. Water or biocide mixture (Lastil 40, lOOOppm) was added to the 

appropriate bale swath using a spray nozzle attached to a motorised tractor, at 

either 5L for 15% or 10L for 23%. The same rate of application occurred for both 

treatments (5L per minute). The swaths were then baled and labelled and the bale 

size, weight and moisture content determined as in the previous experiment.

Nutri-Shield® was prepared according to manufacturers instructions. Nutri- 

Shield® ingredients are soy isolate, sodium carbonate, potassium sorbate and 

polyacrylamide and is manufactured by Nutri-Shield®, Inc. The Nutri-Shield® 

powder was added gradually to water in the mixing ratio lib of powder to 2

71



gallons of water and mixed thoroughly. The Nutri-Shield® once agitated 

thoroughly was allowed to stabilise for 4 hours and mixed just prior to application. 

For Nutri-Shield® treated straw bales, 5L of the solution was sprayed evenly on 

the top surface of each bale using the spray nozzle at the same application rate as 

used on the other biocide-treated bales.

Table 2.7 summarises the treatment procedures. Thermocouples were inserted into 

each of the bales that were to be sampled after 150 days of storage to measure 

changes in temperature of the stack. The data was recorded onto a logger that 

could then be transferred to a computer. The whole stack was built on a layer of 

non treated bales, so that the stack was four bales high. Throughout the 

experiment rainfall quantity was measured and recorded daily. Samples were 

collected at 150 day intervals, using a coring device (designed by SRI) on a 

motorised tractor. Wads of straw in nets (50 cm layer) were laid on to the top 

surface of bales 41-46. Chopped straw in nets (-10 cm pieces in a 50 cm layer) 

were laid on to the top surface of bales 51-56. Samples were analysed for 

microbial content at Cranfield University, the moisture content at SRI, cellulose 

and lignin analysis at SCRI and samples for pulping sent to Compak Ltd, 

Gainsborough. All results were statistically analysed.
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Table 2.7 Bale treatments

M oisture content % Bale number Treatm ent

15 1-3 Control-water

23 4-6 Control-water

15 11-13 Biocide onto stack

23 14-16 Biocide onto stack

15 21-23 Biocide into straw nets

23 24-26 Biocides into swath

15 31-33 Nutri-Shield®

23 34-36 Nutri-Shield®

15 41-43 Wads of straw in nets

23 44-46 Wads of straw in nets

15 51-53 Chopped straw in nets

23 54-56 Chopped straw in nets
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CHAPTER 3 

RESULTS
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3.1 DETERMINATION OF THE MYCOFLORA OF WHEAT STRAW

Initially an experiment was carried out to determine the length of straw to use for 

direct plating and isolation frequency of different fungi. Figure 3.1 demonstrates 

the effect different lengths of wheat straw had on isolation of species numbers. As 

the length was increased from 1mm to 15mm the number of different species and 

colony forming units increased (Figure 3.1). It was decided that 10mm lengths 

would be used in all further experiments because a wide range of species 

developed and could be enumerated relatively easily, without significant 

overgrowth. In addition 10mm lengths showed less variation in species numbers 

than the other lengths.

Table 3.1 showed that the same species were isolated from the two cultivars 

Beaver and Ribband. However, the dominance of individual species varied 

between the two cultivars.

The isolation of different fungi from washed and unwashed straw is shown in 

Figure 3.2 When samples of straw were washed prior to direct plating, a larger 

isolation frequency was obtained for fungi such as Aureobasidium pullulans and 

Fusarium culmorum than from unwashed samples. By contrast, Cladosporium 

ciadosporioides was isolated from a greater proportion of unwashed samples. The 

same trends were observed at all temperatures investigated (10°C, 15°C, 20°C, 

25°C and 30°C).
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H number of
species

1mm 3mm 10mm 15mm

Length (mm)

Figure 3.1 The effect different lengths of wheat straw have on growth of species 

(cv.Ribband).
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Table 3.1 Comparison between the total population of fungi (xlO2 CFU g"1 straw) 

versus direct plating (mean percentage colonisation) on MEA media incubated at 

25°C.

cv.

Beaver, 1994

cv.

R ibband ,1994

Species xlO2 CFU 

g"1 straw

Mean

percentage

colonisation

xlO2 CFU 

g"1 straw

Mean

percentage

colonisation

E.nigrum 1 33.33 1 80

C. cladosporioides 30 33.33 20 26.66

F.culmorum 30 20 20 20

A.alternata 15 53.33 75 73.33
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Figure 3.2 The effect washed and unwashed pieces of straw have on fungal 

isolation when incubated at 10°C on MEA (cv.Ribband).
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Figure 3.3 showed that Cladosporiwn and Fusarium species were present 

externally on a greater percentage of straw segments than the internal surface 

when direct plated. There was low level isolation of Sporobolomyces roseus from 

the external surface and the yeast cells were surprisingly present to a greater 

extent on the internal structure.

3 . 1 . 2  E ffe c t o f t e m p é r a t u r e ,  a w  a n d  p H  o n  i s o l a t i o n  o f  d o m i n a n t  f u n g i  f r o m  

s t r a w

Figure 3.4 demonstrates the effect of temperature on isolation of the dominant 

species on MEA media. As the temperature was increased from 10°C to 30°C the 

number of different species changed. The isolated species varied with 

temperature, e.g. at 30°C, Aspergillus species were present, whereas at the lower 

temperatures these species were not isolated at all. Maximum isolation 

frequencies for F.culmorum and A.pullulans were at 30°C and 15-30°C 

respectively. This demonstrates that colonisation of straw by different species may 

be temperature dependant.
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Figure 3.3 The difference between the predominant internal and external 

mycoflora of wheat straw (cv.Ribband).
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Figure 3.4 The effect of tem perature on isolation of fungi from wheat straw  

after 7 days incubation on MEA (cv.Ribband).
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Figure 3.5 demonstrates the effect of plating straw segments on a range of aw- 

modifled media on genera and species isolated from wheat straw. At 0.75 and 0.80 

aw, A.flavus was the dominant species with a smaller proportion of colonisation 

(13.33% and 20% respectively) by Eurotium spp. However, at 0.85 aw

E.amstelodami became dominant and A.flavus was not isolated. These results 

show that as the aw was increased, the range of species and frequency of isolation 

changed. At 0.95 aw the greatest range of species were present and the dominant 

species at 0.75-0.90 aw were replaced by a different range of fungi. The results 

show that aw is an important environmental factor which may influence 

colonisation and deterioration of straw.

The effect of different medium pH on isolation of fungi from straw at 25°C is 

shown in Figure 3.6 The types of species varied with pH; at 4.6 and 4.8 

P.aurantiogriseum was present, whereas it was not isolated at the other pH levels 

examined. However, A.alternata was present at all pH levels tested (4.4-6.4).

The mean percentage isolation varied markedly with pH. For example, the 

mycelial yeast A.pullulans was isolated from 40% of straw at pH 6.2 but only 20% 

at pH 6.4. Therefore the degree of isolation and type of species colonising the 

straw may also be pH dependent. The experiments were repeated at 10°C, 15°C, 

20°C and 30°C, with similar trends being observed. The exception was that at 

30°C there were more thermotolerant species, such as A.fumigatus, Absidia spp. 

and A.flavus present. The overall mean isolation levels increased from 10°C to 

30°C, with very little growth occurring at 10°C, and the maximum at 25°C.
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Figure 3.5 The effect of a range of aw levels on fungal isolation from straw 

segments at 25°C (cv.Ribband).
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3 . L 3  I n  v i t r o  s t u d i e s  o n  e ffe c t o f t e m p e r a t u r e ,  a w  a n d  p H  o n  g r o w t h  o f  d o m i n a n t  

s p e c i e s

Table 3.2 showed the effect of temperature and aw on the radial growth of 

dominant fungi on 0.95 aw-adjusted media incubated at 25°C. The species 

F.culmorum, R.pusillus and T.harzianum achieved maximum growth of 84mm 

over the 7 day period indicating that the environmental conditions were conducive 

for these species. All species grew under these conditions.

Table 3.3 demonstrates the effect of temperature, aw and pH on growth of the 

dominant fungi. For each fungus as the aw increased, the rate of radial growth 

increased slightly. The same trend was seen for the other temperatures 

investigated.

3 . 1 . 4  D e t e r m i n a t i o n  o f  m o i s t u r e  c o n t e n t ,  a w  a n d  a d s o r p t i o n  i s o t h e r m s

Table 3.4 showed the relationship between aw and moisture content of straw. This 

showed that as temperature increased the moisture content, at a given aw 

decreased. Whereas moisture content increased with aw, this trend was seen for all 

of the temperatures. The relationship between known amounts of added water and 

the aw of wheat straw cv. Beaver, 1994, is shown in Figure 3.7. This showed that 

as the aw increased the volume of water to be added increased at a given 

temperature. As the temperature decreased from 30°C to 10°C the volume of water 

to be added increased at any set aw. Consequently adsorption of water at 30°C was 

greater than at the lower temperatures, therefore less water needed to be added to 

achieve the same aw due to the hysterisis effect.
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Table 3.2 The radial growth of fungi inoculated onto 0.95 aw-adjusted media and 

incubated at 25°C

Radial Growth (mm)

Species Day Day Day Day Day Day Day

1 2 3 4 5 6 7

A.alternata 11 19 26 33 37 40 45

A.pullulans 9 13 22 26 28 34 37

C. cladosporioides 8 9 10 11 11 13 14

E.amstelodami 3 4 7 10 12 13 15

E.nigrum 9.5 18 25 34 40 46 52

F.culmorum 13 33 53 77 84 84 84

R.pusillus 9 19 33 59 77 84 84

P. aurantiogriseum 4 8 15 21 26 31 37

P. hordei 4 5 9 10 13 16 20

S. r os eus 7 9 10 11 12 13 13

T . harzianum 15 33 57 84 84 84 84
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Table 3.3 The effect of pH (4.4), aw (0.90, 0.95) and temperature (10°C) 

interactions on the growth rate of dominant fungi

Growth ra te  (mm day'1)

Species 0.90 aw 0.95 aw

A.alternata 1.3 1.7

A.pullulans 2.5 3

C. cladosporioides 1.3 1.8

F.culmorum 4.0 4.5
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Table 3.4 Mean moisture contents at different aw at various temperatures for 

wheat straw, cv. Beaver, 1994.

aw M oisture Content 

(percentage wet basis)

10°C 15°C 25°C 30°C

0.75 13 11.65 10.89 9.9

0.80 13.70 12.33 11.45 10

0.85 14.28 14.79 12.19 10.43

0.90 17.08 16.50 13 10.61

0.95 17.30 17.27 14.42 13.59
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3.2 EFFECT OF ENVIRONMENTAL FACTORS ON FUNGAL 

RESPIRATION ON WHEAT STRAW

3.2.1 Temperature x  aw interactions on funga l respiration on straw

The temperatures investigated were 10°C, 15°C, 20°C, 25°C and 30°C over the aw 

range 0.75-0.98. The data all represent means of three replicates, with the 

experiments repeated once.

Figure 3.8 showed the temporal changes in the respiratory activity of natural 

fungal populations at different steady-state temperatures. This demonstrates that 

there was a steady increase in respiratory activity as the temperature was 

increased. At the highest temperature investigated (30°C) there was almost a linear 

increase, whereas at the lowest temperature (10°C) a lag time occurred prior to 

fungal respiratory activity. This showed that fungal colonisation of the straw was 

significantly {P <0.05) influenced by temperature alone and may be an important 

environmental factor affecting fungal activity.

Figure 3.9 demonstrates that the same trends occurred in relation to aw. At high aw 

(0.95) the oxygen consumption values for each temperature was almost 50% 

greater than at the corresponding temperatures at low aw (0.75). This showed that 

fungal activity and colonisation of wheat straw was significantly (P <0.05) 

influenced by aw alone.
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Figure 3.10 showed there was a steady increase in respiratory activity as aw was 

increased over a period of time at 25°C. The respiratory activity at 0.98 aw was 

almost three times that at 0.75 aw. At all of the aw levels up to 24 hours there was 

little respiratory activity and a lag phase could be clearly seen.

Figure 3.11 showed that as temperature was modified from 10-30°C at different 

steady-state water activity there was a change in respiratory activity of fungi on 

the straw. Generally the respiratory activity increased with temperature and water 

content. This showed that temperature x aw interactions are important factors 

influencing fungal colonisation and respiration.

3 . 2 . 2  E n u m é r a t i o n  o f f u n g a l  s p e c i e s  f r o m  r e s p i r a t i o n  s t u d i e s

At the end of each respirometer experiment sub-samples of straw were removed 

from respirometer bottles and the microbial population enumerated. Fungal 

populations varied with varying aw. E.amstelodami was isolated over the widest aw 

range (0.75-0.90) when compared to the other species (Table 3.5).

Table 3.6 showed at high water availability (0.98 aw) the Aspergillus species; 

A.flavus, A.niger, A.fumigatus and Absidia species, were only present at the 

highest temperature tested, 30°C, showing that they were thermotolerant.

F.culmorum was the only species present over the whole temperature range, which 

indicates a wide adaptability to the environmental conditions. Three species 

{F.culmorum, A.pullulans and C.cladosporioides) were isolated at the lowest 

temperature of 10°C. Surprisingly the optimum colonisation of C.cladosporioides 

was at 10°C and not at 25°C.
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Table 3.5 The mean percentage dominant species isolated a t different aw from 

straw at 25°C after 14 day experimental period.

Mean percentage colonisation

Species 0.75 0.80 0.85 0.90 0.95 0.98

A.flavus 0 83 0 0 0 0

E.amstelodami 50 17 100 60 0 0

P.hordei 50 0 0 40 67 0

E.nigrum 0 0 0 0 16 20

F. culmorum 0 0 0 0 16 20

A.alternata 0 0 0 0 0 60
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Table 3.6 Fungal species isolated from straw after 14 day respiratory experiment 

a t 0.98 aw and 10-30°C.

Mean Percentage Colonisation

Species 10°C 15°C 20°C 25°C 30 C

A.flavus 0 0 0 0 6.66

E.amstelodami 0 0 0 0 0

P.hordei 0 13 0.80 0 0

E. nigrum 0 15 21 20 0.30

F.culmorum 31.30 20 12.50 20 32.30

A.pullulans 12.50 15 0.40 0 0

C. cladosporioides 56.30 36 21 20 13

A.niger 0 0 0 0 0.30

A.fumigatus 0 0 0 0 0.90

Absidia spp. 0 0 0 0 22.50

A.alternata 0 0 33.33 60 0.30
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3 . 2 . 3  D r y  m a t t e r  l o s s  d e t e r m i n a t i o n

The formula used to calculate % DML from oxygen consumption data, assuming 

RQ = 1.0  was as follows

% DML = R x S x T x U

Where: R = 1 0 2 or C 02/Kg dry straw

S = 44/22.44 (conversion from volume C 0 2 to mass 0 2)

T= 0.682 (relates to mass C 02 produced to mass carbohydrate utilised; Ig for 

0.682g respectively (Rees, 1982))

U = 100/1000 (0.1) to convert weight of DML to percentage DML

Table 3.7 showed there was a correlation between temperature and aw interactions 

in relation to DML at 25°C and 30°C. As aw was increased the calculated DML 

also increased. Under high aw conditions (0.90-0.98) as the temperature increased 

from 10-30°C the amount of DML increased; however, this trend was not seen for 

the other aw levels tested. Except for straw adjusted to 0.75 aw the maximum dry 

matter loss occurred when straw was stored at 30°C over the 14 day experimental 

period. This correlated with changes in lignin content observed by SCRI (results 

not shown).
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Table 3.7 The effect of aw and temperature on calculated dry m atter loss (DML) 

in wheat straw after 14 days incubation.

aw Mean DML (%)

Tem perature (°C)

10 15 20 25 30

0.75 0.35 0.49 0.60 0.32 0.33

0.80 0.18 0.50 0.61 0.39 0.66

0.85 0.19 0.36 0.66 0.49 1.47

0.90 0.31 0.44 0.48 0.56 2.59

0.95 0.33 0.38 0.73 0.74 3.39

0.98 0.35 0.36 0.80 0.81 3.40
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At the end of each experiment analysis of lignin and non-cellulosic polysaccharide 

(NCP) contents of the straw samples were assessed at SCRI. Only the results of 

the lignin determinations and the DRIFT spectra are presented. The lignin results 

are the mean of three replicates and each replicate was analysed in triplicate.

Figure 3.12 showed that at 10°C there was no significant change (P >0.06) in 

lignin content irrespective of aw, while, at 15°C, there appeared to be a slight 

reduction at low levels of aw which increased as the aw increased. The greatest 

increase was observed on storage at 20°C when the apparent lignin content rose 

with increasing aw and, once 0.90 aw had been reached, remained at 140 % of the 

starting value. This indicated significant loss of the carbohydrate components, 

assuming no loss of true lignin. The results for 25°C and 30°C were less clear. At 

the lower aw levels there was an increase in apparent lignin content but they were 

not as high as at 20°C

The DRIFT spectra shown in Figure 3.13 confirmed that degradation of 

carbohydrate was occurring. This was particularly evident when a comparison was 

made of the absorbances in the region 1050-1150 cm '1 . Absorbances which were 

discrete in the untreated straw were either lost or become less discrete in the 

stored sample.
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3.2.4 Measurement o f respiratory activity o f component fungal species on straw

The total respiratory activity of fungal species on straw in the controlled 

environment studies was recorded as cumulative oxygen consumption. The effect 

of individual fungal species on respiration is an important aspect that needs to be 

considered. The activity of each species in causing deterioration of the straw was 

evaluated so that the most important species could be identified.

Figure 3.14 showed that F.culmorum had the greatest temporal cumulative oxygen 

consumption when grown in pure culture on sterile straw. Under the same 

conditions C.cladosporioides had the lowest oxygen consumption. This 

demonstrated that each species had relatively different respiration rates and that 

interactions with other species may influence the overall respiratory activity.

Figure 3.15 clearly demonstrated the relationship between temperature and fungal 

respiration. Each of the species increased their oxygen consumption at 25°C when 

compared to that at 10°C. F.culmorum nearly doubled its oxygen consumption at 

25°C when compared to storage at 10°C. This emphasises that temperature 

influences the respiration of individual fungal species and is an important 

environmental factor, which influences deterioration of straw. Table 3.8 showed 

that for each of the species studied, as the aw increased the cumulative oxygen 

consumption increased. Table 3.9 showed that each individual species cause 

different DML on straw. Generally, as aw increased the DML increased. The same 

trend was seen at the other temperatures investigated. F.culmorum caused the 

greatest DML of straw when compared to the other species.

103



Cu
m

ul
at

iv
e 

ox
yg

en
 

co
ns

um
pt

io
n 

(m
l 

K
g'

1 s
tr

aw
)

700000 t

600000

500000

C. cladosporioides 
- a — A. alternata 

E. amstelodami 
—x— F. culmorum 
— P. aurantiogriseum

400000

300000

200000

100000

Time (hours)

Figure 3.14 The effect of aw (0.85) and temperature (10°C) on respiration of 

individual fungal species.

104



Cu
m

ul
at

iv
e 

ox
yg

en
 

co
ns

um
pt

io
n 

(m
l 

K
g"

1 s
tr

aw
)

900000

800000

700000

600000 -

500000 -

400000

300000 +

200000

100000

C. cladosporioides 
“S - A  alternata 

E. amstelodami 
-x— F. culmorum

P. aurantiogriseum

Time (hours)

Figure 3.15 The effect of aw (0.85) and temperature (25°C) on respiration of 

individual fungal species.

105



Table 3.8 The cumulative oxygen consumption of individual species on wheat 

straw after 14 days of storage at 25°C under various aw conditions

Species Mean cumulative oxygen consumption 

(ml Kg"1 straw)

aw

0.85 0.95 0.98

C  cladosporioides 1210760 1557721.50 1610025

A.alternata 1001753.50 1448095.50 1450045

E.amstelodami 1214519.50 1334042.50 1385000

F.culmorum 1773968 1577171.50 1665000

P. aurantiogriseum 1134066.50 1455806.50 1551000
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Table 3.9 The effect of individual species on DML in wheat straw after 14 days 

incubation at 25°C.

Species Mean DML (%)

aw

0.85 0.95 0.98

C. cladosporioides 8.09 10.41 10.76

A.alternata 6.69 9.68 9.69

E.amstelodami. 8.11 8.91 9.26

F.culmorum 11.85 10.54 11.93

P. aurantiogriseum 7.75 9.73 10.37
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3.3 EFFECT OF aw AND TEMPERATURE ON FUNGAL SUCCESSION ON 

STRAW

Storage experiments over periods of 2, 4 and 6 months were undertaken to 

determine the succession of fungi on straw and the effect of interaction of aw and 

temperature on dry matter losses.

The general trend was shown in Table 3.10 Total fungal populations at all 

temperatures during the storage period were increased and there was an increase 

in the total CFU g'1 straw, regardless of aw.

Table 3.11 shows that P.aurantiogrisenm was the dominant species at all aw levels 

during storage at 10°C for 2, 4 and 6 months. S.roseus was isolated from 20% of 

the straw segments after 2 months at 0.85 aw, but P.aurantiogrisenm was dominant 

after 4 months. After 6 months storage S.roseus was isolated from 20% of straw 

segments, but only at 0.85 aw.

Table 3.12 showed that at 15°C P.aurantiogrisenm also predominated over the 

storage period at all aw levels investigated. In addition, E.nigrum was isolated after 

2 months and 6 months at 0.98 and 0.90 aw respectively. This species was not 

present at 10°C. After 6 months T.harzianum was also isolated at 0.95 and 0.98 aw.
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Table 3.10 The effect of the interaction between temperature, aw and storage 

period on total fungal populations (x 102 CPU g"1 straw)

aw Mean Total CPU g-1 straw  (x 102)

10°C 15°C 25°C

2

mths

4

mths

6

mths

2

mths

4

mths

6

mths

2

mths

4

mths

6

mths

0.85 3 20 23 50 50 50 >100 75 79

0.90 50 25 50 70 >100 >100 >100 >100 >100

0.95 75 >100 >100 75 >100 >100 >100 >100 >100

0.98 75 25 81 >100 50 >100 >100 97 >100
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Table 3.11 The mean percentage isolation of species over a range of aw levels from

straw segments stored at 10°C.

Species Mean percentage isolation

10°C, 2 months 10°C, 4 months 10°C, 6 months

0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98

Pénicillium

aurantiogriseum

80 100 100 100 100 73.3 100 46.6 65 100 75 75

S.roseus 20 0 0 0 0 0 0 0 20 0 0 0

T.harzianum 0 0 0 0 0 0 0 0 15 0 0 0

P.hordei 0 0 0 0 0 0 0 0 0 0 25 25
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Table 3.12 The mean percentage isolation of species over a range of aw levels from

straw segments stored at 15°C.

Species Mean percentage isolation

15°C, 2 months 15°C, 4 months 15°C, 6 months

0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98

Pénicillium

aurantiogriseum

100 100 100 71 100 100 100 100 100 71 68 83

E.nigrum 0 0 0 29 0 0 0 0 0 29 0 0

T.harzianum 0 0 0 0 0 0 0 0 0 0 18 17

P. horde i 0 0 0 0 0 0 0 0 0 0 14 0
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Table 3.13 showed that P.aurantiogriseum was still the dominant species over the 

storage period except at 0.85 aw after 2 months, when P.aurantiogriseum was not 

present and after 4 months at 0.95 aw when E.nigrum was as frequently isolated. 

E.amstelodami was isolated for the first time and was dominant at 0.85 aw after 2 

months of storage. The three Tables together (3.11, 3.12, 3.13) demonstrate the 

effect of temperature on fungal succession of straw; as storage temperature 

increased the number of different species increased. This trend was observed at 

each aw investigated.

The general trend observed from Table 3.14 was that for each of the temperatures 

as the aw increased the percentage DML increased over the storage period.

3.4 USE OF BIOCIDES TO CONTROL FUNGAL ACTIVITY ON STRAW

3 . 4 . 1  I n  v i t r o  s t u d i e s  o n  e f f i c a c y  o f  b i o c i d e s  o v e r  t h e  t e m p e r a t u r e  r a n g e  1 0 - 3 0 ° C  

o n  f u n g a l  a c t i v i t y

The biocides (Table 2.5) were incorporated into MEA media for in vitro studies on 

the efficacy against the fungi colonising straw over the temperature range 10- 

30°C.

3 . 4 . 2  C o n t r o l  o f  n a t u r a l  m y  c o f l o r a  o f  s t r a w  u s i n g  b i o c i d e s

All of the biocides investigated reduced fungal isolation when compared to the 

control, regardless of concentration. For each of the biocides at 100 ppm total 

inhibition of fungal growth was achieved at each of the temperatures investigated.
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Table 3.13 The mean percentage isolation of species over a range of aw levels from

straw segments stored at 25°C.

Species Mean percentage isolation

25°C, 2 months 25°C, 4 months 25°C, 6 months

0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98

Pénicillium

aurantiogriseum

0 100 58 54 71 56 50 46 63 47 63 65

E.amstelodami 79 0 0 0 0 0 0 0 0 0 0 0

R.pus Ulus 21 0 0 0 29 0 0 0 0 0 0 0

E.nigrum 0 0 23 46 0 44 50 18 37 25 37 35

Cladosporium 

cladosporio ides

0 0 19 0 0 0 0 0 0 0 0 0

A.niger 0 0 0 0 0 0 0 36 0 28 0 0
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Table 3.14 The calculated dry m atter loss after a range of storage periods at a 

range of different temperatures and w ater availability’s.

Mean percentage DML ( g 1 straw)

Temp.

°C

2 months 4 months 6 months

0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98 0.85 0.90 0.95 0.98

10 15 25 28 31 24 24 26 26 20 21 24 42

15 17 22 24 46 22 38 17 40 19 46 38 45

25 16 19 32 35 21 25 28 29 18 21 25 24
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Table 3.15 showed the effect of the interaction between biocide concentration and 

temperature. The table showed the efficacy of Busan 881 at various 

concentrations. Complete inhibition of fungal growth occurred at 100 ppm 

concentration regardless of temperature. Generally, as temperature was increased 

the percentage isolation of fungi increased, this occurred for all concentrations. 

The fungi isolated decreased with increasing biocide concentration, therefore 

fungal colonisation and growth was affected by concentration. The same trend was 

seen for the other biocides investigated. Although results not shown, Lastil 40 had 

a greater efficacy in inhibiting fungal isolation at all concentrations.

3 . 4 . 3  E f f i c a c y  o f  b i o c i d e s  o n  c o n t r o l l i n g  s p o r e  g e r m i n a t i o n

Each of the biocides incorporated into the media, regardless of concentration, was 

unable to prevent germination of spores. Each of the species had 100% spore 

germination on the control media, and 100% germination on the biocide-adjusted 

media. Concentration of biocide did not affect the amount of germination at all 

temperatures investigated.

3 . 4 . 4  B i o c i d e  e f f i c a c y  a g a i n s t  m y c e l i a l  g r o w t h  o f  f u n g i

Growth of the fungi was determined by measuring the radius of the colony and 

from this data the growth rates were calculated from the gradient of the lines, 

measured in mm day'1. The growth of fungi on biocide-adjusted media were 

compared to the untreated controls.
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Table 3.15 Mean percentage isolation of fungi from straw segments on Busan 

881-adjusted media at various temperatures incubated for 7 days.

Concentration

(ppm)

Mean percentage isolation

10°C 15°C 25 C 30 C

0.8 40 60 80 100

8 40 40 60 80

80 20 20 20 40

100 0 0 0 0

Control 80 100 100 100
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Figure 3.16 shows that growth was significantly reduced when fungi were grown 

on media containing Busan 881 (8 ppm), However, it was less effective at 

controlling T.harzianum and M .pm Ulus, their radial growth was reduced by 50 %.

Figure 3.17 demonstrates the effect of 0.8 ppm Busan 881 on growth of E.nigrum 

when compared to growth on MEA at 25°C. Generally growth was reduced by 

50% by the biocide. The inhibition occurred throughout the 7 day growth period.

The general trend for all species is shown in Figure 3.18. As the biocide 

concentration was increased, the radial growth rate for each species decreased. All 

of the biocide concentrations were effective at controlling radial growth when 

compared to the control (MEA). Busan 881 was least effective at controlling the 

growth rate of T.harzianum and M. pus Ulus.

3 . 4 . 5  C o n t r o l  o f  f u n g a l  r e s p i r a t o r y  a c t i v i t y  o n  s t r a w  u s i n g  b i o c i d e s

The effect of various concentrations of Busan 881 on respiratory activity on straw 

is shown in Figure 3.19. This demonstrates that over the storage period Busan 881 

at 80 ppm concentration offered the most effective control of fungal activity. After 

168 hours of storage, Busan 881 (80 ppm) inhibited fungal respiration from 7500 

ml Kg'1 of straw (control) to 3100 ml Kg"1 of straw. The efficiency of the biocide 

increased over time for each of the concentrations. However, the storage period 

was limited to only seven days.
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Figure 3.17 Comparison of the effect of Busan 881 (0.8 ppm) on growth of E. 

nigrum at 25°C when compared to untreated control.
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Figure 3.18 Comparison of the effect of various concentrations of biocides on 

growth rates of fungi (mm day"1) at 15°C.
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Figure 3.20 shows that at 0.98 aw fungal respiration was dramatically increased on 

the untreated control straw, over 50% compared to fungal respiration at 0.95 aw 

(Figure 3.19), indicating that respiratory activity is influenced by aw. The efficacy 

of Busan 881 was slightly diminished with the increase in aw, it was more 

effective at 0.95 aw than at 0.98 aw, therefore the biocide efficacy was aw 

dependant.

The efficacy of a range of different biocides at various concentrations on 

controlling fungal respiration on straw is shown in Figure 3.21. All of the biocides 

controlled fungal respiration. The most effective biocide was Lastil 40 at a 

concentration of 100 ppm, which decreased fungal respiration by 66% when 

compared to the control straw. Increasing the concentration of Busan 881 did not 

increase the efficacy in controlling fungal respiration, which was unexpected.

Table 3.16 showed the dry matter losses during storage. All of the biocides 

reduced the DML when compared to the control at both aws. Straw treated with 

Lastil 40 was the most effective treatment for reducing DML.
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Figure 3.20 The effect of Busan 881 at various concentrations on fungal 

respiration on wheat straw adjusted to 0.98 aw after 7 days of storage at 25°C 
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Figure 3.21 The effect of various biocides on fungal respiration on wheat straw 

adjusted to 0.98 aw after 7 days of storage at 25°C (cv.Ribband).
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Table 3.16 The effect of aw and biocide treatment on calculated DML in wheat 

straw after 14 days incubation.

Treatment DML (%)

aw

0.95 0.98

Control 0.74 0.81

Busan 881, 250 ppm 0.32 0.39

Busan 881, 500 ppm 0.37 0.43

Busan 881,1000 ppm 0.41 0.47

Lastil 40,100 ppm 0.26 0.33

Adesol 20,100 ppm 0.50 0.57
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3.5 FIELD EXPERIMENTS

3 . 5 . 1  E x p e r i m e n t  t o  d e t e r m i n e  e f f i c a c y  o f  v a r i o u s  b i o c i d e s  ( O c t o b e r  1 9 9 5 - M a r c h  

1 9 9 6 )  ( N S 2 )

Three biocides which were found to be effective in laboratory studies were tested 

on whole bales. The biocides were Adesol 20 (100 ppm, Buckman Labs), Busan 

881 (250 ppm, Buckman Labs) and Lastil 40 (100 ppm. Coalite Chemicals). Water 

was sprayed onto the surface of the control bales. Samples were taken at monthly 

intervals and the fungal populations evaluated from six areas within the bale as 

described previously in Section 2.8.1.

Table 3.17 showed that the mean fungal total population varies depending on the 

area that was sampled. This demonstrates the importance of sampling in a similar 

location at each sampling time. Generally, all the biocides tested reduced the 

mean total fungal populations isolated from treated straw when compared to 

untreated controls. However, the efficacy of the biocides varied. Straw treated 

with Lastil 40 had lower total fungal populations when compared to the control 

regardless of sampling location. Lastil 40 generally had the greatest efficacy when 

compared to the other biocide treatments. An exception to this observation was 

samples from the front left which were treated with Adesol 20. The straw had 46 x 

102 CPU g"1 straw, less than straw treated with Lastil 40. However, 25 % of the 

colonies isolated from straw treated with Adesol 20 were A.fumigatus which is a
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Table 3.17 The effect of sampling location and efficacy of biocides on mean total 

fungal population of straw bales after 180 days of storage.

Treatment Mean total fungal population (x 102 CFU g"1 straw)

Front

right

Back

right

Front

left

Back left Middle Side of 

bale

Control >100 >100 >100 76 77 76

Adesol 20 75 64 46 >100 >100 32

Busan 881 >100 83 78 >100 29 87

Lastil 40 67 79 52 75 75 52
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respiratory allergen and poses a health risk to people who inhale these spores 

compared to only 2 x 102 CPU g"1 straw from that treated with Pastil 40. 

Consequently, although Adesol 20-treated straw in this instance resulted in lower 

fungal populations than Pastil 40-treated straw, the predominant species could 

cause serious health problems to people coming into contact with the straw.

Figure 3.22 shows that each of the biocides controlled microbial growth compared 

to the control. The dominant species isolated from the control samples were 

A.fumigatus (50 x 102 CPU g'1 straw) and F.culmorum (50 x 102 CPU g"1 straw). 

All of the biocide-treated straw had significantly less {P <0.05) A.fumigatus 

populations with Adesol 20 and Pastil 40 treatments having means of 102 CPU g"1 

straw and Busan 881-treated straw having no A.fumigatus present. The figure 

showed that Adesol 20 had the lowest fungal populations. However, 42 % of the 

total were T.harzianum which is a cellulose degrading fungus which may affect 

the straw structure. Straw treated with Pastil 40 did not have any of this species 

present. Therefore, although it had higher fungal populations than Adesol 20- 

treated straw it appeared to have more potential as a treatment for conserving 

straw quality.

The mean total fungal populations in core samples were lowest from that treated 

with Pastil 40, when compared to the control and other biocide treatments (Figure 

3.23). In the Pastil 40 treated straw E.amstelodami was the dominant spoilage 

fungus present.
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Figure 3.22 The effect of biocides on fungal populations isolated from the edge 

samples from the top bales of straw after 180 days storage.
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Figure 3.23 The effect of biocides on fungal populations isolated from the core 

samples from the top bales of straw after 180 days storage.
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Table 3.18 showed that both control bales were not significantly different with 

regards to NCP content. However, balel had a slightly higher lignin content. 

Storage for six months did produce changes regardless of treatment. Comparison 

of the core (A) of the control bale 1 and the corresponding edge of the bale (B) 

showed that there was a change in lignin and NCP content from 20.6 and 33.0 % 

to 24.7 and 16.9 %, respectively. For bale 2, storage was accompanied by an 

apparent increase and decrease in lignin and NCP contents respectively, although 

neither change was statistically significant.

Treatment with Adesol 20 resulted in no significant changes in the lignin content 

of the inner or outer bale samples. However, both experienced a reduction in NCP 

content to 18 and 17.2 %, respectively. Treatment of bale 1 with Adesol 20 

produced a reduction in the NCP content in the outer area of the bale (F) to 16.5 % 

with no change in the NCP content of the inner bale (E) or in the lignin content of 

either the inner or outer bale. Treatment with Lastil 40 only produced small but 

significant reductions in NCP to 23.5 % and 26.6 %. The lignin contents did not 

change significantly. After treatment with Busan 881, the lignin and NCP contents 

of balel samples decreased to 15.2 and 26.4 % respectively. Treatment of both 

bales with Busan 881 for six months inhibited NCP degradation and resulted in 

samples (N and P) with compositions approaching that of the control samples. 

Based on the chemical data these experiment indicated that Lastil 40 and Busan 

881 were superior to Adesol 20 in inhibiting the degradation of cereal straw when 

stored for six months. Although changes in the apparent lignin content occurred, 

these were probably due to losses of carbohydrate components. Some modification
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Table 3.18 The changes in lignin and non-cellulosic polysaccharide content of 

straw treated with different biocides after six months storage.

Sample Description Position Lignin (%) NCP (%)

A Control Bale 1 Core 20.6 (2.6) 33.0 (3.7)

B Edge 24.7 (3.1) 16.9 (2.3)

C Control Bale 2 Core 18.8(0.6) 30.0(1.5)

D Edge 21.0 (2.9) 21.7 (9.4)

E Adesol 20 

Bale 1

Edge 20.3 (2.6) 28.4 (4.1)

F Core 22.7 (3.2) 16.5 (3.2)

G Adesol 20 

Bale 2

Edge 17.4 (2.2) 18.0 (7.2)

H Core 20.8(3.1) 17.2 (6.6)

I Lastil 40 Bale 

1

Edge 19.4(1.6) 23.5 (5.6)

J Core 21.7 (2.0) 26.6 (5.6)

K Lastil 40 Bale Edge 17.3 (2.6) 27,6(11.2)
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2

L Core 20.7 (2.9) 24.6 (1.0)

M Busan 881 

Bale 1

Edge 15.2(1.8) 26.4(1.0)

N Core 19.8(1.5) 30.1 (1.8)

O Busan 881 

Bale 2

Edge 16.6 (3.6) 31.3 (7.4)

P Core 19.6 (3.7) 25.0 (7.0)
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of the lignin was observed from DRIFT spectroscopy (results not shown) but the 

modifications were less with Lastil 40 and Busan 881.

3 . 4 . 2  E f f i c a c y  o f  b i o c i d e  a p p l i c a t i o n  o n  r e - b a l i n g  o f  s t r a w  a t  v a r i o u s  m o i s t u r e  

c o n t e n t s  ( M a r c h  1 9 9 6 - A u g u s t  1 9 9 6 )  ( N S 3 )

The field experiments in NS2 showed that the biocide Lastil 40 was one of the 

best treatments for the control of deterioration of straw by fungal activity. From 

these results it was decided to examine this biocide in a more extensive study 

under a range of bale moisture contents (12, 16, 20 and 24 % wet weight basis) in 

an experiment described in Section 2.8.2.

Table 3.19 showed that the efficacy of Lastil 40 decreased with time, regardless of 

moisture content. Generally the bales which were not treated with biocide had a 

greater number of total populations of fungi. The exception to this observation 

was after 150 days when the straw was adjusted to 24 % moisture content, in 

which both samples had 104 CFU g '1 straw. Although in this instance the biocide 

did not reduce the total population, the fungi isolated were different from the 

biocide-treated than the non-biocide-treated straw. Half of the colonies isolated 

from the non-biocide straw (50 x 102 CFU g'1 straw) were A.fumigatus, which can 

irritate the linings of the lungs and cause a disorder called Aspergillosis. However, 

the biocide-treated straw at this moisture content did not have any Afumigatus 

present in the total fungal population. In addition, after 50 days of storage the 

dominant species isolated from the non-biocide-treated straw was Afumigatus.
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Table 3.19 The mean total fungal population of straw samples (x 102 CFU g"1 

straw) from the edge of top bales under a range of moisture contents after 50,100 

and 150 days storage.

Storage period (days) Treatment

(mean total population x 102 CFU g"1 straw)

No biocide Biocide-treated

Moisture content 

(wet weight basis)

Moisture content 

(wet weight basis)

12 16 20 24 12 16 20 24

50 75 84 75 >100 50 48 54 78

100 65 80 85 90 50 70 70 80

150 77 >100 53 kl00 75 83 50 >100
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Figure 3.24 showed that generally, the biocide (Lastil 40) reduced the mean total 

fungal populations found on the edge of the top straw bales after 150 days of 

storage compared to the non-biocide-treated bales. The biocide was effective at 

reducing the mean total fungal populations when the straw was adjusted to 12-20 

% moisture content. At 24 % moisture content the mean total fungal populations 

on biocide-treated and untreated straw bales were the same (104 CFU g"1 straw). 

However, the species isolated were different from the two treatments. A.fumigatus 

was isolated from 5 % of untreated straw pieces, whereas the biocide-treated straw 

did not have any.

Generally, the biocide-treated straw reduced the mean total fungal populations 

compared to the untreated samples as shown in Figure 3.25. The biocide 

controlled fungal growth during the whole of the storage period. At 24 % moisture 

content after 150 days storage the mean total fungal populations on untreated 

straw was less than the biocide-treated bales. However, the species isolated were 

different from the two treatments with 4 % of untreated straw pieces having 

A.fumigatus whereas none was isolated from the biocide-treated straw. The same 

trend was seen for the edge samples after the same storage period.
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Figure 3.24 The effect of Lastil 40 (100 ppm) on fungal populations isolated from 

the edge samples from the top bales of straw after 150 days storage under a range 

of moisture contents (cv.Ribband).
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Figure 3.25 The effect of Lastil 40 (100 ppm) on fungal populations isolated from 

the core samples from top bales of straw during storage under a range of 

moisture contents (cv.Ribband).
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To interpret the data and highlight the more important results the criterion of an 

NCP content of less than 250 g Kg'1 has been applied to experiments NS3 and 

NS4. This arbitrary figure is an NCP content approximately 30 % lower than that 

found in the original cereal straw sample. In the same way, to highlight the more 

important lignin results, the criterion of a lignin content of more than 200 g Kg"1 

has been applied to NS3 and NS4. This arbitrary content is a level approximately 

30 % higher than that found in the original cereal straw sample.

Figure 3.26 showed there were no broad trends for the NCP contents in either the 

untreated or biocide-treated bales. The only trend observed was that after 150 days 

storage the NCP content decreased compared to 50 and 100 days storage 

regardless of treatment. This would indicate that degradation was occurring

There were no clear trends for the NCP contents in either the untreated or biocide- 

treated bales which are shown in Figure 3.27. The only trend observed was that 

after 150 days storage the NCP content decreased when compared to 50 and 100 

days storage, regardless of treatment. This would indicate that degradation was 

occurring. Generally, after 150 days storage the NCP content was lower in the 

edge samples when compared to the core samples which would indicate that more 

degradation was occurring in the edge samples than the core ones.
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Figure 3.26 The effect of moisture content and biocide application (Lastil 40, 100

ppm) on non- cellulosic polysaccharide content of edge samples of straw from top

bales during storage (cv.Ribband).
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Figure 3.27 The effect of moisture content and biocide application (Lastil 40, 100

ppm) on non- cellulosic polysaccharide content of core samples of straw from top

bales during storage (cv.Ribband).
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Figure 3.28 showed generally that untreated straw samples had increased lignin 

content in the edge samples over the 150 day storage period. The general trend 

was also seen for the biocide-treated straw bales, particularly during storage from 

100 to 150 days. Although the lignin content appears to be increasing, it is actually 

due to other constituents being lost to degradation and as a result the lignin is in a 

higher proportion of the residual straw sample.

These changes in core samples are shown in Figure 3.29. The lignin content of the
/

core samples were always less than the lignin content of the edge samples 

regardless of treatment, after 150 days storage. This would indicate that greater 

degradation of other constituents are occurring along the edge of the straw bales 

than the core.

The results from the edge and core samples from middle and bottom bales were 

not as consistent as the trends seen from the top bales. Generally, there was a 

progression of increasing lignin content from bottom bale to top bale.

Analysis of the samples by DRIFT spectra showed that structural, as well as, 

compositional changes have taken place. An example of these spectra is shown in 

Figure 3.30. The fingerprint region over the range 1200-900 cm '1, which is 

dominated by the absorbances due to cellulose and NCPs, exhibits different line 

shapes and maxima. A reduction in intensity centred at 1720 cm '1, the region of 

ester carbonyl absorbance, particularly in the spectra of the edge samples. This 

absorbance was most intense in the spectrum of the samples with moisture 

contents of 12 % and at a given moisture content, greatest in the core sample.
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Figure 3.28 The effect of moisture content and biocide application (Lastil 40, 100

ppm) on lignin content of edge samples of straw from top bales during storage

(cv.Ribband).
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Figure 3.29 The effect of moisture content and biocide application (Lastil 40, 100

ppm) on lignin content of core samples of straw from top bales during storage

(cv.Ribband).
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Thermocouples were inserted in all bales located at the inner two tiers of the 

stack, i.e. those which were extracted last, after 150 days storage. Some of the 

results obtained from these sensors are shown in Figures 3.31 and 3.32. This 

showed that there were no apparent effect that could be attributed to the biocide 

treatment. Figure 3.31 showed temperature peaks at intervals in the top bales, 

which correlates well with periods of high rainfall. The temperatures of bales 

below the top layer were very similar to ambient conditions which rose from 0°C 

to 10°C during the experiment.

The temperature profiles shown in Figure 3.32 show that within 10 days of the 

start of the experiment both biocide-treated and untreated straw increased in 

temperature to maximum values above 50°C. This significantly decreased within 

the next 10 days. On several occasions the daily rainfall was between 7 and 12 mm 

(Figure 3.33) and within three days the temperatures in the upper sections of the 

top layer bales had risen to between 40 and 55°C, decreasing to ambient 

temperature during the next 10 days. The temperature peaks in the top layer bales 

correlates well with periods of high rainfall. The temperatures of bales below the 

top layer were very similar to ambient conditions which rose from 0°C to 10°C 

during the experiment, except for several occasions when water was observed to 

have penetrated to both the centre and lower bale; this was noticed for untreated 

control bales after 50 days storage. Increases in rainfall correlated well with the 

temperature increases in the bales.
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Figure 3.31 Temperature profiles of untreated and biocide-treated straw bales 

adjusted to 12 % moisture content during storage.
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3 . 4 . 3  I n v e s t i g a t i o n  o f  v a r i o u s  t r e a t m e n t s  t o  i m p r o v e  s t r a w  q u a l i t y  d u r i n g  s t o r a g e  

( S e p t e m b e r  1 9 9 6 - F e b r u a r y  1 9 9 7 )  ( N S 4 )

A more refined experiment was carried out based on the previous experiments. 

The experiment used straw from one cultivar (Ribband) and was carried out at 

only two moisture contents (15 % and 23 %). All of the treatments were carried 

out prior to baling of freshly harvested straw. Samples were collected after 150 

days storage, using the coring device as described previously in Section 2.8.3.

Figure 3.34 showed that treatment with biocide reduced the mean total fungal 

populations when compared to the untreated controls. The biocide sprayed into 

straw nets and adjusted to 15 % moisture content had 22 x 102 CFU g"1 straw 

whereas, when biocide was not added to the wads of straw in nets 104 CFU g"1 

straw were isolated. Nutri-Shield® had the same number of colonies isolated as 

the untreated controls. However, 25 % of these colonies were A.fumigatus. 

Chopped straw in nets had the lowest fungal populations at both moisture 

contents. However, at 15 % moisture content 3 x 102 CFU g"1 straw were 

A.fumigatus. Because some drying of the bales occurred during the storage period, 

in some instances the mean total fungal population were higher for straw 

treatments at 15 %, than 23 % moisture content.
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Figure 3.34 The effect of different treatments on fungal populations isolated from 

the edge samples from top bales of straw after 150 days storage at two different 

moisture contents (cv.Ribband).
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Generally, the total fungal population from core samples (Figure 3.35) were less 

than the edge samples (Figure 3.34) regardless of treatment or moisture content. 

Biocide in nets, wads of straw in nets and chopped straw in nets were all effective 

treatments for controlling microbial growth when compared to control samples. As 

with the edge samples, the chopped straw in nets had the lowest number of 

colonies isolated, but at 23 % moisture content the only species isolated was 

A.fumigatus. At 15 % moisture content Nutri-Shield®-treated straw had the largest 

mean total fungal populations when compared to the other treatments, and 50 % of 

these were A.fumigatus. Nutri-Shield® appeared to promote the growth of 

A.fumigatus, with this trend also seen in the edge samples.

Figure 3.36 showed there were no clear trends for the effect of different treatments 

on NCP content of edge samples of straw from top bales during storage. The 

biocide applied into swath treatment decreased NCP content when compared to 

controls indicating that some degradation has occurred. All of the treatments at 15 

% moisture content had greater NCP contents than the controls, the exception was 

biocide treatment onto the stack. This showed that these treatments were 

maintaining the NCP content and that the straw was not being degraded.

Generally, in the core samples straw adjusted to 23 % moisture content had higher 

NCP contents than straw adjusted to 15 % regardless of treatment (Figure 3.37). 

All of the treatments had lower NCP contents than the control at 23 % moisture 

content, indicating that some degradation has occurred. The chopped straw in nets 

had higher NCP contents than the other treatments, and very similar levels to the 

controls.
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Figure 3.35 The effect of different treatments on fungal populations isolated from 

the core samples from top bales of straw after 150 days storage at two different 

moisture contents (cv.Ribband).
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Figure 3.36 The effect of different treatments on non-cellulosic polysaccharide

content of edge samples of straw from top bales during storage (cv.Ribband).
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Figure 3.37 The effect of different treatments on non-cellulosic polysaccharide

content of core samples of straw from top bales during storage (cv.Ribband).
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In the middle bales the edges of the untreated controls had the lowest populations, 

with the biocide-treated cores having the lowest populations. In the bottom bales 

biocide had little effect, either at the bale edge or in the core. The Nutri-Shield® 

treatments were variable with effects being more pronounced in the higher 

moisture content bales (23 %).

Figure 3.38 showed that the treatments with the biocide sprayed onto the top bale, 

the biocide sprayed onto the wads of straw in nets, and the Nutri-Shield® 

treatment, all had poorer lignin content, while other treatments; the wads of straw 

in nets and the chopped straw in nets were equivalent or better. This trend was 

seen at both moisture contents.

Similar trends were observed in core samples (Figure 3.39) as were found in the 

edge samples (Figure 3.38). The exception was wads of straw in nets at 23 % 

moisture content, where slight increases in apparent lignin content were obtained 

when compared to the controls, showing that some degradation had occurred with 

this treatment. The Nutri-Shield® treatment at 15 % moisture content increased 

the apparent lignin content by 5 % when compared to the control sample. This 

increase was significant and this treatment showed the greatest degradation of the 

straw when compared to the other treatments.

Assessment of these changes using DRIFT spectroscopy gave similar results. 

Samples undergoing no or low levels of degradation showed very little difference 

in their DRIFT spectra while those undergoing significant degradation, as 

determined by the increase in apparent lignin content, also gave increased 

absorbances at 1595 and 1510 cm"1, the main absorbances associated with lignin.
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Figure 3.38 The effect of different treatments on lignin content of edge samples of

straw from top bales during storage (cv.Ribband).
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Figure 3.39 The effect of different treatments on lignin content of core samples of

straw from top bales during storage (cv.Ribband).
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Recordings of bale temperatures and ambient temperatures were made. In this 

experiment all of the top and middle bale temperatures were monitored. Figure 

3.40 showed there were four obvious occurrences of water ingress into the top 200 

mm of the top control bale, with penetration to the middle of the second bale 

down, after a very wet three day period at about 100 days storage when 54 mm of 

rain fell onto the bales. The bale temperature data during the storage period 

confirmed the occurrence of short durations of high temperature periods both soon 

after baling wet straw, and at the ingress of rainwater during storage. They 

indicated that ‘wet at baling’ bales (23 %) heat to approximately 50°C within a 

few days. Very good correlations were observed between the incidents of heavy 

rainfall and temperature increases. On day 20 there was approximately 15 mm of 

rain when the top bales showed a marked increase to about 40°C signifying water 

ingress and microbial activity.

Figure 3.41 showed the temperature profiles of wads of straw in nets at 15 and 23 

% moisture contents. At both moisture contents when the straw wads were placed 

horizontally on the top layer bales and retained by a net the rain was absorbed by 

the straw and then evaporated off before the straw became saturated and released 

water down to the top bale. The wads on top bales only experienced water ingress 

(temperature increase) on the occasion of very heavy rainfall around day 100, and 

then moisture only penetrated into the top bale. No temperature increase was 

recorded in the middle bale during the entire storage period.

Figure 3.42 showed the ambient temperature and rainfall. These recordings 

correlate well with the ingress of water and temperature increases in the bales in 

this experiment.
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CHAPTER 4 

DIS C U S SI O N
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4.1 THE EFFECT OF ENVIRONMENTAL FACTORS ON MYCOFLORA, 

SUCCESSION AND RESPIRATORY ACTIVITY ON WHEAT STRAW

4 . 1 . 1  T h e  e ffe c t o f e n v i r o n m e n t a l  f a c t o r s  o n  m y  c o f l o r a  o f  w h e a t  s t r a w

In previous research about 100 different fungal species have been isolated from 

wheat straw (Lacey, 1968; Moubasher et a l ,  1982 a,b; Pelhate and Agosin, 1985). 

As with cereal grains, the primary mycoflora can be divided into field fungi (e.g. 

A.alternata and E.nigrum), the intermediate fungi {F.culmorum, C.cladosporioides 

and yeasts), which occur mostly before harvest, and the storage fungi {Aspergillus 

and Pénicillium spp.) which are sporadic at harvest and only develop later under 

favourable conditions. Under damp conditions, the mycoflora develops in a 

similar way to that in hay (Pelhate and Agosin, 1985).

In this study the same range of species were isolated from the two cultivars used 

(cv. Beaver and Ribband), but the dominance of individual species varied between 

the two cultivars. This could be due to differing agronomic and nutritional 

treatments and climatic conditions during crop growth of the two cultivars. This 

may partially influence the mycoflora on the straw isolated from the cultivars. 

Previous studies have shown that cultivar may be one of the factors responsible for 

variations in fungal populations (Magan, 1988a).

C.cladosporioides and F.culmorum were present externally on a greater 

percentage of straw segments than the internal surface when direct plated. 

F.culmorum and C.cladosporioides, both intermediate fungi, would probably have 

colonised the straw pre-harvest and their spores would be present on the surface of
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the straw. Therefore it was not surprising that these species were dominant on the 

external surface. The storage conditions may not have been conducive for mycelial 

growth into the internal structure of the straw, so these species were in lower 

concentration when compared to the external surface.

As temperature was increased from 10°C to 30°C, the number of different species 

and their dominance changed. Very little growth occurred at 10°C with a 

maximum at 25°C. At 30°C more thermotolerant species, such as A.fwnigatus, 

Absidia spp. and A.flavus were present. This indicates that fungal colonisation and 

growth is temperature dependent. Consequently, deterioration of the straw during 

storage would also be temperature dependent. This trend has been shown by 

previous research on other agricultural materials, such as hay (Lacey, 1980b), 

sugar cane bagasse (Lacey, 1974), and wheat straw (Magan, 1988a,b).

As aw was increased, making water more freely available, a wider range of species 

was isolated and dominance changed. This trend agrees with previous research 

(Magan and Lynch, 1986; Magan, 1988b). At 0.95 aw, the greatest range of species 

were isolated, this was due to the fact that the amount of available water to the 

microbial cells and enzymes determines their activity and was not limited. In this 

study, the radial growth of F.culmorum at 0.95 aw was 4.5 mm day'1 at 10°C, 

which was higher than previous findings by Magan and Lacey (1984a), who found 

that isolates from grain had a radial growth of 1 mm day"1. However, they 

excluded early exponential and late sub-optimal growth, and the isolate was grown 

on a nutritionally weaker wheat extract agar, which may explain the differences.
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In this study, the effect of pH on microbial colonisation and growth was 

investigated. The dominance of species varied with pH. For straw plated on pH- 

adjusted media and incubated at 25°C, at pH 4.4 the dominant species was A.niger 

whereas, at pH 6.4 the species was C.cladosporioides. Most previous studies have 

not considered pH and its effects on microbial colonisation and growth on straw. 

Thus no direct comparisons can be made.

Generally, in this study F.culmorum was isolated over the pH range 4.4-6A As 

F.culmorum was isolated over this pH range, which is the optimum for cellulase 

activity, it may have degraded the straw during this storage period, although 

further tests would need to be carried out to confirm this. Therefore, the pH of any 

treatment may be important if  degradation of straw by cellulolytic fungi is to be 

avoided. A previous study by Forbes and Dickinson (1977) investigated the effect 

of temperature, pH and nitrogen on cellulolytic activity of F.avenaceum. They 

found that the pH range for optimum cellulolysis by F.avenaceum was particularly 

narrow (pH 4.4-5.4), contrasting with the very similar levels of cellulolytic activity 

throughout the range pH 3.7-8.6 shown by an unnamed Fusarium spp. used by 

Sharp and Eggins (1970). F.avenaceum does however, conform to the general 

pattern for fungal cellulases (Mandels and Reese, 1960), which are active between 

pH 3.5 and 7.0 and show optimum activity at pH 4.0-5.5.

During any storage regime, the interactions between aw, temperature and pH are 

important considerations for preventing fungal colonisation and growth. In this 

study for the first time, all three environmental factors and their interactions were 

investigated. On 0.95 aw-adjusted media with a pH of 4.4 at 25°C, F.culmorum, 

R.pusillus and T.harzianum achieved maximum growth over 7 days, indicating that
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these environmental conditions were conducive for these species. The interactions 

of these environmental conditions showed that for each fungus as the aw increased, 

the rate of radial growth increased slightly with temperature.

4 . 1 . 2  E f f e c t  o f  e n v i r o n m e n t a l  f a c t o r s  o n  f u n g a l  r e s p i r a t i o n  o n  w h e a t  s t r a w

Respiration has been used to measure metabolic activity and dry matter losses in 

stored produce for a long period of time by many researchers. At present there are 

a variety of methods to measure respiration. The technique employed in this study 

was the use of an electrolytic respirometer system, designed by Tribe and Maynard 

(1989). This method was previously successfully used by Hamer et a l .  (1991) and 

Lacey et a l .  (1994), for studying the respiration of cereal grains at different aw 

levels and temperatures. It was shown in their studies that efficient and accurate 

measurements of respiration of grain samples and the colonising mycoflora could 

be achieved, with minimal disturbance and destructive sampling required during 

the monitoring period. The design of the respirometer system was modified in this 

study, as previously explained in Section 2.5.1. The reason for the modification 

was to enable a greater volume of chopped straw to be used in each experiment.

Respiration of naturally contaminated wheat straw was determined over a range of 

environmental conditions. There was a steady increase in respiratory activity as 

storage temperature was increased. This was probably due to the fact that fungal 

activity was temperature dependent, as was shown in the previous in vitro 

experiments in this study. This was also observed by Hamer et a l .  (1991), although 

they were using grain, which also respired. In the present study at the highest 

temperature investigated (30°C) there was almost a linear increase, whereas at the
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lowest temperature (10°C) a lag phase occurred prior to fungal respiration. Fungal 

colonisation and respiration on straw was significantly influenced by temperature 

and this indicated that it is an important environmental factor influencing 

respiratory activity of fungi and deterioration of cereal straw.

There was also a steady increase in respiratory activity as aw increased. At 0.95 aw, 

oxygen consumption (respiration) at each temperature was almost 50 % greater 

than at corresponding temperatures at low aw (0.75), when very little fungal 

activity occurred. Fungal colonisation and respiratory activity on straw was thus 

significantly influenced by aw. These results confirm the in vitro studies, which 

showed that fungal growth was dependent on the prevailing water availability. 

Respiratory activity at 0.98 aw was almost three times that at 0.75 aw at 25°C. This 

may be due to the greater number of species that could colonise the straw rapidly 

at this high aw. A temperature of 25°C is often the optimum for fungal growth of 

many mesophilic straw fungi. For many of the aw levels tested, a lag phase 

occurred of up to 24 hours, when there was little respiratory activity. Previous 

studies by Hamer (1994) also found that in grain, with <0.90 aw, respiration 

increased in a non-linear fashion with time, with an initial lag phase followed by 

subsequent more rapid fungal activity. However, at aw >0.90 aw, respiration 

increased in a linear fashion with time, in grain, as observed in this study with 

straw.

Generally, in this study, respiratory activity thus increased with temperature x aw 

interactions. These factors are critical in influencing the rate of fungal 

colonisation and deterioration in straw quality. Previous research by Hamer et al. 

(1991) and Lacey et al. (1993) also found that respiration of grain and its



mycoflora were dependent on temperature x aw interactions. However, the 

respiration measured in this study was due solely to the fungal activity of naturally 

occurring mycoflora on straw, which is a dead material. Whereas, that measured 

by their studies was the combined respiration of the grain and the naturally 

occurring mycoflora on the grain.

The mycoflora present on the stored straw was enumerated at the end of each 

experiment to determine which species were present, and dominant under various 

temperature x aw storage regimes. Fungal populations varied with aw, as previously 

found in studies on the succession on grain; straw in soil and stored straw (Magan 

and Lacey, 1984 b; Harper and Lynch, 1985; Magan and Lynch, 1986; Magan, 

1988a;).

The xerophilic species, E.amstelodami was isolated over the widest aw range 

(0.75-0.90) when compared to the other species. Previous studies by Hamer (1994) 

showed similar results on wheat grain. She isolated Eurotium spp. from grain 

adjusted to 0.80-0.95 aw after storage for up to 14 days in respiratory chambers. 

The only other species isolated over the whole aw range were other Aspergillus 

spp. In the present study at high aw (0.98) Aspergillus spp. were only present at the 

highest temperature tested (30°C), indicating that they were thermotolerant. 

Hamer (1994) also isolated Pénicillium spp. and Rhizomucor sp. at 30°C. 

However, the highest aw tested was 0.95 avv.

F.culmorum was the only species present over the whole temperature range in this 

study, indicating a wide adaptability to environmental conditions. This may be 

explained by the fact that F.culmorum is a good competitive saprophyte (Sivan
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and Chet, 1989). It may have successfully competed against the other mycoflora 

present on the straw and become the dominant species. By contrast, F.culmorum 

was only isolated from grain stored at 15°C at 0.90 and 0.95 aw on grain (Hamer, 

1994).

As dry matter loss (DML) occurs by the utilisation of carbohydrate during fungal 

respiration, the data may also be used to quantify the deterioration losses. The 

DML caused by natural mycoflora on straw under various storage conditions was 

calculated in this study for the first time. As aw was increased DML increased. 

This correlated with the fact that respiratory activity also increased with an 

increase in aw. Under high aw (0.90-0.98) as temperature increased from 10-30°C 

the amount of DML increased. However, this trend was not seen at the other aw 

levels tested. The maximum percentage DML was 3.40 % at 30°C and 0.98 aw. 

This may be due to species such as, T.harzianum and F.culmorum, which are 

cellulolytic.

Table 4.1 showed the comparison between deterioration of wheat straw and wheat 

grain. The DML of wheat straw in this study were after 14 days storage whereas, 

the DML of grain were after 7 days storage. Generally, deterioration of straw was 

significantly greater {P <0.05) than in grain (Hamer, 1994). This was due to straw 

being more susceptible to deterioration due to it being a dead material, whereas, 

the grain was capable of preventing as much deterioration due to it being a living 

material.
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Table 4.1 Comparison of dry matter losses of grain (Hamer, 1994) and wheat

straw.

M aterial aw DML (%)

Tem perature (°C)

15 20 25 30

Grain 0.90 0.085 0.226 0.436 0.347

0.95 0.517 0.762 1.21 1.187

Straw 0.90 0.44 0.48 0.56 2.59

0.95 0.38 0.73 0.74 3.39

171



In the present study, no visible moulding was observed after 14 days storage. 

However, Hamer (1994) found that apart from samples stored at 15°C and 0.90 aw, 

all of the other samples were visibly mouldy. This difference was due to grain 

being a living, respiring material whereas straw was dead.

To compliment the DML calculated from the respiration data, samples of straw 

were analysed for changes in lignin and NCP. In order of availability, any 

carbohydrate derived residual cell contents will be degraded first, followed by 

degradation of the carbohydrate components of the cell wall or fibre. Degradation 

of NCP usually begins before degradation of cellulose starts but degradation of 

both will then progress in parallel. Degradation of the NCPs is not complete 

before degradation of cellulose begins. Natural degradation of lignin will only 

occur when extensive degradation of the carbohydrate components (cellulose and 

NCP) has occurred. Degradation of lignin is usually considered as a secondary 

process which is only initiated when the more readily degradable fraction of the 

carbohydrate sources are used up. The lignin content, to a first approximation, can 

be considered as an inert marker and used to assess the loss of other components. 

Of course, with other constituents being lost by degradation, the apparent lignin 

content will rise. This is not due to synthesis of lignin: merely the mathematical 

result of the lignin being in a higher proportion of the residual straw sample.

Only the results of the lignin determination and the DRIFT spectra were presented, 

in this aspect of the study. At 10°C there was no significant change in lignin 

content irrespective of aw while at 15°C, there was a slight reduction in dry 

conditions (0.75 aw) but this increased as aw increased. The greatest increase was 

observed at 20°C, when apparent lignin content rose with increasing aw and once
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0.90 aw had been reached remained at 140 % of the starting value. This indicates 

significant loss of carbohydrate components, assuming no loss of true lignin. 

Results at 25°C and 30°C were less clear. At lower aw there was an increase in 

apparent lignin content but not as high as at 20°C. A possible explanation is that at 

these higher temperatures and aw levels, degradation of true lignin occurred but 

this could not be confirmed.

The DRIFT spectra allowed structural changes in cellulose to be visualised. 

Cellulose undergoes changes in its secondary and tertiary structure, often before 

loss of dry matter is evident. These changes involve the molecular order of the 

cellulose and affect the ability to spin long fibres from cellulosic substrates such 

as flax or cotton, and the alignment of short fibres from cellulosic substrates such 

as wood, in the manufacture of paper. The DRIFT spectra confirmed that 

degradation of carbohydrate was occurring.

The contribution of individual species to straw deterioration over a range of aw 

and temperature interactions was also investigated in this study. F.culmorum had 

the greatest temporal cumulative oxygen consumption (respiratory activity) 

when grown in pure culture on sterile straw. Under the same conditions 

C.cladosporioides had the lowest oxygen consumption. Each species had 

relatively different respiratory rates and the results showed that interactions with 

other species can influence overall respiratory activity. Each species increased 

their respiratory activity at 25°C when compared to 10°C, the same trend was seen 

for respiration of natural mycoflora on straw. F.culmorum nearly doubled its 

respiratory activity at 25°C when compared to 10°C. This showed that temperature
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and aw influenced the respiration of individual species and were important 

environmental factors.

The only previous research similar to this experiment was by Hamer (1994). She 

irradiated grain and re-inoculated it with E.awistelodcuni or P.aurcintiogriseum or a 

mixture of the two species, onto grain adjusted to 0.85 aw or 0.90 aw at 20°C.

E.amstelodami showed the least respiratory activity at 0.90 aw after 14 days 

storage when compared to P.aurantiogriseum and a mixture of the species. By 

contrast, in the present study, E.amstelodami had a greater respiratory activity at 

0.95 aw and 0.98 aw than P.aurantiogriseum, but the latter species had greater 

respiratory activity at 0.85 aw. However, the present study compared a wider range 

of species than that on grain by Hamer (1994).

Dry matter losses on straw were determined for each individual species, so that 

their individual effect on quality could be compared. Each individual species 

caused very different DML on straw. Generally, as aw increased DML increased 

for all of the temperatures tested. The maximum DML was 11.93 %, caused by

F.culmorum at 0.98 aw and 25°C. In Hamer’s study (1994), E.amstelodami caused 

the least DML, and it also had the lowest respiratory activity. The results from the 

present study suggests that both antagonistic and synergistic effects must occur in 

naturally contaminated straw influencing the dry matter losses which occur at 

particular temperature x aw storage regimes.
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4 . 1 . 3  T h e  e f f e c t  o f  a w  a n d  t e m p e r a t u r e  o n  f u n g a l  s u c c e s s i o n  a n d  d r y  m a t t e r  

l o s s e s  o f  w h e a t  s t r a w

Storage experiments were undertaken over 6 months to determine the succession 

of fungi on straw under a range of temperature x aw interactions. The DML of 

straw under these different storage regimes were also calculated. Generally, total 

fungal populations increased when temperature was increased during the storage 

period. Futhermore, a wider range of species were also investigated. This trend 

was observed at each aw investigated. Generally, as aw increased the fungal 

population increased. This trend has previously been observed in many studies. 

The dominant species isolated at all aw levels over the 6 month storage was 

P.aurantiogriseum. This species predominated over the storage period at 15°C, 

and at all aw levels tested.

In addition, E.nigrum was isolated after 2 months and 6 months at 0.98 aw and 

0.90 aw respectively. However, this species was not present at 10°C. After 6 

months T.harzianum was isolated at 0.95 aw and 0.98 aw. These observations show 

how changes in dominance and succession occur with storage and environmental 

conditions. A previous study by Magan and Lynch (1986) also found that 

T.harzianum colonised straw pieces best at high water potential (-0.7 MPa, =0.995 

aw), but was more sensitive to drier conditions. Previous studies have shown that 

Trichoderma spp. can reduce pathogen populations in dead plant tissue (Mew and 

Tosales, 1985), although this was in rice straw and was not observed in this study. 

The variety of mechanisms by which Trichoderma spp. can antagonise pathogens 

makes them candidates for the control of a whole range of straw-inhabiting 

pathogenic fungi. A previous study by Fernandez (1992) found that T.harzianum



when inoculated onto wheat straw at harvest resulted in a reduction in the 

incidence of Fusarium spp.

Previous studies on the fungal succession on cereal residues have mainly 

concentrated on other crops, such as wheat compost (Chang and Hudson, 1967), 

sugar bagasse (Sandhu and Sidhu, 1980) and grains (Clarke and Hill, 1981). Since 

straw is a waste product its spoilage has received less attention when compared to 

research on the mycoflora of hay and grains. As straw is often incorporated into 

soil, a variety of studies have previously been undertaken on the colonisation and 

decomposition of straw in agricultural soils (Harper and Lynch, 1981; Harper and 

Lynch, 1985; Broder and Wagner, 1988; Magan et al., 1989; Robinson et al., 

1994).

The only previous study that has investigated fungal colonisation and 

decomposition of wheat straw was by Magan (1988a). In his study the 

environmental conditions were limited to 15°C and 25°C and the water potentials - 

0.7 MPa (=0.995 aw), -2.8 MPa (=0.98 aw) and -7 MPa (=0.95 aw) for 12 weeks. In 

the present study a wider range of temperatures and aw levels were tested over a 

longer, more realistic storage period. The predominantly isolated species in this 

study was P.aurantiogriseum, over the whole range of aw and temperatures tested. 

Magan (1988a) also found that Pénicillium spp. were predominantly isolated at 

0.95 aw. However, at 0.98 aw Pénicillium spp., Rhizomucor spp., Rhizopus, 

Trichothecium and occasionally Fusarium spp. were present at 15°C storage. 

These species were not often isolated in the present study. This may be partially 

due to the use of different cultivars in these two studies, which can influence the 

mycoflora found (Magan, 1988a). At 25°C the patterns of colonisation were
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different when compared to previous work (Magan, 1988a). He mainly isolated 

Aspergillus spp. at 0.95 aw, with Pénicillium spp. isolated from 72 % of straw 

segments at 25°C after 2 months storage. In this study, P.aurantiogriseum was 

isolated from 58 % of straw segments. In the present work it was concluded that 

aw, temperature and storage period all affected the dominance and succession of 

species on straw.

Previous research in other climatic regions have isolated different dominant 

species from cereal residues. In Bulgaria, A.alternata was isolated from all straw 

samples, both at harvest and after 4-5 months storage. Other common species 

included A.fumigatus, followed by Rhizomucor hiemalis and Pénicillium spp. 

A.flavus, F.moniliforme, Chaetomium comatum, Rhizopus stolonifer. 

Scapulariopsis brevicaulis, C.linicola and T.viride while Stachybotrys atra 

occurred less frequently (Alexandrov, 1986). In Pakistan, moulding occurred in 30 

% of wheat straw samples, with Aspergillus, Pénicillium, Rhizomucor and 

Alternaria spp. predominant (Mir and Ali, 1990). In India, most fungi from 

decaying straw and other substrates were Aspergillus spp., but Acremonium spp., 

Curvularia lunata, Gliocladium fimbriatum  and Monilia spp. were also isolated 

(Singh and Singh, 1991).

Growth of fungi on straw results in its degradation and loss of dry matter. In this 

study for each of the temperatures, as aw increased, the percentage DML increased 

over the storage period. This finding agrees with previous research (Magan, 

1988a). The effect of temperature on DML was variable in this study. However, 

Magan (1988a) found that DML of wheat straw during the exponential period was 

greater at 25°C than at 15°C with the greatest loss at 0.995 aw. Similar DML were
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obtained in experiments with barley straw. Previous studies on rapeseed found that 

DML over a 4 week period were also greater at 25°C than at 15°C, regardless of 

aw-

Sain and Broadbent (1975) also found the rate and extent of rice straw 

decomposition were found to increase with the lag period decreasing with 

increasing relative humidity and temperature. In this study, DML of straw was 

much greater than previous findings. At 15°C storage, DML was 17 % after 4 

months storage at 0.95 aw, compared to 7 % DML after 3 months storage (Magan, 

1988a). Only DML of straw after storage at 25°C and 0.98 aw were similar to those 

obtained by Magan (1988a), being 29 % DML and 22 % DML respectively. A 

possible explanation may be that the cultivar used in this study was more 

susceptible to decomposition and there was a greater proportion of cellulolytic 

fungi colonising the straw.

Studies of degradation of straw have often been made in the soil environment. For 

instance, decomposition of intact lengths of straw inoculated , either together or in 

succession, with pairs of fungi, chosen from F.culmorum, T.viride, C.globosum 

and four lignin-degrading basidiomycetes and a Typhula sp., was generally 

characteristic of the isolate that was the more effective decomposer in pure 

culture. However, some combinations showed evidence of interactions which 

usually increased, but sometimes decreased, the rate of straw decay compared to 

pure cultures of the more effective decomposer (Bowen, 1990). Previous research 

on DML caused by individual species have generally shown much higher DML 

when compared to this study. Chawla and Kundu (1985a,b) found that A.alternata 

caused 50.8 % loss in pure culture. This DML was over twice that found in the
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present study. This indicates that some competition and possibly suppression of 

species was occurring in the straw during storage in this study, and as a result 

DML was lower. The reason for DML of straw is enzyme activity in the substrate 

and enzymes decomposing cellulose, hemicellulose, xylan, lignin and other 

components by straw decomposing fungi. Each species has different degrading 

capabilities, and their dominance on the straw, the environmental conditions and 

storage period will all reflect the amount of DML.

4.2 USE OF BIOCIDES TO CONTROL FUNGAL ACTIVITY ON STRAW

4 , 2 . 1  I n  v i t r o  s t u d i e s  o n  e f f i c a c y  o f b i o c i d e s  o n  f u n g a l  a c t i v i t y

All of the biocide-adjusted media tested reduced the natural mycoflora on straw 

segments, when compared to the controls regardless of concentration. All of the 

biocides appeared to be fungicidal. Lastil 40, Adesol 20 and Busan 881 at 100 

ppm concentration inhibited fungal growth from straw segments in vitro studies 

over the temperature range 10-30°C. Generally, as temperature of incubation was 

increased the isolation of fungi increased, regardless of concentration. O f the 

biocides tested, Lastil 40 had the greatest efficacy, reducing fungal populations 

significantly (f<0.05) at all concentrations.

Most studies which investigated the use of preservatives and fungicides to reduce 

total fungal populations have involved applications onto hay (Lord et al., 1981; 

Magan and Lacey, 1986 a,b) or on stored wheat grain (Magan, 1993). Surprisingly, 

there have been very few studies on reducing the natural mycoflora of straw using 

fungicides. This may be due to the low economic value of wheat straw
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when compared to the more lucrative business of grain storage. Because of the 

large economic losses that can occur when grain is stored incorrectly, there have 

been many studies on grain storage regimes and prevention of losses caused by 

micro-organisms (Magan, 1993; Lacey et al., 1994).

The results in this study cannot be directly compared to other studies as different 

fungicides, preservatives and agricultural materials were tested. Research by Lord 

et al. (1981) was the only study that included the effect of propionic acid on the 

natural mycoflora of hay, in addition to the effect on individual fungal species, as 

carried out in the present study. Non sterilised propionic acid-treated straw was 

stored in Dewar flasks and although larger concentrations of acid inhibited 

growth, the organisms were not killed and growth was only delayed. This was 

partially due to the propionic acid acting as a fungistat, whereas, the biocides 

tested in this study were all fungicidal.

Previous studies by Magan (1993) using sulphur dioxide (S 02) to control mould 

spoilage of grain found that the growth rate of P.aurantiogriseum increased from 

0.2 to 0.7 mm day"1 when grown on MEA adjusted with 100 ppm S 0 2 incubated at 

15°C and 25°C respectively. A similar trend was observed at the other 

concentrations tested. In the present study all of the biocides inhibited growth of 

individual fungi tested in vitro at 100 ppm. This was much lower than in other 

studies. Magan (1993) found that treatment with S 02 in solution at 500-2000 ppm 

decreased total fungal populations on grain but did not totally inhibit growth. 

However, S 02, like propionic acid-based preservatives act as fungistats not 

fungicides.
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The efficacy of biocides at controlling individual fungal species over a range of 

temperatures was investigated in this study. Species varied in their sensitivity to 

the biocides tested. All concentrations (0.8-100 ppm) were to varying extents 

effective at controlling radial growth when compared to the untreated controls. 

Lastil 40 was most effective of all of the biocides tested, regardless of 

temperature. As biocide concentration increased the radial growth rate decreased 

for each species. However, none of the biocides were as effective at reducing the 

radial growth of T.harzianum and R.pusillus when compared to the other species. 

However, the biocides reduced radial growth of both species by 50 %, when 

compared to the untreated controls. The species that had the maximum reduction 

in radial growth was F.culmorum, by 66 %. Surprisingly, increasing the biocide 

concentration did not significantly reduce the radial growth of T.harzianum and 

R.pusillus.

Most previous studies have concentrated on the effects of fungicides or fungistats 

on individual species, particularly Aspergillus and Pénicillium spp.(Lord et al., 

1981; Magan and Lacey, 1986 a,b). However, a study by Magan (1993) 

investigated the effect of S 02 on other species including, C.herbarum, E.nigrum 

and A.pullulans. He found that C.herbarum, E.nigrum and a range of Pénicillium 

spp. were tolerant of concentrations of up to 200 ppm. However, in the present 

study these species were tolerant of only about 80 ppm of Busan 881 in vitro. 

Busan 881 (0.8 ppm) reduced growth of E.nigrum by 50 %, which is a 

considerably lower concentration than that of S 02 (50 ppm) required by Magan 

(1993). Very few studies have however have examined the relationship between aw 

x preservative efficacy. Magan and Lacey (1986b) examined the effects in lag
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time, growth rates and found that aw was a significant factor. In this study 

inhibitory effects varied with aw x concentration interactions.

4 . 2 . 2  C o n t r o l  o f  f u n g a l  r e s p i r a t o r y  a c t i v i t y  o n  s t r a w  u s i n g  b i o c i d e s

Previously no attempts have been made to screen biocides at different aw levels, 

and by monitoring respiratory activity after application to naturally contaminated 

straw. Respiratory measurements are an effective method for evaluating efficacy 

of biocides. In this study biocides were sprayed onto straw at different aw levels. 

Respiratory activity at 0.98 aw on control straw was increased by 50 % when 

compared to respiration at 0.95 aw. This demonstrated that respiratory activity was 

influenced by aw.

In this study, the efficacy of Busan 881 was slightly diminished with increasing aw. 

It was more effective at 0.95 aw than at 0.98 aw. This may be due to the increase in 

the number of species colonising the straw.

Surprisingly, increasing the concentration of Busan 881 did not increase efficacy 

for the control of fungal activity on the straw (see Figure 3.2.1). A possible 

explanation may be that the active ingredients in the biocide had a stimulatory 

effect on the straw mycoflora at the higher concentrations. A similar phenomenon 

was seen in previous studies by Magan (1993). He found that when SO2 was used 

to control fungi in stored grain. Pénicillium spp. were able to tolerate up to 250 

ppm at 25°C. However, growth was stimulated by intermediate concentrations of 

100 ppm at 0.95 aw.

182



All of the biocides tested reduced fungal respiration when compared to the 

controls. The most effective biocide was Lastil 40 (100 ppm), which decreased 

fungal respiration by 66 % when compared to the controls. This confirmed 

previous in vitro studies which showed a similar trend.

All of the biocide treatments reduced DML when compared to controls at both 

aw’s (0.95 and 0.98). For all treatments less dry matter losses were observed in the 

drier (0.95 aw) than the wetter straw (0.98 aw).The most effective treatment, Lastil 

40 reduced DML to 0.26 % (at 0.95 aw) and 0.33 % (at 0.98 aw) when compared to 

controls which had a DML of 0.74 % and 0.81 % respectively. This reduction of 

DML of straw could have important economic implications for people who store 

straw, provided this method could provide effective control over long storage 

periods. The efficacy of the biocides against the main spoilage fungi on straw 

thus lead to further field studies to examine their potential use.

4 . 2 . 3  F i e l d  T r i a l s

All of the biocides tested in the initial field trials (NS2) significantly decreased the 

mean total fungal populations on straw when compared to the untreated controls, 

although their efficacy varied. A successful biocide must have very low 

mammalian toxicity but wide and long lasting microbial inhibiting properties. The 

efficacy of biocides depends on effective disturbance of fungal metabolism, and 

by prevention of sterol synthesis, inhibit cell wall expansion.

Busan 881 was effective at reducing total fungal populations when compared to 

the control edge and core samples, and was more effective than Adesol 20 but less

183



effective than Lastil 40. Several groups of biocides disturb the respiration of fungi 

and all such compounds are powerful inhibitors of spore germination. The biocide 

Busan 881 belongs to one of the oldest group of biocides, the dithiocarbamates. 

The dithiocarbamates owe their toxicity to their ability to chelate with certain 

metal ions, especially copper and can inhibit several enzymes involved in 

respiratory processes. One of the active ingredients in Busan 881 is potassium N- 

methyldithiocarbamate. The inhibitory effect of this complex may arise from 

interference with the respiration of the fungus by inactivation of the pyruvate 

dehydrogenase system. The same mode of action was shown primarily in studies 

on the spoilage fungus, A.niger (Lukens, 1971).

Previous studies by Lacey et al. (1981) found that Maneb, a fungicide belonging to 

the dithiocarbamates group, did not delay moulding of hay when applied at 0.5 % 

doses on hay with a 35 % moisture content. However, Busan 881 had another 

active ingredient other than the dithiocarbamate, and this may explain its better 

efficacy on straw.

Adesol 20 was the least effective biocide in controlling fungal populations in 

bales. The active ingredients in this biocide are ethanol (5 %), dioclyldimethyl 

ammonium chloride (23 %) and ethane diol (20 %). Previous studies by Lacey et 

al. (1981) found that ethanol and ammonium chloride when used separately did 

not delay moulding of hay when applied at 0.5 % doses on high moisture content 

hay. However, they did not investigate effects on straw, or in combinations of 

treatments as was carried out in this study.
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The most effective biocide at controlling fungal activity in situ was Lastil 40. The 

main active ingredient in this biocide is 2,4,6-Trichlorophenol. This biocide 

belongs to the phenolic group of biocides. The majority of phenols, especially 

those containing chlorine are toxic to micro-organisms. They are widely used as 

industrial biocides for the protection of woods and textiles from fungal attack. The 

fungicidal action of the various phenols depends on their ability to uncouple 

oxidative phosphorylation and thus prevent the incorporation of inorganic 

phosphate into ATP without affecting electron transport. This action probably 

occurs at the mitochondrial cell wall and enables the cell to continue to respire, 

but they are soon deprived of the ATP necessary for growth. This is a probable 

explanation for the mode of action of Lastil 40, although further work would need 

to be carried out to confirm this. In the Lastil 40-treated straw E.amstelodami was 

the dominant spoilage fungus present. E.amstelodami does not pose a health risk 

and has low cellulose degrading capabilities, so would not adversely affect the 

structure of the straw. This was one of the reasons why it was chosen as the 

biocide treatment for the subsequent field trials.

The dominant species isolated from the control samples (no biocide) were 

A.fumigatus and F.culmorum in these experiments (NS2). Both of these fungi can 

cause problems to health. A.fumigatus spores are respiratory allergens and can 

cause the debilitating disease Aspergillosis. F.culmorum is a typical field fungus 

which can produce toxic secondary metabolites (mycotoxins) under conducive 

environmental conditions. They produce trichothecenes, T2 toxin and fumonisins 

(Chelkowski, 1989). Langseth et al. (1993) found that grain infected with 

Fusarium spp. continued to produce
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mycotoxins even though the conditions allowed abundant growth of storage fungi 

such as Pénicillium and Aspergillus spp. The isolates of Fusarium from straw need 

to be examined for their potential for mycotoxin production. A.fumigatus was also 

abundant. The potential presence of Fusarium mycotoxins could be significant if 

the end use of the straw was for animal consumption.

In the second large scale field trial (NS3), 50 % of the CFUs isolated from the 

control straw consisted of A.fumigatus, after 50 days, while 100 and 150 days of 

storage all of the fungal populations isolated were A.fumigatus. A.fumigatus is a 

thermotolerant species, which has a maximum temperature for growth near 50°C, 

and a minimum well below 200C, and can therefore survive in a wide range of 

climates. The temperatures in the top bales fluctuated between 20°C and 50°C (see 

Figure 3.32), ideal conditions for growth of A.fumigatus. The other species 

isolated besides A.fumigatus were F.culmorum and A.pullulans. F.culmorum is a 

mesophilic species with good competitive saprophytic ability (Siran and Chen, 

1989). The isolation of this species may have decreased in straw after 50 days 

storage, due to the marked increase in temperature to approximately 50°C at about 

60 days. A.pullulans is a typical primary saprophyte and usually grows actively on 

the straw at harvest or immediately after harvest. A.fumigatus was able to persist 

because it could tolerate the increases in bale temperatures and is also able to 

utilise the hemicellulose and cellulose components in straw, perhaps affecting 

straw quality and structure.

Studies by Chang (1967) and Chang and Hudson (1967) on fungi of wheat straw 

composts found similar changes in fungal succession and dominance. They found 

that A.fumigatus persisted throughout the storage period regardless of the

186



temperature fluctuations. They also found that in composts at day zero the 

temperature was 15°C, but that was elevated to 680C by day 5. A trend was also 

observed in the first 10 days in all o f the straw field trials. An explanation for this 

increase may also be due to the colonisation by thermophilic species. Chang and 

Hudson (1967) isolated thermophilic species from composting straw in the first 

few days, which may validate this explanation. However, thermophilic species 

were not isolated after 50 days, possibly due to the subsequent decrease in 

temperature and colonisation by other more competitive species.

In the final large scale field trial (NS4) generally, the wads of straw in nets, 

chopped straw in nets and biocide sprayed onto straw in nets were all effective 

treatments for controlling microbial growth when compared to control samples 

(see Figure 3.35). A possible reason for this was that the additional layer of straw 

provided a barrier from rainfall, thus maintaining a uniform moisture content 

across the surface of the bales. The treatment which involved spraying biocide 

into wads of straw in nets on the top surfaces of dry top bales was also found to 

have some effect, with a lower maximum temperature being reached than the 

controls, and a mean moisture content of 24.3 %. The most successful treatment 

involved the wads of straw on the top of bales where both the number of days at 

elevated temperature, and increases in moisture content were minimal. However, 

some ingress of water occurred, responsible for increasing the relative moisture 

content. Fungal respiration was the major contributory factor for the elevated 

temperature in the bales.

The Nutri-shield® treatment was reported by the manufacturers to produce a crust 

over the top surface of the treated bales which would be a very effective water
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repellent layer. Visual inspections of the bales during storage, and the temperature 

data, suggested that this was not happening, with all of the significant periods of 

rain resulting in major increases in the temperature of these bales. Extensive water 

ingress occurred, for the dry treatment (15.5 % at baling), the mean moisture 

content increased to 38.3 % by the end of the storage period. However, this 

increase in moisture content was not seen at the higher moisture content, and the 

increase in temperatures in these bales indicates that some drying may have 

occurred. There were a large number of days at elevated temperature and high 

moisture content values for the Nutri-shield® treated bales demonstrating the lack 

of effect of this treatment. At 15 % moisture content Nutri-shield® treated straw 

had the largest mean total fungal populations when compared to the other 

treatments (see Figure 3.35) and 50 % of these isolates were again A.fumigatus. 

Nutri-shield® appears to promote the growth of A.fumigatus. This may be due to 

the soya extract component in Nutri-shield® which A.fumigatus may be able to 

utilise. Other species may be able to utilise the soya extract but, due to the 

competitive nature and thermotolerance, A.fumigatus may be able to dominate the 

stored straw ecosystem. This trend was not apparent for straw baled at 23 % 

moisture content. A possible explanation could be due to the drying out of the 

bale, demonstrated by the changes in moisture content (results not shown).

The changes in the structure of the straw samples during storage complemented 

the mycoflora data, the temperature variations and water ingress observations. The 

combined data enabled the interaction of each component to be combined to give 

a clear picture of how and why degradation of straw was occurring.
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4.2.4 Effects on straw structure

Generally, there are two types of infra-red spectrometer available for analysis: 

dispersive and Fourier-Transform (FT) spectroscopy. Each of the machines 

provides an infra-red spectrum, but by a different method. Dispersive spectroscopy 

is the commonly used technique. It uses a grating monochromator to disperse the 

infra-red radiation into its individual frequencies and sweeps from one end of its 

frequency range to the other. An FT spectrometer, however, irradiates the sample 

with the whole range of frequencies simultaneously. These interact to form an 

interference pattern which is subsequently analysed using the mathematical 

technique called Fourier-Transform spectroscopy. This changes, or transforms, the 

interference pattern into individual frequencies and intensities.

Dispersive spectrometers suffer from several disadvantages with regard to speed, 

sensitivity and wavelength accuracy. Since the spectrum is collected by sweeping 

across the frequency range, and can take several minutes to accumulate, it is not 

suitable for studying fast reactions or monitoring chromatography column eluates. 

Sensitivity is poor since most of the infra-red radiation is lost due to the 

narrowness of the focusing slits instead of passing through the sample. The 

gratings used to disperse the infra-red radiation are very susceptible to mechanical 

movement with the result that the accuracy of the incident radiation wavelength 

can vary appreciably.

The use of FT instruments overcomes all of these difficulties. Since all 

frequencies are irradiated at once, without the need for dispersion, both the speed 

and wavelength accuracy are increased. The FT instrument does not focus the
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radiation, rather it employs a beam-splitter and mirror system, the working 

principle of which will not be discussed here. This allows almost all radiation to 

be collected by the detector, improving the sensitivity dramatically. The 

interferogram collected by the detector is stored in a digitised form, therefore 

many spectra can be collated, often within fractions of a second. These can then 

be averaged to give a much reduced signal to noise ratio.

The traditional methods of obtaining infrared spectra of solid samples are to either 

use milling agents or compress the sample in an alkali halide disc (Turner and 

Herres, 1988). Alkali halides are commonly used as supports and diluents in 

infrared spectroscopy due to their transparency to the infrared radiation. The 

former method involves grinding a small amount of sample in a mortar and pestle 

then mixing it with either Nujol (liquid paraffin) or fluorolube (a fluorinated 

chemical) depending on the spectral region of interest. This suspension is 

normally smeared between two alkali halide discs and the spectrum collected. 

The latter method requires the sample under analysis to be ground very finely with 

approximately a hundred-fold excess of high quality alkali halide (normally KBr). 

This mixture is then pressed into a disc using a 10 tonne press. These methods, 

although suitable for fibre extracts, are, in most cases, unsuitable for the fibres 

themselves. The process of grinding causes changes in the structure of the fibre, 

such as fragmentation of the polysaccharide chains (Nevell, 1985) and chemical 

alterations to lignin (Lee and Sumimoto, 1990). Cutting the fibres into small 

pieces then incorporating these into alkali halide discs is not feasible. The fibres 

cause fracture lines to occur in the disc making them extremely fragile and brittle. 

A further problem encountered when analysing such large particles is that a large

190



proportion of the incident radiation is lost due to scattering which results in a 

sloping baseline and a generally poor spectrum.

These disadvantages can be overcome by using Diffuse Reflectance Infrared 

Fourier-Transform (DRIFT) Spectroscopy. This technique has been widely used 

for the analysis of solids in the UV and visible spectroscopic regions (Kortüm, 

1969). Recent advances with FT technology and improved IR detectors, however, 

have permitted its application in the infrared spectroscopic region. In the field of 

fibre/cellulose science, the use of infrared spectroscopy, and in particular FT-IR, 

has seen a large increase over the last decade (Faix, 1986; Berben et al., 1987 and 

Michell, 1988). More recently DRIFT spectroscopy has been the favoured method 

(Owen and Thomas, 1989; Anderson et al., 1990; Michell, 1991)

In this study the methodology of Diffuse Reflectance Infrared Fourier-Transform 

(DRIFT) Spectroscopy was used to analyse the straw samples for NCP and lignin 

composition in addition to chemical methods. This method enabled the changes in 

molecular structure of the cellulosic components to be analysed qualitatively and 

to some extent, semi-quantitatively.

With most perennial or annual, non-wood plant samples, it is necessary to use 

suitable extraction procedures to remove residual cell contents, particularly 

soluble phenolics and tannins. Although it was known that cereal straw and treated 

straw samples would contain low concentrations of residual cell components, 

previous experience at SCRI with wheat had shown that the concentrations present 

did not cause any significant effect on the lignin results. Hence, the lignin contents 

were directly determined on the milled samples.
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In order of availability, any carbohydrate in the residual cell contents will be 

degraded first, followed by degradation of the carbohydrate components of the cell 

wall or fibre. Degradation of the NCPs usually begins before degradation of 

cellulose starts, but degradation of both will then progress in parallel. Degradation 

of the NCPs is not complete before degradation of cellulose begins. As a 

consequence only the losses of NCP and not cellulose were determined.

The DRIFT spectra of the control and stored bales showed that storage was 

accompanied by loss of NCP which was evident from the reduced absorbance at 

1068 cm '1. The ratio of the lignin-related absorbances at 1595:1510 cm'1 changed 

from <1 in the spectra of the control bales to >1 in the spectra of the stored bales. 

This suggests that cinnamic acids and non-core, less condensed, lignin has been 

removed, probably by fungal degradation. Although apparent lignin changes 

occurred (see Table 3.16) these changes were due to losses of carbohydrate 

components.

Analysis of the samples from the NS3 trial, by DRIFT spectroscopy show that 

structural, as well as, compositional changes had taken place (see Figure 3.30). 

The fingerprint region over the range 1200-900 cm '1, which is dominated by the 

absorbances due to cellulose and NCPs, exhibited different line shapes and 

maxima. These are the changes which occur when the secondary and tertiary 

structure of the straw wall is being disrupted/degraded. There is a reduction in 

intensity centred at 1720 cm '1, the region of ester carbonyl absorbance, 

particularly in the spectra of the edge samples. This absorbance is most intense in 

the spectrum of the samples with moisture contents of 12 % and at a given 

moisture content, greatest in the core sample. The indication is that ester
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hydrolysis is occurring, particularly in the outer and most moist bales. It is known 

that, during fungal biodégradation of lignocellulosic materials, the micro

organisms secrete esterases, i.e. ester hydrolysing enzymes. Esterases are required 

if  cereal straw is to be degraded by the micro-organism, since the constitutive 

NCPs, in particular xylan, contain acetyl esters. Since the presence of acetyl 

groups on xylan and NCPs impedes digestion by secreted xylanases (and 

hemicellulases), it is necessary for the esterases to be secreted in the initial stages 

of digestion to facilitate biodégradation.

Analysis of samples from the final field trial (NS4) showed samples undergoing no 

or low levels of degradation, with very little difference in their DRIFT spectra 

while those undergoing significant degradation, as determined by the increase in 

apparent lignin content, also gave increased absorbances at 1595 and 1510 cm*1, 

the main absorbances associated with lignin.

Unfortunately, pulping of straw from laboratory and field experiments could not 

be carried out by the associated partners within the overall project.
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CHAPTER 5 

CONCL US ION S
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5.1 CONCLUSIONS

• The same fungal species were isolated from cv. Ribband and Beaver, but the 

populations and dominance of individual species varied between the two 

cultivars.

• As temperature was increased from 10°C to 30°C, the number of different 

species increased and their dominance changed. Colonisation patterns were 

thus significantly influenced by temperatures.

• Isolation of species also varied with changes in water availability and pH, 

indicating that interactions between environmental factors markedly influenced 

rate of deterioration.

• Respiratory activity of the natural mycoflora on straw were significantly 

influenced by temperature and aw, with maximum at 30°C and 0.98 aw.

• Generally, the respiratory activity of individual species in pure culture on straw 

had significantly different respiratory rates. F.culmorum had the greatest 

temporal respiratory activity, and C.cladosporioides having the lowest activity 

regardless of aw.

• Individual species increased their respiratory activity with increasing storage 

temperature and aw levels. F.culmorum nearly doubled its oxygen consumption 

at 25°C when compared to 10°C storage.

• There was a correlation between temperature x aw interactions in relation to 

DML of straw. DML increased with increases in temperature and aw, both due
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to the activity of mixed natural mycoflora on straw, and individual species. 

Maximum DML were found to be 3.40 % at 30°C and 0.98 aw.

• Degradation of carbohydrate occurred during respiration and was confirmed by 

DRIFT spectral analysis.

• The effect of temperature and aw levels on degradation of NCP and lignin 

components of straw were difficult to determine. The greatest increase of 

apparent lignin was observed at 20°C. However, the results at 25°C and 30°C 

were less clear. No clear trend could be determined from the data.

• Temperature, aw and storage period all affected fungal colonisation, dominance 

and succession on straw. As storage temperature was increased the numbers of 

different species increased. This trend was observed at all steady-state aw 

levels investigated. Total fungal populations increased with the storage time at 

all temperatures.

• For each of the temperatures as aw increased DML of straw increased over the 

storage period. This confirmed that DML was dependent on temperature x aw 

interactions.

• All biocides tested reduced fungal isolation when compared to controls. 

Generally as concentration was increased, the isolation of fungi decreased, 

suggesting that biocides could be an effective method for controlling fungal 

growth on stored straw.

I
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• Lastil 40 had the greatest efficacy at inhibiting fungal isolations and growth at 

all concentrations when compared to controls and other biocides tested.

• All biocides were ineffective at controlling spore germination, but effective at 

controlling mycelial growth.

• The efficacy of the biocides on fungal respiration was slightly diminished as aw 

was increased. They were more effective at 0.95 aw than 0.98 aw. Thus efficacy 

of the biocides were aw dependent.

• Lastil 40 was the most effective at reducing fungal respiration, decreasing 

fungal respiration by 66 %, when compared to the controls.

• All biocides reduced DML when compared to controls. Lastil 40-treated straw 

had the lowest DML at both 0.95 and 0.98 aw.

• In the preliminary field experiment, all of the biocides significantly decreased 

the total fungal populations when compared to the controls. However, Lastil 40 

treatment was most effective at controlling total fungal populations.

• In the second large field trial (NS3), 50 % of the species isolated from controls 

were A.fumigatus. There was considerable increases in top bale temperatures, 

which were caused by increased fungal activity due to water ingress. Generally, 

larger fungal populations were present in the wettest straw bale treatments.

• In the final field trial (NS4) the most effective treatment for the prevention of 

spoilage was wads of straw on top of the bales. Nutri-shield® treatment
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appeared to stimulate microbial growth, with the dominant species being 

A.fumigatus.

• Changes in straw structure complemented the mycoflora data, the temperature 

variations and water ingress observations. Generally, deterioration of straw 

corresponded to increases in fungal populations, water ingress and temperature 

increases.

5.1.2 Future work

•  The effect of temperature x aw interactions on respiration of a wider range of 

species should be undertaken. A wider range of aw levels could be tested for 

each species. The effect of pH on respiration could also be incorporated into 

such studies.

• Further modification of the respirometer system could enable a larger volume 

of straw to be tested in each experiment. This would help determine if  

extrapolations were accurate.

• The storage period for determination of succession in small scale experiments 

could be extended to one year, with higher temperatures investigated. This 

would enable the development of thermophilic species and the changes in 

straw structure could be analysed.

• Further large scale field trials would be needed over longer storage periods and 

the effect of cultivar could be evaluated in conjunction with the most effective 

treatments over a wider range of moisture contents. This would enable
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information to be gathered on storage quality and rates of deterioration over 12 

month storage periods.
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Field experiment (NS3)

Raw data for lignin and non cellulosic polysaccharide content of straw.

No biocide
Moisture Bale;LayeirStorag<2 Lignin NCP Lignin NCP

(%) (days) (core) (core) (edge) (edge)
12 1 b 50 14.0 (0.3; 28.6 (0.5; 11.8(1.2] 34.1(1.9)

2 m 50 16.7 (0.4; 38.0 (0.5; 13.9 (0.6) 36.6 (1.8)
3 t 50 16.1(0.6] 32.9 (0.5) 13.7 (0.6) 32.4 (2.6)
4 b 100 14.4 (0.8) 40.0(1.3) 15.6(0.2) 28.4 (0.8)
5 m 100 15.5 (0.7) 37.7 (0.3) 16.8 (0.5) 40.2 (2.9)
6 t 100 16.2 (0.8) 40.4(1.3) 18.2 (0.2) 33.5 (2.9)
7 b 150 13.7 (0.7) 17.6 (2.9) 14.1 (0.8) 13.7(1.8)
8 m 150 20.1 (4.2) 25.2 (3.3) 18.4 (3.0) 31.5 (3.3)
9 t 150 17.9 (5.4) 20.8 (4.9) 25.8 (3.3) 22.7 (2.7)

16 21 b 50 15.0(0.5) 37.3 (1.3) 13.8(0.7) 36.5(1.1)
22 m 50 15.7 (0.8) 36.7 (0.3) 16.2 (0.7) 37.9(1.3)
23 t 50 14.9(1.2) 36.7(1.8) 18.3 (0.7) 34.6 (0.2)
24 b 100 14.0 (0.1) 37.6 (2.2) 14.4 (0.8) 34.7(1.1)
25 m 100 15.7 (0.2) 33.9 (0.6) 16.9 (0.6) 33.6 (0.3)
26 t 100 16.7 (0.4) 35.3 (1.9) 18.9 (0.2) 30.2 (0.7)
27 b 150 24.1 (3.4) 31.8(2.0) 22.3 (2.7) 23.9(1.0)
28 m 150 20.8 (2.4) 21.0(5.0) 22.7 (4.2) 25.8 (2.8)
29 t 150 13.8 (0.5) 15.6 (2.5) 20.2 (0.9) 17.7(1.6)

20 41 b 50 15.1(0.5) 33.8 (3.6) 13.7(1.0) 34.3 (6.5)
42 m 50 14.6(0.1) 37.4 (5.4) 13.5 (0.9) 41.3 (2.7)
43 t 50 16.6 (0.7) 33.9 (2.9) 16.7(0.4) 33.0(4.1)
44 b 100 16.5 (0.5) 33.0(1.4) 17.3 (0.5) 34.0 (2.6)
45 m 100 14.8(1.4) 35.2(1.2) 16.9 (0.3) 28.3 (3.6)
46 t 100 15.6(1.0) 38.9(1.2) 17.2 (0.4) 26.1 (2.8)
47 b 150 14.7(0.8) 18.5 (5.2) 12.8 (0.2) 22.9 (2.5)
48 m 150 18.6 (5.4) 25.9(1.2) 13.6 (0.6) 28.0 (3.5)
49 t 150 14.1(0.3) 24.4 (0.5) 17.7 (2.5) 21.1(1.8)

24 61 b 50 16.7(1.3) 31.0(2.3) 14.2(1.0) 32.3 (0.9)
62 m 50 16.1 (0.5) 38.1 (4.4) 15.7(0.5) 36.5 (0.7)
63 t 50 18.3 (0.9) 40.4(1.6) 18.6(1.2) 27.9 (3.4)
64 b 100 16.2 (0.5) 31.4 (0.8) 16.9 (0.7) 32.8 (3.0)
65 m 100 16.6 (0.05; 36.3 (1.7) 16.6 (0.4) 32.6(1.0)
66 t 100 17.2 (0.2) 33.8 (3.0) 18.8(0.4) 38.0 (0.5)
67 b 150 24.7 (2.2) 17.2 (1.6) 20.5(1.6) 25.7(2.1)
68 m 150 25.1(1.0) 22.4 (5.7) 22.5 (1.8) 16.6 (8.7)
69 t 150 22.2 (2.0) 19.8(3.5) 26.8(1.7) 19.8(1.5)
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Biocide
Moisture Bale;Layeir Storage Lignin NCP Lignin NCP

(%) (days) (core) (core) (edge) (edge)
12 11 b 50 18.3 (0.3] 35.3 (2.9) 13.5 (1.2) 33.8(1.1)

12 m 50 16.9 (0.9] 40.5 (2.4) 14.3(1.1) 42.4(1.9)
13 t 50 16.9 (0.9] 40.5 (2.4) 16.1(0.9) 34.1(1.1)
14 b 100 14.1 (0.6) 44.9(1.4) 15.9(0.9) 34.6 (5.3)
15 m 100 16.4 (0.2) 39.7(1.5) 12.9 (0.5) 31.9(2.3)
16 t 100 15.2 (0.8) 39.0 (2.6) 15.7(0.3) 35.6 (3.9)
17 b 150 16.0 (2.4) 12.7 (2.3) 15.3 (0.5 21.6(4.8)
18 m 150 15.7(1.0) 17.3 (4.2) 18.4(1.2) 13.9 (0.1)
19 t 150 20.5 (0.7) 21.0(2.8) 24.5 (3.7) 14.5 (3.8)

16 31 b 50 12.8 (0.5) 31.9(1.3) 11.2(1.2) 28.7(0.1)
32 m 50 15.2 (0.4) 30.6 (3.6) 14.8(1.0) 31.6(2.2)
33 t 50 15.3 (1.0) 32.9 (1.8) 13.8 (0.8) 37.7 (2.9)
34 b 100 14.3 (0.3) 29.9(1.1) 14.9 (0.5) 31.2 (0.7)
35 m 100 14.6(1.1) 34.0(1.5) 14.8 (0.9) 37.8 (2.0)
36 t 100 15.9 (0.2) 36.9(1.8) 17.9 (0.5) 35.3 (2.7)
37 b 150 15.0(1.0) 14.3 (1.7) 13.3 (2.0) 23.6(1.3)
38 m 150 16.4 (3.4) 18.0(4.4) 17.7 (2.0) 15.6(1.8)
39 t 150 25.1 (2.9) 18.4 (5.2) 21.9(4.3) 10.1(1.8)

20 51 b 50 14.9(0.8) 33.8(0.2) 12.5 (0.8) 31.4 (1.4)
52 m 50 13.4 (0.9) 32.8 (0.5) 12.4 (0.2) 28.3 (2.9)
53 t 50 13.4 (0.7) 32.9 (0.5) 15.9 (0.6) 29.4 (3,4)
54 b 100 14.2 (0.2) 35.6 (3.6) 14.9 (0.4) 32.6(1.0)
55 m 100 15.1 (0.8) 34.8 (0.3) 15.8(1.0) 32.5 (4.0)
56 t 100 14.1(0.6) 39.4 (0.8) 16.2 (0.6) 37.8(1.6)
57 b 150 17.6(1.0) 22.8 (2.3) 19.8 (1.6) 16.9 (4.8)
58 m 150 19.7(3.0) 20.6 (3.5) 19.5 (0.3) 25.8 (3.8)
59 t 150 23.7 (0.7) 22.8 (3.9) 25.1 (3.0) 22.5 (2.7)

24 71 b 50 16.0 (0.4) 28.1 (4.0) 13.0 (0.8) 35.1(0.9)
72 m 50 15.7(0.6) 34.1 (4.0) 14.9 (0.7) 28.9 (2.5)
73 t 50 16.5 (1.0) 34.7(1.4) 14.2 (0.3) 33.3 (1.2)
74 b 100 16.4 (0.6) 30.2 (0.2) 15.1(0.3) 32.2 (3.7)
75 m 100 13.8 (0.0) 34.7 (0.2) 14.9 (0.4) 31.7(7.1)
76 t 100 16.6 (0.3) 38.0 (0.4) 19.5(1.4) 29.1 (5.3)
77 b 150 22.5 (2.3) 21.7(2.5) 21.4(2.9) 26.0 (1.9)
78 m 150 18.5 (0.9) 20.8 (3.3) 25.4 (2.3) 20.6 (3.6)
79 t 150 19.3 (2.0) 24.7 (3.0) 25.2 (2.4) 19.6 (0.3)
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