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Abstract— This paper proposes a decision-making framework
for Connected Autonomous Vehicle interactions. It provides and
justifies algorithms for strategic selection of control references
for cruising, platooning and overtaking. The algorithm is based

on the trade-off between energy consumption and time. The
consequent cooperation opportunities originating from agent
heterogeneity are captured by a game-theoretic cooperative-
competitive solution concept to provide a computationally fea-
sible, self-enforced, cooperative traffic management framework.

Index Terms— Connected cars, game theory platooning, nego-
tiation, overtake, V2V.

I. INTRODUCTION

T
ODAY’S paradigm of road vehicle operation is far from

optimal: individual human drivers compete for space

without means to understand one another’s intentions. They

lack understanding of fuel-efficient vehicle operation and are

vulnerable to fatigue. As a result, the velocity profiles are very

variable, saturated with many deceleration and acceleration

events and high peak velocities. All of these maneuvers cause

demand for oversized powertrains, waste energy and increase

air pollution.

The largest contributors to the energy inefficiency are break-

ing and aerodynamic drag. The former can be minimized

by the elimination of traffic uncertainty. The latter, since

drag is roughly proportional to the square of velocity, can

be addressed by careful optimal selection of the cruising

velocity. The proposed framework provides an algorithm for

the selection of optimal maneuvers in a cooperative manner.

Neglecting tire slip losses, which occur at the limit of han-

dling, any maneuver can be viewed as a velocity transient.

Velocity, in turn is a trade-off between time elapsed and energy

efficiency. An optimization algorithm defines a cost function,

with a minimizer as optimal cruising velocity. It is followed
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by a scenario where the Ego Vehicle (EV), while cruising

at its optimal velocity, encounters an Obstacle Vehicle (OV)

ahead. Today, the solution is to either merely platoon behind,

losing time, or waiting for an overtake window of unknown

size, wasting energy and compromising safety. Information

exchange, however, enables understanding of the other agent’s

objectives and provides means to find a mutually optimal

strategy. The condition of self-enforcement removes the need

for legislative effort.

The literature indicates clarity in the direction road transport

is heading: the emergence of driverless and automated traffic

[1] is a matter of time. Such vehicles will be equipped

with high computational power and machine-based situational

awareness, which shall be supplied not only by the onboard

sensors, but also by means of cooperative perception and nego-

tiation [2] mediated by vehicle-to-vehicle (V2V) and vehicle-

to-infrastructure (V2I) wireless communication systems [3].

Given that these technologies are rapidly developing [4],

information exchange is assumed to be complete and perfect,

meaning no information is lost.

Very narrow scope of research addresses the problem of

optimal cruise velocity selection [5], [6]. Both view velocity

as a trade-off between energy and time, but introduce a

subjective, abstract parameter to control the bias.

Platooning, where vehicles follow one another, has been

considered from traffic stability [7] and cooperative sens-

ing [2] perspective. The decrease of aerodynamic drag has

also received considerable attention [8]. However, there is

no research addressing the multi-agent dynamics of platoon

formation.

Autonomous overtaking has received a lot of attention

already. Research focuses on the theoretical background to

guide further development and harmonization of the lateral and

longitudinal controls or the technical requirements to handle

it [9], [10]. More recent studies propose a division of the

maneuver into three phases to apply adaptive control algorithm

[11], or application of spacecraft rendezvous algorithms to

approach the problem [12]. Most importantly, [13] studies

the feasibility of autonomous overtaking performed by Model

Predictive Control, taking the safety and comfort as objectives.

The cost function is defined to penalize deviation from the

reference velocity and trajectory, taking into account the

distance to the oncoming vehicle. However, the formulated

method assumes no cooperativity and does not track energy

consumption or time. The application of automated driving

technology by a number of companies [14], [15] indicates
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a necessity for studies on the energy efficiency of scenarios

which such vehicles may encounter.

There are a number of approaches to cooperation on

intersections, either centralized [16], [17], or decentralized

[18]; with hardware demonstration ready [5]. Cooperation

is facilitated by numerous intersection management schemes

[19]–[21]. All of these publications consider the throughput of

intersections, while neglecting agents’ individual preferences

and self-enforcement, so are dedicated for high-density traffic.

Additionally, a vehicle may change lanes, or merge into an

intersections - conflict problems which fit into a game theoretic

formulation with promising results [22]–[24].

Game Theory has has also found application in hybrid

powertrain control systems to predict user behaviour [25] or

distributed control for unmanned aerial vehicle formation [26].

All state-of-the-art traffic optimization frameworks assume

agents to be homogeneous, neglecting the differences between

them and thus the negotiation aspect. While the threat of

congestion makes such arrangement self-enforceable, it is not

optimal. The authors consider the heterogeneity and emergent

capability for negotiation derived from the properties of non-

zero sum games. This approach captures also the human,

individualistic aspect of the problem [27]–[30] to offer a novel,

user-centric framework for negotiation of traffic scenarios

between connected traffic agents in low and medium intensity

traffic. The negotiation in a distributed topology requires

means of payment to enforce it, what has been proposed in a

form of a traffic intersection algorithm [21] and a block-chain

based mechanism is being implemented [31].

The problem is formulated to find optimal references, con-

sidering the resources managed: energy consumed by vehicles

and value of time of users.

Research on Connected Autonomous Vehicles (CAV) lacks

studies on the selection of optimal velocity. When the decision

is only constrained by safety speed limits, the velocities might

be much higher than necessary from the energy perspective.

We propose that cruising velocity selected is a trade-off

between the cost of vehicle operation, and the time understood

as the user’s value of time as an opportunity cost [32].

This notion is analogous to the Airline Cost Index used as

decision-making factor in aircraft operation, which, due to its

confidential nature cannot be used to automated Air Traffic

Control [33].

While optimisation algorithms are employed for single deci-

sion agents, as two self-optimizing agents meet, the conflict

between agents’ objectives is modelled by a game theory.

An explicit, self-enforced solution concept is employed to for-

mulate the agent intentions into a single optimisation problem.

The agents are thus assumed to be honest, which eliminates

the safety-critical risk of adversary’s defect and allows for

fine refinement of the solution, by means of cooperative-

competitive (co-co) solution concept [34]. The co-co solution

eliminates also the need for finding Nash equilibrium, which

belongs to NP-hard complexity class [35].

This paper consists of five Sections. Section II presents

an outline of the framework developed. Section III proposes

the mathematical formulation and assumptions on which it

is developed. Section IV provides simulation results and

Fig. 1. Decision tree for a scenario where a slower vehicle ahead is
encountered. A decision whether to overtake or platoon is negotiated and
optimal velocity profiles are selected from energy optimality point of view.

Section V concludes the paper discussing the results and

further work.

II. THE AUTOMATED NEGOTIATION FRAMEWORK

The conceptualized framework is geared to balance vehi-

cle’s resource utilization, that is both energy and user’s time,

in accordance with the user-specified objective. With cost

function defined, the decision objectives is to minimize it. The

simplest scenario is a free cruise, where vehicle maintains an

optimal cruising velocity V ∗. Then the cruising interruption

scenario: a slower vehicle ahead can be resolved by either

platooning or an overtake, according to the decision tree

presented in Fig. 1. Given that platooning causes a delay and

excessive speed and overtaking costs energy, but mitigates the

delay, the best agreeable maneuver strategies are found: pla-

tooning velocity VP , or overtake velocity profiles V OV T
n and

the cheapest variant is selected. The payment p is exchanged

to facilitate cooperation and share the benefit.

This framework also carries a capability to empower future

users of CAV to adjust their operating strategy based on

journey’s objective, providing an added value not only of

refined energy optimization, but also a sense of system’s

agility, beyond that of a public transport system [36]. The users

would be able to define their cost of time delay, thereby influ-

encing the cost function’s profile. It may provide a sense of

control and ownership over the vehicle, possibly mitigating an

important factor deterring people from CAV ownership [37].

III. PROBLEM FORMULATION

The proposed framework assumes that all vehicle opera-

tion consists of cruising or handling cruising obstacle, either

joining a platoon or performing an overtake. With these

assumptions in mind, we can identify the input parameters

required, listed in Tab. I, and the decision variables for each

event, which are listed in Tab. II.

While refined vehicle models improve result precision,

the main objective of the paper is to propose and study

dynamics of applied negotiation algorithm. Simplistic vehicle

models are thus applied for clarity, as there is little novelty
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TABLE I

INPUT PARAMETERS

TABLE II

CONTROL VARIABLES

in already researched powertrain models [38]. The powertrain

model is defined in Appendix A

Each vehicle has a set of constants defining it: mass mn ,

rolling resistance µroll,n , aerodynamic area A, drag coefficient

Cd , powertrain efficiency ηP , unit cost of energy source

CE,n and longitudinal distance X S , from which the energy

consumption is found. At the beginning of every journey,

the user selects his personal cost of time delay CT ,n .

A. Game-Theoretic Solution Concept

In the proposed approach, two or more self-optimizing

agents meet with different, but not mutually exclusive objec-

tives. Thanks to properties described below, agents may then

agree on a globally optimal solution and share the benefit,

according to their negotiative power. Equilibrium seeking

approaches to GT do not require enforcement, but are compu-

tationally expensive and cannot guarantee the payoff-dominant

solution [35]. In this approach, a GT is used to break the multi-

agent problem into an optimisation problem. It is incentivised

by a promise of optimal solution, a self-enforced cooperation

can be achieved by a cooperative-competitive (co-co) solution

concept [34], which guarantees the Pareto-optimal equilibrium

at low computational cost. The threat of cost wasted by a

maneuver interrupted by the adversary’s agreeability constraint

and promise of efficiency justify the choice of the solution

concept. The problem of the system’s sensitivity to agent

honesty is not straightforward and is discussed in Appendix C.

If agents are heterogeneous, their interaction is a non-zero

sum game. If they are willing to communicate, they can adopt

a pair of strategies (u#
1, u#

2) which minimize the combined,

cooperative cost J #
sum as

J #
sum = min

u1,u2

(

J1(u1, u2) + J2(u1, u2)
)

(1)

where J #
sum is the total, combined cost of cooperative strate-

gies.

In the pair of strategies yielding J #
sum , one of the agent’s

best strategy J ∗
n may be better, however, than J #

n , which is

not agreeable unless an incentive is provided. The benefiting

agent needs to provide a side payment p = J ♭ to compensate,

guaranteeing under threat of rejection, that

J #
n + J ♭

n > J ∗
n . (2)

Fig. 2. Proposed slider with example values of the cruise time and cost,
to interface user’s intention with the system.

As proposed in [39], the payment should be proportional to

the players’ power (relative values of J ∗
n ), and contribution to

the common achievement. The payoffs are divided as follows:

J #
split =

J1(u1, u2) + J2(u1, u2)

2
, (3)

J
♭
split =

J1(u1, u2) − J2(u1, u2)

2
. (4)

With such division, we can split the game as a sum of a

purely cooperative game. Where players have payoffs J #
n ,

and a purely competitive, zero-sum game, where players have

opposite payoffs J
♭
n = −J

♭
−n . Then, the result of a co-co game

is defined as

J1 =
J #

2
+ J ♭, J2 =

J #

2
− J ♭. (5)

B. Cruising

The cost of opportunity is intended to be selected by the

user of the vehicle, as a mean of expressing their intention

as to how much they value their time and can be viewed as

value of time CT . It is defined by the user together with the

destination of the journey and can be interfaced by a trade-off

slider as in Fig. 2.

If we then consider that the intention is to move a distance

�S, in some steps δS, and V is the rate of movement, then,

since velocity cannot be infinite, there is always a time elapsed

�T defined as

�T =
�S

V
. (6)

Since the loss of time occurs over the distance of the journey

�T =
1

V
:=

∫ S

0

δS

V
d S. (7)

The energy is found in a similar manner from the propulsive

force necessary to maintain a steady state velocity v, consider-

ing the powertrain efficiency ηP , aerodynamic characteristics

Cd A and rolling resistance coefficient µroll

E(v) =
1

ηP

∫ S

0

1

2
ρair Cd A v2 + gµroll v d S. (8)

Then the value of the unit of energy consumed by the

powertrain is defined as CE , and the overall cost function of

each agent n is then a balance between time and energy

cJn(v) = CE E(v) + CT �T

= Av2 + Bv + C +
D

v
, (9)

where:

A =
CE

ηP

1

2
ρair Cd A (10a)

B =
CE

ηP

gµroll (10b)

C = 0 D = CT . (10c)
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Fig. 3. Activity diagram of the communication needed to find agreeable
strategy.

The optimal cruise velocity V ∗ which minimizes the cost

function is then found as

V ∗ = argmin
v

(

Jn(v)
)

. (11)

The minimal cost per unit distance, i.e. the cruising cost CC ,

corresponding to V ∗, is defined as

CC,n = Jn(V ∗
n ) = min

v
Jn(v). (12)

The cost function is convex given that the derivative of the

cost function (10) with respect to velocity assumes the form

d Jn

dv
= 2Av + B −

D

v2
(13)

which, when solved for V ∈ R
+ has only one root, guaran-

teeing a unique minimum.

C. Cooperative Interaction Handling

With the cost function for cruising velocity proposed above,

the heterogeneity of agents makes the co-co solution capable

to enable cooperation without enforcement. Fig. 3 presents the

activity diagram of the algorithm.

As an agent meets an obstacle, it requests adversary’s

preference parameters and finds the best maneuver, which is

proposed and agreed upon or rejected, limiting the negotiation

communication to four messages.

D. Platooning

If a cruising vehicle encounters a slower vehicle or a

platoon ahead, one of the solutions is to request an increase

of the velocity, incentivizing it with payment. The proposed

approach, assumes that vehicles share their local cost function

TABLE III

PLATOONING PAYOFF MATRIX MP,n

jn(v), which defines the cost of departure from V ∗ and is

defined as

jn(v)|
VEV

VOV
= Jn(v) − CC,n, (14)

or, as the minus cruise cost CC,n value defining constant

C (10c). The local cost functions jEV (v) and jOV (v), for

platooning velocities between V ∗
EV and V ∗

OV , when discretized

with a step �V , form a payoff matrix MP,n , as in Tab. III.

It defines the influence of agents strategies on each other. Since

any set of strategies outside of the diagonal of the matrix

would be infeasible from a safety perspective, information

loss is neglected and the solution concept enables precise,

cooperative strategy selection, values not on the diagonal are

rejected.

The payoffs from diagonals of MP,EV and MP,OV are then

summed as

jP(v) = jEV (v) + jOV (v) (15)

and the optimal platooning velocity VP is found as

CP = min
VP

jP(v), (16)

subject to agreeability constraint

0 ≤ jEV (VP) − jOV (VP). (17)

Then, the initiating agent proposes a platooning velocity VP .

The cost of the OV’s departure from V ∗
OV is covered by the

EV’s payment pP = jOV (VP ).
To evaluate the cost of agreeability, the unconstrained

minimum is defined as

CP = min
V NC

P

jP(V NC
P ). (18)

V NC
P is the unconstrained minimizer. The Price of Anarchy

(PoA), defining the loss of optimality of the GT solution in

relation to the globally optimal, is then

PoA =
jP(VP)

jP(V NC
P )

. (19)

The root of the gradient of jP(v) provides the unconstrained

minimizer

VP ∋ ∇ jP(VP ) = 0. (20)

The agreeability constraint is a line Vagr found on the inter-

section of local cost functions

Vagr ∋ jEV (Vagr.) = jOV (Vagr ). (21)
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Fig. 4. A simplified overtake model in space domain.

Then, if Vagr < VP

CP = min
VP

jP(Vagr). (22)

E. Overtaking Manoeuvre

An overtake is an alternative to the platooning strategy. The

economy behind it is to spend energy in order to mitigate the

continuous loss of time when platooning. An energy-focused

overtake model is proposed.

1) Overtake Model: The overtake manoeuvre occurs when

the distance between vehicles �X is within the absolute value

of the sum of their safety distances

Xs = Xs,EV + Xs,OV < |�X | (23)

from −Xs with the OV in the lead, to +Xs with the EV in

the lead. The total relative distance change during maneuver

is 2 Xs .

The longitudinal distance of manoeuvre is constrained by

the maximal distance available, Smax , when alongside. Then,

the distance of the OV is constrained to

Smax,OV = Smax − (2Xs). (24)

It is assumed that the manoeuvre is performed either at a con-

stant velocity vov t,n or constant acceleration an . The selection

of maneuver accelerations is dependent on numerous control

variables of the vehicle, including battery wear, subjective

user comfort, and safety. In order to focus on the negotiation

algorithm, we have decided to keep an fixed. The factors in

the cost function is the energy and is balanced with time.

So each agent’s decision variable is the the overtake velocity.

Example velocity profiles are presented in Fig. 4.The dynamics

control is neglected, as it has already been addressed [13].

The overtake then consists of three phases: acceleration

at an from V ∗
n to the preselected overtake velocity Vov t,n,

cruising at constant Vov t,n and deceleration back to V ∗
n at −an.

Acceleration rates are assumed constant, leaving Vov t the only

decision variable.

Then, the powertrain model returns energy consumption to

evaluate the energy expense Cov t
E,n . The overtake cost is found

by adding the time cost as

Jov t(V ov t
EV , V ov t

OV ) =
∑

N

Cov t
E,n + Cov t

�T ,n. (25)

The manoeuvre is constrained by the oncoming traffic

V ov t
EV − V ov t

OV > 2Xs

V ov t
EV

Smax

. (26)

TABLE IV

PAYOFF MATRIX MVovt FOR AN OVERTAKE. THE POSITION M1,N IS PRE-
SENTED AS INFEASIBLE. THE COLUMN AND ROW WITH V ∗

n + �V IS

NEGLECTED FOR CLARITY

Since the overtake gap is never stationary, a maximal distance

to perform an overtake is derived in Appendix B. Given a gap

of Sgap moving from the opposite direction at Vgap

Smax = Sgap

(

1 −
Vgap

V ov t
EV

)

. (27)

This can be viewed as relative velocity being sufficient to pass

before the EV’s distance exceeds Smax . It is assumed that

vehicles coming from the opposite direction have a known,

constant velocity, so the Sgap is constant.

2) Optimal Overtake: With the overtake model as described

above a matrix of possible solutions MVovt is created. Given

a velocity set from V ∗
n to maximum overtake velocity V max

n

discretized with a step �V

V ov t
n = {V ∗

n , V ∗
n +�V , . . . , V max

n }, (28)

the MVovt assumes the form as in Tab. IV.

Then the optimal overtaking manoeuvre is a vector of Vov t,n

which minimizes MVovt

Cov t (VEV , VOV ) = min
V ovt

n

(

MVovt (VEV , VOV )
)

. (29)

Vov t,n is found by finding a root of cost function’s gradient

(V ov t
EV , V ov t

OV ) ∋ ∇ Jov t(V ov t
EV , V ov t

OV ) = 0, (30)

subject to feasibiliity constraint

V ov t
OV < −

2Xs

Smax (1 −
Vgap

V ovt
EV

)
V ov t

EV + V ov t
EV (31)

and powertrain force constraint

Fnet,n < F̂n, (32)

where F̂n is the maximal propulsive force.

Finally, as agreeability condition, payment pov t = Cov t
OV ,

covering all costs of the manoeuvre on OV’s side is issued,

as the EV would be free to cruise unimpeded.

F. Decision Rule

Having evaluated the cost of platooning CP and the cost of

overtake Cov t , the decision to overtake is selected if

CP SS ≥ Cov t (33)

and platooning otherwise. The EV proposes to OV a feasi-

ble strategy and a payment, which, to ensure enforcement,

must satisfy (2), that is for a maneuver x the strategy is

accepted if

Cx − p ≥ CC (34)
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TABLE V

VEHICLE TYPES AND THEIR DIFFERENTIATING PARAMETERS

Fig. 5. Preference functions for various costs of time. Red curve indi-
cates the trajectory of the functions’ minima, increasing steeply with value
of time.

IV. SIMULATION EXAMPLES

In order to verify the performance of the framework, some

typical scenarios are analysed. Two vehicle types are consid-

ered: a car and a truck. Their individual parameters are listed

in Tab. V. Common parameters are: powertrain efficiency,

assumed ηP = 0.82, rolling resistance µroll = 0.005, and

energy weight, corresponding to its market value CE = 0.12

[$/kWh] [40]. In the overtake problem the acceleration is

an = 2 [m/s] and the model dynamics is discretized with a

timestep �t = 0.1 [s]. To model the cost of an overtake, the

integration of the velocity profile is required at every iteration.

This slows down the numerical optimization algorithm.

Together with the intended embedded implementation using

Objective-C language, it has lead us led to select an exhaustive

search for optimization. With the precision of 0.01 [m/s] the

solution takes on average 5.2 [s], however, assuming that the

solution is on the feasibility constraint, what is justified by

the convexity of the cost function, it takes 0.57 [s].

A. Example 1 - Cruising Velocity Selection

The sensitivity of optimal cruising velocity V ∗ to user’s

objective CT is examined. Fig. 5 presents several preference

functions for Car’s V P and the trajectory of the minimizer,

for CT varying between $5 and $55.

B. Example 2 - Negotiation of Platooning for Varying

Vehicle Parameters and User Objectives

The evaluation of departure costs from optimal velocity and

possible solution points are visualized in Fig. 6. Point 1 marks

the cost of a baseline, non-cooperative maneuver, point 2 the

minimal agreeable cost and point 3 the Pareto optimal cost,

which is not feasible under agreeability constraint, as the

payment required to enforce it outweighs the benefit.

Fig. 6. Matching agents’ preferences, to negotiate the optimal strategy for
a 5 km platooing. Point 1 is the noncooperative cost, point 2 the agreeable,
and point 3 is the optimal.

TABLE VI

VEHICLE TYPE AND PREFERENCES FOR EACH CASE

TABLE VII

PLATOONING SOLUTION COSTS AND PRICES OF ANARCHY (18).
IN CASE 1 OPTIMUM IS WITHIN CONSTRAINT

Fig. 7. Sum of platooning cost for 5 km for each case. Vertical line marks the
agreeability constraint. Observe the negotiation power adjusting to the agent
type. The case 1 is the only case where the optimum is within constraint limit.
Points mark the functions’ minima.

The same calculation has been performed for various vehicle

types and CT selected to match V ∗ for different vehicle types,

as in Tab. VI. The results are presented in Fig. 7 and Tab. VII.

Case 1 considers a scenario where a fast car encounters

a slower truck. Case 2 analyses two cars, and Case 3 a

hurrying truck encountering a slower car. Cooperation yields

considerable savings, while agreeability constraint causes

minimal PoA.
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Fig. 8. A projection of the above figure from above, showcasing the
constrained solution space.

Fig. 9. An example of overtake costs surfaces and the feasibility front of
their sum, on which optimal maneuver parameters are found.

C. Example 3 - Overtaking Maneuver

For the same vehicles as in Example 1, the values of MV ovt
n

assume the distribution presented in Fig. 9. For small overtake

velocity differences (V ov t
EV − V ov t

OV ), the maneuvers are rejected

as infeasible. The cost increases quickly, leaving the feasibility

boundary as location of the optimal solution. The constraint

on propulsive force rules out solutions for which required

acceleration is not achievable at given V ov t . In the example

presented in Fig. 8 outlines the projection of the surface of

feasible solutions. The constraint is at V ov t
EV = 36.9 [m/s].

An isometric view of the result is presented in Fig. 9. The

optimal solution for an overtake gap of 80 [m] is found to be,

in this example, V ov t
EV = 34.7 [m/s] and V ov t

OV = 14.3 [m/s].

D. Example 3 - Sensitivity of Overtake to

Distance Available

Evaluation of an optimal overtake cost as a function of

distance available has been performed. Three cases from Tab.

VI are being considered and results presented in Fig. 10. The

overtake velocities required and total cost of maneuver are

plotted. The cost of maneuver decreases hyperbolically with

overtake gap available.

E. Raspberry Pi Algorithm Implementation

In order to demonstrate the practical applicability of the

proposed framework the algorithm has been implemented in a

Fig. 10. Overtake cost, and payment required for performing an overtake
for changing space available for the maneuver. In range from 40 to 200 m.
Oncoming velocity is 20 m/s. r

Fig. 11. Raspberry Pi displays, respectively, during approach, platooning and
overtake. X is the position, V the velocity, D the distance between vehicles
and P is the payment.

TABLE VIII

CALCULATION TIMES FOR FUNCTIONS ON RASPBERRY PI

Raspberry Pi 3 Model B equipped with a 64bit ARM Cortex-

A53 quad-core CPU with 1.2 GHz frequency and 1 GB RAM.

To demonstrate the negotiation, two boards have been used,

connected by Ethernet and equipped with displays, as shown

in Fig. 11.

The algorithm adheres to the activity diagram from Fig. 3,

but is equipped with additional connectivity and synchronisa-

tion modules.

1) Computational Complexity: To assess the computational

burden, the execution times of the algorithm were measured

using the Raspberry Pi’s clock_gettime() function. twenty

observations were made for platooning and overtake scenar-

ios. The time values obtained are shown in Tab. VIII. The

platooning evaluation function takes less than 0.001 s to

execute, while the overtake evaluation consistently less than

0.4 s. Because the algorithm is to be executed once per

manoeuvre, this example demonstrates its feasibility in real

time application.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

V. CONCLUSION

This paper proposes the application of a game-theoretic

cooperative-competitive approach to the interaction between

CAVs, intending to improve road transport energy effi-

ciency by introducing means to achieving payment-based

self-enforced cooperation. The variation of agent parameters

required to enable cooperation is derived from the proposed

user-defined cost of time. User input may double as a means

of matching vehicles driving style to user’s preference. The

algorithms to compute energy and time economy for cruis-

ing, platooning and overtaking have been provided, example

calculations presented and a hardware-in-the-loop application

demonstrated. Further work includes the implementation of

an intersection model, a hardware-in-the-loop demonstrator

on scaled, automated vehicles and development of the cost

function to facilitate refined dynamics control, n-player game

formulation.

APPENDIX A

POWERTRAIN MODEL

To evaluate energy consumption and cost of the maneuvres,

powertrains are modelled as a quasi-static backward facing

model, following either the steady state velocity or the velocity

profiles presented in Fig. 4 above.

The control variable is the acceleration an , being assumed

constant, as dynamics are not a subject of this study. As the

boundary velocities: V ∗
n and V ov t

n , the time of the acceleration

manoeuvre is found

Ta =
(V ov t

n − V ∗
n )

an

(35)

and the time is discretised into T = 1, 2, . . . , i elements with

a timestep tstep. The force required is found by relating to the

balance of forces defined as

Fnet,i,n = FW,i,n − Froll,i,n − Fdrag,i,n (36)

where the FW,i,n is the propulsive force, assumed to represent

torque of the motor. The powertrain energy consumption is

calculated as

Ei,n =
1

ηP

FW,i,nvi,n tstep (37)

where the powertrain efficiency ηP is a product of all pow-

ertrain components ηi,M , ηi,P E , ηi,B , referring, respectively,

to electric motor, power electronics and battery.

The force of rolling resistance is defined as

Froll,i,n = vi,nµroll,i (38)

and the aerodynamic drag force as

Fdrag,i,n =
1

2
Anρair Ci,dv2

i,n . (39)

Vehicle’s state is defined by its acceleration an , velocity vi,n

and position si,n as

ai,n =
Fnet,i,n

mi

, (40)

vi+1,n = vi,n + ai,n tstep, (41)

si+1,n = si,n + vi,n tstep. (42)

Fig. 12. Comparison of truthful and cheated cost function dynamics. X =
{2, 3, 4, 5, 6}.

Finally, the energy expense of a maneuver is found as

En =
∑

N

Ei,n . (43)

Friction breaking is neglected here, as any use of breaks is

wasteful from the energy efficiency perspective, and hence,

since the safety is neglected, optimal solutions would never

use it. It may be introduced together with a battery state of

charge and state of health models.

APPENDIX B

DERIVATION OF THE DYNAMIC OVERTAKE GAP LENGTH

Equation (27) for the dynamic overtake gap length Smax

has been derived from the real length of the gap Sgap,

velocity of the gap Vgap, assuming that the velocities of

oncoming vehicles is constant. After factoring the Sgap into

the parentheses the equation (27) is

Smax = Sgap −
Sgap

V ov t
EV

Vgap, (44)

where the fraction defines the overtake time

Tov t =
Sgap

V ov t
EV

, (45)

which then allows to find the distance the oncoming traffic

travels during the overtake

Soncoming = VgapTov t (46)

which is substracted from the static gap, arriving back at (44).

APPENDIX C

PROBLEM OF HONESTY

As the proposed framework features a payment system,

agents may be incentivised to game the system to increase

received payments. Thus to minimize legislative and regulatory

effort to control the traffic, cheating possibilities are examined.

Scenarios’ sensitivity to agent’s dishonesty is considered.
1) Platooning: Given that agents request a payment for

change in velocity, agents may increasing objective’s slope,

while maintaining the same minimizer. It is achievable if

constant parameters of the cost function, as defined in (10b-d)

are swayed by a constant cheating multiplier X. Problem’s

dynamics are presented in Fig. 12. This vulnerability can be

mitigated, however, by demand to share the cruise cost CC,n

as a control value.
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2) Overtake: An overtake is a dynamic event. The Cov t

is sensitive to from vehicle mass (39), which cannot be

inferred from observation. Therefore agents may be inclined

to overvalue it as the payment is proportional to agent’s mass

p ∝ Cn
ov t . (47)

However, since vehicle other parameters can be measured,

a networked approach to cheating resilient system design could

be considered in future.

ACKNOWLEDGMENT

The authors would like to thank the Engineering and Phys-

ical Sciences Research Council (EPSRC) and Arrival Ltd., for

funding this work, as well as the anonymous reviewers, for

insightful comments.

REFERENCES

[1] T. Litman, “Autonomous vehicle implementation predictions,” Victoria
Transp. Inst., Victoria, BC, Canada, Tech. Rep., 2017.

[2] S.-W. Kim et al., “Multivehicle cooperative driving using cooperative
perception: Design and experimental validation,” IEEE Trans. Intell.

Transp. Syst., vol. 16, no. 2, pp. 663–680, Apr. 2015.
[3] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and

A. Kovacs, “Enhancements of V2X communication in support of coop-
erative autonomous driving,” IEEE Commun. Mag., vol. 53, no. 12,
pp. 64–70, Dec. 2015.

[4] E.-K. Lee, M. Gerla, G. Pau, U. Lee, and J.-H. Lim, “Internet of
Vehicles: From intelligent grid to autonomous cars and vehicular fogs,”
Int. J. Distrib. Sensor Netw., vol. 12, no. 9, pp. 1–14, 2016.

[5] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Energy-optimal coordi-
nation of autonomous vehicles at intersections,” in Proc. Eur. Control

Conf. (ECC), Jun. 2018, pp. 602–607.
[6] B. Németh and P. Gáspár, “Design of vehicle cruise control using road

inclinations,” Int. J. Vehicle Auton. Syst., vol. 11, no. 4, p. 313, 2013.
[7] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw,

and H. Nijmeijer, “Design and experimental evaluation of cooperative
adaptive cruise control,” in Proc. 14th Int. IEEE Conf. Intell. Transp.

Syst. (ITSC), Oct. 2011, pp. 260–265.
[8] A. Alam, B. Besselink, V. Turri, J. Martensson, and K. H. Johansson,

“Heavy-duty vehicle platooning for sustainable freight transportation:
A cooperative method to enhance safety and efficiency,” IEEE Control

Syst. Mag., vol. 35, no. 6, pp. 34–56, Dec. 2015.
[9] T. Shamir, “How should an autonomous vehicle overtake a slower

moving vehicle: Design and analysis of an optimal trajectory,” IEEE

Trans. Autom. Control, vol. 49, no. 4, pp. 607–610, Apr. 2004.
[10] S. Tsugawa, S. Kato, T. Matsui, H. Naganawa, and H. Fujii, “An archi-

tecture for cooperative driving of automated vehicles,” in Proc. IEEE

Intell. Transp. Syst. (ITSC), Oct. 2000, pp. 422–427.
[11] G. Usman and F. Kunwar, “Autonomous vehicle overtaking—An online

solution,” in Proc. IEEE Int. Conf. Automat. Logistics, Aug. 2009,
pp. 596–601.

[12] P. Petrov and F. Nashashibi, “Modeling and nonlinear adaptive control
for autonomous vehicle overtaking,” IEEE Trans. Intell. Transp. Syst.,
vol. 15, no. 4, pp. 1643–1656, Aug. 2014.

[13] N. Murgovski and J. Sjoberg, “Predictive cruise control with autonomous
overtaking,” in Proc. 54th IEEE Conf. Decis. Control (CDC), vol. 54,
Dec. 2015, pp. 644–649.

[14] M. Birdsall, “Google and ITE: The road ahead for self-driving cars,”
J. Inst. Transp. Eng., vol. 84, no. 5, pp. 36–39, 2014.

[15] M. Dikmen and C. M. Burns, “Autonomous driving in the real world:
Experiences with tesla autopilot and summon,” in Proc. 8th Int.

Conf. Automot. User Interfaces Interact. Veh. Appl. (Automotive’UI),
Oct. 2016, pp. 225–228.

[16] L. Makarem and D. Gillet, “Decentralized coordination of autonomous
vehicles at intersections,” IFAC Proc. Volumes, vol. 44, no. 1,
pp. 13046–13051, 2011.

[17] M. A. M. Zulkefli, J. Zheng, Z. Sun, and H. X. Liu, “Hybrid pow-
ertrain optimization with trajectory prediction based on inter-vehicle-
communication and vehicle-infrastructure-integration,” Transp. Res. C,

Emerg. Technol., vol. 45, pp. 41–63, Aug. 2014.
[18] Y. Jiang, M. Zanon, R. Hult, and B. Houska, “Distributed algo-

rithm for optimal vehicle coordination at traffic intersections,” IFAC-

PapersOnLine, vol. 50, no. 1, pp. 11577–11582, Jul. 2017.

[19] R. Azimi, G. Bhatia, R. R. Rajkumar, and P. Mudalige, “STIP: Spatio-
temporal intersection protocols for autonomous vehicles,” in Proc.

ACM/IEEE Int. Conf. Cyber-Phys. Syst. (ICCPS), Apr. 2014, pp. 1–12.
[20] I. H. Zohdy and H. A. Rakha, “Intersection management via vehicle

connectivity: The intersection cooperative adaptive cruise control system
concept,” J. Intell. Transp. Syst., vol. 20, no. 1, pp. 17–32, Jan. 2016.

[21] D. Carlino, S. D. Boyles, and P. Stone, “Auction-based autonomous
intersection management,” in Proc. 16th Int. IEEE Conf. Intell. Transp.

Syst. (ITSC), Oct. 2013, pp. 529–534.
[22] K. Kang and H. A. Rakha, “Game theoretical approach to model decision

making for merging maneuvers at freeway on-ramps,” Transp. Res. Rec.,

J. Transp. Res. Board, vol. 2623, no. 1, pp. 19–28, Jan. 2017.
[23] M. Wang, S. P. Hoogendoorn, W. Daamen, B. van Arem, and

R. Happee, “Game theoretic approach for predictive lane-changing
and car-following control,” Transp. Res. C, Emerg. Technol., vol. 58,
pp. 73–92, Sep. 2015.

[24] W. Yang, Z. Zhiyong, Y. Jianhua, and G. Lifen, “Static game approach
for solving lane-merging conflict between autonomous vehicles,” in
Proc. IEEE Int. Conf. Intell. Transp. Eng. (ICITE), Aug. 2016,
pp. 53–57.

[25] C. Dextreit and I. V. Kolmanovsky, “Game theory controller for hybrid
electric vehicles,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2,
pp. 652–663, Mar. 2014.

[26] T. Gu and J. M. Dolan, “On-road motion planning for autonomous
vehicles,” in Proc. Int. Conf. Intell. Robot. Appl. (ICIRA), Montreal,
QC, Canada, no. 3, 2012, pp. 588–597.

[27] C. Cavoli, B. Phillips, T. Cohen, and P. Jones, “Social and behavioural
questions associated with automated vehicles a literature review,” Univ.
College London Transp. Inst., London, U.K., Tech. Rep., Jan. 2017,
pp. 1–124.

[28] A. Waytz, J. Heafner, and N. Epley, “The mind in the machine:
Anthropomorphism increases trust in an autonomous vehicle,” J. Exp.

Social Psychol., vol. 52, pp. 113–117, May 2014.
[29] S. O. Hansson, “Decision theory,” Technology, vol. 19, no. 1, pp. 1–94,

2005.
[30] A. Diekmann, D. Helbing, and R. O. Murphy, “Conference program

game theory and society,” ETH Zürich, Comput. Social Sci., Cathedral,
CA, USA, Tech. Rep., 2011.

[31] (2018). The Coin of Transportation, Blockchain-Based Transportation

Protocol. [Online]. Available: https://dav.network/
[32] D. A. Hensher, “Measurement of the valuation of travel time savings,”

J. Transp. Econ. Policy, vol. 35, no. 1, pp. 71–98, 2001.
[33] B. Roberson and S. S. Pilot, “Fuel conservation strategies: Cost index

explained,” Boeing Aero Quart., vol. 2, pp. 26–28, Apr. 2007.
[34] A. Bressan, “Noncooperative differential games. A tutorial,” Dept.

Math., Penn State Univ., State College, PA, USA, Tech. Rep., 2010,
pp. 1–80.

[35] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complex-
ity of computing a Nash equilibrium,” SIAM J. Comput., vol. 39, no. 1,
pp. 195–259, Jan. 2009.

[36] A. Y. S. Lam, Y.-W. Leung, and X. Chu, “Autonomous-vehicle public
transportation system: Scheduling and admission control,” IEEE Trans.

Intell. Transp. Syst., vol. 17, no. 5, pp. 1210–1226, May 2016.
[37] C. S. Carver and M. F. Scheier, Attention and Self-Regulation: A Con-

troltheory Approach to Human Behavior. New York, NY, USA: Springer-
Verlag, 2012.

[38] G. Mohan, F. Assadian, and S. Longo, “An optimization framework for
comparative analysis of multiple vehicle powertrains,” Energies, vol. 6,
no. 10, pp. 5507–5537, 2013.

[39] A. Kalai and E. Kalai, “A cooperative value for Bayesian games,” Center
Math. Stud. Econ. Manage. Sci., Tech. Rep., 2010.

[40] UK Government. (2018). Energy Price Statistics. [Online]. Available:
https://www.gov.uk/government/

Marcin Stryszowski received the B.Eng. degree in
power engineering from the Poznan University of
Technology in 2012 and the double M.Sc. degrees
in nuclear plant design from the Royal Institute of
Technology (KTH) and ENSTA ParisTech in 2015.
He is currently pursuing the Ph.D. degree in traffic
energy optimization with Cranfield University. His
M.Sc. thesis contributed to EDF Energy’s nuclear
safety research performing fluid dynamics of acci-
dent scenario. His research interests range from
deterministic nuclear power safety to game-theoretic

approach to conflict and cooperation modeling.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Stefano Longo (Senior Member, IEEE) received
the M.Sc. degree in control systems from the Uni-
versity of Sheffield in 2007 and the Ph.D. degree
in networked control systems from the University
of Bristol in 2011. In November 2010, he was
appointed to the position of Research Associate at
Imperial College London. He is currently a Senior
Lecturer (an Assistant Professor) in vehicle control
with Cranfield University, and he has been there as
an academic since 2012. He is the Course Direc-
tor for the M.Sc. in automotive mechatronics and

advanced motorsport mechatronics, a Chartered Engineer, an Associate Editor
of Mechatronics Journal (Elsevier), an Elected Executive Member of IET
Control and Automation Network and IET Automotive and Road Transport
Systems Network, and a member of the IFAC Technical Committee on
Mechatronic Systems and Automotive Control. In the last few years he has
authored two books and over 70 research articles in peer-refereed journals and
international conferences. His work and his research interests gravitate around
the problem of implementing advanced control algorithms in hardware, where
the controller design and the hardware implementation are not seen as two
separate, decoupled problems, but as a whole. His Ph.D. thesis was awarded
the Institution of Engineering and Technology (IET) Control and Automation
Prize for significant achievements in the area of control engineering.

Dario D’Alessandro received the B.Sc and M.Sc
degrees in computer science engineering from the
Department of Electrical Engineering and Infor-
mation Technology (DIETI), University of Naples
Federico II (IT), in 2015 and 2018, respectively.

He has held the position of Visiting Research
student in Transport Systems at the School of
Aerospace, Transport and Manufacturing (SATM)
at Cranfield University (UK) through the Erasmus+
in 2018, where he developed his M.Sc thesis project
entitled “Hardware in the Loop validation of an

optimal game theoretical approach for autonomous vehicles cooperation”.

Efstathios Velenis (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees from the School of
Aerospace Engineering, Georgia Institute of Tech-
nology, GA, USA, in 2000 and 2006, respec-
tively, and the Mechanical Engineering Diploma
degree from the Mechanical Engineering Depart-
ment, National Technical University of Athens,
in 1999. In 2006, he was awarded the Luther Long
Award for the Best Ph.D. Dissertation in engineer-
ing mechanics at the Georgia Institute of Technol-
ogy. Following his Ph.D., he held a post-doctoral

researcher position at the Georgia Institute of Technology and was a Visiting
Researcher at Ford Motor Company, MI, USA. He is currently a Senior
Lecturer with the Advanced Vehicle Engineering Centre, Cranfield University.
His research focuses on control of vehicle dynamics, active chassis systems,
and control of autonomous vehicles. He has coauthored more than 70 articles
in peer-refereed journals and international conferences. He is an Editor of the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Gregory Forostovsky received the B.Eng. degree
in automotive engineering with motorsport from the
University of Hertfordshire in 2011 and the M.Sc.
degree in power systems engineering from Univer-
sity College London (UCL) in 2016. He is currently
working on a number of electric autonomous vehicle
projects at Arrival Ltd., and has lead development
of the autonomous Robocar and DevBot vehicles at
Roborace Ltd.

Sabato Manfredi (Member, IEEE) has been an Assistant Professor of
automatic control and an Adjunct Professor with the Department of Electrical
Engineering and Information Technology, University of Naples Federico II,
Italy, since 2005. He has been a Visiting Academic with the Control and
Power Group, Electrical and Electronic Engineering Department, Imperial
College, since 2012. His research interests are primarily in automatic control
with a special emphasis on distributed optimization, embedded devices,
sensor/drone networks, smart city, and Industry 4.0. He has published more
than 80 scientific publications, including 18 single-author articles. He is
the author of the book entitled Multilayer Control of Networked Cyber-

Physical Systems: Application to Monitoring, Autonomous and Robot Systems

(Advances in Industrial Control Series, Springer 2017). He collaborates with
many international universities and companies and holds European patent. He
is a proponent member of an academic spin-off, and is involved in a range
of academic, industrial, and consulting projects.



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2020-05-06

A framework for self-enforced optimal

interaction between connected vehicles

Stryszowski, Marcin

IEEE

Stryszowski S, Longo S, D'Alessandro D, et al., (2020) A framework for self-enforced optimal

interaction between connected vehicles. IEEE Transactions on Intelligent Transportation

Systems, Volume 22, Number 10, October 2021, pp. 6152-6161

https://doi.org/10.1109/TITS.2020.2988150

Downloaded from Cranfield Library Services E-Repository


