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ABSTRACT 

A comprehensive numerical and experimental study was performed to investigate 

the energy absorbing capabilities of glass/epoxy and carbon/epoxy members that 

could serve as stanchions in the subfloor structure of aircraft or rotorcraft. Circular 

cross sections with chamfered-ends failure trigger mechanism were investigated 

under axial and off-axis loading conditions. The optimal configuration that 

resulted in the highest possible specific energy absorption (SEA) was identified, 

which was at axial loading. The parameters in off-axis loading conditions that 

affected energy absorption capability were identified. Several cases were 

experimentally studied to cancel off-axis (oblique) loading effect.  

To increase interlaminar fracture toughness, stitching through the thickness was 

considered. Single, multi and pattern-stitching were studied to increase energy 

absorption capability of GFRP composite sections. The failure mechanisms, 

crushing process and force-displacement curve diagram of each case was 

studied to establish the effect of stitching on energy absorption capability. A 

correlation between stitching location and localised and global increase of energy 

absorption was established. It was identified, that the closer the stitching locations 

are, the higher the localised peak load becomes, and it influences the Mode-I 

crack propagation (main central crack) resistance, bending of fronds and friction, 

consequently, pattern-stitching resulted in a 15% increase in specific energy 

absorption capability (SEA) under quasi-static loading. Similarly, this stitching 

pattern resulted in a 14% increase in SEA using CFRP sections. Under impact 

loading, it was identified that pattern-stitching through the thickness resulted into 

17% and 18% increase in SEA using GFRP and CFRP sections, respectively. 

Finite element models were also developed to simulate the crushing behaviour 

of the CFRP and GFRP sections observed experimentally under axial, off-axis, 

quasi-static and impact loading conditions. A multi-layer modelling methodology 

was developed by determining the most effective element size, number of shells, 

formulation, contact definitions, delamination interface, material model, friction 

and trigger mechanism. This approach captured the failure process, predicted the 

SEA and sustained crush load quite accurately within 5% error. Stitching through 
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the thickness was modelled using an energy-based contact card to implement 

stitched and non-stitched Mode-I and Mode-II energy release rate parameters. 

This method accurately predicted stitched composite sections with 3% error 

compared with experimental data.  Such modelling could thus support the future 

design of aircraft stitched and non-stitched stanchions within reasonable 

computer efficiency and accuracy. 

Keywords:  

LS-DYNA, Through-thickness stitching, Multi-stitches, Crack resistance, Oblique, 

Off-axis loading, Crashworthiness 
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1 Introduction 

1.1 Motivation 

Crashworthiness by definition means the ability of structural absorbers to protect 

occupants in a case of an impact by absorbing the applied energy. The energy 

absorption is obtained through controlled failure mechanisms and modes that 

enable a stable load pattern during energy absorption. To design composite 

absorbers, the overall energy absorbing capabilities are dependent upon number 

of factors including, structure geometry, material system, lay ups, and impact 

velocity. Composite materials can be tailored for a specific application and are 

getting more popular day by day for their outstanding characteristics including 

non-conductivity, low coefficient of thermal expansion, fatigue and corrosion 

resistance, and most importantly high stiffness-to-weight and strength-to-weight 

ratios. High-energy absorption of materials, reduces the overall damage to the 

main structure and it provides greater safety for the passengers by reducing the 

initial/post impact load. The challenge is to maximise the energy absorption and 

simultaneously have weight reduction, but without any negative effect to the 

safety, nor production and fabrication. Currently, thin-walled structures are being 

manufactured from FRP composites due to its capacity to withstand axial load 

through membrane as opposed to through bending. 

Composite tubes are known to be outstanding where crashworthiness is 

concerned due to excellent energy absorption capabilities under axial loading. 

Although many studies have been carried on axial impact and compressions, 

based on different materials systems and geometrical shapes with development 

of different manufacturing techniques. The prediction of energy absorption 

behaviour of composites is not as easy and simple because of failure mechanism 

complexity that occurs. Structural failures of composites are due to a combination 

of fracture mechanisms that includes fibre fracture, matrix cracking, fibre matrix 

debonding and delamination.  

Effect of crushing process is dependent on interlaminar fracture toughness. 

Researches have studied the crack propagation and stablished ways to control 
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failure within the laminate. Various methods are used to increase energy 

absorption capabilities by improving interlaminar fracture toughness such as 

stitching through the thickness resulted from knitting process that influences an 

increase in energy absorption capabilities without increasing the weight of the 

structure. Introducing stitching through the thickness to FRP composite sections 

results into higher specific energy absorption compared to non-stitched specimen 

when subjected to impact and the stitched specimen can collapse in a 

progressive and controlled manor.  

In this thesis, the effect of energy absorption capability of stitched FRP composite 

sections compared with non-stitched sections are studied against their 

crashworthy behaviour and specific energy absorption capability. Using 

unidirectional CFRP and GFRP composite sections with symmetric lay-up 

sequence of [-45/45/-45/45/0/90/0/90/0/90/0]S and [-45/45/0/90/0/90]S

respectively. This stacking sequence is balanced and symmetric, in this laminate 

lay-up, the coupling forces cancel out and the distortions are significantly 

reduced. The author investigated the influence of single and multi-located 

stitching through the thickness on energy absorption capabilities and fracture 

toughness Mode-I using GFRP cylindrical shells under quasi-static loading. As 

well as increasing energy absorption capabilities, the author also concentrated 

on the ability to control the force-crush distance curve by applying multi-located 

stitching. This research led to developing a pattern for UD composite sections 

and further investigations of energy absorption capabilities of multi-located 

stitched GFRP and CFRP showed 17% and 18% increase in specific energy 

absorption capability respectively, under impact loading compared to non-

stitched section. Both GFRP and CFRP stitched specimens showed 15% and 

14% increase in specific energy absorption capability, under quasi-static loading 

respectively.  
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1.2 Research objectives  

1.2.1 Aim 

To improve specific energy absorption capability of unidirectional composite 

crash absorbers. In order to maximise the Specific Energy Absorption (SEA), the 

sustained crush load must be increased. Hence, through-thickness stitching is 

introduced to increase delamination resistance which is directly linked to friction 

and bending of petals to improve local and global energy absorption and 

consequently improving SEA capability. 

1.2.2 Objectives 

The main objective is to improve energy absorption capabilities without 

increasing the weight of composite absorbers. This research investigates on the 

effect of stitching through the thickness on interlaminar fracture toughness and 

consequently its effect on the energy absorption capabilities in the case of a 

crashing event. Several objectives have been defined at the start of the research. 

These can be listed as: 

• To study the crushing behaviour of composite crash absorbers, 

subjected to axial and off-axis loading. 

• Identifying the parameters affecting energy absorption capability at 

off-axis loading and improving energy absorption by 

cancelling/reducing the off-axis effect.  

• Develop a multi-stitching pattern to improve interlaminar fracture 

toughness, friction and fronds bending to improve specific energy 

absorption capability of composite crash absorbers under quasi-

static and impact loading conditions.  

• To develop a numerical model capable of predicting the crushing 

behaviour of composite crash absorbers under various loading 

conditions. 
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• Study how various parameters such as contact definition, material 

card, number of shells, friction, stiffness, mesh size, failure trigger 

mechanism, element formulation and delamination modelling effect 

specific energy absorption capability 

• To develop a method to predict the crushing behaviour and energy 

absorption capability of multi-stitched composite crash absorbers. 

1.3 Contribution to the research  

• To study the behaviour of composite absorbers at axial and off-axis 

loadings  

• To introduce single stitching and multi-stitching pattern on 

composite sections to obtain a stitching pattern to improve specific 

energy absorption capabilities. 

• To investigate the effect of through-thickness stitching pattern 

developed on progressive crushing behaviour under quasi-static 

loading conditions 

• To investigate the effect of the developed stitching pattern on 

composite sections under impact loadings. 

• To develop a robust finite element model to simulate composite 

sections under various loadings 

• To develop FE model to capture stitching pattern behaviour under 

static and impact loadings. 
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1.4 Thesis structure  

This section presents a concise overview of the different chapters appearing in 

this thesis.  

Chapter 2: Literature Review 

This chapter consists of a survey covering general and specific factors affecting 

energy absorption capabilities in composite tubular structures. Progressive 

crushing behaviour of tubular structures are covered, and its failure collapse 

mechanisms are identified. The previous studies about fracture toughness and 

consequently energy absorption capability of composite sections are included, 

and the current status of the field is identified and factors influencing the 

performance are covered including material selection, laminate design, impact 

velocity, structural size and geometry, strain rate sensitivity. Relative FE models 

suitable for the case are covered. The aim is to identify the current status of the 

field. The missing link in the field is identified and a solution is proposed.  

Chapter 3: Experimental Studies of Axial and Off Axis Loading under Quasi-

Static Loading  

This chapter experimentally investigates the effect of lateral inclination angle on 

energy absorption capability of impregnated GFRP composite sections. This 

chapter also focuses on the fabrication and testing setup of the proposed 

investigation. The factors effecting energy absorptions at off-axis loading 

conditions are identified and the energy absorption capability is improved at off-

axis loading. 

Chapter 4: Experimental Studies of Single, Multi and Pattern-Stitched Composite 

Sections under Quasi-Static Loading  

This chapter mainly focuses on the energy absorption capability of stitched 

composite sections. The effect of through-thickness stitching location on energy 

absorption capability is studied and the failure mechanisms are identified in each 

case. Eight cases were proposed and studied in detail to establish the effect of 
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stitching on specific energy absorption (SEA) capability compared with non-

stitched specimen. 

Chapter 5: Experimental Studies of Pattern-Stitched Composite Sections under 

Quasi-static and Impact Loading  

This chapter continues from chapter 4, to study the effect of pattern stitching on 

specific energy absorption capability. In this chapter impregnated CFRP with 

different geometry size is also subjected to pattern stitching to determine the 

effect of the proposed stitching pattern on another material. In this chapter the 

loading conditions are quasi-static and impact loading to establish a comparison 

of force-displacement curves, crushed morphologies, SEA and crushing process 

of stitched and non-stitched CFRP and GFRP composite sections.  

Chapter 6: Numerical Modelling Approach of Composite Structures under 

Progressive Failure 

In this chapter, the numerical modelling approach is covered. Different number of 

shells are compared in regard to force-displacement curves, trigger modelling, 

mesh sensitivity, element formulation, material model, stiffness and delamination 

resistance also were investigated in respect to computational costs, initial peaks, 

and mean crushing force and SEA values.  

Chapter 7: Numerical Study of Axial, Off-axis, Stitched and Non-Stitched 

Sections under Quasi-Static and Impact Loading 

In this chapter, a comparison of numerical studies with experimental studied were 

carried out. Stitched modelling techniques is covered in this section. A total of 

thirteen final simulations were compared with experimental studies, including 

axial and off-axis under quasi-static loading, stitched and non-stitched 

impregnated CFRP and GFRP under quasi-static loading, and stitched and non-

stitched impregnated CFRP and GFRP under impact loading. The comparison 

included, force-displacement curves, SEA values, crushed morphologies and 

crushing process.  

Chapter 8: Summary, Conclusion and Recommendations 
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This chapter presents the main findings of this work and discusses the 

accomplishment of the thesis and contribution to knowledge of this work are 

summarised. Different ways of possible future research concluded from this work 

are proposed.  
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2 Literature Review 

2.1 Introduction  

Axial crushing of metal tubes has been studied by the vast majority of 

researchers. Metal tubes have energy absorption mechanism of plastic 

deformation due to progressive folding formation [1]. Some researchers 

increased wall thickness to increase specific energy absorption [2,3], and 

furthermore for better energy absorption, foam filled aluminium and stainless-

steel tubes were introduced [4]. Other researchers introduced metals in inner core 

of sacrificial cladding structures [5-7]. However, due to high expense of material, 

manufacturing and maintenance for metals and heavier sacrificial structure, these 

types of structures were found insufficient [8,9]. Alternatively, in terms of specific 

energy absorption and weight reduction, polymer composite materials are 

comparatively introduced to improve structural energy absorption capabilities as 

well as further weight reduction [10,11]. 

In passenger carrying applications such as aerospace and automotive where 

weight concerning application is an important factor, these improvements are no 

longer relevant due to fuel consumption. Consequently, fibre reinforced polymer 

(FRP) composites have been extensively studied due to weight to stiffness ratio 

in comparison with metals [12,13]. Researchers concluded that a well-engineered 

FRP composite structures would be an appropriate choice where energy 

absorption is concerned [14-16]. Composite materials such as carbon fibre 

reinforced polymer and glass fibre reinforced polymer encounter fractures in axial 

crushing to absorb energy unlike metals which absorbs energy by plastic 

deformation [17,18]. Savona CS [15] stated that majority of energy absorption are 

obtained through failure modes of Mode I and Mode II fracture, frond bending, 

fibre fracture and friction at crushed fronds [19]. 

One of the main factors that FRP composite materials are commonly used in high 

performance automotive and airframe substructures is having capabilities of high-

energy absorption. The structural elements used in high performance automotive 

and aerospace applications are mainly from FRP composites, which are 
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economically beneficial due to weight reduction and lower fuel consumption. 

Furthermore, FRP composite materials provide enhanced level of structural 

vehicle crashworthiness that ensures high-energy absorption in sudden collision 

in a controlled progressive collapse. This is achieved by extensive and complex 

fracture mechanisms of FRP composites [17, 20-22]. 

FRP composite materials are known for being tailored to improve material 

properties based on specific applications with high specific strength and 

verification of fibre and matrix, and fibre orientations. This factor makes this type 

of materials more advanced compared to more conventional isotropic materials. 

There are several ways to absorb impact energy. Deformation of solids is usually 

based on plastic flow, although appreciable amounts of energy can be absorbed 

by controlled brittle fracture mechanisms. Absorbers can also be reusable like a 

hydraulic damper; rechargeable with the energy absorbing component being 

replaced in a permanent container; or expandable, as in the collapse of a vehicle 

structure during a crash. Composite materials have a significant potential for 

kinetic energy absorption during a crash. The application of energy absorbers 

depends on the type of impact load. This can be distributed over the whole impact 

body, as in explosion loading, or it can be localised, with a small or pointed body 

hitting a large body. The large body may deform in an overall manner in the same 

way as if the load were distributed, or the small body may penetrate it locally. 

Other studies [10,23,24] investigated the parameters that influence composite 

tubes crushing performance. Higher energy absorption is yielded by progressive 

crushing process that depends on mechanical properties, fibre orientation, 

laminate stacking sequence, fibre and resin volume fractions, and the geometry 

of the structure. However, different levels of the specific energy absorption for the 

same parameters can be achieved by only altering the geometry of composite 

structures [17]. Various dimensions affecting the energy absorption were studied 

[25,26] for square and circular composite tubes. It is concluded from experimental 

studies that the D/t ratio of these composite tubes significantly affects energy 

absorption capability. Thornton et al. [27,28] stated that circular cross sectional 

composite tubes perform better compared to square and rectangular cross 
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sectional composite tubes. Similar conclusion was also reported by Mamalis et 

al. [29,30] that circular cross sectional composite tubes demonstrated a better 

performance in energy absorption capability. Jimenez et al. [31] investigated ‘‘I” 

sectional tubes. Based on the study, square cross sectional composite tube 

absorbed 15% more energy compared to ‘‘I” section profile. Mamalis et al [32-34] 

studied conical shells on their specific energy absorption capabilities and 

concluded that specific energy absorption decreases by increase of semi-apical 

angle of the frusta. Many researchers [17, 24, 32-36] conducted experiments on 

energy absorption of composite tubes both circular and square cross sections. It 

was concluded that geometrical shape significantly influences the energy 

absorption capability of composite structures. 

Farley and Jones [29,37] studied energy absorption capability of reducing the 

included angle of ‘near-elliptical’ carbon/epoxy tubes. The authors noted that as 

the included angle decreased the energy absorption capability increased. An 

improvement of 10% - 30% in specific energy absorption corresponded to include 

angle reduction from 180° to 90°. This investigation was carried out to determine 

how the geometrical variable of included angle affects tube crushing 

characteristics and energy absorption capability (see Figure 2-1). Elgalai et al. 

[38] studied carbon/epoxy and glass/epoxy composite tubes for their crush 

response under quasi-static axial loading.  

Figure 2-1 Near-elliptical cross-section tube specimen [37] 
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Energy absorption capability of composite tubes reported to be enhanced by 

corrugation. Zarei et al. [39] investigated and experimented on hexagonal box 

with vertical ribs for their energy absorption capabilities using woven fibre 

glass/polyamide plates with thermoforming welding method. Abdewi et al. [40] 

studied radial corrugated glass/epoxy composite tubes both at quasi-static axial 

and lateral crushing. The conclusion of these studies stated that radial 

corrugation significantly influences the energy absorption of composite tubes. 

Extensive experimental investigations have been carried out on the effects of 

fibre orientations in composite fabrication on axial crushing behaviour. Carroll et 

al. and Mahdi et al [41-43] carried out an investigation on filament-wound glass 

fibre/epoxy with ply orientations of ±55° under quasi-static compression and 

reported that failure depends on rate of loading and stress ratio. Strength and 

stiffness were implied to be a function of loading direction and stress strain 

behaviour influenced the total energy absorption. It was also suggested that ply 

orientations of (±0) and (±90) of carbon/epoxy fibre can crush more progressively 

and absorb more energy in comparison with (±45) [7]. 

In axial crushing the aspect ratio of geometrical parameters were also studied. 

Mamalis et al. [19] studied the effect of L/w (length/inner width) ratio on axial 

crushing capability and concluded that as the aspect ratio of compressed tube 

increases, the peak load (Fmax) decreases. Palanivelu et al. [44] showed that 

crushing state was influenced by aspect ratio of t/d or t/w (wall thickness/outer 

diameter or width) of 0.045 in different shape i.e. both geometries of square and 

round tubes, crushed progressively, although catastrophic crush in square tube 

was observed, however in aspect ratio of 0.083 both shapes were progressively 

crushed [45]. It is proven that progressive crushing for composite tubes of circular 

cross section can be obtained by t/D ratio of 0.015 - 0.25 whereas t/D ratio of less 

than 0.015 results into catastrophic failure [46]. 

The energy absorption capability of composite materials offers an exceptional 

combination of structural weight reduction and vehicle safety improvement with 

providing an equivalent or higher crash resistance compared to metallic 

structures. In automotive industry the basic occupant crash protection since 
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1950s has been used to optimise crash safety and ever since it became the 

priority of any car design requirement. The study of first structural design 

requirements in aeronautical industry were crash protection in military helicopters 

and light flexing aircraft that were in crash survival design guide forms [47]. In 

aerospace application the material structures considered are high performing 

materials including epoxy resins reinforced glass fibres, and increasingly, carbon 

and aramid fibres on hybrids composites. In automotive field reinforced polymers 

must meet a complex set of design requirements among other crash energy 

absorption management in front-end and side of the car structures [48-50].  

This section, reviews the influence of various parameters on progressive 

crushing. Anisotropic materials are non-linear and by consideration of the 

parameters introduced, explained and evaluated in this section, a well-

engineered composite structure can be tailored. This chapter evaluates a well-

engineered composite structure, followed by different trigger mechanism. Moving 

on to different aspect of strain rate sensitivity and loading parameters, followed 

by extensive evaluation of failure mechanism and interlaminar fracture 

toughness. Simply, composite structure design, testing conditions, and failure 

mechanisms are extensively reviewed.  

The following sections are structured initiating from introduction of crushing 

behaviour criteria and gradually moving on to factors effecting energy absorption 

capabilities and different failure modes. The chapter then reviews the effect of 

fibre and matrix on energy absorption capabilities followed by laminate design 

and geometry. These criteria are sensitive; a simple alteration can lead to change 

in material behaviour. Trigger mechanisms enable initiating a progressive failure 

and avoid local buckling. At this stage a detailed review of composite structures 

from tailoring and triggering is complete and testing begins. Different types of 

strain rate and loading conditions are introduced and evaluated, followed by 

different types of failure mechanisms. The effect of interlaminar fracture 

toughness on energy absorption is reviewed, this is accompanied by various 

fracture mechanism of intralaminar and interlaminar, which is a great evaluation 

of progressive failure modes that leads to high energy absorption capabilities of 
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composite structures. Through-thickness stitching is reviewed as a solution to 

increase delamination resistance, friction and bending, that consequently, 

increase specific energy absorption capabilities. Lastly, the different approaches 

towards finite element models are reviewed. 

2.2 Valuation criteria for crushing behaviour 

In the study of energy absorption capabilities of FRP composite materials, 

important variables such as manufacturing process and method, microstructures, 

specimen geometry, crush initiator and trigger mechanisms, and crushing rate 

are investigated. Specific energy absorption (SEA) performance is one of the 

most important parameters of specimens crushing material or collapsing of 

structural parts. SEA value is the relation between energy absorption compared 

to the absorber crushed mass or structure [21]. Consequently, it becomes 

critically important for lightweight designs. Study of energy absorption for energy 

management capabilities is another factor, which is the shape of the force-crush 

distance curve. Identification of one measure is used to mark and indicate the 

shape of the curve, which is known as crush-force efficiency (CFE). This value 

relates the average crush force (Fm) to the maximum force (Fmax) of the crush 

characteristic. 

Within the initiation phase the highest force normally occurs. Absorbers with 

rectangular shape of force-crush distance curve demonstrate a crush force 

efficiency of 100%. It is not optimum to have the maximum force to be 

substantially larger than the average crush force, due to energy management’s 

goal of absorbing all the energy without conveying or transmitting large amount 

of force to the passengers.  

Another parameter in energy absorption management is stroke efficiency (SE), 

which is the ratio of initial length of the absorber to the stroke at ‘bottoming out’ 

and high ratios specify high efficiency of material used. 
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2.3 Factors affecting energy absorption  

In this section several variables related to energy absorption of composite thin-

walled components are reviewed. In composite materials, design with constituent 

material properties and reach macro-mechanical properties by micromechanics 

analysis [21]. Regarding different applications of composite materials, their 

suitability is defined by impact properties and energy absorption properties and 

then usual design parameters. However, composite material constituent phases 

and the laminate layup is crucial in crashworthiness capability of composite 

structures as it effectively changes the mechanical property of the final product. 

Temperature is another important factor, which has considerable effects on 

material crashworthy response. 

Quasi-static compression or impact loading is carried out in axial crushing. In 

static loading the crushing speed is within a range of 0.01 to 11 mm/s, normally 

a composite tube is compressed between two plates (crossheads) of one being 

hydraulic press. In dynamic impact loading a drop hammer or an impactor is used. 

To avoid buckling, specimen dimensions are determined based on the 

preliminary calculation [51]. Different shapes and geometries such as round, 

square, hexagon [44], cones [51], and plates [13] are used for instance. A typical 

thin-walled specimen length is within a range of 50-150 mm in length, 20-100 mm 

in outside diameter or width and wall thickness of 1-3 mm [238]. 

In crushing event, energy absorption capability is calculated to work out the 

specific energy dissipation rate. In composite crushing, the total work (WT), 

indicates the energy absorption capability and is equal to the area under the load–

displacement curve, 

�� = �� ��
(2-1)

where � is the corresponding force on the structure and � is the cross-head 

distance.  

Specific Energy Absorption (SEA) is energy absorption capability, which is 

calculated as per unit of the crushed specimen mass. 
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where � is crushed mass, � is the material density, and � is the volume of 

crushed specimen.  

Before material failure under buckling such as global buckling occurs, local 

buckling, fracture or yield or progressive crushing, the peak load is measured 

[52]. Further buckling failure can lead to either catastrophic or progressive failure 

[53] where it illustrated on load displacement curve, where the area under the 

curve represents the total energy absorption. In occurrence of progressive failure, 

a larger area under the curve is gained with a progressive constant load with 

increase of crushing displacement.  

Catastrophic failure leads to a rapid load drop and a lower energy absorption. 

This is due to specimen crush being from fracture in mid-plane [54] or axial cracks 

[44]. Progressive failure results into higher energy absorption due to a 

combination of multi-failure modes initiated during crush such as local buckling, 

Mode-I, Mode-II, and Mode-III [55]. More energy absorption is obtained from 

Mode-I, Mode-II [56] due to main central crack resistance, bending and friction 

between ply laminates [13]. Fibre orientations influence the energy absorption in 

Mode-I interlaminar fracture [57]. In study of Mode-III although lower energy 

absorption is obtained of compressed tubes due to fracture in mid-plane and 

unstable collapse [19], this contradicts with another study that stated failure in 

Mode III is due to fibre fracture and matrix deformation that progressively extends 

through elliptical structure with ratio of 2, which resulted into higher specific 

energy absorption [55], this contradiction could be a result of geometry 

differences between the two studies.  

2.3.1 Fibre and matrix 

The vast majority of the literature on the crashworthiness of composites are 

focused on fibres of carbon, glass or aramid in a thermosetting resin, for example, 

epoxy. Farley [58], Thornton [59], Schmueser and Wickliffe [60] and Farley and 

Jones [61] all extensively experimented and compared energy absorption 
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capabilities of various specimens made of glass, carbon and aramid epoxy. 

Hybrid composites were investigated to combine different types of fibres into a 

single laminate to optimise the energy absorption characteristics [56]. Thornton 

and Edwards [62] stated that hybrids of glass-aramid and carbon-aramid cause 

an unstable folding collapse that would not have occurred if the specimens were 

composed of glass or carbon fibres alone. New fibre and matrix materials such 

as Dyneema PE fibre/carbon fibre hybrid [63] have been introduced to improve 

specific energy absorption capabilities. Most of these investigations have been 

carried out with thermosetting matrix materials, usually an epoxy. Other 

thermoplastic matrix materials such as polyester and polyether ether ketone 

(PEEK) have been used as matrix material [64,65]. 

Hamada et al. [65] conducted a study on the usage of a thermoplastic polyether 

ether ketone (PEEK) matrix with fibre carbon which concludes an outstandingly 

high specific energy absorption value of 180 kJ/kg. This value of energy 

absorption is even more than a double the value of carbon-epoxy. This is credited 

to PEEK matrix that has high crack growth resistance between the fibres, which 

prevents failure and results into stable progressive crushing [66]. 

2.3.2 Laminate design 

In this section several variables related to energy absorption of composite thin-

walled components are reviewed. In composite materials, design with constituent 

material properties and reach macro-mechanical properties by micromechanics 

analysis [21]. Regarding different applications of composite materials, their 

suitability is defined by impact properties and energy absorption properties and 

then usual design parameters.  

However, composite material constituent phases and the laminate layup is crucial 

in crashworthiness capability of composite structures as it effectively changes the 

mechanical property of the final product. Temperature is another important factor, 

which has considerable effects on material crashworthy response. Various 

reports have been extensively concentrated on the effects of laminate design on 

energy absorption of composite structures. Thornton and Edwards [62] showed 

that in a stable collapse, a [±45/±45]n layup resulted into obtaining lower energy 
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absorption value than [0/90]n lay-ups. Furthermore, the specific energy 

absorption generally increases in [0/90] aramid-epoxy and glass-epoxy circular 

tubes for 45o <	� <90o with increasing of  �. Schmueser and Wickliffe [60] showed 

variations in specific energy absorption of carbon-epoxy, glass-epoxy and 

aramid-epoxy [02/±�] specimens all generally increase with increasing �. 

Mamalis et al. [67] worked on different materials with various thin-walled circular 

and square tubes, and reported specimens made out of a commercial glass fibre 

and vinylester composite material which consists of nine plies in the sequence of 

[(90/0/2Rc)/(2Rc/0/90)/Rc.75], show better energy absorption behaviour than those 

made of a glass fibre composite material in which the glass fibres were in the 

form of chopped-strand mat with random fibre orientation in the plane of the mat. 

This layup sequence, refers to a laminate with fibres in the 0o and 90o direction, 

combined with layers of random mat reinforcement (Rc) which has two 

thicknesses, Rc and 0.75 Rc. Hamada et al. [64] reported that the better specific 

energy absorption for 0o carbon/PEEK tubes was due to high fracture toughness 

of PEEK. 

Woven composites introduce a different approach to the fabrication of thick 

composite sections for use in primary and secondary structural applications. Two 

mutually perpendicular sets of yarn, the warps and the wefts are used. The 

lengthwise direction yarns are called warp and the crosswise direction yarns are 

known as fill or weft (see Figure 2-2). 
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Figure 2-2 2D-Weave composites: (a) plain, (b) twill, (c) 4-harness, and (d) 8-

harness. [57] 

Warp and weft’s interlacing pattern are known as weave. The fundamental two-

dimensional weaves are plain, twill and satin, where it provides more balanced 

properties in the fabric plane than a unidirectional laminate [68-71]. The 

interlacing of fibre bundles in woven composites can often increase out-of-plane 

strength as in the case of three-dimensional woven fabrics. Woven fabrics are 

thicker than unidirectional lamina; therefore, fabrication of thick composites is 

less insensitive and less prone to assembly error.  

The property improvements are achieved through in-plane stiffness and strength 

properties. The weave architecture influences the loss of in-plane stiffness and 

strength. This architecture is complex and therefore several parameters control 

the mechanical and thermal properties of woven composites. The classical 

laminate theory cannot be used to predict the mechanical properties of woven 

composite due to many specific factors including the density of the fibre bundles, 

the type of the weaving and the curvature that are essential to be considered [72]. 

Furthermore, the composite structure manufacturing is rather irregular in woven 

composite that can be eliminated in a non-woven laminate.  
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In brief, two approaches that are usually employed to study non-woven composite 

laminates are micromechanics, and macromechanics. In micromechanics study, 

the mechanical properties of laminate are studied in detail as (fibre, matrix and 

interface), while the macromechanics detects the material properties of laminate 

as a whole. Another approach, which is an intermediate of study, is called 

mesomechanics. This approach is provided to consider the mechanical 

properties of weave [73]. The major problem in the study of mesomechanics is 

the large variety of textile performs that are employed including weaves, braids, 

knits, mats, properties of weave stitched fabrics and two-dimensional or three 

dimensional. 

2.3.3 Structural geometry 

Extensive research was carried out based on the effect of various types of 

specimen geometry on the energy absorption capability by varying the shell 

geometric parameters such as wall thickness, t, axial length, L, mean diameter, 

D, or circumference, C [21]. Farley [74] reported the energy absorption capability 

of diameter to thickness, D/t, ratio for carbon-epoxy and aramid-epoxy circular 

tubes are a non-linear function. Furthermore, Farley reported that carbon-epoxy 

tubes are dependent on D/t for tubes with various internal diameters. Mamalis et 

al. [50] indicated that energy absorption of glass polyester circular tubes in static 

axial loading increases with increasing t/D. Thornton and Edwards [62] concluded 

that the energy absorption of square and rectangular cross-section tubes is less 

than circular ones. The primary reason for this energy absorption reduction is due 

to the corners and the edges response to stress concentration leading to the 

formation of splitting cracks. 

Palanivelu et al. [44] investigated the axial crushing with cross-sectional shapes 

of square and hexagonal with t/D or t/W aspect ratio of 0.045 and reported 

catastrophic failure whereas the circular shape crushed progressively and 

uniformly. An increase in aspect ratio to 0.083 resulted into progressive crushing 

mode for square and hexagonal shapes. This increase also resulted into higher 

SEA value of 30.4 kJ/kg in circular shape compared with square 12.3 kJ/kg and 

hexagonal 16.4 kJ/kg. Abdewi et al. [75] studied composite tubes of circular cross 
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section (CCS) and radial corrugated cross section (RCCT) and concluded that 

circular cross section had lower peak loads and lower specific energy absorption 

compared with corrugated tubes. However, circular composite tubes with inner 

radial corrugated (RCSCT) failed to show any improvement in load carrying 

capacity [76].  

Mahdi et al. investigated structures of glass/epoxy composite, and the elliptical 

ratio effect on the normalised SEA [55]. SEA equation was divided by cross-

sectional area of the elliptical area to modify SEA. It was concluded that 

compared to circular tubes, ellipticity ratio of 2.0 has higher SEA and an increase 

of ellipticity ratio results into higher SEA. 

Mahdi [77] also studied four different GFRP tubes with various cross-section 

properties under quasi-static crushing. The specimens included circular cross 

section, fuselage-shaped cross section and circular cross section with radial-

geometrical reinforcement. The author concluded from the results that tubes with 

radial reinforcements had the highest values for peak load and an average 

crushing load, crush-load efficiency, absorbed energy, and specific-absorbed 

energy in comparison to other geometrical shapes. 

In study of geometry, Mahdi et al. [78] studied conical shell angles effect on the 

crushing capability. It was concluded that better energy absorption of cylindrical 

structure was obtained with SEA value of 24 kJ/kg. Furthermore, an increase in 

cone vertex angle results into decrease of SEA, peak load (PL) and volume 

reduction (VR). Alkateb et al. [79] states that crushing behaviour was under 

influence of vertex angle within elliptical cone design. In more details, in elliptical 

cone vertex angle of 12°, an increase in vertex angle decreases crushing load. 

Libo Yan [80] studied crashworthiness characteristics of natural flax fabric 

reinforced epoxy composite tubes under quasi-static uniaxial compressive load. 

The author concluded that short length and large number of composite plies 

results into large value of peak load and CFE. Increase in number of plies for 

specimens with the same inner diameter and length also increases crushing 

energy absorption capability significantly. Energy absorption capability of 

flax/epoxy composite tube is dependent on geometry of the tube and the 
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performance of composite tubes is superior to conventional metal energy 

absorbers. 

Elfetori et al. [81] studied the effect of radial corrugation geometry on the crushing 

behaviour and energy absorption of circular composite tubes under quasi-static 

axial compression. The author based on experimental results concluded that 

structural geometry influences the crushing behaviour and radial corrugation 

geometry improves sliding mode of the structure. Radial corrugation geometry of 

circular composite tubes also improves energy absorption capability.  

Perowansa [82] studied FRP pultruded composite square tubes under axial and 

oblique impact load.  The author concluded that higher impact angle causes lower 

energy absorption capability. The impact angle and eccentricity of impact load 

plays an important role in determining the energy absorption capacity.  

Palanivelu et al. [45,45] studied different geometrical structures, mainly on 

conical circular (CC) type made of glass fibre reinforced polyester composites 

shown in Figure 2-3. It was concluded from the work that HG-A and HG-B showed 

higher SEA value of 21.1 kJ/kg and 22.5 kJ/kg, respectively compared to HG-Y 

and HG-X that had SEA values of 13.0 kJ/kg and 6.96 kJ/kg, respectively. The 

failure mechanisms of HG-X and HG-Y were not catastrophic but due to lack of 

circumferential delamination. Palanivelu et al. [17,18] studied conical circular 

geometry of CC-Y and CC-X and concluded that CC-X showed lower SEA 

compared with CC-Y, with specific energy absorption value of 23.5 kJ/kg, and 

28.8 kJ/kg, respectively. 
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Figure 2-3 Types of hourglass (HG) and conical circular [44]. 

Mahdi et al. studied similar cone-tube-cone composite structure to HG-A as 

shown in Figure 2-2 [83]. It was stated by the author that specific energy 

absorption was under influence of tubular part height where normalised tubular 

height and high SEA value was shown in height/total height ratio between 0.06 

and 0.11. In another study by the author HG-B cone-cone intersection composite 

with different vertex angle was studied [84]. It was concluded that more energy 

absorption was obtained from vertex angle of 20° and 25° compared to 10° and 

15° vertex angle. In carbon and glass fibre comparison it is shown that using fibre 

as reinforcement enhances energy absorption capability due to enhancement in 

materials properties. Both materials showed similar trend in material behaviour, 

increasing vertex angle results into increase of SEA and crushing load.  

Farley [74] conducted a study of the influence of specimen geometry on the 

energy absorption capability and scalability of composite materials by static 

crushing tests on graphite/epoxy and Kevlar/epoxy square cross section tubes. 

Czaplicki et al. [85] reported that significantly higher energy absorption of tulip-

triggered specimens was observed compared to bevel triggered specimens of the 

same geometry and material. An external bevel or chamfer ground into one end 

of the specimen is one of the most common types of crush initiators [86]. Various 

types of crush initiator are shown in Figure 2-4. 

In summary circular shapes geometry have outstanding performance compared 

to other geometry shapes tested. Moreover, compared to other shapes apart from 

radial corrugated circular, circular shapes geometry absorbs most of axial 



23 

crushing energy. In studies of geometry, highest resistance in the event of 

crushing was obtained from structure body parallel to the applied load. Lastly in 

axial crushing, increase of structure angle in any part of structural body affects 

the SEA.  

Figure 2-4 Various types of trigger mechanism [70]. 

2.3.4 Trigger mechanism  

Triggering is a process that initiates failure and avoids load transfer to the whole 

structure by formation of stress concentration on edges of the profile geometry. 

Triggering mechanisms therefore prevent composite structures from crushing 

catastrophically. A suitable selection of triggering helps with progressive 

crushing, so the crush load is at maximum and the load is at a relevant constant 

value due to various fracture mechanisms such as splaying, fracture modes, etc.  

Few studies [34-40,46] stated that more energy was obtained by fibre orientation 

along the axis of the tube compared to other orientations. Other researchers 

studied the performance of composite structures based on the effect of t/D ratio 

and size [87,88]. The conclusions of these studies were that the overall energy 

absorption capability of composite tubes determined by the fracture mechanisms 

that influenced by structure dimensions. To maximise energy absorption and 

decelerate crushing process, all the composite tubes during impact should exhibit 

axial cracking, fibre fracturing modes, delamination and bending [24]. Many 

researchers [23,25,26,34,89,90] studied edge chamfering and ‘‘I” sectional tubes 

to investigate its effects on the energy absorption capabilities [31,36]. 
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Jimenez et al. [53] investigated the effect of triggered composites profile on 

energy absorption capabilities. Composite tubular type-B (bevel) with triggering 

angles of 30° and 60° (see Figure 2-5) reported to perform 25% difference in level 

of specific energy absorption. Type-B at 60° showed a peak load value of 74.7 

kN which is the highest. Other investigations were reported on the effect of 

triggering of different cross-sectional shapes. It is reported that under quasi-static 

axial crushing the peak load is at maximum with edge triggering at 45° compared 

to 90° tulip triggering [45]. However, tulip triggering (type-T) showed higher 

specific energy absorption for all cross-section tubes tested than edge triggered. 

Palanivelu et al. [91] investigated the effect of edge trigger and tulip type 

triggering for round shape on specific energy absorption and reported an increase 

of 7-9% with edge trigger. However, opposite reaction was observed from square 

shapes. Tulip type triggering showed higher specific energy absorption of an 

increase of 16.5%. Energy absorption analysis on triggered effect was carried out 

using carbon and glass hybrid and non-hybrid composite braided rod [92]. It was 

concluded that progressive crushing was observed from conical triggered rod 

compared to non-tapered rod that leads to axial crack. 

Figure 2-5 Types of triggering for composite sections, bevel (type-B), tulip (Type-

T) [53]. 
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2.3.5 Strain rate sensitivity 

Extensive work of many researchers has been specifically focused to investigate 

the influence of strain rate on energy absorption of composite thin-walled 

structures. Farley [93] reported that matrix stiffness and failure strain are a 

function of strain-rate and the energy absorption of interlaminar crack growth 

(delamination) may be considered as a function of crushing speed. Later Farley 

reported that in [0/±θ]2 carbon-epoxy tubes, the energy absorption was not a 

function of crushing speed and found that the energy absorption in [±θ]3 carbon-

epoxy specimen is a weak function of crushing speed with various crushing speed 

testing of 0.01 m/s to 12 m/s, which resulted into an increase in energy absorption 

of around 35%. Mamalis et al. [21] showed that the strain-rate affects the friction 

mechanisms developed between crushing surface and different new surfaces 

created after interlaminar crack growth. 

2.3.5.1 Low impact velocity 

FRP composite have mechanical property of orthotropic that results into complex 

damage modes including delamination and micro buckling. FRP composite have 

complex forms of damage mechanisms. At different stages of impact, matrix 

cracking, delamination and fibre breakage can occur and one or more being 

dominant [94]. 

In case of low velocity impact according to Cantwell and Morton [95] either of 

striking velocity that referred to velocities up to 10 m/s reconstructed by testing a 

falling weight impact, and according to Abrate [96] impact velocity test of less 

than 100 m/s or as suggested by Liu and Malvern [97] a low velocity impact, which 

is typically less than 11 m/s, takes place through sources such as debris from the 

runway hitting the fuselage during take-off or landing, ice from the propellers 

striking the fuselage, hail, and bird strikes. The impact object may cause internal 

damage that is often hard to detect and this can result in a severe reduction in 

the strength and stability of the structure, thus the effect of foreign objects 

impacting on composite material is a major problem. In metallic materials, the 

stress induced from low velocity impact due to ductile nature and high potential 

of energy absorption may not be considered threatening. However, in composite 
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materials at microscale level, low velocity impact may induce significant 

damages, resulting into reduction of strength and stiffness of the material [96,98–

106].  

Extensive research of FRP composites has been conducted at low velocity 

impact damage to study further the complex nature of damage mechanisms. Both 

properties of impactor and impacted material which influence the impact loading 

in FRP composites and could result into different failure modes [107-108]. 

Composite materials subjected to low velocity impact encounter failure modes of 

matrix mode, delamination mode, fibre mode and penetration [109]. Incipient 

impact energy, Fibre/matrix configuration, composite laminate thickness, impact 

velocity and impactor shape are essential parameters towards different types of 

failure modes. In composite materials, the interaction between failure modes 

affect energy dissipation properties and damage progress. 

Low velocity impact in composite material has two critical threshold forces, 

Hertzian failure load and maximum impact load, with two critical threshold 

energies, penetration energy and perforation energy. Initial sign of significant 

damage in laminated composites subjected to low velocity impact is 

delamination. Delamination threshold load (DTL) is categorised as damage 

threshold known as Hertzian failure load (Ph) [110-111]. Delamination failure 

occurrence is due to lack of fibre contribution to overall strength in the thickness 

direction subjected to out of plane stresses generated by impact loading. 

Delamination propagates between plies due to bending of adjacent plies caused 

by out-of-plane low velocity impact. 

Fibre fracture and laminate failure modes, which are the main damage 

mechanisms occur whist reaching maximum force threshold and develops up 

until the maximum energy level is reached [110,112,113]. However, at low impact 

energy, matrix cracking occurs although it does not degrade the mechanical 

properties, delamination significantly affect the laminates performance. Fibre 

damage, additionally, result into laminate failure (main failure) in laminates of 

composites.  
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Shyr and Pan [110] studied the effect of low velocity impact damage 

characteristics on various reinforced fabric structures with different laminate 

thicknesses. The study signifies the number of ply layers which determines the 

energy absorption capability. In thick laminates the dominating failure mode was 

fibre fracture whereas in thin structures delamination is more influential. The 

author concluded that the major threshold damage load was independent to 

incipient impact energy, but was dependent on laminates thickness. Similar 

conclusions were reached and stated by Belingardi and Vadori [112]. 

Yang and Cantwell [114] investigated experimentally the effect of varying key 

impact parameters on the damage initiation threshold of temperatures of 23 to 90 

°C at low velocity impact tests on (0°, 90°) glass/epoxy laminated composites. 

The authors concluded that initial threshold damage showed a t3/2 dependency, 

where t is thickness of the laminate, at both room and elevated temperatures.  

Energy thresholds of penetration and perforation, which are among the main 

characteristic properties subjected to low velocity impact in FRP composites can 

be determined using energy profiling technique. A correlation between 

characteristic impact properties and major failure modes can be developed using 

energy profiling technique [115]. Quaresimin et al. [116] studied the effects of 

laminate thickness and stacking sequence on energy absorption capability under 

low velocity impact using woven carbon–epoxy composite laminates. The authors 

concluded that the damage initiation and delamination threshold load and the 

associated energy are controlled by the matrix, and they are not influenced by 

the stacking sequence and impact energy. Conversely, they depend on the 

laminate thickness. The maximum contact load was found to be independent on 

laminate stacking sequence, while it depends on the laminate thickness and 

slightly on the impact energy. The author noted that the absorbed energy was 

found to increase almost linearly with the impact energy and it was observed that 

the absorption capability of a laminate depends both on the laminate thickness 

and stacking sequence. 
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2.3.5.2 Loading conditions  

In engineering applications generally, the loading classification are static, fatigue, 

high speed/rapid loading and impact. Impact is an important area of applied 

mechanics, which is strongly related to engineering practice, such as structural 

engineering, manufacturing engineering, aerospace engineering and material 

engineering. The study of impact is endless and has resulted in significant 

achievements both technically and economically [117-119]. 

For a period of short time the impact process involves relatively high contact 

forces acting over a small area. At the point of contact of two solids, local strains 

are generated that result in energy absorption [86]. The impact event may result 

in damage if energy absorption exceeds a threshold. A laminated composite 

facing a projectile strike may result in fracture processes involving delamination, 

matrix crack and fibre fracture. An impact event is defined as the action of one 

object hitting another or the force with which one object hits another. 

The initial response of impact loading is to cause damage near the surface of the 

laminate. Although the inner layers are damaged as well and the material impact 

resistance changes locally as the projectile penetrates the laminate [120]. In the 

duration of the impact event it cannot be assumed that the contact force to be 

constant [121-122]. Furthermore, different projectile geometries were employed 

to reproduce real loading situation to measure the modifications of the composite 

reaction [123].  

In quasi-static model testing, the impact response is a function of time and the 

composite model is expressed as a time dependent force that is represented by 

an equivalent mass with equivalent stiffness [124 - 125]. All forms of damage 

should be studied and considered due to the likelihood of the influence of the 

material residual mechanical properties, from each damage form. 

2.4 Crashworthiness 

The ability of a structure providing protection for occupants by absorbing the 

applied energy in a case of an impact is known as crashworthiness of a structure. 

Absorption of the impact energy enables reduction of the overall main body 
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structure damage and most importantly provides greater passenger safety. The 

two significant safety factors that can be considered in automotive and aerospace 

industries are crashworthiness and penetration resistance. Crashworthiness can 

be further defined as the absorption of impact energy by different modes and 

mechanisms that give moderate deterioration during energy absorption. On the 

other hand, the penetration resistance dealt with total energy absorption without 

allowing projectile or fragment penetration [43].  

The crashworthiness of a material is expressed in terms of its specific energy 

absorption, (SEA) and interlaminar fracture toughness, which are characteristic 

to a specific material and design. SEA is defined as the energy absorbed per unit 

of specimen crushed mass [21]. 

2.4.1 Material performance requirement  

Crashworthy materials have work done during an impact event to absorb the 

kinetic energy over a time frame that ensure the deceleration of for instance a car 

to be less than 20 g [189], beyond this point the passenger experiences severe 

and irreversible brain damage due to relative movements of various parts of the 

brain with the skull cavity. Considering a midsize vehicle mass of 1500 kg 

travelling at a velocity of 15.5 m/sec (35 mph). The kinetic energy can be 

determined by, 

�� =
1

2
���

(2-3)

The kinetic energy is equal to 180,188 J, therefore, 180 kJ of work needs to be 

done on the crashworthy material. One can calculate the minimum safe time 

frame over which this work needs to be done to ensure the safety of the 

passengers using the basic equation of motion.  

� = � − �� (2-4)

Where � is the final velocity of the car which is equal to zero since the car comes 

to rest, � is the initial impact speed and � is the maximum allowable deceleration 

which is equivalent to 20 g. The minimum time is calculated to 0.079 s. Therefore, 
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the minimum allowable rate of work decay to ensure passenger safety is equal to 

180188/0.079 = 2,281 kJ/s. It is equally important to determine the rate of energy 

absorption to determine magnitude of energy absorption by the specimen. The 

specific energy absorption of carbon/PEEK composite is recorded to be 180 kJ/kg 

[35]. Therefore, to absorb the applied energy in this case, only 1 kg of the material 

(carbon/PEEK) is potentially required. This clearly shows the practicality of 

energy absorption capability of composite materials and only a reasonable 

amount of composite material is required to meet the necessary impact 

performance standards.  

2.5 Test methodologies 

Composite test tubes are subjected to two crushing test conditions of namely 

quasi-static and impact loading. 

2.5.1 Quasi-static testing  

In quasi-static testing conditions, the specimen is crushed at a constant speed, 

although this testing condition may not be a true simulation of a real crash 

scenario because in an actual crash condition, the structure is subjected to a 

decrease in crushing velocity from an initial impact velocity to rest. Some 

materials used in designing crashworthy structures are rate sensitive and their 

energy absorption capability is dependent on the subjected velocity. Quasi-static 

testing can be used to test materials to observe its behaviour at different 

conditions including failure mechanisms in composite structures but does not 

ensure satisfactory performance as crashworthy structures in real crashing event. 

The disadvantage is, it may not be a true simulation of an actual crash conditions 

since certain materials are strain rate sensitive. However, there are two main 

advantages as follows,  

1. Simple setup and easy to control.  

2. Can set a reference line on material behaviour/ failure mechanism and 

energy absorption characteristics.  

Impact tests are very expensive due to their expensive equipment including high 

speed cameras to record the crushing process of the impact in slow motion as it 
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takes place in a split second. Hence quasi-static tests are used to study the failure 

mechanism in composites by selecting appropriate crushing velocity.  

2.5.2 Impact testing 

The crushing velocity decreases (decelerates) from the initial impact velocity to 

rest, as the specimen absorbs the energy. This is a true simulation of a crashing 

scenario, since it considers the stress rate sensitivity of materials. A drop tower 

can simulate a crashing event, a mass is dropped from a predetermined height 

with an initial velocity and is subjected to acceleration (9.81 m/s/s), the test 

specimen is then subjected to a total energy the dropped mass has gained 

through the process. Although the disadvantage is, the crushing process takes 

place in a fraction of a second and it is difficult to study the crushing process, 

unless expensive high-speed cameras are used.  

2.6 Crushing modes and mechanism  

Three main modes of brittle collapse are categorised as mode Ι, ΙΙ and ΙΙΙ which 

were studied on composite tubes in the series of static and dynamic axial 

compression tests, respectively [126]. According to Hull classification [17] Euler 

overall column buckling or progressive folding with hinge formation were not 

found for fibre-reinforced plastic (FRP) composite tubes. Energy absorption in 

most fibre-reinforced composites are through a combination of fracture and 

friction [127]. The two main failure mechanisms of composite tube are 

catastrophic and progressive failures (see Figure 2-6). A stable progressive crush 

is established by localised failure that initiates at one end of the specimen and 

progress through the specimen. To reach this failure mechanism, crush initiator 

is used for FRP tubes. During catastrophic failure the initial maximum force is 

very high and drops rapidly, therefore the average force is low. 
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Figure 2-6 Typical collapse modes for composite tubes (a) catastrophic failure 

(b) progressive failure [127]. 

2.6.1 Failure mechanism 

According to Mamalis et al. [126] in general the failure modes observed are 

greatly affected by the shell geometry, fibres arrangement, matrix and fibres 

properties of the composite material and the stacking sequences. Moreover, the 

macroscopic collapse modes in Figure 2-7 was classified by Mamalis et al. [126-

128] from various geometries in extensive experimental treatment of 

axisymmetric tubes made of fibre-reinforced polymer matrix composite materials. 

2.6.1.1 Progressive failure 

Progressive failure can be achieved by applying a trigger at one end of the tube, 

this causes failure to initiate at a specific location within the structure by 

concentrating the applied stress. Progressive crushing of composite material with 

micro-fragmentation, associated with high crush energy, is designated as end 

crushing mode. Progressive failure mode is classified by the progressive end-

crushing with splaying of the laminate tube starting at one end of the specimen. 

This causes the tube to form continuous fronds which spread outwards and 

inwards. 



33 

2.6.1.2 Catastrophic failure  

The component’s brittle fracture with little energy absorption resulting in 

catastrophic failure is designated either as transition mode of failure or mid-length 

collapse mode depending on the crack formation. Transition mode of failure is 

classified by a spiral or longitudinal crack propagation developed along the shell 

circumference. Mid-length collapse mode is classified by the circumferential 

fracturing formation of the specimens approximately equal to the mid-height of 

the shell into irregular shapes and described as mid-length collapse mode. 

2.6.2 Progressive failure modes  

Progressive failure modes are like crushing behaviour of thin-walled metal and 

plastic tubes, progressive folding and hinging have a very low energy absorbing 

capacity, which is introduced as progressive folding mode. Mamalis et al. [48-49] 

reported that the collapse modes can be categorised into two groups of stable 

and unstable collapse modes. Stable collapse modes have similar features as 

static loading whilst at the same geometries. According to Mamalis et al. [126] in 

some applications a failure could be considered by a very small deformation, and 

in others a total fracture or separation constitutes failure. In composite materials 

generally, the internal material failure initiates before any alteration in 

macroscopic appearance or behaviour. This indicates that failure takes place 

before any indication in macroscopic molecules.  

Various fracture modes can be defined for a laminate composite. These modes 

are divided into intralaminar and interlaminar fracture modes. Intralaminar mode 

consists of longitudinal matrix fracture, transverse matrix fracture, fibre-matrix 

debonding and fibre fracture. Interlaminar mode is also referred to as 

delamination. Delamination is described as separation of layers from one another 

(see Figure 2-7). The fracture mechanisms depend upon the nature of the 

constituents including architecture of the layers, and mechanical loading mode 

[21]. 
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Figure 2-7 Fracture mechanisms observed in laminates (a) Intralaminar and (b) 

Interlaminar Failures [21]. 

Mamalis et al. [21] reported that the main micro fracture mechanism features of 

composite tubes are similar to that obtained for circular tubes. These micro 

fracture mechanisms are: 

• An annular wedge of highly fragmented material, axially forced downwards 

through the shell wall; 

• Ahead of the crush-zone an intrawall micro crack is developed at the apex 

of the annular wedge with approximately a propagation of the compression 

rate; 

• Ply delamination in the crush zone causes two continuous fronds, mainly 

developed by the central bundle wedge that radially spreads inwards and 

outwards from the wall; 

• Between the central crack and the shell wall edges a severely strained 

zone is formed showing a combined tensile-compressive type of 

deformation. 

Farley and Jones [130] named and classified four main progressive crushing 

modes for composite tubular structures,  
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1. Transverse shearing or fragmentation mode

Fragmentation mode or transverse shearing mode is characterised by the 

laminate wedge-shaped cross section with a single or multiple short interlaminar 

and longitudinal cracks from partial lamina bundles. The main energy absorption 

mechanism is fracturing of lamina bundles. When fragmentation occurs, the 

length of the longitudinal and interlaminar cracks are less than that of the lamina. 

Brittle fibre reinforcement tubes show this crushing mode. In this mechanism the 

energy absorption is controlled by the interlaminar crack propagation and laminar 

bundle fracture.  

2. Lamina bending or splaying mode

Lamina bending mode is characterised by parallel to fibre cracks shaped with 

long interlaminar fracture. This mechanism initiates the formation of inwards and 

outwards spreading continuous fronds. The energy absorption of lamina bending 

mode is controlled by inter/intra laminar fracture and friction. Brittle fibre 

reinforcement tubes show this crushing mode. Matrix crack growth is the main 

energy absorbing mechanism.  

3. Brittle fracturing 

Brittle fracture is a combination of fragmentation and lamina bending modes. In 

composite tubes, the highest energy absorption ever observed is from the 

combination of brittle fracture crushing modes.  Brittle fibre reinforced tubes show 

this crushing mode. The main energy absorption mechanism is fracturing of 

lamina bundles. The length of the interlaminar cracks are between 1 and 10 

laminate thickness when brittle fracturing occurs [130].  

4. Local buckling or progressive folding 

The local buckling crushing mode involves local buckle formation meaning plastic 

deformation of the material. The post-crushing integrity of ductile fibre-reinforced 

composites is a result of fibre and matrix plasticity, i.e. significant deformation 

without fracture and fibre splitting. Local buckling can exhibit from brittle fibre-

reinforced composites when small interlaminar stresses relative to the strength 
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of the matrix is applied, or the matrix has a higher failure strain than the fibre, and 

when plastic deformation under high stress exhibited from the matrix.  

Brittle fibre-reinforced composites exhibit the transverse shearing and lamina 

bending crushing modes, although ductile fibre-reinforced composite materials 

have similar mode behaviour as ductile metals in local buckling crushing see 

Figure 2-8. 
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Figure 2-8 (a) Transverse shearing crushing mode, (b) Lamina bending crushing 

mode, (c) Brittle fracture crushing mode, (d) Local buckling crushing mode [131]. 
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2.7 Off-axis crashworthy behaviour of FRP composite 

structures 

Different types of crashworthy components were studied in the past two decades 

including material systems, various geometrical shapes and various fabrication 

methods were developed and axially tested [75-77]. In a real-life crashing event, 

the likelihood of having a non-axial collision is very high [144,136,225]. Quite 

recently few researches have concentrated on the energy absorption capabilities 

of elements such as box under two types of non-axial loadings. Non-axial 

loadings are divided into angled loading, and off-axis loading also referred to as 

oblique loading. Some studies can be found in the literature with complex loading 

conditions [29,41,75,90,128]. Since during an impact event, the thin-walled 

structures undergo severe collapse failure and in oblique loading conditions, it 

could suffer from drastic energy absorption reduction. In automotive applications 

for instance, the bumper system is expected to endure a load with impact angle 

of up to a 30o to its longitudinal axis [206]. Therefore, maintaining high 

crashworthiness behaviour under different loading conditions is essential to be 

met whilst meeting the critical requirement of structural collapse [206,217-222]. 

Occurrence of off-axis loading is when the impact of an object is from a direction 

not along its longitudinal axis. Occurrence of angled loading is when the impact 

of an object is from being perpendicular to longitudinal axis. It is essential to 

undertake all the effects of collision in crashworthy composite structures on the 

capabilities of energy absorption. In off-axis crushing the formation of fracture 

mechanisms are different from axial crushing observations. During non-axial 

progressive collapse, an important role in dissipation of crushing energy is non-

symmetrical crack propagation at the intrawall box and between fronds.  

In practice, the above concern is mainly based on the fact that axial crushing 

always accompanies with high energy absorption capability through progressive 

crushing. However, according to previous studies on axial crushing behaviour 

and oblique loading [206,218,220,221], at oblique loading, the absorbers could 

experience an initial peak load followed by catastrophic failure which results into 
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low energy absorption. Extensive studies have concerned with this 

phenomenon [144,223,224]. 

Few researchers have investigated the effects of off-axis crushing on the energy 

absorption of composite materials and structures [133-135]. Czaplicki et al. [135] 

investigated on off-axis loading and angled loading crushing process of E-

glass/polyester pultruded tubes. It was concluded that off-axis loading, and 

angled loading conditions dissipate energy in different friction mechanisms but 

both loading conditions observed a similar energy absorption tendency by 

increasing the inclination angle. It was also concluded that at 10° off-axis angle 

the mean crushing force increases in comparison to mean crushing force of axial 

crushing and a steady decrease with increase of angle of inclination. Song and 

Du [136] studied the energy absorption capabilities of off-axis loading of five 

different circular GFRP tubes with different off-axial crushing angles, varying from 

5° to 25° with an increment of 5°. Three characteristic crushing stages were 

identified according to their extensive research, triggering stage (Tr), sustained 

crushing stage and toppling stage. In general, as the off-axis inclination angle 

increases the energy absorption decreases, caused by a change in two factors 

of toppling tendency and fracture pattern. They also concluded that 0º ply can 

prevent the circumferential cracks and therefore longitudinal resistance to delay 

the toppling stage (see Figures 2-9 and 2-10). 

Figure 2-9 Comparison of axial and off-axis crushing process, a) axial crushing 

and b) off-axis crushing [143]. 
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Czaplicki et al. [135] conducted experiments on the effect of fibre reinforcement 

type, structure type, fibres orientation in a layer and layers stacking sequence on 

the energy absorption capabilities of tubes and truncated cones. They also 

carried out an experimental investigation on the effect of wall-thickness and 

angled loading on specific energy absorption (SEA). 

Ghasemnejad et al [56,144,15] experimentally investigated the axial and off-axis 

crashworthy behaviour of CFRP and GFRP composite box structures with 

inclination angles of 5º, 10º, 20º, and 30º under quasi-static loading. The authors 

concluded that at 10º off-axis loading the mean crushing force exceeds axial 

loading by 12%. This conflict with another study that the author [82] concluded 

that the energy absorbed in the square tube is decreased significantly when the 

impact angle is raised. Using fibre E-glass and polyester composite under oblique 

loading conditions.  

Mamalis [29] investigated the crashworthy characteristics of composite structures 

by observing the brittle failure modes, such as progressive end-crushing, local 

tube-wall buckling and mid-length collapse, through a series of static and dynamic 

axial compressive tests. Greve et al. [227] conducted the impact tests and 

simulated the fragmentation process of braided carbon/epoxy composite tubes 

under axial and oblique loading conditions.  

In recent studies, the crushing behaviour of composite structures subjected to 

axial and oblique loads have gained increasing attention [24,228-230]. Zhou et 

al. [231,232] for example investigated conventional square tubes and origami 

crash boxes under axial and off-axis loading and noted that origami crash box 

subjected to range of loading angles are potentially more desirable than 

conventional square tube. Sun and his co-authors [233-235] investigated the 

functionally-graded thin-walled structures crash characteristics under multiple 

loading angles using finite element analyses (FEA). Zarei [236] investigated on 

crashing response of simple and hybrid composite tubes with various numbers of 

GFRP overwrap. 

Recent studies carried out by several researchers are noted that the dissipated 

internal energy is in relation to the geometry and material characteristics. A clear 
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overview of the various crushing parameters that effect the change in energy 

absorption of composite structures can be found in literature [90,205,206].  

Following the current state-of-the-art, it can be concluded that in the case of off-

axis loading conditions, the mechanical response varies with change of 

geometry. However, none of the reviewed articles studied the case of introducing 

integration of lay-up sequence and trigger mechanism to improve energy 

absorption capabilities. Assessing the crashworthiness of composite tubes 

subjected to off-axis loading is of particular interest in the aerospace industry 

because, in addition to the absorbers allocated axially there are off-axis 

positioned absorbers that can be improved for their energy absorption 

capabilities. In this chapter, glass/epoxy tubes were tested under quasi-static 

compression tests for their crushing behaviour. Five cases were also studied with 

combination of ply-orientation and flat trimming 45o chamfer integration 

mechanisms to evaluate their effect on energy absorption capabilities. This 

improves mean crushing force and consequently increase specific energy 

absorption (SEA). 
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Figure 2-10 Various crushing stages of woven glass/epoxy composite box in 

axial crushing (θ =0) and off-axis loading at (θ =5°) [143]. 

2.8 Improvement of interlaminar fracture toughness  

The energy absorption from interlaminar fracture toughness is accompanied by 

various fracture mechanisms of interlaminar failure. In the study of fracture 

toughness, delamination crack growth influences the energy absorption capability 

of composite structures. Progressive failure mode and energy absorption of 

composite structures, are affected mainly by various fracture mechanisms 

including fibre breakage and buckling, matrix cracking and crushing, debonding 
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at the fibre-matrix interface and especially plies delamination. Shear and tensile 

separation between fronds cause delamination. Energy absorption is the effect 

of these two crushing mechanisms that are due to interlaminar crack growth and 

fracturing of lamina bundles. The sources of energy absorption during 

progressive collapse are mainly from [136]: 

• Frictional resistance between wedge and fronds and between fronds and 

platen: about 45% of total absorbed energy. 

• Frond bending due to delamination between plies: about 40%. 

• Intrawall crack propagation: about 12%. 

• Axial splitting between fronds: about 3%. 

2.8.1 Disadvantages of 2D fibres  

High stiffness, fatigue life and strength are required in all engineering applications 

and composites are reinforced with continuous fibres rather than small particles 

or whiskers. A distinguishing feature of 2D laminate is that no fibres are aligned 

in the through the thickness or in the z-direction. The lack of through the thickness 

reinforcing fibres can be disadvantage in terms of mechanical performance, 

impact damage resistance and crashworthiness behaviour. Due to lack of 

reinforcement in the z-direction, the through the thickness mechanical properties 

are poor. The two-dimensional arrangements of fibres provide very little stiffness 

and strength in the through the thickness direction because these properties are 

determined by the low mechanical properties of the resin and fibre to resin 

interface [190]. In Figure 2-11, the through the thickness properties are often less 

than 10% of the in-plane properties and because of this reason 2D laminates are 

not suitable for structures supporting in z-direction or interlaminar shear load.  

Impact damage can seriously degrade the in-plane mechanical properties under 

tension, compression, fatigue life and bending. The strength drops rapidly with 

increasing impact energy, and even a lightweight mass with low impact energy 

can cause a large reduction in strength of composite laminates. The low post-

impact mechanical properties of 2D laminates is a major disadvantage, 

particularly when used in thin load-bearing structures to combat the problem of 

delamination damage, due to this, composites are often over-designed in 
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thickness and this leads to increase of cost, weight and volume of the composite 

and in some cases may provide only moderate improvements to impact damage 

resistance.  

Figure 2-11 (a) Tensile modulus, (b) Tensile strength and (c) Compressive 

strength comparison of in-plane and through-thickness mechanical properties of 

some engineering composites [237]. 

a 

b 

c 
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2.8.2 Architecture of 3D fabric  

Three-dimensional architecture is a type of advanced material which increases 

the mechanical properties and impact damage tolerance in the z-direction or 

through the thickness. There are five different types of 3D composite processing 

techniques due to high demands of space-craft, helicopters and aircrafts on FRP 

composites in load-bearing applications.  

1. Weaving 

2. Braiding  

3. Knitting 

4. Stitching 

5. Z-pinning  

2.8.2.1 Weaving  

Weaving process is used in different applications and industries, such as 

aerospace, marine, civil and medical due to its flexibility characteristics. The 

ceramic-based composite consists of 3D woven carbon fibres and a silicon 

carbide matrix. This is used to reduce manufacturing costs, reduce of peeling 

stresses at the joints, improve of stress transfer and improve of aerodynamic 

performance. One of the influential material used in the industry due to simplified 

manufacturing assembly compared with conventional 2d laminate or aluminium 

alloy, nose cone in rockets for instance. Manufacturing of chamber as a single 

piece through this method and reduction of leakage problems associated with 

conventional 2d laminates is one of the main advantages of using 3D woven 

composites (see Figure 2-12). This process has been used for over 50 years.  

Figure 2-12 Multilayer woven fabric  
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2.8.2.2 Braiding  

Braiding process is familiar to many field of engineering as standard 2D braided 

carbon and glass fabric has been used for a number of year in a variety of high 

technology items, such as lightweight bridge structures, aircraft propellers. This 

process has been around for two decades to produce high technology items such 

as advanced aircraft propellers and golf clubs. Multi-layer and thick material 

construction can be made from traditional 2D braiding, although the process of 

2D and 3D braiding faces a variety of different techniques of manufacturing. A 

key benefit of using 3D braided over conventional 2D fabric braided is structural 

integrity, torsional stability and high levels of conformability. Aerospace 

applications for 3D braided included airframe spars, fuselage barrels, F-section 

fuselage frames, rocket engine nozzles and rib stiffened panels, although many 

applications are potentially suitable for ships, deck for lightweight military bridges, 

causeways, shafts and propellers. 3D braided composites are 50% lighter than 

similar components made from steel with the same performance such as 

crashworthiness properties and damage tolerance, this material is currently used 

in chassis and drive shafts.     

2.8.2.3 Knitting 

Knitting fabrics potentially enables manufacturers to produce specific types of 

composite structures, with excellent impact performance that makes them ideal 

for service conditions where damage tolerance or energy absorption is critical. 

Most 2D conventional knitted fabrics also contain a significant proportion of their 

strength in the thickness direction of the fabric. There is potential application for 

3D knitted composites on aircraft such as wing panels, wing stringers, T-shaped 

connectors, jet engine vanes and I beam. And also, in automotive industry there 

is significant amount of room for knitted fabrics such as door members for 

automobiles, floor panels, bumper bars. Important advantages of 3D knitted 

composites over 2D conventional are high drape properties, high impact damage 

tolerance, although there are some drawbacks too, including costs and high 

density compared with UD pre-pregs. 
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2.8.2.4 Stitching  

Stitching is the simplest and cheapest method to produce a 3D fabric architecture 

since 1980s which improves interlaminar fracture toughness. The stitching 

process in the z-direction is used for reinforcing composite through the thickness 

that improves impact damage tolerance and delamination resistance in 

comparison to 2D laminates. The stitching process takes place by inserting a 

needle, carrying the stitching thread, through a stack of composite layers to form 

a 3D structure (see Figure 2-13). Creating 3D architectures through stitching 

provides many benefits. Among those is the possibility to use the process with 

traditional 2D woven, braided, knit, etc. This allows for a great degree of flexibility 

in the fabric layup; using different material layers, as well as different yarn 

directions. Also, stitching can be placed only in the areas that require 

reinforcement in the z-direction.  

Many studies were carried on the performance of stitched composite and there 

are conflicting conclusions. Depending on the purpose of the stitched laminate 

the final product result may vary. Some scientist concluded that stitching can be 

utilised in composites joints rather than co-curing and bonding techniques. This 

method eliminates the need of mechanical fasteners such as, bolts, screws, and 

rivets therefore, reduces weight and possibly production costs of the component 

by 50%. This method is cost-effective, and it improves tensile and compression 

properties. Although conflicting performance on material properties exists.         

Figure 2-13 Through the thickness stitching of a composite laminate   
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2.8.2.5 Z-pinning  

Z-pinning is used as an alternative method to through-thickness stitching. The 

process uses pre-cured reinforcement fibres, which are embedded in a 

thermoplastic foam and placed on top of  the pre-preg or dry fabric. The 

thermoplastic foam collapses during the curing process, and the pressure pushes 

the z-pins into the component. The crimping in z-pinning are low compared with 

other methods and low fibre damage is observed while still maintaining the control 

over the reinforcement locations.    

2.8.3 Delamination  

Composite are wildly used in different industries due to their high in-plane tensile 

and compression strength. In most cases however, their through-thickness 

properties are very low (see Figure 2-10), in comparison to their in-plane 

properties. Therefore, the through thickness stresses may result into 

delamination initiation, and this factor increases by geometry characteristics of 

free edges, holes, ply drops and etc. or matrix crack may also be a consequence 

of fabrication problems, or impact damage. The brittle nature of FRP composite 

accompanying other forms of energy absorption mechanism such as lamina 

bending, fibre breakage, matrix cracking, matrix crushing, buckling, debonding at 

the fibre-matrix interface and ply delimitation that is a cause of shear and tensile 

separation between fronds. Delamination growth therefore is studied to establish 

and identify a threshold level to understand the mechanical behaviour of FRP 

composites. Delamination is one of the major life limiting failure mechanism in 

laminated composite subjected to service loads [54,113]. Initiating from 

interlaminar fracture such as delamination is considered as crack propagation 

and after delamination onset, the consequent propagation is not controlled by the 

through-thickness strength any more but the interlaminar fracture toughness 

[147,156].      

2.8.4 Effect of stitching through the thickness on interlaminar 

fracture toughness  

Warrior et al. [138] studied the influence of thermoplastic resin additives, 

toughened resins, stitching through-thickness, thermoplastic interleaving on the 
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interlaminar fracture toughness (GIC), SEA for continuous filament random mat 

(CoFRM) and 0/90 non-crimp fabric (NCF) E-glass reinforced polyester 

composite tubes. It was concluded that the above factors increase GIC, but 

toughened resin and through-thickness stitching improves SEA value. In general, 

a tougher matrix results into a higher GIC in composites, this is beneficial in 

crashworthiness design [139]. Cauchi Savona et al. [140] studied the relation of 

glass fibre reinforced plastic composite plates between sustained crushing stress 

with their Mode-I and Mode-II fracture toughness properties. It was concluded 

that materials with low Mode-I and Mode-II fracture toughness, yield low crushing 

energies. Solaimurugan et al. [141-142] studied the effect of stitching, fibres 

orientation and stacking sequence on GIC, SEA, and progressively crushing of 

glass/polyester composite cylindrical shells under axial compression. It was 

concluded that placing axial fibres close to outer surface tube cause formation of 

more petals and a stable crushing process, whereas placing axial fibres close to 

inner surface tube led to higher energy absorption. Moreover, circumferential 

delamination increases energy absorption for higher values of Mode-I fracture 

toughness. Also reported stitching causes higher energy absorption of cylindrical 

tube due to increase in Mode-I interlaminar fracture toughness. 

Ghasemnejad et al. [143] studied the energy absorption of GFRP composite box 

affected by Mode-I interlaminar fracture toughness. It was concluded that during 

progressive collapse, a significant amount of energy absorption is attained by 

frond bending following the growth of a main central intra-wall crack due to 

delamination in the side-wall. The main central intra-wall cracks are Mode-I 

interlaminar crack propagation. Also concluded that engineering the laminate 

design for composite box improves energy absorption capability due to improving 

interlaminar fracture toughness. For different lay-ups the variation of specific 

energy absorption (SEA) with interlaminar fracture toughness is non-linear. 

Hadavinia and Ghasemnejad [57] investigated the energy absorption of 

laminated CFRP composite box by the effect of Mode-I and Mode-II interlaminar 

fracture toughness. In combination of lamina bending/brittle fracture crushing 

mode according to their results, crack propagation development in Mode-I and 
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Mode-II causes higher crushing energy absorption relative to combination of local 

buckling/transverse shearing crushing mode that consists of only Mode-II 

interlaminar crack propagation. Ghasemnejad and Hadavinia [143] studied the 

off-axis crashworthy behaviour of woven GFRP composite box structures. They 

concluded that two fracture mechanisms of bundle fracture and crack 

propagation delamination in Mode-II for all composite boxes at various off-axis 

loading was observed. In Mixed-Mode I/II due to crack propagation and more 

resistance and friction at side of composite box that initially contacted the 

crushing platen, at off-axis loading of 10° the amount of SEA was maximum 

compared to other off-axis crushing load. Ghasemnejad et al. [56] have 

conducted more detailed study of hybrid composite box structures (carbon/glass 

epoxy) crashworthy behaviour affected by delamination failure. It was concluded 

that the hybrid laminate designs have higher fracture toughness in Mode-I and 

Mode-II. Hybrid composite box structure have shown a great increase in energy 

absorption capabilities in crushing process. Most recently, author [144] studied 

the effects of delamination failure of stitched composite box structures, where the 

specimen’s crashworthy behaviour and performances were compared and 

studied against simple non-stitched specimens, under the same geometry and 

condition. A combination of unidirectional CFRP and GFRP composite materials 

with lay up of [C90/G0]7 were used to laminate the composite boxes. The laminate 

design obtained the highest energy absorption capability within the previous 

study of authors. Delamination study in Mode-I was carried out using the same 

lay-up to study the effect of crack growth of delamination on energy absorption of 

natural stitched composite box structures. Using double cantilever beam (DCB) 

standard test for delamination studies. It was concluded stitching significantly 

increased interlaminar fracture toughness and consequently energy absorbing 

capability of composite materials and structures (see Figure 2-14). 
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Figure 2-14 Mode-I interlaminar crack propagation at the central intra-wall, a) 

lamina bending crushing mode for non-stitched, brittle fracture mode for b) 

stitched-10mm and c) stitched-20mm composite crush box [144]. 

The structural integrity of stitched-composite absorbers depends on the stitching 

pattern used [146]. This through the thickness reinforcement has shown 

enormous improvement in Mode-I delamination resistance whilst stabilising 

Mode-II crack growth using continuous fibre [147,148, 212].  A similar conclusion 

was obtained by Solaimurugan and Velmurugan [142,149], that studied 

composite cylindrical shells with various stacking sequence, fibre orientation and 

stitching on progressive crushing of glass/polyester under axial compression. It 

has been noted that stitching improves energy absorption capabilities through 

Mode-I interlaminar fracture toughness. Allocation of axial fibre in outer surface 

results into stable crushing due to development of more petals, whereas axial 

fibres allocated in inner surface caused higher energy absorption. Circumferential 

delamination improves energy absorption capabilities by increasing Mode-I 

fracture toughness. Cauchi-Savona et al. [148] investigated the influence of 
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stitching through the thickness on fracture toughness using carbon and glass 

NCFs laminates under dynamic loading and noted that selecting an optimised 

stitched configuration causes 30% improvement in the energy absorption. 

Similarly, Korkiakoski et al. [150] performed an experimental study on the stitched 

NCF GFRP box structure and concluded that stitching affects damage 

progression and fatigue life. Zhao et al. [151] noted that, the significance of 

increase in interlaminar fracture toughness and energy absorption capabilities in 

thin-walled structures was obtained from the results by using stitching through 

the thickness. McGregor et al. conducted an experiment on the influence of 

increased plies on dynamic SEA testing which showed 39-53% increase using 

triaxially braided tubes of rectangular, circular and square cross-sections under 

both static and dynamic loadings [210]. Similarly, Wang et al. studied the effect 

of fibre orientations and wall-thickness on energy absorption capabilities using 

G827/5224 composite tubes under static and dynamic loadings. It was concluded 

that the fibre orientation and wall thickness have significant influence on energy 

absorption performance due to formation of thick delamination bundles and high 

bending resistance [128,211]. 

2.9 Finite element modelling of composite tubular structures 

Two classes of Finite Element methods are available; either the Implicit or Explicit 

method [152]. Implicit method is widely available and used in a broad range of 

solving problems, including nonlinear stress analysis and static. The Explicit 

method is widely used in highly non-linear stress analysis and dynamic with 

contact dominated problems. Car crash for instance or metal stamping 

simulations are applications well suited for Explicit method. 

Due to high cost of conducting experimental studies, there is a need for reliable 

computational models capable of predicting the crushing response of composite 

structures. There have been various attempts to develop explicit finite element 

models (FEM), with different degrees of precision, for circular tubes [153-157], 

square tubes [155-164], angle-stiffeners [159], C-channels [159] and hat-

stiffeners [165]. The classification of structural FEM can be divided into two 

groups. The first group is the micro-mechanical one [166–171]. In this group the 
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finite element models try to simulate the composite crushing phenomenon 

through a detailed modelling of its micromechanical behaviour. A very fine solid 

mesh is developed to accurately capture the micro-mechanics matrix crack 

propagation phenomenon. The computational effort demanded by this kind of 

model is very high, making it impractical for engineering crash analysis. This 

approach is used mainly to perform simulations concerning the delamination 

phenomenon, in which the growth behaviour of a single crack is studied in a very 

detailed way [158]. The second group is the macro-mechanical one [154, 172-

179, 184]. This type of model provide a macro-mechanical description of the 

material collapse. It is much more computational effective, and consequently it is 

a suitable choice for engineering crash analysis. However, it is not able to model 

precisely all the main collapse modes that occur simultaneously during a crush 

event. 

The FE modelling of composite structures can be either shell or solid elements. 

Solid element models require more computation time and are less-widely used 

compared with shell elements in axial crushing of composite structures as 

mentioned above. A single layer [168,172,173,175] or multiple layers 

[154,176,184] of shell elements can be used to model a laminate, in the single-

layer model, this can be modelled as a single layer of shell elements with each 

ply being represented by a through the thickness integration point also referred 

to as integration point in the thickness direction. This kind of model is not able to 

model the interlaminar collapse modes showed by composites under crushing in 

an accurate way. However, it is useful, if detailed representation of the failure 

physics is not the main concentration but only load and energy level predictions 

are required. The main advantages are its simplicity and computational 

effectiveness, so for that point they are highly suitable for practical engineering 

crash analysis. On the other hand, they have a notable lower robustness due to 

large amount of parameter calibration required to obtain acceptable global 

results, for a given test configuration [158]. 

Deleo, et al. [159] used this configuration for C-channel, angle-stiffeners and 

hollow square tube modelling technique. In multi-layer configuration model, the 
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laminate is modelled by multiple shell elements, with each layer representing 

either a single ply or a group of plies, and the layers are glued together using an 

automatic contact definition (Surface to Surface).   

In recent studies, the single-layer configuration model has been used to simulate 

the behaviour of various composite structures, in the case of for instance thin-

walled square sections. This method is capable of accurately capturing the local 

buckling and unstable collapse, however due to the complex failure mechanism 

of composite structures, this method was ineffective to depict the progressive 

failure process [155]. Precise input of key material properties and numerical 

parameters in the material model (e.g., eleven parameters in MAT 54), and 

defining a contact card between the test specimen and the impactor and applying 

an all degrees of freedom constraint on the end of the test specimen, the single-

layer model was able to yield good correlation with experimental load-

displacement graph for cross-sections studied in [159]. However, this 

configuration as mentioned above is not appropriate for failure mechanisms and 

crushing behaviour, as these are mostly neglected.   

The multi-layer modelling technique can be utilised for better capturing of failure 

process of the tubes undergoing progressive crushing [154-158]. However, in 

multi-layer model, the correlation with the experimental load-displacement was 

not always satisfactory. The composite hollow tube was modelled in LS-DYNA 

using MAT 54 to analysis its crushing behaviour. The FEA results were 

satisfactory and agreed with the experimental load-displacement graphs, 

however, instead of brittle failure mechanism observed in experimental, a 

significant local buckling of the tube was observed in FEA.  

A finite element model developed by [155], was able to accurately predict the 

peak load of thin-walled square CFRP tube, although the specific energy 

absorption was underestimated by 33%. In the FEA simulation the crushed 

elements were deleted instead of forming debris that were observed in the 

experiment. One of the parameters that contributed to the energy absorption, was 

the debris wedged formation between the fronds of the tube’s wall which was 

neglected in the simulation. The author noted that, this parameter alone affected 
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the SEA value in a significant way. In [156,157] the FEM was developed to 

capture the crushing behaviour of hollow circular and square tubes and compared 

with the experimental observations. It was noted by the authors that the model 

was not able to reproduce the axial matrix splits observed experimentally. This 

resulted into different load–displacement curves, deformation, and failure 

behaviour when compared with the experiment. Several parameters that 

influenced the crushing behaviour of square hollow tubes were analysed in [158]. 

The parameters were, element size, number of shell layers, coefficient of friction 

and interlaminar material properties. The author noted that by increasing the 

number of shells the main collapse mode was unchanged. The influence of the 

friction coefficient between the tube and the machine plate and the element 

dimension was also studied. The element size was coarse mesh (7 mm) and fine 

mesh (4 mm). The static friction coefficient values were 0.1, 0.2 and 0.3 and 

dynamic friction coefficient was kept constant at 0.65, base on literature. The 

increase of the friction coefficient from 0.1 to 0.3 and the use of finer mesh did 

not change significantly the crush zone morphology, in the sense that all the three 

tubes collapsed in the same way. For all the three values of friction the load-

displacement curves have almost the same shape. In this sense, the effect of the 

friction variation was like a scaling of the magnitude of the load curves. The model 

with bigger elements shows a magnitude of force oscillation higher than the one 

showed by refined model, however the average force value is the same. 

McGregor, et al. [161] combined series of experimental investigations and 

examined their effect in finite element analysis and concluded proportional failure 

mechanisms leading to SEA is a result of dominated energy absorption 

mechanisms of approximately 60% material damage and 30% friction with 10% 

related to contact parameter [180]. Although a detailed examination on the 

material behaviour is essential to reach a load adapted lightweight design. Axial 

finite element modelling of composite structures has different modelling methods. 

Various approaches were developed to obtain ideal force/displacement curve 

that are aligned with experimental data. One approach includes a hybrid mesh of 

shell and solid elements to capture ideal load/displacement curves [181]. This 

method is used for modelling of crack propagation with finite cohesion elements 
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[184] that consists of shell element representing the material and a solid element 

to represent delamination failure.  Alternatively, material 54 of LS-DYNA is used 

to predict crushing behaviour and idealised force-displacement graph [182]. One 

strategy is SOFT parameter implemented in LS-DYNA to map pre-damaged and 

consequently create a progressive crash front of a CFRP square tubes or 

composite sections [143], the author concluded that Mat_Composite_Damage of 

LS-DYNA for GFRP box structures was found to be in accordance to 

experimental results when it was modelled as double shell configuration. Some 

similar conclusions were obtained by other researchers that using multi-shell 

configuration can predict energy absorption and maximum force under crushing 

[183,184]. Many studies focused on the contact parameter [180], crack 

propagation modelling with de-cohesion elements [185] or user defined material 

model which requires extensive experimental investigations [186]. 

In [187-188], the effect of failure trigger mechanisms on the energy absorption 

capability of CFRP tubes under axial compression is experimentally and 

numerically investigated. The conventional approach to introduce a failure 

mechanism is to apply a 45o chamfer on one end and the failure could initiate 

progressively. Alternatively, an attachment of crush-cap can be utilised to initiate 

the progressive crushing. Two different types of crush-caps were studied, each 

causing the crushed material to fold either inward or splay outward. The effect of 

the corner radius of the crush-caps on the peak load, SEA, and crush behaviour 

was investigated. The author noted that the chamfer failure trigger was most 

effective at reducing the initial peak load while maintaining a high-sustained crush 

load and high specific energy absorption (SEA). The inward-folding failure trigger 

approach was not as effective at reducing the initial peak load but was more 

effective than using a chamfer for maintaining a high-sustained crush load and 

SEA. However, the modelling technique of the simulation, which was based on 

multi-shell configuration with failure trigger showed a high level of correlation with 

the experimental results for both the chamfer and combined failure trigger cases. 

The simulation was able to predict key deformation characteristics observed 

during the experimental crushing process the formation and progression of matrix 

splits, and the direction of splaying of plies.  
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In modelling approach, it is necessary to develop models that are simple enough 

to be employed in practical analysis situations but at the same time capable to 

provide results with a suitable level of accuracy. At the same time, the approach 

shall be numerically robust and practical in model build phase.  

The primary focus of this study is to develop a ‘multi-layer’ finite element 

modelling methodology that can capture the crushing behaviour of CFRP and 

GFRP circular tubes with a failure trigger mechanism. The finite element 

modelling further investigates the effect of stitching pattern developed in chapter 

4 and implementing that into FEM. 

2.10 Summary of the literature review 

Composite material is providing opportunities to reduce component weight and 

improve crashworthiness of aerospace and automotive structures and sub-

structures and components. The parameters that influence energy absorption 

capability are, loading conditions, geometry shape and size, lay-up sequence, 

triggering mechanism, curing techniques. 

Structural geometry of composite materials influences the energy absorption 

capability, the cylindrical shape is suitable for higher energy absorption due to no 

corners nor stress concentration. The geometry size of the composite sections 

should be from 50-150 mm in length and 20-100 mm in outside diameter with wall 

thickness of 1-3 mm [238]. The lay-up sequence is another factor that influence 

energy absorption capability. Quasi-isotropic laminate design provides closer to 

isotropic material behaviour in in-plane conditions. A typical quasi-isotropic 

laminate design includes 0/±45/90 and in some cases 0/±60. The loading 

conditions at quasi-static, should be around 1 to 11 mm/s and in dynamic impact 

an impactor is used with impact velocity of less than 100 m/s is suggested. The 

curing techniques should be based on manufacturer’s guidelines. To obtain 

progressive crushing behaviour trigger mechanism is applied to one end of the 

composite section, 45o bevelled trigger or 45o chamfer trigger provide better 

crushing initiation.  
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Starting from interlaminar fracture toughness, delamination is considered as 

crack propagation and after delamination onset, the consequent propagation is 

not controlled by the through-thickness strength any more but the interlaminar 

fracture toughness. To improve crack propagation in laminates, the fracture 

toughness needs to be improved and consequently the energy absorption 

capability is improved, hence the objective of this research. However, friction and 

bending mostly contribute towards specific energy absorption capability, higher 

the delamination resistance, higher the friction and bending and consequently 

improving SEA. 

In the current study of fracture toughness and energy absorption capability of 

stitched composite crash absorbers, the missing link is the effect of through-

thickness stitching on specific energy absorption in respect to stitching location. 

This has been studied in the past, in singular format, 10 mm, 20 mm and 30 mm 

using natural flax yarns [145,147] and its effect on energy absorption. Although 

crack propagation resistance in most cases did not improve and a significant load 

drop was observed, which resulted in a lower energy absorption capability than 

non-stitched composite sections. However, the effect of multi-stitching and 

pattern stitching on UD pre-pregs have not being investigated in respect to 

adoption of stitching locations. The effect of single, multi and pattern stitching as 

one study to establish its effect on SEA is missing from the current field. This 

missing study led to conflict ideas around the subject of stitching through the 

thickness with negative perspective. Identifying the capability of though-thickness 

stitching can be beneficial towards better performing composites. Two decades 

ago, Boeing studied the subject of through-thickness stitching with sceptical 

approach and conclusions [191], the work was carried out on reinforcement of 

composite wings at the time. Many researches work on tensile and compression 

properties of laminated composites and the results vary. Some researchers 

suggest tensile strength improved by stitching and this conflicts with other 

studies. The main cause of this might be that, there is more than one variable for 

the study, such as constant resin and thickness, hence pre-pregs are more 

suitable for the sake of this study although higher fibre damage might be caused 

by insertion of the needle to penetrate the laminate, but this minimises the 
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variables to one, which creates an opportunity to concentrate on the effect of 

stitching on energy absorption capability. One of the main advantages of the 

composite material is that it can be tailored for a specific task and purpose. 

Through-thickness stitching is beneficial in energy absorption capability if a 

correct study can establish its benefits. Hence, the main aim of this study is to 

establish a relationship of stitching location with specific energy absorption 

capability and to control the force-displacement curve.  

To concentrate on one parameter at a time, and to identify the effect of through 

thickness stitching on energy absorption, only one variable should be considered 

per case. In off axis loading condition, the only variable is the lateral inclination 

angle and all other parameters mentioned in chapter 2 that could potentially alter 

or influence energy absorption capability is kept constant. In stitched composite 

section the only variable is the stitching location or in final pattern stitched 

sections the only variable is the loading conditions, quasi-static and impact 

loading.  

To determine crashworthiness of the material, the specific energy absorption is 

considered. This value evaluates the crushed mass of the specimen with the 

energy it absorbed. This leads to identifying the ability of the material with its load 

bearing capabilities, which leads to determination of any improvements made to 

the composite sections whilst being at different loading conditions or being 

subjected to through-thickness stitching.  

Accurate prediction of deformed fibre architecture of the final component is vital 

in respect to energy absorption capability if a virtual design process is used to 

optimise composite components, that is considered a necessary process if the 

time taken for the design and costs are to be industrially acceptable. The current 

study consists of multi-shell configuration, and delamination modelling to capture 

an accurate enough model to predict energy absorption capability.  

In many studies this is eliminated and replaced by friction between each shell 

acting as the delamination between the plies [143]. Although different contact 

definitions can be used to predict the delamination effect.  Most cases reviewed 

in this study captured an acceptable load-displacement curve, which is the main 
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concentration of this study. However, to minimise modelling costs and 

experimental costs, a model should be developed to capture an acceptable load-

displacement curve, energy absorption capability and SEA. There are currently 

no stitching techniques available in pre-pregs material, many studies 

concentrated on non-crimp fabric style materials and developed separate tow and 

stitch providing a simple method representing true fabric architecture and 

deformation mechanism. However, it is now becoming reasonable to consider 

modelling the crushing behaviour of stitched structures using contact definition 

techniques within acceptable timescale, therefore, this is the primary FE 

modelling aim of this project.  
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3 Experimental Studies of Axial and Off axis Loading 

under Quasi-Static Loading     

3.1 Introduction 

This chapter presents experimental investigation on the laminate tailoring of 

composite tubular structures to improve crashworthiness performance at off-axis 

loading. Various angles of 5o, 10o, 20o and 30o degrees were selected for the 

study of off-axis loading. The results indicate that by increasing the lateral 

inclination angle the mean crushing force and consequently energy absorption 

capability of all tested sections decreased. From design perspective it is 

necessary to investigate the parameters effecting this phenomenon. The effect 

of lay-up sequence and trigger mechanism of composite sections under quasi-

static loading were investigated with an objective to improve mean crush force in 

10o off-axis loading.  Five cases were studied with combinations of ply-orientation 

and flat trimming with 45o chamfer. This method was applied at 10o off-axis 

loading and the results showed significant improvement in energy absorption 

capability of composite sections. 

Following the current state-of-the-art, it can be concluded that in the case of off-

axis loading conditions, the mechanical response varies with change of 

geometry. However, none of the reviewed articles studied the case of introducing 

tailoring of lay-up sequence and trigger mechanism to improve energy absorption 

capabilities. Assessing the crashworthiness of composite tubes subjected to off-

axis loading is of particular interest in the aerospace industry because, in addition 

to the absorbers allocated axially there are off-axis positioned absorbers that can 

be improved for their energy absorption capabilities. In this chapter, glass/epoxy 

tubes were tested under quasi-static compression tests for their crushing 

behaviour. Five cases were also studied with combination of ply-orientation and 

flat trimming 45o chamfer integration mechanisms to evaluate their effect on 

energy absorption capabilities. This improves mean crushing force and 

consequently increase specific energy absorption (SEA).  
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3.2 Experimental method  

3.2.1 Specimen fabrication and material  

In this study, the composite sections were fabricated from glass/epoxy 

7781/E722 (�	= 2250 kg/m3) with a symmetric twelve-ply laminate design of [-

45/45/0/90/0/90]S using hand lay-up techniques. Each GFRP layer has a 

thickness of 0.25 mm after curing. The composite sections were 80 mm × 80 mm 

with the total wall thickness of 3 mm in size (see Figure 3-1). Four to six 

specimens were tested in each case of study to find the mean deviation of the 

experimental results. In this research, the main study is oriented around 

identifying the effect of off-axis loading and ways to improve crashworthiness at 

off-axis loading. Therefore, one of the lateral inclined angle was chosen which is 

at 10o to carryout further study. This off-axis angle was chosen because when 

applying flat trimming, the remaining length of the specimen at off axis angles of 

20o and 30o will only be 40 mm and 30 mm, which is not enough for 50 mm 

crushing distance. Therefore, 10o off-axis was chosen to study the parameters 

affecting energy absorption capability at off-axis loading.  

At simplified off-axis loading configuration compared with axial loading, two major 

differences can be identified, lay-up sequence and engagement of the cross-

sectional area of the specimen with the crushing plate. Therefore, the stacking 

sequence was adopted and the top end of the specimen was flattened to study 

their crashworthiness and crushing behaviour under quasi-static loading 

compared with axial crushing behaviour. The tailored stacking sequence of [-

55/35/-10/80/-10/80]S was adopted and used to cancel the 10o off axis effect.  
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Figure 3-1 composite crush tube specimen 

The steel mould base with a dimension of 74 mm outer diameter and 80 mm in 

height was used to facilitate easy attachment of the first layer, although to 

simulate a lubricant between the laminate and the mould, a thin polymer film was 

used (see Figure 3-2). This enabled better shaping of the first ply to the mould 

and ease of removal after curing. Each ply was stacked according to the lay-up 

sequence one at a time. Pre-pregs have two protective layers covering each ply, 

one side is glassy and white, and the other side depending on the material, GFRP 

or CFRP for instance, is a thin plastic easy peel either green or blue. The glassy 

white layer is removed and placed slowly onto the rigid steel mould covered with 

a non-stick polymer film. Using a roller to shape the ply evenly and to minimise 

any formation of air-pockets. At each stage of adding plies or stacking the plies, 

a 15 minute of debulcking is required. Placing the rigid steel mould into a vacuum 

bag connected to a composite vacuum pump to pressurise the ply onto the mould, 

this is known as debulcking or degassing.  This minimises air bubbles/pockets 

formation between each ply and this increases the laminate bonding. Then, the 

next ply is stacked, once the thin-plastic of the first layer is removed, this layer is 

kept minimising any contamination whilst being rolled, degassed and kept at 

cleanroom. Once all the plies are stacked, it goes through a debulcking of 30 

minutes under vacuum pressure. Then seal-wrapped onto the mould to minimise 

any available air gaps using a thin polymer film, because during the curing 

process a phenomenon takes place that effects the material property, this is 

a b
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known as ‘resin escape’. This weakens the final product and ideally must be 

eliminated. Sealing the uncured laminate enables minimal room for the pre-preg 

epoxy to escape to, thus increasing the resin intact within the structure.   

Figure 3-2 lay-up of composite crush tube and preparing for curing a) mould 

sealed with thin-polymer film, b) lay-up process, c) mould sleeve d) mould and 

laminate being fully sealed by polymer film and pressurised with the mould 

sleeve e) 45o chamfering (trigger). 

To increase the pressure acting on the uncured laminate during the curing 

process for better bonding and elimination of delamination, a mould sleeve with 

the same outer diameter as the laminate is utilised which is 80 mm in inner 

diameter, and to keeping a constant laminate thickness of 3 mm. This also 

improves laminate surface finish. The assembled moulds containing the sealed 

laminates was then placed on a thick aluminium plate, covered top to bottom with 

a b

c

d

e

20 mm 
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two sheets of ‘breather cloth’ which eliminates air pockets formation by allowing 

air circulation and placed inside of a heat resistant polymer bag (see Figure 3-3). 

A suction valve was inserted into the bag connected to a vacuum pump. The bag 

was open on either sides and was fully sealed with double-sided epoxy tape. 

Vacuuming applies more pressure onto the laminates and extracts the air inside 

of the bag, forcing the plies to cure in high pressure tightly together (see Figure 

3-4). Using a pressure gauge, the pressure inside the bag was monitored. The 

effect of pressuring the mould using vacuum is forcing the plies of prepreg to 

merge together, allowing good adhesion evenly and minimises trapped air that 

could may cause delamination. The curing and post-curing process was based 

on manufacture’s guidelines. At each curing session two moulds were being 

processed in the same bag.  

Figure 3-3 schematic of vacuum application 
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Figure 3-4 sectioned composite crush tube inside the heat resistant polymer for 

curing. 

After curing, the composite tubes were removed from the mould and were 

subjected to post-curing. Then a trigger mechanism at one end of the tubes were 

applied to initiate the progressive crushing. A 45o chamfer was applied onto the 

tube using a lathe machine acting as the trigger. The other end was flattened to 

remove the excessive pre-preg resin formation. 

The main concentration of this research is the force/displacement curve to 

evaluate the energy absorption capability in each case. All parameters were kept 

constant in this research including geometry, strain rate, loading conditions and 

only the lay-up sequence and trigger mechanisms varied depending on the case 

of study to obtain its effect on the energy absorption capability.  

3.2.2 Crashworthiness aspect of energy absorption  

Energy absorption capability is determined from analysis of the following two. 

1. Initial peak crush load: this can be obtained directly from the load-

displacement curve.  

2. Mean crush load: this is obtained by averaging the values in post-crush 

displacement region.  
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The force-displacement curve extracted from a quasi-static crushing test is the 

primary data and the main concentration of energy absorption capability. In 

Figure 3-5, a typical force-displacement curve is illustrated, where the three main 

stages are shown to analyse the curve. The first stage is pre-crushing region, this 

shows the initiation of the material failure response.  The second stage is the 

post-crushing region, this is the material behaviour after reaching a load peak 

followed by a large displacement. The failure in this region spreads across the 

entire specimen, which is characterised by the mean crushing load, which is the 

average crush load response of the material in this region. The third stage is the 

compaction region, in this region the load increases rapidly until the end of the 

test. From the force-displacement curve the crashworthy behaviour of the 

material is analysed. This is crucial when comparing different structures and 

composite materials regarding their load-carrying capacity and energy absorption 

capability.   

Figure 3-5 Typical force- displacement curve 

The following parameters are critical when analysing crashworthiness 

characteristic of load-displacement curves. 

• Peak load Pmax, is the maximum initial load also expressed as Fmax 
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• Crush zone energy E, is the absorbed energy determined by the area 

under the force-displacement curve, in the post-crushing zone (see Figure 

3-5) 

• Post crush displacement (�), is the total crushing displacement excluding 

pre-crushing and compactionzone  

• Displacement (∆), is the total crushing displacement, including pre-

crushing and compactionzone.   

• Specific energy absorption (SEA), is the absorbed energy per unit mass 

of the crushed specimen.  

• Crush force efficiency (CFE), is the ratio of the mean crushing load to 

peak load.  

• Stroke efficiency (SE), is the post-crush displacement (�), to the total 

specimen’s length, L. 

• Maximum compressive strength (����), is the peak load to cross sectional 

area, A.  

3.2.3 Calculation of Specific Energy Absorption  

Specific energy absorption is one of the most important crashworthiness 

parameter. This parameter determines the energy absorption capability of each 

specimen regarding their crushed mass, meaning that the absorbed energy per 

unit of the crushed specimen mass. Referring to equation 2-1 and 2-2, as shown 

the SEA is a function of total work (WT) that represents the energy absorption 

capability which is equal to the area under the load–displacement curve and 

crushed specimen mass. Total work done (equation 2-1) is a function of 

integration of mean crushing load multiplied by the stroke displacement. Specific 

Energy Absorption (SEA) is energy absorption capability, which is calculated as 

energy per unit crushed mass absorbed. 
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3.3 Experimental setup 

A hydraulic press consists of a moving cross head which is mounted to two 500 

kN screw jacks, and two large “I” beams attached to two large end blocks. The 

screw jacks are mounted on the bottom block and are driven by a double output, 

dual reduction worm gear powered with a 1492-watt AC motor. The cross head 

translates vertically with four precision profile rails which are mounted on the web 

of the vertical “I” beams. 

The quasi-static testing was conducted using a hydraulic press with load cell 

capacity of 500 kN with crushing rate of 2 mm/second.  All specimens were 

placed at the centre of the stroke for equal load distributions (see Figure 3-6). 

The stroke displacement for all specimens were kept the same at 50 mm. The 

profile of load-displacement consists of load cell and stroke displacement and 

were recorded automatically for each test.  
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Figure 3-6 Axial and off-axis quasi-static setup 

Hydraulic press 

Crushing plate head 

Composite specimen Load cells  

v = 2 mm/sec  

� = 5o, 100, 20o, 30o

a

b

c

Displacement (∆) 
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3.3.1 Clamped fixture  

Boundary condition effects crushing performance of composite crush specimen 

and needs to be considered before initiating experimental investigation. Hong-

Wei [12] and Ghafari-Namini [145] studied the influence of fixed conditions on the 

strength of the composite tubular structures. The authors noted that the position 

effect at the end-caps results into high stress concentration. This regional stress 

concentration at the end of the specimen may result into catastrophic failures as 

most catastrophic failures occur close to this region. Hence the boundary 

conditions in off-axis crushing must be considered. To securely place the crush 

specimen in an angle that could sustain the load, a high-density clamp fixture was 

designed. Four steel wedged shaped bases were manufactured at different 

angles of 5o, 10o, 20o, 30o. These off-axis angles were selected based on 

literature [144,145, 237] to study the effect of lateral inclination angle on energy 

absorption capability of composite tubular structures. The chosen off-axis angles 

as Ghafari-Namini stated [145, 237] provides the study of the correlation between 

lateral inclination angle and energy absorption without studying every single 

angle, and the gap between the lateral angles can be observed and studied on 

the force displacement graph. 

This clamp fixture provided a constant boundary condition and prevented the 

specimen from defeating. The outer diameter of these fixtures are 100 mm x 100 

mm with various thicknesses depending on the angle of inclination. The inner 

dimensions were 80 mm by 80 mm (see Figure 3-7). To prevent the toppling of 

specimen during crushing, the clamped-set with dimensions 10 mm was welded 

at each side of the fixture. In Figure 3-7, the geometry of the fixtures are 

presented in part a, and followed by the 5, 10, 20 and 30 degrees in d, e, f and g.  
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Figure 3-7 Wedge-shaped base for off-axis crushing. a) fixture geometry 

measurement, b) birds eye view of the fixtures, c) isometric view, d) 5 degrees, e) 

10 degrees, f) 20 degrees, g) 30 degrees. 

d 

f 

e 

g 

a b 

c 
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3.4 Progressive crushing process  

Progressive crushing is dependent on triggering the specimen to initiate the 

crushing. Progressive failure is distinguished by an increase in load after the initial 

peak, and it is still capable of sustaining a significant compression load. In 

progressive crushing failure mode, high-energy absorption is obtained, which is 

thus the main goal of crashworthy structures, it is also important to analyse the 

associated failure mechanisms. Within the initial contact of the cross head with 

the specimen, local failure occurs and interlaminar cracks are formed. The length 

of these cracks along with lamina bundle fracture determines the failure modes 

taken place during crushing. These failure modes are transverse shearing and 

lamina bending or a combination of the two. Progressive crushing is categorised 

with fragmentation mode, lamina bending mode and a combination of 

fragmentation mode and lamina bending mode referred to as brittle fracture mode 

[130].  

1. Fragmentation mode: is characterised by a wedge-shape laminate cross-

section with one or multiple short interlaminar and longitudinal cracks.  

2. Lamina bending mode: is characterised by a long interlaminar and cracks 

in parallel to the fibre, causing continuous in and out fronds formation.  

3. Brittle fracture mode: is characterised by a combination of fragmentation 

mode and lamina bending mode. In composite tubes the highest energy 

absorption ever observed is from the combination of brittle fracture 

crushing mode. 
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3.5 Results and discussion 

3.5.1 Crushing behaviour of composite sections under axial and off-

axis loading 

In this section, the effect of lateral inclination angle is experimentally investigated. 

Various angles of 5°, 10°, 20° and 30° were selected for off-axis loading. Four to 

six specimens were tested in each case of study, in Figure 3-8, five cases were 

axially tested under quasi-static loading and the mean deviation of the result is 

plotted. The various crushing stages is shown in Figure 3-9. The results indicated 

that as the lateral incline angle increases the mean crush force and energy 

absorption decreases (see Figure 3-12). Axial loading compared with off-axis 

loading has better energy absorption capability with mean crush force of 100 kN. 

The experimental morphologies and intra-walls (see Figure 3-10 and 3-11 

respectively) of axial and off-axis angle 5o illustrated bundle fracture and close to 

brittle failure mechanism which is a combination of lamina bending and 

transverse shearing modes. Off-axis angle 10o showed transverse shearing 

mode characterised by wedge-shaped laminate cross section with multiple short 

interlaminar fractures and axial cracks. Off-axis angles of 20o and 30o showed 

catastrophic failure mechanism with unsymmetrical damaged area. This change 

results into minimising the energy absorption capability of the absorber.  

Figure 3-8 Five axial repeat tests with mean deviation 
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Figure 3-9 Various stages of high speed crushing a) axial, b) 5°, c) 10°, d) 20° and 

e) 30°.
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Figure 3-10 Plane view of crushed axial and off-axis specimens a) axial with 

brittle fracture crushing mode, b) 5o with brittle fracture mode c)10o with 

transverse shearing mode d) 20o with catastrophic failure e) 30o with catastrophic 

failure 

e 20 mm 
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Figure 3-11 Crack Propagation at central intra-wall a) axial b) 5o c) 10o d) 20o 
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Figure 3-12 Force-displacement of axial and off-axis angles of 5°, 10°, 20° and 

30°.

3.5.2 Axial crushing and improvement of off-axis loading 

According to various positions of composite absorbers in aircraft and automotive 

structures, composite specimens were tested under axial and off-axis conditions 

at various off-axis angles. An off-axis study was carried out to increase energy 

absorption capabilities towards axial loading (see Figures 3-13 and 3-14). Case 

(a) is axial, case (b) is 10o off-axis, case (c) is 10o off-axis with flat 45o chamfer 

trimming and case (d) is like case (b) with integrated lay-up sequence. The 

original lay-up sequence (used in case a to c) was [-45/45/0/90/0/90]S which was 

changed to [-55/35/-10/80/-10/80]S to cancel the off-axis effect. This lay-up 

sequence creates a similar lay-up condition at axial in 10o off-axis. Case (e) is 

like case (c) with integrated lay-up sequence and also subjected to flat 45o

chamfer trimming. Case (e) and (a) create a similar loading conditions with the 

difference of case (e) which is being considered as off-axis loading condition.  
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Figure 3-13 Off-axis loading integration of axial loading case study of a) axial b) 

off-axis at 10o c) 45o flat chamfer d) tailored lay-up sequence and e) 45o flat 

chamfer with tailored lay-up sequence.
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Figure 3-14 Various crushing stages of cases a) axial b) off-axis at 10o c) 45o flat 

chamfer d) tailored lay-up sequence and e) 45o flat chamfer with tailored lay-up 

sequence.
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The crushing failure modes in case (a) and (b) were already mentioned as axial 

and 10o off-axis angles (see Figure 3-13). Observing Figure 3-15, the 

morphologies demonstrate the failure mechanisms in each tested case. In case 

of (c), bundle fractures were observed with axial splitting, but the failure 

mechanism was based on brittle fracture. Case (d) like case (b) showed multiple 

short fracture mechanisms through brittle fracture failure. A transverse shearing 

is observed in both cases of (c) and (d). Case (e) is however the main aim of this 

study which has shown a similar behaviour towards case (a) followed by the 

hypothesis. The failure mechanism of case (e) consists of brittle fracture with 

lamina bending combinations. Axial splitting and bundle fractures were also 

observed in case (a) and (e). The force-displacement curve (see Figure 3-16) 

shows a trend of better energy absorption from the initial crushing process in 

cases of (a), (c) and (e) where flat 45o chamfer trimming was utilised. Cases of 

(c) and (e) had similar testing conditions with a variable of lay-up sequence. 

Integrated lay-up sequence has shown slightly better energy absorption 

capabilities at off-axis loading in comparison with non-integrated layup design. 

The trimming mechanisms utilised in cases (a), (c) and (e) had shown better 

energy absorption capabilities compared to (b) and (d). Cases (a) and (e) both 

showed a similar trend as both have similar conditions of lay-up and triggering 

mechanisms. This has clearly indicated the similarity of their failure mechanisms. 

Both cases eliminate transverse shearing failure mode which is a common failure 

fracture mode in off-axis loading conditions.  
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Figure 3-15 Plane view of crushed axial and off-axis specimens a) axial b) off-

axis at 10o c) 45o flat chamfer d) tailored lay-up sequence and e) 45o flat chamfer 

with tailored lay-up sequence

30 mm
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Figure 3-16 Force-displacement of axial and off-axis integration comparison a) 

axial b) off-axis at 10o c) 45o flat chamfer d) tailored lay-up sequence and e) 45o

flat chamfer with tailored lay-up sequence. 

3.5.3 Specific energy absorption (SEA) of axial, off-axis and tailored 

off-axis specimen 

As the lateral inclination angle increases the specific energy absorption 

decreases, (see Figure 3-17). The specimens subjected to axial loading reached 

an SEA of about 64 kJ/kg, the 5o specimens reached SEA of about 54 kJ/kg, 10o

specimens reached SEA of about 40 kJ/kg, this trend is followed by 28 kJ/kg and 

18 kJ/kg for 20o and 30o off-axis loading conditions respectively. This research 

focuses on improving energy absorption capability at off-axis loading by tailoring 

the ply-orientations and 45o flat chamfering acting as the trigger to increase 

specific energy absorption capability. The integrated/tailoring off-axis at 10o

showed higher SEA value than all other off-axis angles.  
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Figure 3-17 Specific energy absorption (SEA) of axial and off-axis comparison  

3.6 Conclusion  

In the present study, the crashworthiness of composite tubular structures was 

experimentally investigated under axial and oblique loading. The results have 

shown that, as the lateral incline angle increases the energy absorption 

decreases and catastrophic failures were observed at off-axis angles of above 

20o. This conflicts with various previous studies, it was noted from the researches 

that at 10o off-axis angle higher energy absorption was observed [17,144]. This 

is due to the geometry differences, in previous studies box structures were used 

and, in this chapter, circular tube structures were subjected to investigation.  

From a design perspective, the second part focused on improvement of mean 

crush force and consequently increase of energy absorption capabilities in off-

axis loading. It was shown that tailoring ply-orientation can result into increase of 

mean crush force from 60 kN to 72 kN and consequently increasing energy 

absorption in 10o off-axis angle. All specimens which were subjected to flat 

trimming integration showed higher energy absorption in comparison with the 

original ones. The combination of ply-orientation and flat trimming integration 

showed a similar trend as axial loading at 10o off-axis loading with both mean 

crush force of close to 100 kN. This study helps to increase energy absorption 
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capabilities at various configurations. The present study has established 

sufficient information on the effect of various oblique angles on energy absorption 

capability and improving crashworthiness behaviours by integrating ply-

orientation and altering the trigger mechanism to increase specific energy 

absorption capability.   
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4 Experimental Studies of Single, Multi and Pattern-

Stitched Composite Sections under Quasi-Static 

Loading 

4.1 Introduction 

The present chapter experimentally investigates the progressive energy 

absorption of fibre-reinforced polymer (FRP) composite tubular structures under 

quasi-static loading conditions. Various multi-stitched locations are studied to find 

a correlation between single and multi-locations of stitches and energy absorption 

capabilities of composite absorbers. The through-thickness reinforcements are 

applied into locations of 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 

mm, 10-20-30 mm and 10-15-20-25-30-35 mm from top of the composite tube 

sections (see Figure 4-2). It is shown that multi-stitched locations can cause 

several increases of crushing load and consequently increase of energy 

absorption of composite tube absorbers. The pattern-stitched design has shown 

15% increase in specific energy absorption than non-stitched specimen. The idea 

would be expanded into other designs which are followed by increase of stitched 

locations and reduction of the distance between stitches to improve the mean 

force with a smooth and progressive pattern of crushing load. 

In all previous researches several variables related to the energy absorption of 

composite thin-walled structural components have been investigated. Apart from 

all these parameters, multi-location stitching is another factor which significantly 

influences the energy absorption of composite tubular structures under high 

speed loading. This chapter experimentally aims to study the relation between 

locations of stitches and energy absorption capabilities of composite absorbers. 

4.2 Valuation criteria for crushing behaviour 

There are many important variables which must be considered in the study of 

energy absorption capabilities. These were mentioned in detail in previous 

chapters of 2 and 3. These include material properties; manufacturing method; 

microstructure; geometry of specimen, including any crush initiator used; and rate 

of crushing speed. One of the most important parameters is the specific energy 
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absorption (SEA) performance of collapsing or crushing specimens. This value is 

defined as the energy absorbed per unit crushed mass of material. In this case, 

it is an important criterion for lightweight designs. Another important factor in the 

study of energy management capability, is the shape of the force-crush distance 

curve. Catastrophic and progressive failures are two main failure mechanisms of 

composite tube structures. A progressive crushing is initiated at one end of the 

specimen using a bevelled trigger mechanism and then, it progresses through 

the specimen without significant damage, the initial force is very high and stays 

high throughout the crushing process, therefore the mean force is high. For a 

catastrophic failure the initial maximum force is high and drops rapidly, therefore 

the average force is low.  

4.3 Fabrication of single-stitching, multi-stitching and pattern-

stitching and status of the field  

In this work, all composite sections were fabricated from glass/epoxy 7781/E722 

material (ρ = 2250 kg/m3) using hand lay-up techniques with a symmetric twelve-

ply laminate of [-45/45/0/90/0/90]S. Each GFRP layer has a thickness of 0.25 mm 

after curing. The composite sections were 80 mm × 80 mm with total wall 

thickness of 3 mm (see Figure 3-1). The quasi-static testing was conducted using 

a hydraulic press with load cell capacity of 500 kN with crushing rate of 2 

mm/second.  All specimens were placed at the centre of the stroke for equal load 

distributions (see Figure 3-6). The stroke displacement for all specimens were 

kept the same at 50 mm. The profile of load-displacement consists of load cell 

and stroke displacement and were recorded automatically for each test. For a 

detailed fabrication of the GFRP composite sections, please refer to chapter 3.  

All composite sections were stitched by Kevlar fibre yarns (with 1.1 mm in 

diameter) to reinforce the structural properties of the composite sections through 

the thickness (see Figures 4-1c and 4-2). To apply fibre yarn stitching onto the 

composite sections at different locations, a needle was used with a diameter of 

1.1 mm at the thickest point. Four to six specimens were tested in each case of 

study to find the mean deviation of the experimental results. The crushing stroke 

and total length of the specimens were chosen based on the literature and 
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capacity of the testing machine with maximum crush distance of 50 mm. In this 

research, the concentration was oriented on the specific energy absorption 

capability and force displacement diagrams. However, the composite specimen 

crushed morphologies were investigated to analyse the effect of through-

thickness stitching on the failure mechanisms. From the force-displacement 

curve, the crashworthy behaviour of the material is analysed through load-

carrying capacity and energy absorption capability of each individual case.  Since 

there are various factors such as geometry, layup, strain rate and loading 

direction affecting failure mechanisms of FRP composite absorbers, all 

parameters or variables affecting energy absorption were kept constant, to only 

study the effect of stitching on the specific energy absorption capabilities of the 

composite absorbers. 

Figure 4-1 a) Composite crushing tube, b) bevelled trigger mechanism, and c) 

stitching technique

The through the thickness reinforcement took place by inserting a needle (1.1 in 

diameter) through the uncured laminated composite by hand to penetrate the 

laminate. The stitching was approximately 6 mm apart using Kevlar yarn fibres 

(1.1 mm in diameter). Each line of stitching was marked and carefully followed to 

cover the circumference of the composite tube. Each line of stitching took 

approximately 40 stitches. To be able to apply stitching onto the uncured 

laminates and since the stacking and the laminate sticks onto the rigid mould, a 

thin polymer film was taped together onto the base mould, which allowed a 

lubricant for the laminate. Since the needle penetrates the laminate, the uncured 
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laminate was lifted upwards to allow the needle to go through. This allowed the 

uncured laminate to move on the longitudinal axis of the rigid mould with a bit of 

a force. In comparison with the non-stitched specimen, the mould was sealed 

wrapped with two layers of thin polymer films, and similarly, the stitched 

specimens had two layers of thin polymer films, to have the same thickness, one 

sealed the mould similar to the non-stitched specimen and the other provided 

lubrication for the uncured laminate (not attached to the rigid mould). This 

technique provided the same conditions and kept the circumference constant for 

both non-stitched and stitched specimens.  

In the current study of multi-stitch locations on composite absorbers, there is lack 

of experimental and numerical studies on the effect of stitching through the 

thickness on force-displacement curve in respect to the stitching location and 

their effect on specific energy absorption of UD composite absorbers. The current 

study is designed to find the correlation between stitching locations and energy 

absorption capabilities, through studying the force-displacement curves of each 

case, their failure mechanisms and SEA values. This enables to create a 

database and analyse the effect of single and multi-stitching through the 

thickness on specific energy absorption. Single and multi-stitched locations on 

the crushing behaviour of composite absorbers under axial high-speed load is 

therefore investigated.  

All GFRP composite tubes were stitched at different locations according to the 

design in Figure 4-2. The chosen cases for single-stitched locations are 10 mm, 

20 mm and 30 mm from the top of the specimens, followed by multi-stitched 

locations with 10 and 20 mm (10-20), 10 and 30 mm (10-30), 20 and 30 mm (20-

30) from the top of the specimens were studied. In pattern stitching, the chosen 

locations were, 10, 20 and 30 mm (10-20-30) followed by 10, 15, 20, 25, 30 and 

35 mm (10-15-20-25-30-35), from the top of the specimens were studied to 

investigate their effect on energy absorption capabilities. The chamfer end of the 

composite section was subjected to z-directional through thickness stitching 

according to the design in Figure 4-2.  
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Figure 4-2 Various designs of single and multi-location stitches within composite 

section structure. a) 10 mm, b) 20 mm, c) 30 mm, d) 10-30 mm, e) 10-20 mm, f) 20-

30 mm, g) 10-20-30 mm, h) 10-15-20-25-30-35 mm
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4.4 Results and discussions 

4.4.1 Crushing of single stitched tubes  

The progressive crushing was initiated for all tested specimens at the beginning 

of the process. This behaviour was shown after extensive microcracking collapse 

and rapid rise of load in force displacement diagrams. The main central crack in 

the middle of the wall of all tubes behave as mode-I interlaminar crack 

propagation which has been extensively studied in the previous researches of 

authors [56-144] and many others. This main crack initiates progressive growth 

until it reaches to the stitched area. Here, there is a significant change in the 

force-displacement diagram which is followed by a rapid increase and then a 

quick drop to the lower level of the load. This change can cause increase of 

crushing load and consequently increase of specific energy absorption. This 

phenomenon was consistently observed for all single stitched composite tubes. 

Various crushing stages of single stitched location is shown is Figure 4-3.  

Figure 4-3 Various crushing stages of single stitched composite sections, a) 10 

mm, b) 20 mm, c) 30 mm 

40 mm 
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Four to six specimens were tested as mentioned, an example is shown in Figure 

4-4, which shows all five 10 mm single stitched tested specimen and the mean 

deviation.   

Figure 4-4 Five 10 mm stitched specimen repeat tests with mean deviation  

The mean force (Fm) did not increase for single stitch of 20 mm in comparison 

with 30 mm stitch location, which was around 105 kN (see Figures 4-5 and 4-6 

a). The observed crushing mode for these composite tubes was lamina bending 

which was shaped with long interlaminar, and parallel to fibre cracks. This 

mechanism causes fronds formation which spread inwards and outwards. In 

Figure 4-5, the morphologies of the crushed single stitched composite sections 

are shown. The difference between single stitched and non-stitched specimen 

(see figure 4-12 c) is higher axial cracks along the petals (inner and outer fronds) 

and higher fragmentations failures. Figure 4-12 is fully annotated based on the 

failure mechanisms occurred, which can be beneficial to analyse the crushed 

morphologies in this chapter.  

In Figure 4-6 a, the comparison of all single stitched specimens with non-stitched 

specimen is shown. More specifically, Figure 4-6 b, represents non-stitched 
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specimen compared with 10 mm stitched specimen, it can be noted that a sudden 

localised load increase has occurred with a peak of 124 kN, followed by a slow 

drop in load due to local buckling and fragmentation with normalisation at 32 mm 

displacement. The mean crush force has dropped by 9 kN in total compared with 

non-stitched specimen.  

Figure 4-6 c, represents non-stitched specimen compared with 20 mm stitched 

specimen. A sudden curved shaped increase in load is observed with a peak of 

117 kN once reaching the stitching point with lower normalisation value than non-

stitched specimen. The mean crush force dropped by 5 kN in total.  

Figure 4-6 d, represents non-stitched specimen compared with 30 mm stitched 

specimen. A sudden drop is observed before reaching the stitching point, this is 

due to rapid interlaminar crack growth, followed by a sudden increase in load with 

a peak of 115 kN. Higher normalisation value is observed with the stitched 

specimen with a mean normalisation difference of 5 kN to non-stitched specimen. 

The mean crush force has increased by 3 kN in total.  
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Figure 4-5 Plane view of crushed single stitched composite sections, a) 10 mm, 

b) 20 mm, c) 30 mm 

30 mm 
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a 

b 

Sudden increase of load at 10 mm stitching 

Slow drop due to local buckling and fragmentation 
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Figure 4-6 Force-displacement curve of single stitched composite sections, a) 

comparison of non-stitched (axial), 10 mm, 20 mm and 30 mm, b) non-stitched 

(axial) and 10 mm, c) non-stitched (axial) and 20 mm, d) non-stitched (axial) and 

30 mm 

c 

d 

Sudden increase of load at 20 mm stitching 

Decrease of load at 20 mm stitching 

Increase of load at 30 mm stitching 

Decrease of load due to rapid crack growth 
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The results 20 mm single stitching has been compared with previous similar work 

[145] which was carried out on single stitched composite box structures. These 

results clearly show that cylindrical tubular structures have significantly absorbed 

higher energy in comparison with box absorbers (see Figure 4-7). The difference 

in non-stitched mean crush force is 23 kN and stitched mean crush force is 19 

kN. In both studies, Kevlar fibre yarn was used for reinforcing the structure. 

Figure 4-7 Comparison between force-displacement of composite absorbers a) 

circular-tube (Fm = 98 kN) and b) box structure (Fm = 75 kN) absorbers [145].

a

 b 

Non- Stitched Fm = 100 kN 

20 mm Stitched Fm= 95 kN 

Non- Stitched Fm = 75 kN 

20 mm Stitched Fm = 76 kN
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4.4.2 Crushing of multi-stitched tubes 

A different scenario was observed in multi-stitched composite tubes which 

showed two rapid increases within the force-displacement graphs. Both, two 

increases can improve the mean crushing force and energy absorption of 

composite absorbers. However, this behaviour can vary in different cases, since 

high speed rate can overcome the resistance of through the thickness 

reinforcement and consequently causes minor effect on crushing process (see 

figure 4-8). Figure 4-9 shows the crushed view of the multi-stitched specimens 

with no significant difference in the crushing process of non-stitched and single 

stitched specimens, however, as the number of stitching location increases, the 

fragmentation and bundle fracture mechanisms increases. The force-

displacement diagrams of non-stitched and multi-stitched tubes are shown in 

Figures 4-10 a.  

Figure 4-8 various crushing stages of multi-stitched composite sections, a) 10-20 

mm, b) 10-30 mm, c) 20-30 mm. 

40 mm 
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Introducing stitching at two different locations along the length of the specimen 

can only be analysed for its load carrying capability, through analysing force-

displacement curves and specific energy absorption (see Figure 4-10 a). Figure 

4-10 b, represents non-stitched specimen compared with 10-20 mm stitched 

specimen. A sudden increase in load at 10 mm reaching a peak value of 118 kN 

and a slow increase at 20 mm is observed. The overall normalisation of the 

stitched curve is around 78 kN after passing the stitched points. The mean crush 

force has decreased by 14 kN in total compared with non-stitched specimen. 

Similar behaviour is observed in multi-stitched locations of 10-30 mm (see Figure 

4-10 c), two sudden peaks are observed with highest peak of 123 kN, although 

the mean crush force has decreased by 11 kN in total, which is higher value than 

10-20 mm case.  

Figure 4-10 d represents non-stitched specimen compared with 20-30 mm multi-

stitched specimen. A curved shaped increase in load is observed followed by a 

slow drop in load after passing the stitching points, with lower normalisation value 

than non-stitched specimen. The mean crush force has dropped by 5 kN. This 

case has shown better performance than other multi-stitched cases due to its 

steady behaviour and among other cases, it has higher mean crushing force 

values.  

In comparison of the non-stitched specimen compared with single and multi-

stitched specimens, it can be noted that composite tubes subjected to 10 mm 

stitching,  a sudden peak is observed which indicates a high increase in load 

followed by a sudden drop in load, whereas, composite tubes subjected to 30 mm 

stitching, the absorber has better normalisation once passing the stitching point, 

although the peak at this location is also lower than 10 mm stitching.  In 30 mm 

single-stitching location, the mean crush force improved by 3 kN compared with 

non-stitched specimen. Introducing another stitching location after the first 

stitching point enables better control of the drop in load. This increases 

interlaminar fracture toughness and consequently increases the mean crush 

force.  
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Figure 4-9 plane view of crushed multi-stitched composite sections, a) 10-20 mm, 

b) 10-30 mm, c) 20-30 mm. 

30 mm 
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a 

b 

Sudden increase of load at 10-20 mm stitching 
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Figure 4-10 Force-displacement curve of multi- stitched composite sections, a) 

comparison of non-stitched (axial), 10-20 mm, 10-30 mm and 20-30 mm, b) non-

stitched (axial) and 10-20 mm, c) non-stitched (axial) and 10-30 mm, d) non-

stitched (axial) and 20-30 mm 

c 

d 

Sudden increase of load at 10-30 mm stitching 
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4.4.3 Crushing of patterned-stitched tubes 

In design of 10-20-30 mm and 10-15-20-25-30-35 mm pattern-stitched composite 

sections, the behaviour is clearly highlighted and showed several increases of 

load during the crushing process. Various stages of the crushing process of 

pattern-stitched composite sections is shown in Figure 4-11.  

Figure 4-11 various crushing stages of pattern-stitched composite sections, a) 

10-20-30 mm, b) 10-15-20-25-30-35 mm. 

The crushed morphology comparison of pattern-stitched composite sections and 

non-stitched specimen is shown in Figure 4-12. It can be noted from these 

morphologies that, similarly to single and multi-stitched, there is no significant 

differences in failure mechanisms, apart from Mode-I and Mode-II, fragmentation 

failure, bundle fracture and axial cracks which only occur due to higher 

interlaminar fracture toughness resistance caused by the stitching which 

increases friction and bending and improves SEA value. This axial crack, 

increases by increasing the number of stitching points, this phenomenon can be 

clearly seen in Figure 4-12 a and b. The failure mechanism of non-stitch 

specimen is through laminar bending whereas pattern-stitched design of 10-15-

20-25-30-35 mm is through brittle fracture mechanism which consequently leads 

to higher energy absorption capability. Brittle fracture mechanism is a 

combination of transverse shearing (fragmentation) and laminar bending. In non-

stitched specimen and both pattern-stitched specimens, Mode-I and Mode-II 

40 mm
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failure mechanisms are present with friction, crack growth, fronds bending, and 

fibre and matrix fracture energy absorption mechanisms. However, utilising 

stitching increased fibre and matrix fracture as well as Mode-II fracture and the 

main energy absorption mechanism was fracturing of lamina bundles and caused 

brittle fracture characteristics of pattern-stitched composite sections. Introducing 

stitching can increase interlaminar fracture toughness, as a result, delamination 

crack growth resistance in Mode-I improved, bending and friction becomes higher 

and contribute to SEA value and other failure mechanism such as bending, 

friction and bundle fracture mechanism contribute to dissipating the energy 

absorption. Many other intralaminar fracture mechanism such as fibre and matrix 

debonding, fibre breakage and matrix cracking also contribute in dissipating the 

crushing energy.  



105 

Figure 4-12 plane view of crushed pattern-stitched composite sections, a) 10-20-

30 mm, b) 10-15-20-25-30-35 mm, c) non-stitched 

In comparison of the force-displacement diagrams, Figure 4-13 a, shows all 

cases of pattern-stitched specimens against non-stitched specimen. Figure 4-13 

b, represents non-stitched specimen compared with 10-20-30 mm stitched 

specimen. Three sudden increase in load is observed at the stitching locations, 

reaching highest peak of 125 kN. The sudden drops are controlled by the next 

stitching point throughout the crushing process, which consequently increases 

the mean crush force compared with all multi-stitched cases. The mean crush 

force was similar to non-stitched specimen. It can be noted that, as the number 
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of stitching locations increase, the drop in load, which occur after passing the 

stitching point is better controlled.  

Figure 4-13 c, represents non-stitched specimen compared with 10-15-20-25-30-

35 mm pattern-stitched specimen. Multi-sudden increase in load is observed 

followed by controlled drops in load. The highest observed peak value is 139 kN, 

this is the highest value among all other cases, which shows the closer the 

stitching points are, the crack propagation is better controlled and consequently 

increase of energy absorption capability. All peaks and drops are above the non-

stitched curve and after passing all stitching locations, the normalisation is also 

higher than non-stitch curve. This design has shown higher mean crush force 

than all other designs as well as the non-stitched specimen. The mean crush 

force has increased by 16.3 kN.  

This idea would be expanded to other designs followed by increase of stitched 

locations and reduction of the distance between them to create a smooth and 

progressive force history. The behaviour can increase the overall mean crushing 

force which is the ideal performance of composite absorbers. The presented 

technique is beneficial in terms of weight saving applications, as unidirectional 

FRP composites were used with the improved structural integrity. 
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b 

a 

Increase of load at multi-stitched locations 
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Figure 4-13 Force-displacement curve of pattern- stitched composite sections, a) 

comparison of non-stitched (axial) with 10-20-30 mm and 10-15-20-25-30-35 mm, 

b) non-stitched (axial) and 10-20-30 mm, c) non-stitched (axial) and 10-15-20-25-

30-35 mm 

4.5 Specific energy absorption (SEA) of single-stitched, multi-

stitched and pattern-stitched specimens 

The specific energy absorption for each case was plotted against non-stitched 

specimen (see Figure 4-12). The main objective of this chapter was to increase. 

Non-stitched specimen is the reference SEA with SEA value of 64 kJ/kg. The 

single stitched specimens at 10 mm, 20 mm and 30 mm had SEA values of 

rounded up to the nearest number of 58 kJ/kg, 61 kJ/kg and 66 kJ/kg respectively. 

At single stitched location of 30 mm the SEA has increased significantly. Similarly, 

the SEA values with stitching at 30 mm were higher in multi-stitched specimens. 

At multi-stitched locations of 10-20 mm, 10-30 mm and 20-30 mm the SEA values 

were 55 kJ/kg, 57 kJ/kg and 61 kJ/kg.  

c 

Sudden multiple increase of load and consequently increase of energy 
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The main concentration of this research was to investigate the effect of stitching 

pattern on SEA and the values were remarkably high compared to non-stitched 

specimen. At stitching pattern of 10-20-30 mm the SEA value was 63 kJ/kg which 

is close to the non-stitched specimen, however once minimising the gap between 

the stitches, it led to higher delamination resistance, friction and bending that 

contributed to higher SEA value. The SEA value of stitching pattern of 10-15-20-

25-30-35 mm was increased to 74.4 kJ/kg. In comparison to non-stitched 

specimen the final stitching pattern of 10-15-20-25-30-35 mm has increased its 

SEA value by 15%.  

In this research, the focus was oriented on improving specific energy absorption 

capability by introducing stitching though the thickness and to study the location 

of single, multi and pattern stitching on specific energy absorption. The SEA has 

shown 15% improvement with 10-15-20-25-30-35 mm stitching pattern. 

Figure 4-14 Comparison of Specific Energy Absorption (SEA) of single-stitched, 

multi-stitched and pattern-stitched composite section 
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4.6 Conclusions 

In this study, the crushing behaviour and energy absorption capability of 

composite tubes under crushing rate of 2 mm/sec have been studied. In axial 

crushing, Kevlar yarn stitching through the thickness at different locations was 

introduced and illustrated a steady mean crush load which was obtained for the 

stitched specimens. Progressive crushing behaviour was observed for all stitched 

specimens. Single stitched locations showed high peaks followed by a sudden 

drop specially at 10 mm stitching location and at 30 mm the drop in load was 

significantly lower, which showed better normalisation after passing the stitching 

point. In multi-stitched locations, the behaviour was different, the sudden drops 

were better controlled specially where the stitching points were 5 mm apart. This 

also reflected on the mean crush force, and higher values were obtained once 

the stitching points were closer. Further the stitching points were, the lower the 

mean crush force was. This scenario was also clearly observed in pattern-

stitched specimens, in 10-20-30 mm design, three high peaks were observed 

followed by controlled drop in load, although the mean crush force was similar to 

non-stitched specimen with minimal differences. However, in 10-15-20-25-30-35 

mm pattern-stitch, the initial peak was higher than all other cases due to higher 

resistance towards crack propagation. Multiple peaks were observed with 

controlled drops in load, and all fluctuations were higher than non-stitched 

specimen. The normalisation of the curve was also higher than the non-stitched 

specimen. It can also be noted that by increasing the number of stitching points, 

the axial cracks, bundle fracture and fragmentation failure mechanism also 

increased, due to increase in fracture toughness capability that influence this 

delamination resistance and improving friction and bending between the plies and 

consequently increase in local and global mean crush force that causes higher 

specific energy absorption capability due to brittle failure mechanism which is a 

combination of fragmentation and laminar bending modes. Pattern-stitching 

through thickness reinforcement has shown enormous improvement in Mode-I 

delamination resistance with higher friction and bending that contributed towards 

higher SEA value than non-stitched specimen. The specific energy absorption of 

the final design compared with non-stitched specimen is 15% higher. 
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In summary, stitching at a right position can provide increase in specific energy 

absorption values than the standard non-stitched composite absorbers; this is an 

important factor to consider achieving better specific energy absorption in 

composite structures (see Figure 4-14). Stitching at locations of 30 mm, multi-

stitched locations of 10-20-30 mm and 10-15-20-25-30-35 mm, can provide the 

highest energy absorption capabilities with increase of mean crush load tolerance 

which indicates a stable crashworthy behaviour respectively.  

The present study has established sufficient information on the effect of single 

and multi-location stitching on high speed crushing of composite tubes, and the 

positive effects of stitching through thickness was found both on local and mean 

crushing load. The results of this research have also been compared to previous 

similar work [145] which was carried out on single stitched composite box 

structures. These results clearly show that cylindrical tubular structures have 

significantly absorbed higher energy in comparison with box absorbers (see 

Figure 4-7). The difference in non-stitched mean crush force is 23 kN and stitched 

mean crush force is 19 kN. In both studies Kevlar fibre yarn was used for 

reinforcing the structure. 
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5 Experimental Studies of Pattern-Stitched Composite 

Sections under Quasi-Static and Impact Loading 

5.1 Introduction 

Extensive experimental investigation was carried out on the effect of stitching 

pattern on energy absorption capability of composite tubular structures under 

quasi-static and impact loading. In the previous chapter the effect of single, multi 

and pattern stitching was experimentally investigated. The designed pattern 

stitching of 10-15-20-25-30-35 mm performed outstandingly regarding specific 

energy absorption with 15% improvement compared with non-stitched specimen. 

Hence in this chapter, the main concentration is the effect of through the 

thickness stitching pattern on energy absorption capabilities and improvement of 

mean crushing load using the developed pattern. CFRP and GFRP composite 

absorbers are subjected to the developed stitch pattern and both materials are 

subjected to quasi-static and impact loading. This enables to study the effect of 

the developed stitch pattern on specific energy absorption when subjected to 

impact loading and to study the energy absorption capability of these composite 

absorbers. The force-displacement history and crushed morphologies are studied 

and compared with non-stitched specimens. The stitching pattern on both 

materials showed significant improvement under quasi-static and impact loading 

conditions. The CFRP and GFRP stitched specimens subjected to quasi-static 

loading showed increase in SEA percentage values of 14% and 15% 

respectively. Similarly, the CFRP and GFRP stitched specimens subjected to 

impact loading showed increase in SEA percentage values of 18% and 17% 

respectively. 

In all previous researches several parameters were investigated to increase 

interlaminar fracture toughness in composite thin-walled absorbers. The effect of 

multi-stitched locations and patterns have been previously studied and significant 

influence was observed on energy absorption capabilities by increasing 

interlaminar fracture toughness under quasi-static loading whist increasing 

friction and bending that contribute towards SEA value. However, in real life 

applications, standard impact test should be carried to investigate the material 
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behaviour under impact loading. This chapter experimentally aims to improve 

interlaminar fracture toughness, friction and bending by introducing pattern-

stitched locations under quasi-static and impact loading using CFRP and GFRP 

composite sections. Consequently, this method enables to increase specific 

energy absorption capabilities.  

5.2 Experimental method 

5.2.1 Material and specimens  

Two different materials were selected to study stitching pattern under quasi-static 

and impact loading. In previous studies pre-preg GFRP was used to carry out an 

extensive research on the location of stitching and energy absorption capabilities. 

Based on previous results, from the top of the specimen 10-15-20-25-30-35 mm 

stitching pattern when subjected to quasi-static loading significantly improved 

energy absorption capabilities. The developed stitching pattern was obtained in 

the last chapter with 15% increase in SEA, this was applied onto CFRP composite 

sections (see Figure 5-5). CFRP and GFRP composite sections were chosen to 

study the effect of stitching pattern on the crushing behaviour of composite tubes. 

Both materials showed different failure mechanisms and absorbed energy in 

different ways. All dimensions are illustrated in Figure 5-1. 

Figure 5-1 Composite absorbers for a) CFRP and b) GFRP geometry 

configurations
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In this study, composite sections were fabricated from glass/epoxy (�	= 2250 

kg/m3) (TenCate 7781/E772) with laminate design of [-45/45/0/90/0/90]S to create 

a symmetric twelve-ply laminate and carbon/epoxy (�	= 1800 kg/m3) (Hexcel 

T300/914C) with laminate design of [-45/45/-45/45/0/90/0/90/0/90/0]S using hand 

lay-up techniques. Each GFRP layer has a thickness of 0.25 mm after curing and 

each CFRP layer has a thickness of 0.118 mm after curing. 

The curing process was based on the manufacturer’s recommended techniques. 

The CFRP plies were stacked onto a mandrel, with adding each ply to the 

laminate, it was subjected to 15 minutes debulking to minimise airgaps between 

each added layer to the layer beneath. The mandrel was sealed using heat 

resistant non-stick polymer to eliminate ‘resin escape’, this method reduces the 

available room for the resin to escape to. The mandrel and the laminate were 

then covered with ‘breather cloth’ to allow air to circulate in the bag for better 

pressure distribution and sealed in a vacuum bag using heat resistant polymer 

bag, which is open from two sides. This was fully sealed using a double-sided 

epoxy tape. Air suction valve is inserted through the sealed bag once sealed, 

connected to a vacuum pump. Using the breather cloth and vacuum combination 

enables the maximum pressure to be applied on to the composite laminate to 

eliminate air gap and delamination with good adhesion between the plies. 

Following the manufacture’s guidance, a pressure gauge was inserted via a 

second valve to monitor the correct pressure in the bag. This can also be 

beneficial to check if the bag in fully sealed or pressure drop once the vacuum is 

switched off. Four to six specimens were tested in each case of study to find the 

mean deviation of the experimental results. Force displacement curve was the 

main concentration of this research to study the energy absorption capability and 

load carrying capability of each case of study against their SEA value to carry-

out a comparison between stitched and non-stitched specimens. 

The progressive crushing in all specimens were initiated with 45o bevelled trigger 

mechanism. All parameters that effected energy absorption capabilities were kept 

constant in fabrications and testing conditions of GFRP and CFRP composite 

tubes. These parameters include, geometry, lay-up, strain rate and loading to 
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concentrate on the effect of stitching-through the thickness. The objective of this 

research, is to isolate the effect of stitching through the thickness on energy 

absorption capability, and to improve specific energy absorption capability.  

5.2.2 Quasi-static experimental setup  

Quasi-static testing was conducted using a hydraulic press with load cell capacity 

of 500 kN with loading rate of 2 mm/second.  All specimens were placed at the 

centre of the stroke for equal load distributions. The stroke displacement for all 

specimens was 50 mm. The profile of load-displacement consists of load cell and 

stroke displacement.    

5.2.3 Impact experimental setup  

Impact testing was conducted by using a spring loaded drop tower with impactor 

mass of 108.4 kg and drop height of 2.0 m with initial velocity of 7.022 m/s for all 

specimens. The configuration of spring and predetermined drop height enables 

to achieve higher velocity. In this case, the drop tower was set up for maximum 

output energy. The machine recorded a kinetic energy of 2672 Joules being 

applied to the specimens which is the maximum output energy of the drop tower. 

The hammerhead was released from a pre-determined height to initiate and 

record the load against time until it reaches the specimen and penetrates through 

the specimen, at this stage the impactor is decelerating and once the impact 

energy of 2672 J is absorbed by the specimen the impactor stops and the 

hammer then is pulled up by the machine. The tube leading edge impacted the 

dynamic load cell to record the force history during the event. An Accelerometer 

is also used to record the data from the load cell in addition, sampling at 200,000 

Hz by dynamic data acquisition system. Displacement is obtained through double 

integration of acceleration traces, and load cells gave the load values which is 

calculated based on the displacement equation. A high-speed video camera with 

full HD resolutions (2,000 frames per second) was used to capture the crushing 

event.  



116 

5.3 Experimental results and discussion 

5.3.1 Crushing morphology of multi-stitched tubes   

5.3.1.1 CFRP and GFRP under quasi-static loading  

Figure 5-2, represents the post-crushing plane morphologies in quasi-static 

loading in both GFRP and CFRP specimens. The aim of introducing stitching 

through the thickness was to improve the interlaminar fracture toughness and 

consequently improving energy absorption capabilities. Figures 5-2 a and 5-2 c 

are non-stitched specimens and 5-2 b and 5-2 d are the stitched ones. CFRP 

specimens showed failure mechanisms of fragmentation with fibre fracture. A 

number of bundle fractures were also observed for CFRP specimens. This mode 

changed in GFRP specimen, to shape continuous internal and external fronds 

through a combination of brittle fracture and lamina bending fracture 

mechanisms. 

By introducing stitching through the thickness, brittle failure mechanism appeared 

in GFRP specimen. This was the prevailing failure mechanism in GFRP stitched 

specimen (d), followed by lamina bending unlike non-stitched specimen. In CFRP 

stitched (b) bundle fracture increased through external frond formation. The 

dominant failure mechanism in CFRP section both stitched and non-stitched was 

through fragmentation failure mode.  



117 

Figure 5-2 CFRP and GFRP plane morphology under quasi-Static loading

5.3.1.2 CFRP and GFRP under impact loading  

Various stages of impact testing of CFRP and GFRP is shown in Figure 5-3. It 

was observed that the failure mechanisms in Figure 5-4 a and 5-4 b (CFRP) are 

fragmentations, with multiple short interlaminar and axial cracks. In Figure 5-4 c 

and 5-4 d, representing GFRP tubes, the failure mechanisms are a combination 

of lamina bending and transverse shearing mode, which is brittle fracture mode. 

Bundle fractures and lamina bending were observed with multiple short 

interlaminar and axial cracks. The difference between quasi-static and impact 

30 mm 

35 mm 
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testing plane morphologies is the transverse shearing mode with multiple short 

interlaminar cracks in addition to brittle fracture and lamina bending fracture 

mechanisms.  

Figure 5-3 Process stages of impact testing at 0, 0.02 and 0.04 seconds, a) non-

stitched CFRP b) Stitched CFRP c) non-stitched GFRP d) Stitched GFRP

60 mm 
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Figure 5-4 Impacted CFRP and GFRP plane morphology a) non-stitched CFRP b) 

stitched CFRP c) non-stitched GFRP d) stitched GFRP

30 mm 

35 mm 
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5.3.2 Force-displacement profile of multi-stitched tubes   

5.3.2.1 CFRP and GFRP under quasi-static loading  

GFRP and CFRP specimens were tested and plotted against stitched and non-

stitched specimens. The stitching pattern which was used to increase 

interlaminar fracture toughness in composite sections is shown in Figure 5-5. 

Figure 5-5 a) Multi-Stitched locations at 10-15-20-25-30-35mm and b) uncured 

CFRP multi-stitched specimen 

As expected, tubes with the stitching pattern have shown better energy 

absorption capability than non-stitched specimens in both CFRP and GFRP 

specimens.  Introducing stitching pattern, caused a sudden increase in load and 

consequently an increase in energy absorption capabilities indicating a significant 

increase in crashworthiness behaviour. Four to six specimens were tested in 

each case of study to find the mean deviation of the experimental results. Figure 

5-6 shows five GFRP multi-stitched tested specimens under quasi-static loading, 

and the mean deviation is plotted.  
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Figure 5-6 Five multi-stitched GFRP specimen repeat tests with mean deviation 

All absorbers had progressive crushing behaviour with extensive microcracking 

collapse and rapid sudden increase in load in the stitched locations. Crushing 

behaviour of GFRP initiates progressively until it reaches the stitched area (see 

Figure 5-7). At this point, a sudden increase in load is observed and consequent 

increase of SEA value. In CFRP specimens, a similar trend is observed (see 

Figure 5-8). The energy absorption capability has increased significantly until it 

passes the stitched locations that a normalisation with higher value than non-

stitched specimen is observed. The overall performance of both GFRP and CFRP 

cases show a significant increase in energy absorption capabilities without 

additional weight to the structure, which indicates significant increase in 

crashworthiness behaviour and specific energy absorption capability.  
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Figure 5-7 Force-displacement of GFRP stitched and non-stitched under Quasi-

static loading 

Figure 5-8 Force-displacement of CFRP stitched and non-stitched under Quasi-

static loading

Sudden localised increase in load

Significant increase in crashworthiness behaviour  
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5.3.2.2 CFRP and GFRP under impact loading  

Figure 5-9 compares the load-displacement curves of GFRP stitched and non-

stitched specimens under impact loading. Similarly, Figure 5-10 compares the 

load-displacement curve of CFRP stitched and non-stitched specimens under 

impact loading. The results clearly show a significant increase in load and energy 

absorption capability. The crashworthiness behaviour of stitched GFRP has 

increased significantly, indicated by a reduction of stroke displacement. Stitched 

GFRP section performed outstandingly by reducing the stroke displacement by 

10 mm (25% improvement/recovery) and absorbing the same amount of energy 

as non-stitched specimen which was 2672 Joules. By reducing the penetration 

distance and absorbing the same amount of energy the composite section has 

shown better crashworthy behaviour. This displacement reduction, indicates that 

having the same displacement as the non-stitched specimen, stitched specimen 

is able to absorb more energy than the non-stitched one.  

Stitched CFRP specimen showed a similar characteristic, as it was able to absorb 

the applied energy within a shorter stroke displacement (4.5 mm).  

The aim of introducing stitching through the thickness was to increase 

interlaminar fracture toughness, friction and bending that consequently increases 

energy absorption capability and this has been achieved in both cases. The force-

displacement diagrams do not start from zero as the sensors were off by 2 

millimetres from the top of the specimen, from a predetermined setup. The gap 

between the striker and the tube is determine before the test and the margin was 

misread, hence the graphs, initiated after the crushing process took place, 

although the material stiffness and behaviour is unaffected. 
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Figure 5-9 Force-displacement of GFRP stitched and non-stitched under impact 

loading

Figure 5-10 Force-displacement of CFRP stitched and non-stitched under impact 

loading
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5.3.2.3 Re-stitching of CFRP specimen to improve SEA 

The CFRP specimen has shown some improvements in energy absorption 

capability, however, further investigation on the crushed morphologies has 

indicated that the fibres were partially bonded with matrix (see Figure 5-11). This 

has affected the potential energy absorption capability of the specimen. To be 

fully cured, a fibre yarn that bonds well with 914 epoxy resin must therefore be 

used. In this case the Kevlar yarn has shown some bonding capability with the 

resin. GFRP and CFRP yarns are used on a laminate fabricated from UD CFRP 

with resin 914 to observe their bonding capability (see Figure 5-12). 

Figure 5-11 a) Formation of resin shell and uncured fibres b) formation of resin 

pockets 

Figure 5-12 GFRP and CFRP stitched on uncured Laminate 

Kevlar Fibre CFRP Fibre
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The CFRP fibre yarn have fully bonded within the structure after curing process. 

This was used to construct and fabricate another sets of tubes with CFRP fibre 

yarn pattern-stitching to compare the fully cured specimen and its effect on 

energy absorption to partially cured specimen. Using the same fabrication 

techniques and testing setup (see Chapter 5.2.1 and 5.2.3), the following force-

displacement was obtained (see Figure 5-13). Figure 5-13, shows the effect of 

fully cured CFRP specimen against partially cured specimen. The initial peak has 

increased to 70 kN and the mean crushing force is 77 kN with reduced 

displacement to 33 mm. The performance of the fully cured specimen has 

improved greatly influenced by stitching through the thickness. The fully cured 

specimen showed higher peak values and mean crushing force has significantly 

improved. This crashworthiness behaviour compared with non-stitched specimen 

shows higher specific energy absorption capability with similar penetration 

distance reduction as GFRP specimen.  

Figure 5-13 Force-displacement curve of fully cured specimen and partially cured 

specimen 

Further significant improvement in energy absorption capability 
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5.3.3 Quasi-static versus impact loading  

In this work, the effect of stitching pattern on energy absorption capability was 

studied. In both cases, CFRP and GFRP have shown increase in load and energy 

absorption capability by introducing stitching through the thickness. In quasi-

static loading, the crushing rate is constant, this enables to investigate the energy 

absorption capability of the material being tested and set a reference line for 

material performance. The constant value is set to control the displacement which 

is in this case set to 2 mm/sec, and the load is plotted against the stroke 

displacement on the force-displacement diagram.  

Impact load is a suddenly applied load, therefore, the applied energy is set to be 

absorbed by the specimen, the hammer head penetrates through the specimen 

until the applied energy is fully absorbed.  This simulates a real-world scenario in 

a crashing event. Under quasi-static loading higher energy absorption is 

observed. This is due to failure mechanisms differences between the two. In 

impact loading of GFRP (see Figure 5-14), the most dominant failure is through 

Mode-I, laminar bending with multiple-short interlaminar crack propagation and 

bundle fracture, transverse shearing is also observed with short interlaminar and 

longitudinal cracks. In quasi-static, the dominate failure was through Mode-I 

where the main central crack in the mid-section of the tubes were an indication 

of Mode-I interlaminar crack propagation along with laminar bending. The 

combination of fragmentation and laminar bending modes is brittle fracture mode 

that gives the highest energy absorption capability. In impacted GFRP specimen, 

the fragmentation is less observed, and the laminar bending failure mode 

compared with the specimen subjected to quasi-static testing is dominating which 

led to lower energy absorption. Both specimens subjected to quasi-static and 

impact loading had brittle fracture failure modes with different combinations of 

laminar bending and transverse shearing mode, hence the lower energy 

absorption capability. In both stitched specimens subjected to quasi-static and 

impact loading, increased longitudinal cracks within the petals are prevailing. In 

CFRP (see Figure 5-15), the failure mechanism obtained from both impact and 

quasi-static tests were through fragmentation, due to this, the curve is similar with 

minimal failure mechanism differences.  
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Figure 5-14 Force-displacement curve of GFRP quasi-static loading versus 

dynamic loading 

Figure 5-15 Force-displacement curve of CFRP quasi-static loading versus 

dynamic loading 
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5.4 Specific energy absorption of multi-stitched CFRP and 

GFRP subjected to quasi-static and impact loading  

Figure 5-16 a, represents the stitched and non-stitched, CFRP and GFRP 

specimens under quasi-static loading.  Stitched GFRP showed the highest SEA 

with SEA value of about 74.4 kJ/kg with 15% higher value in comparison with 

non-stitched specimens with SEA value of about 64 kJ/kg. The stitched CFRP 

reached higher SEA value in comparison with non-stitched specimens with the 

total SEA value of 62.5 kJ/kg (14% difference).  

Figure 5-16 b represents the stitched and non-stitched, CFRP and GFRP 

specimens under impact loading. SEA value of the non-stitched GFRP which was 

about 46 kJ/kg and stitched GFRP with SEA value of 54.8 kJ/kg under impact 

loading showed a difference of 17% improvement. The SEA value of CFRP 

stitched specimens was 58.33 kJ/kg, this was found out to be not fully cured and 

further investigation led to using a different stitching fibre yarn, using CFRP that 

reacted well with the resin. Fabricating the specimen and undergoing the impact 

loading test, the SEA value was improved to 62.9 kJ/kg and compared to the non-

stitched specimens with SEA value of 52 kJ/kg, the improvement was 18%. It is 

concluded that stitching in all cases, increased SEA which indicates better 

crashworthiness behaviour. 
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Figure 5-16 Specific energy absorption (SEA) a) quasi-static loading and b) 

impact loading 

0

10

20

30

40

50

60

70

80

GFRP Non-stitched GFRP stitched CFRP Non-stitched CFRP stitched CFRP Re-stitched

SE
A

 (
kJ

/k
g)

Samples

Specific Energy Absorption (impact)

0

10

20

30

40

50

60

70

80

GFRP Non-stitched GFRP stitched CFRP Non-stitched CFRP stitched

SE
A

 (
kJ

/k
g)

Samples

Specific Energy Absorption (quasi-static)

a 

b 



131 

5.5 Conclusion     

In this study, the effect of through thickness multi-stitching on energy absorption 

capability of composite absorbers under quasi-static and impact loading was 

studied. The failure mechanisms were circumferential delamination, axial cracks, 

laminar bending, and bundle fractures modes. In both GFRP stitched specimens 

subjected to quasi-static and impact loading, increased longitudinal cracks within 

the petals are prevailing compared with non-stitched specimen. Stitching through 

the thickness was introduced into CFRP and GFRP composite sections under 

quasi-static and impact loading. In both materials, stitched specimens had higher 

energy absorption capability compared to non-stitched specimens. This 

significantly increased crashworthiness behaviour of composite absorbers 

subjected to quasi-static and impact loading and consequently improved energy 

absorption capability without increasing of structural weight, which indicates, 

improvement in SEA value. The CFRP and GFRP stitched specimens subjected 

to quasi-static loading showed increase in SEA percentage values of 14% and 

15% respectively. Similarly, the CFRP and GFRP stitched specimens subjected 

to impact loading showed increase in SEA percentage values of 18% and 17% 

respectively. This shows the significant influence of through thickness stitching 

on specific energy absorption.  

In Figure 5-17, the energy vs time graphs are represented. In part a, the GFRP 

stitched and non-stitched specimens are shown. The stitched specimen 

illustrates a faster energy dissipation than non-stitched specimen, this indicates 

better energy absorption capability than non-stitched specimen. In CFRP 

specimen (part b), the curve has improved indicating better energy dissipation. 

Although because, in CFRP specimens, the fibre yarn used did not fully bond, 

because Kevlar fibre yarn absorbs moisture, and it partially bonded, (see Figure 

5-12) however, this method has shown significant increase in energy absorption 

which comes from the formation of resin pockets and formation of resin shell 

around the fibres as well as the fibre yarn being partially bonded. However, by 

introducing a different fibre yarn on a laminate it was shown better bonding by 

CFRP fibre yarn. After fabricating the specimens with stitching pattern and using 

CFRP stitching yarns, the stitched specimen showed significant improvement. 
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The SEA value increased from 11%, which was the partially bonded specimen to 

18% compared with non-stitched specimen.  

The present study has established sufficient information on the effect of stitching 

through the thickness both on localised and mean crushing load under quasi-

static and impact loading. This enables the control of the force-crush distance 

curve to behave at a certain standard regarding crashworthiness and weight 

saving applications such as automotive and aerospace industry, where increase 

of energy absorption capabilities without increase of weight of the structure is one 

of the critical considerations. 

Figure 5-17 Energy vs time a) GFRP stitched and non-stitched b) CFRP stitched 

partially cured and non-stitched c) CFRP fully cured and non-stitched specimen 

c
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6 Numerical Modelling Approach of Composites 

Structures under Progressive Failure  

Finite element models were developed to simulate the crushing behaviour of 

glass/epoxy tubes with different material models, mesh sizes, failure trigger 

mechanisms, element formulation, contact definitions, single and various number 

of shells and delamination modelling. Six different modelling approaches, 

namely, a single-layer approach and a multi-layer approach, were employed with 

2, 3, 4, 6, and 12 number of shells. In experimental studies 12 plies were used to 

fabricate a 3 mm wall thickness GFRP specimen, and the numerical results were 

compared with experimental data. By carefully calibrating the values of certain 

parameters used in defining the above parameters to predict the behaviour and 

energy absorption response of the FEM model against initial failure peak load 

(stiffness) and the mean crushing force. In each case, the results were compared 

with each other, experimental and computational costs. The decision was taken 

from an engineering point of view, which means compromising accuracy for 

computational efficiency. The aim was to develop a FEM that can predict energy 

absorption capability with high accuracy (around 5% error) compared with the 

experimental results. 

6.1 Introduction  

In this chapter, the study of composite models in Ls-Dyna and effects of the 

parameters influencing energy absorption capability has been carried out in 

detail. Of all the crashworthy composite structures, fibre/epoxy composite crash 

absorbers are used very frequently by the researchers, due to its low cost, easy 

fabrication and its energy absorption efficiency. 

Accurate prediction of deformed fibre architecture of the final component is vital 

in respect to energy absorption capability if a virtual design process is used to 

optimise composite components, that is considered a necessary process if the 

time taken for the design and costs are to be industrially acceptable. The current 

study consists of multi-shell configuration, and delamination modelling to capture 

an accurate enough model to predict energy absorption capability. In many 
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studies this is eliminated and replaced by friction between each shell acting as 

the delamination between the plies [56-57]. In one study [158] the dynamic 

coefficient of friction was set to 0.65, and the author states that the coefficient of 

friction measured on bulk epoxy sliding against either stainless steel or alumina 

is around 0.65, whereas the coefficient of friction measured on epoxy reinforced 

with carbon fibres is significantly lower, namely down to 0.11. It was found that 

sliding with a stainless steel ball in a direction parallel to the fibre orientation 

results in a lower coefficient of friction than sliding in anti-parallel direction. 

Although different contact definitions can be used to predict the delamination 

effect. Most cases reviewed in this study captured an acceptable load-

displacement curve, energy absorption capability and SEA, which is the main 

concentration of this study. However, to minimise modelling costs and 

experimental costs, a model should be developed to capture an acceptable load-

displacement curve. A summary of the reviewed numerical studies from chapter 

2 is illustrated in the following section.  

6.2 LS-DYNA 

One of the most frequently used software for crashworthiness application by 

industry and academics is Ls-Dyna, developed by LSTC and is suited for highly 

nonlinear transient dynamic finite element analysis.  

Ls-dyna within the past decade has added many new features such as new 

material types, contact algorithms, element formulation, etc. LSTC has gradually 

expanded to develop a universal tool for most implicit and widely used explicit 

coding for aerospace, automotive, military and construction. Ls-Dyna has own 

pre-processor called LS-Prepost.  

6.2.1 Material models  

New material models are developed and added to Ls-Dyna regularly. 

Approximately 200 material models are implemented in the software. For 

unidirectional composite materials these material models narrow down to the 

following [192].  
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1. Material model – 22: Composite Damage  

2. Material model – 54 and 55: Enhanced Composite Damage  

3. Material model – 58: Laminated Composite Fabric   

4. Material model – 59: Shell/Solid Composite Failure Model  

Material properties such as Shear modulus, Elastic modulus, and Poisson’s ratio 

are essential parameters for a material model. Strength properties for failure 

analysis are also essential to predict material behaviour. These properties are, 

transverse compressive strengths, longitudinal compressive strength, transverse 

tensile strength and shear strength. The mentioned material models, specifically 

deal with orthotropic materials. Every model has an option to determine the 

material axes such as local and global orthotropic material axes. For a given 

geometry and load, the process of calculation is in three steps,  

1. Stress and strain distributions, around the stress concentrated areas, are 

calculated 

2. Failure (maximum) load is predicted,  

3. Mode of failure is determined.  

Analysis consists of two major parts: Stress analysis and Failure analysis. Most 

often used material models are described with parametric studies to compare the 

differences. 

6.2.1.1 MAT_022: Composite damage model  

This is the first composite failure material model implemented in LS-Dyna which 

was proposed by Chang-Chang [193,194]. Keyword for this model is 

*MAT_COMPOSITE_DAMAGE or *MAT_022. This model can be used in solid 

and shell elements. By using the user defined integration rule, the constitutive 

constants vary through the thickness of the shell. 

Corresponding relationships for Chang-Chang composite failure model are as 

follows [192]. When any corresponding failure criteria exceed 1, it is considered 

that this element is failed for this mode. 

MAT-022 uses three criteria defined by Chang-Chang and five material 

parameters to define failure modes.  
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The three failure criteria used are: 

1. Tensile fibre mode 

2. Tensile matrix mode 

3. Compressive matrix mode 

The five material parameters are:  

1. Shear Strength, Sc

2. Transverse tensile strength, Yt

3. Transverse compressive strength, Yc

4. Longitudinal tensile strength, Xt

5. Nonlinear shear stress parameter, �

The matrix cracking failure mode is determined from equation 6-1 and 6-2,  
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where, �� is stress in matrix direction, �̅ is fibre and matrix shearing term, ��� is 

in-plane shear stress, and G12 is the shear modulus. The failure is assumed when 

�� > 0, then E2, G12, �� and �� are set to zero.  

The compression failure is determined from equation 6-3. Failure is assumed 

when �� < 0 and E2, �� and �� are set to zero. 
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The fibre breakage failure mode is determined from equation 6-4. Failure is 

assumed when �� > 0, then E1, E2, G12, �� and �� are set to zero. 

������ = �
��
��
�
�

+ � ̅
(6-4)



137 

Where, �� is stress in fibre direction, E1 and E2 are the longitudinal and transverse 

elastic moduli respectively, �� and �� are the in-plane Poisson’s ratios.  

6.2.1.2 MAT_54-55: Enhanced composite damage model  

These material models are improved versions of Chang-Chang composite 

damage model. Keyword for this model is 

*MAT_ENHANCED_COMPOSITE_DAMAGE or *MAT_054 or *MAT_055. This 

model is used for thin shells only. When the model is undamaged, the material is 

assumed to be orthotropic and linear elastic and when the damage occurs 

nonlinearity is introduced into the material. Material 54 is suggested by Chang 

which is called Chang matrix failure criterion and material 55 is suggested by 

Tsai-Wu which is called Tsai-Wu matrix failure criterion and these two models 

have very similar formulation. 

Material 54 is the same as material 22 but with added compressive fibre failure 

mode and it also includes compressive and tensile fibre failure and compressive 

and tensile matrix failure.  

Any corresponding failure criteria in the following, if the value is ≥ 0 then it means 

failure and if the value is < 0 it means elastic.  

The Chang- Chang criterion (MAT_54) is given below,  

Tensile fibre mode (Failure is assumed when �� > 0),

�
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(6-5)

All moduli and Poisson’s ratios are set to zero when the tensile fibre failure criteria 

is met, that is E1 = E2 = G12 =	��� = ���= 0. All the stresses in the elements are 

reduced to zero and the element layer is failed. Where E1 and E2 are the 

longitudinal and transverse elastic moduli respectively, G12 is the shear modulus, 

��� and ��� are the in-plane Poisson’s ratios, and, � is weight factor for the ratio 

of the shear stress to shear strength. 
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Compressive fibre mode (Failure is assumed when ��� < 0),
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Where, XC is the longitudinal compressive strength. For this mode, E1 =	��� = ���

= 0 

Tensile matrix mode (Failure is assumed when (��� > 0), 
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For this mode, E2 = G12 = ��� = 0 

 Compressive matrix mode (Failure is assumed when ��� < 0),
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For this mode, E2 = G12 =��� = ��� = 0. For brittle material, when the failure 

criterion is met, a reduction factor is applied to reduce compressive fibre strength 

and a softening factor is used to reduce tensile fibre strength. 

When the nonlinear shear stress parameter is set to 0, then all the above failure 

criteria reduces to the original failure criteria of Hashin [194]. 

Material model 55 formulation is very close to the material model 54. It uses Tsai-

Wu failure criteria [195] for compressive and tensile matrix failure modes which 

are given as single expression as follow: 

���
�

����
+ �

���
��
�
�

+
(�� − ��)���

����
− 1

(6-9)

This material model (Mat_055) is like Chang-Chang failure model except the 

compressive and tensile matrix failure mode is replaced with the above 

expression and transverse shear is not considered in this material model.  

In the material input, additional parameters such as effective failure strain and 

maximum strains are required besides strengths. When the strains values are 
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reached, then the element is deleted. The element is removed when failure 

occurs in all the composite layers, these layers are defined through shell 

thickness integration points.  

Elements having the same nodes with the deleted elements become “Crashfront” 

elements. By using a softening reduction factor, the strengths can be reduced 

and moduli of the crashfront elements, this results in a stable crushing process 

and sudden release of stress concentration is compensated. To understand the 

strain parameters, consider an example, shown in Figure 6-1, a 4-noded single 

shell element undergoes a tensile load in the direction of the fibre. The material 

and strength properties are taken from [196]. SOFT takes into account the 

softening strength,  using the crashfront elements by scaling down the initial input 

strength.  

Figure 6-1 Single 4-noded shell element under tension [196] 

Initially the element is loaded at a constant strain rate of 1/s in the fibre direction. 

The stress in the element increases linearly in the fibre direction up to the 

maximum value, and all elastic properties and stresses are reduced to zero in 

100-time steps as shown in Figure 6-2. The maximum strain for fibre tension is 

set as default value 0.  

Then, all the elastic properties and stresses are kept constant except the 

maximum strain for fibre tension, which is set to 0.02. After the value of maximum 

stress is reached, the elastic constants and the stresses remain constant until the 

maximum strain value is reached, then the element is deleted immediately 

resulting in the stress being reduced to zero, shown in Figure 6-3.  
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Stresses are kept constant when compressive matrix and fibre criteria are met. 

In material model 54 and 55, ultimate failure can occur in any four different ways: 

1. Chang-Chang failure criterion is satisfied in tensile fibre mode 

2. Maximum fibre tensile strain is met  

3. Maximum effective failure strain is met  

4. Minimum time step is met 

Figure 6-2 Stress-strain curve in fibre direction under tension, DFAILT=0.0 [196] 
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Figure 6-3 Stress-strain curve in fibre direction under tension, DFAILT=0.02 [196] 

6.2.1.2.1 Softening reduction factor (SOFT) 

A crashfront parameter is the softening reduction factor for the element material 

strength that share nodes of the crushed element. By default, this value is set to 

1, this means that element contains 100% of their strength and when this value 

drops to 0.5, and it indicates that the row of elements that share the same nodes 

of crashfront elements have only 50% of its original strength.  

In numerical parameters SOFT is considered one of the influential parameter that 

could amend the shape of the force-displacement curve to match with the 

experimental results. For every geometric structure this parameter value needs 

to be amended through trial and error to obtain a good agreement with the 

numerical and experimental force-displacement results. SOFT parameter can be 

found in material 54, 55, 58 and 59. This parameter can be activated by giving a 

positive value for TFAIL in material 54 and 55, which is the time step size for 

element deletion, and by giving a positive value for TSIZE in material 58 and 59, 

which is time step for element deletion. When this time step is reached, the 

element is deleted. When the degree of curvature of the structure is higher, then 

that structure is more efficient in crushing by fragmentation. For lower value, the 

structure gives frond formation. These large fronds are accompanied by long 
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delamination which results in creating an effective damage length that are 

inefficient for energy absorption. Francesco Deleo, Wade, Paolo Feraboli [159] 

simulated the model using material 54 in LS-Dyna and noted that by using SOFT 

parameter, the damage length can be changed by this parameter to reduce 

material strength of the row of elements which are ahead of the crashfront. 

Sivarama Kirshnamoorthy [201] showed that crashfront parameter influence the 

mean crushing force in force-displacement curve. Therefore, it can be concluded 

that the SOFT parameter significantly influences the amount of energy 

absorption. As the value of SOFT increases, the energy absorbed is more by the 

composite structure due to higher strength of the structure. 
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6.2.1.2.2 MAT_54-55 input parameter definitions 

Figure 6-4 MAT_54-55 input parameter definitions [192] 
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6.2.1.3 MAT_58: Laminated composite fabric failure model 

Based on the strain-based failure surface, this model can be used for modelling 

of composite materials which have unidirectional layers, woven fibres and 

laminates. Keyword for this model is *MAT_LAMINATED_COMPOSITE_FABRIC 

or *MAT_058. This model is used for shell elements only. This model is 

implemented in LS-Dyna by Matzenmiller, Lubliner and Taylor [197], which is also 

called as MLT composite model and is based on plane stress continuum damage 

mechanic model. 

In material 58, Hashin failure criteria [194] is used with changes for different types 

of composites. The maximum effective strain is applicable for element layer 

failure for any different types of composites. 

6.2.1.4 MAT_59: Composite failure model  

This material model is also called the elastic-plastic material model, which is an 

enhanced version of Mat_022. It works on the basis of failure surfaces which are: 

Faceted failure surface and Ellipsoidal failure surface. It will be able to model the 

material progressive failure due to many failure criteria which includes 

longitudinal and transverse directions in tension and compression respectively, 

through-thickness direction in compression and shear.  

6.2.2 Delamination models 

Delamination modelling has several approaches in Ls-Dyna, Tiebreak contacts 

have been vastly used and is proven to be robust contact algorithm and relatively 

simple. Depending on the model of study different contacts can be employed to 

achieve better prediction.  

Two tiebreak formulation mostly used in laminated composite tubes under impact 

or quasi-static loading, which are namely, tiebreaks with bilinear traction-

separation law and a tiebreak with cohesive zone implemented formulation 

known as option 8 and 11 in LS-DYNA, respectively [188]. Option 8 contact card 

requires a critical distance to interface failure, interlaminar normal strength and 

shear strength as input parameters. Option 11 contact card uses a similar 

formulation as cohesive zone elements, that requires fracture toughness under 
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pure Mode-I and Mode-II loading, interlaminar normal and shear strength, 

interfacial stiffness for normal and shear modes and B-K law which is power-law 

or the Benzeggagh-Kenane law that describes crack propagation [188]. This 

contact card has been used to model delamination in laminated composites under 

ballistic impact, however, it has not been used for crushing simulations.  

6.2.2.1 CONTACT _ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK 

Option 8 

One-way contact types allow for compression loads to be transferred between 

the slave nodes and the master segments. Tangential loads are also transmitted 

if relative sliding occurs when contact friction is active. A Coulomb friction 

formulation is used to transition from static to dynamic friction. This transition 

requires that the static friction coefficient be larger than the dynamic friction 

coefficient and a decay coefficient be defined. The one-way term in one-way 

contact is used to indicate that only the user-specified slave nodes are checked 

for penetration of the master segments. 

The algorithm ties nodes that are initially in contact by creating a linear spring 

and the debonding of the surface initiates when the maximum stress criterion is 

met which leads to scaling down of the stress by a linear damage curve until the 

critical separation is reached and the spring is removed [192].  

�
��
�

����
�

�

+ �
��
�

����
�

�

= 1
(6-10)

In which �� and �� are the normal and shear stresses acting at the interface, and 

NFLS, SFLS and PARAM are the normal and shear strength of the tie and critical 

distance, respectively. Once the damage has initiated, the two surfaces begin to 

separate, and the interfacial stresses are then scaled down as a linear function 

of the separation distance. PARAM which is the critical distance at which the 

failure occurs (i.e. deletion of tiebreak and advancing of delamination) [192].  

����� =
2 × ����

�

(6-11)

Where:  
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� = �max (��, 0)� + (���)� (6-12)

Due to the failure of the tiebreak interface, ���� is the energy released. With trial 

and error procedures a sensitivity study was conducted of Mode-I and Mode-II to 

determine their relative effect(s) on the tiebreak failure process. It can be noted 

that for composite crushing simulations, Mode-I fracture is dominate mode of 

failure during tie-break failure process. Thus, to simply the simulations, a pure 

Mode-I delamination was assumed. 

��� =
1

2
�� �����

(6-13)

In this equation (6-13), the critical normal separation of the surface is determined, 

named as PARAM, based on the energy release rate in Mode-I (���) and the 

critical normal stress.  

Since the laminate of the open cross-sections was modelled as multi-shell 

configurations of shell elements with each layer representing various number of 

plies. In section 6.5.7, the effect of number of plies in each shell was investigated 

based on energy absorption capability. Hence, the tiebreak was adopted for each 

case of study and the tiebreak contact was defined only between these shell 

layers, rather than between individual plies. However, delamination could occur 

along any of the plies, if not all, ply interfaces during specimen crushing, as it was 

observed experimentally [Chapters 3-5]. To account for the energy dissipated by 

these additional delamination interfaces, PARAM was scaled by the ratio of the 

number of ply interfaces ������������� to the number of tiebreak interfaces ����

defined as: 

������ = ����� ×
�������������

����

(6-14)

based on the experimental observations, it was assumed that delamination 

occurred among all plies. The values used and calculated in Equations (6-13), 

and (6-14) are listed in Table 6-2 and 6-3.  
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6.3 Simulation setup 

6.3.1 LS-DYNA model 

For the simulations, an Explicit FE LS-DYNA code was used with multi-layered 

shell configuration to reduce numerical costs. Composite tubes were modelled as 

multi-layers of Belytschko-Tsay circular shell elements with one integration point 

in the element plane to represent the direction of the stacking sequence. In 

double-shell configuration, the GFRP innermost shell has six integration points 

with another six integration points being assigned to outermost shell to represent 

all twelve UD-layers. In GFRP tube each individual layer has a thickness of 0.25 

mm. The total thickness of both shell is 3 mm. Each fibre orientation was assigned 

with insertion of an integration point in respect to the stacking sequence used 

with its associated thickness.  The material properties are obtained from [143,144 

and 200, 203 and 204] see Table 6-1.  

Table 6-1 Material properties of GFRP (TenCate 7781/E772)  

GFRP (TenCate 7781/E772) 

��

(GPa)

��

(GPa) 

���

(GPa) 

��� �� 0�

(MPa) 

�� 90�

(MPa)

��

(MPa) 

��

(%) 

39±3 11.8±1 3.2±0.5 0.29 836±20 29±2 97±4 58 

In shell theory the thickness of the shell is considered as mid-plane. In double 

shell configuration, two Shells with radiuses of 37.75 mm and 39.25 mm to 

represent the inner and outer shells with lengths of 80 mm and 77.5 mm were 

modelled respectively using LS-PrePost representing the GFRP tube geometry. 

Each shell was glued together so that the triggering at the top of the shell would 

not detach during the crushing process, as a separate shell was used. In this 

triggering approach, two shells were used, one with 2.5 mm in height acting as 

the trigger (one element size), and the other depending on being inner or outer 

shell had its representative height assigned. Therefore, the top shell at each FEA 

case study represents the trigger. Quadrilateral Shell element was used with each 

element size of 2.5 mm x 2.5 mm. The trigger mechanism was modelled by 



148 

reducing first row thickness of the shell elements to represent the bevel trigger, 

from 1.5 mm to 0.05 mm in each shell. A solid element rigid block was modelled 

to represent the striker. LS-DYNA Material model of 

Enhanced_composite_damage (Mat_54-55), which is an orthotropic material with 

failure criterion of Chang-Chang was used. This failure criterion is a modification 

of Hashin’s failure criterion for assessing lamina failure. The hourglass was set 

at 10% [154-158,188, 198].  

Modelling interlaminar separation or delamination failure (Mode-I) requires either 

detailed experimental investigation for cohesive zone or three-dimensional 

representation that both result into increase of computational and experimental 

costs. Delamination failure causes energy absorption and this can be modelled 

with multi-layered shell configuration with a contact card that is capable of GIC

implemented energy release rate [185-188]. Defining 

One_Way_Surface_To_Surface_Tiebreak contact between the two shells with 

inner tube being master and outer being slave.  

The tiebreak option enables the detachment of the contact surfaces after 

reaching a maximum normal stress (NFLS) or shear stress (SFLS). Does the 

failure parameter, driven by occurring normal and shear stresses, become 1, the 

contact forces soften linearly until contact distance PARAM is reached and the 

interface failure is completed. Based on the interlaminar utilisation of the contact, 

the parameters are determined by the mechanical properties of the matrix 

material. Consequently, shell layers detach when the interlaminar stress exceeds 

the matrix properties, which are mainly responsible for interlaminar strength. 

Maximum normal and shear contact stresses for the tiebreak contact are based 

upon the mechanical properties of the epoxy resin. The critical normal separation 

of the surface is set to 0.15 mm and 0.32 mm for non-stitched and stitched 

specimen. Automatic_Node_To_Surface contact was defined for the striker and 

inner shell with striker being master and inner shell being slave. 

Automatic_Single_Surface contact algorithm was utilised. This prevents 

penetration of the crushing tube by its own nodes.  
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All bottommost nodes of all shell element layers are constrained in their 

translational degrees of freedom. The impactor is modelled as rigid with a mass 

of 108.4kg and velocity of 7.022 m/s. Gravity is modelled with an acceleration 

factor of 9.81 m/s2. All simulation results are smoothed using SAE 300 Hz filter 

[188]. 

6.4 FE modelling 

6.4.1 Delamination interface 

Many researchers have used friction to simulate delamination, e.g. [143,144]. 

Friction influences the energy absorption capability, however, using friction 

influences SEA value, increasing friction between the shells, causes higher SEA 

value (see chapter 6.5.3) and this compared with experimental data cannot be 

considered as a correct FEM. Due to this, a different approach was considered. 

Tiebreak option 8 was utilised instead of friction to model delamination as this 

contact card can define Mode-I and Mode-II energy release rate which simulates 

delamination.  

The tiebreak contact definition implemented in LS-DYNA allows for the simulation 

of delamination at the interface between adjacent shell element layers. Tiebreak 

Option 8 formulations was investigated for this study; namely, tiebreaks with a 

bilinear traction-separation law. This requires interlaminar normal and shear 

strengths and a critical distance to interface failure as input parameters, has been 

used to model delamination in crush simulations e.g. [161]. However, the optimal 

critical failure distance parameter selection has not been thoroughly studied in 

open literature. The formulation of required input parameters such as interlaminar 

normal and shear strengths, fracture toughness under pure Mode-I and Mode-II 

loading, interfacial stiffness for normal and shear modes; a description of the 

model setup using each formulation is explain in 6.3.2.1. To determine the energy 

rate of Mode-I and Mode-II, DCB and 3ENF test was carried out respectively and 

the test results were obtained from [203] and [204] respectively.  
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DCB test determines Mode-I energy release rate (GIC) and 3 End-notched 

Flexure test determines Mode-II energy release rate (GIC) for delamination 

growth. Table  

The input parameters of Tiebreak contact option 8 are shown in Table 6-2 and 

Table 6-3 for stitched and non-stitched obtained from [203] and [204].  

Table 6-2 Tiebreak input parameters (non-stitched) [203,204] 

��

(GPa) 

��

(GPa) 

���

(kJ/m2)

����

(kJ/m2)

NFLS 

(MPa)

SFLS 

(MPa)

PARAM 

(mm) 

PARAM’ 

(mm) (2 shells) 

39±3 11.8

±1

0.33 1.2 26.5 57.3 0.025 0.15 

Table 6-3 Tiebreak input parameters (stitched) [203,204] 

��

(GPa) 

��

(GPa) 

���

(kJ/m2)

����

(kJ/m2)

NFLS 

(MPa)

SFLS 

(MPa)

PARAM 

(mm) 

PARAM’ 

(mm) (2 shells) 

39±3 11.8

±1

0.69 1.2 26.5 57.3 0.052 0.32 

6.4.2 Boundary conditions and contact definitions 

The loading striker was modelled as rigid body. The tubes were placed in Z-

direction upright and loading striker at the chamfered end of the tube. The 

interaction between the loading striker and the tube was modelled using a node-

to-surface contact definition (contact automatic node to surface). The tiebreak 

contact definition between the shell layers not only facilitates the simulation of 

delamination, but also prevents layers from penetrating each other after the 

tiebreak has failed, as the contact definition would remain in effect. In summary, 

Automatic_Node_To_Surface contact was defined for the striker and inner shell 

with striker being master and inner shell being slave. Automatic_Single_Surface 

contact algorithm was utilised. This prevents penetration of the crushing tube by 
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its own nodes, this is due to the striker’s nodes might cause disturbance to the 

model and inner shell penetrating its own nodes and elements.  

6.4.3 Material model 

Material model Mat_022, Mat_054-055, Mat_058 and Mat_059 were used to 

capture an ideal initial peak and mean crushing force against computational 

costs. These parameters determine the reliability and the ability of these material 

model in cylindrical composite structures. The initial peak illustrates the stiffness 

of the material, and the mean crushing force shows the progressive crushing 

behaviour. In this section the computational cost is one of the main parameters 

of case consideration. The time taken for the simulation to converge against the 

extracted results can be compromised to ideally have a model that converges 

within a reasonable timeframe and its effect on the extracted results. All 

bottommost nodes of all shell element layers are constrained in their translational 

degrees of freedom. 

6.4.3.1 Material modelling of Mat-045-055 

This model allows the user to create a local material coordinate system to specify 

the orientation of each ply. There are 21 parameters in Mat_54 that need to be 

specified; 15 of which are physical parameters and six are numerical parameters 

[192]. From the 15 physical parameters, 10 parameters are material constants 

the values of which were obtained from [143,144, 200, 203 and 204] as shown in 

Table 6-1. The remaining five physical parameters are the tensile and 

compressive failure strains (element deletion strains) in the fibre direction 

(DFAILT and DFAILC), the matrix and shear failure strains (DFAILM and 

DFAILS), and the effective failure strain (EFS). The six numerical parameters can 

be adjusted to yield desired material behaviour. Based on an extensive 

parametric study, it was concluded that of these six parameters, the crash front 

element softening parameter (SOFT) is of key importance to this study. This 

parameter reduces the strength of elements surrounding a damaged or deleted 

element. 
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As mentioned, there are five physical parameters (failure strains) and six 

numerical parameters in MAT54 whose values need to be determined 

numerically. A comprehensive parametric study was performed to investigate the 

effect of these parameters on the simulated load-displacement behaviour. It was 

determined that the physical parameter DFAILC (fibre compression failure strain) 

had the greatest effect on the value of initial peak load while the numerical 

parameter SOFT (crash-front element softening parameter) had the greatest 

effect on the value of sustained crush load, which determined the value of SEA.  

Parameters DFAILT, DFAILM and DFAILS (shear failure strains) were found to 

have a marginal effect on the results and were kept constant at arbitrarily selected 

values of 0.02, 0.02 and 0.03, respectively. However, increasing DFAILM value, 

increased computational cost unreasonably (see chapter 6.6.1). It was found that 

simulations with DFAILC = -0.004 and SOFT = 0.75 yielded the mean crushing 

force value and displacement behaviour for chamfered tubes that matched very 

well with experimental data, as shown in Table 6-4 and Table 6-5.  

Table 6-4 The parametric study showing the effect of DFAILC in MAT54 on the peak 

load, crush and SEA of the circular tube. 

DFAILC Peak Load (Num/Exp 

%) 

Crush Load (Num/Exp 

% 

SEA (Num/Exp 

%) 

-0.0100 157.9% 159.2% 166.1% 

-0.007 67.2% 86.9% 87.2% 

-0.006 80.3% 86.9% 87.2% 

-0.005 106.2% 86.9% 87.2% 

-0.004 102.2% 86.9% 87.2% 

-0.003 94.1% 86.9% 87.2% 
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Table 6-5 The parametric study showing the effect of SOFT in MAT54 on the peak 

load, crush and SEA of the circular tube. 

SOFT Peak Load (Num/Exp 

%) 

Crush Load (Num/Exp 

% 

SEA (Num/Exp 

%) 

0.75 102.2% 103.4% 101.1% 

0.80 102.2% 116.2% 125.8% 

0.85 102.2% 137.6% 138.8% 

0.90 102.2% 153.8% 159.4% 

A parametric study was conducted to determine the optimal values of the 

unknown parameters for the multi-layer modelling approach. The resultant values 

are presented in the above tables. This developed FEM, with SOFT parameter 

set to 0.75 (75%) and when DFAILC is set to -0.004 can produce accurate 

prediction of experimental result. DFAILC value is negative due to compression.  

6.4.3.2 Material model results  

Figure 6-5 shows a comparison with the mentioned material models. MAT-022 

has an initial peak of 141 kN with mean crush force of 13 kN, the displacement 

reaches 70 mm with computational cost of 14 hours, in comparison with the 

experimental data, and this material model is not sufficiently accurate to predict 

the experimental material behaviour. MAT_054-055 on the other hand illustrates 

an ideal prediction of material prediction, with initial peak value of 80 kN, mean 

Cushing force of 67 kN, displacement of 33 mm and computational cost of 28 

hours. In comparison with the experimental data, which was an initial peak of 78 

kN and mean crush force of 69 kN, Mat_054-055 was on average 5% off. 

Mat_058 illustrated that it over predicts the mean crushing force by 7 kN, although 

the initial peak value has been improved to 79 kN compared with Mat_054-055. 

The displacement is reduced to 31 mm and the computational cost has increased 

to 36 hours. The difference between the two material models lays in the mean 

crushing force, and Mat_058 over predicts and this results in a reduction in 

displacement value, resulting into greater difference with experimental data, with 
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7.5% overall differences. Mat_059 which is a modified version of Mat_022, has 

shown greater improvement in prediction of crushing behaviour in composites. 

However, the initial peak is 10 kN off and the mean crushing force value is under 

predicted by 11 kN, and the displacement value is 36 mm. The overall difference 

is 9%. The computational cost value is 45 hours.  

By taking account for all four reviewed parameters, Mat_054-055 can predict the 

material behaviour in respect to energy absorption capability and having a 

reasonable computational cost compared with the extracted results as predicted 

by [143,144,154-158,188, 198].  

Figure 6-5 Material model comparison 

6.4.4 Element formulation  

The possibility of using under-integrated elements results in a reduction of 

computational cost with compromising accuracy of the prediction. To compare 

the performances, several relevant element formulations were employed, and the 

results have been discussed. The relevant chosen element formulations are, 

Hughes-Liu, S-R Hughes-Liu, S-R co-rotational Hughes-Liu, Fully Integrated and 

Belytschko-Tsay (default). In consideration of this test, since energy absorption 

capability is the main concern, the parameters chosen are the initial peak, mean 
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crush force and displacement, however in numerical studies the computational 

cost plays a major role, therefore this parameter is also considered. 

Figure 6-6 shows the differences between the chosen element formulations 

against the reference parameter of experimental data. The result of Hughes-Liu 

element formulation showed an initial peak of 82 kN, mean crush force value of 

90 kN with displacement of 27 mm, the computational cost was 105 hours. The 

total difference in performance value was 13% compared with experimental data. 

The extracted result from S-R Hughes-Liu showed an initial peak of 81 kN, mean 

crush force of 65 kN and displacement of 34 mm, the computational cost was 115 

hours. The mean difference from experimental data was 7%.  

Both element formulations have staggering computational cost with around 4 to 

5 days to converge each of the simulations. The results obtained from S-R co-

rotational Hughes-Liu showed an initial peak value of 80 kN, mean crush force of 

66 kN, displacement of 33 mm and computational cost of 128 hours. Fully 

Integrated element formulation on the other hand was off by 24 kN and 7 kN in 

initial peak value and mean crush force respectively. Although the computational 

cost is much lower compared with mentioned element formulations. Both element 

formulations were off by 6% and 12% respectively.  

The Belytschko-Tsay element formulation which is the default parameter in Ls-

Dyna was rather close to experimental data with computational cost of 28 hours. 

The initial peak value was 80 kN, mean force value was 67 kN, and the 

displacement was 33 mm, with total mean difference of 5%.  

By taking account for all four reviewed parameters, Belytschko-Tsay element 

formulation is the cheapest computational cost compared with other element 

formulations, as supported by other researchers [143,144,154-158,188, 198], 

which leads to use of this type of element formulation hereafter.  
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Figure 6-6 Element formulation comparison 

6.4.5 Mesh size  

In numerical modelling one of the influential parameter is the mesh size, the mesh 

sensitivity test is beneficial to establish a mesh size regarding a specific model to 

obtain an acceptable accuracy. In numerical study, compromising accuracy for 

computable costs is also relatively important. Six different element sizes were 

modelled with 5.5 mm, 4.5 mm, 3.5 mm, 2.5 mm, 1.5 mm, 0.5 mm quad elements 

(see Figure 6-7).  
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Figure 6-7 Mesh sensitivity models. a) 0.5 mm, b) 1.5 mm, c) 2.5 mm, d) 3.5 mm, 

e) 4.5 mm, f) 5.5 mm 

From a design point of view, the aim is to achieve the cheapest model in terms 

of computational cost and being able to predict energy absorption capability with 

an acceptable accuracy. The finer the mesh sizing becomes; the computational 

cost increases dramatically, and relatively higher accuracy is achieved. A balance 

of the two needs to be chosen that the energy absorption capability of the model 

is within an acceptable range and the computational cost is within an acceptable 

range.  

The Figure 6-8, shows the mesh sensitivity comparison of the modelled mesh 

sizes mentioned in Figure 6-7. The results illustrate a noticeable fact that the 

mesh 5.5 mm size is too coarse with very high peak forces and low mean crushing 

force with 86 kN difference between the two. This mesh size has the lowest 

a b c 

d e f 
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computational cost however, the result is nearly 40% off from the experimental 

data. As the mesh size becomes smaller the accuracy improves. At 4.5 mm the 

results improved from 5.5 mm case study, although the difference is 29% and at 

3.5 mm, the difference is 18%. The peak is higher than experimental by 8 kN and 

the mean crushing force is lower by 7 kN.  

At mesh size of 2.5 mm, the result is in line with experimental data. The difference 

is 5% and the computational cost is lower than the case 1.5 mm and 0.5 mm by 

170% and 280% respectively. Although the accuracy is 1.5% for both cases. The 

balanced case to accurately calculate and predict energy absorption is 2.5 mm 

which is supported by many researches [143,144,188, 198].  

Figure 6-8 Mesh Sensitivity comparison  
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6.4.6 Trigger modelling  

In experimental studies 45o bevelled trigger mechanism was utilised and similarly 

in numerical studies a suitable trigger mechanism is needed to initiate the 

progressive failure that matches the experimental studies. The maximum crush 

force in an FEA model tends to be overestimated significantly [161, 199]. Few 

approaches were raised to study the effect of different trigger mechanisms on 

initial peak value of the load and mean crushing force (see Figure 6-9). These 

case studies are, a) single shell with no trigger, b) single shell inward-chamfer, c) 

single shell outward-chamfer, d) double shell level size inward-chamfer, e) double 

shell with 2.5 mm shell size difference inward-chamfer, f) double shell with 2.5 

mm shell size difference outward-chamfer, g) double shell with 2.5 mm shell size 

difference inward-chamfer with different reduced element sizes, h) double shell 

with 5 mm shell size difference inward-chamfer, i) double shell with 2.5 mm shell 

size difference inward and outward-chamfer.  

The results from the case studies are compared on Figures 6-10 and 6-11. The 

aim of this research is to find the optimum finite element modelling case to obtain 

a prediction of the initial peak force value.   

Single shell configuration with trigger mechanism has shown better peaks and 

mean crushing force prediction (case b and c) than without trigger mechanism 

(case a). However, the double shell configuration has led to better prediction with 

less than 5% error compared with experimental data. Outward-chamfer in all 

cases lead to increase in computational costs with lower mean crushing force. 

Case e and f has shown better prediction of initial peak value of 80 kN and 78 

kN. The configuration of the two are similar in sectioning ad positioning of the 

shells with outer shell being 2.5 mm (one element size) shorter than the inner 

shell. However, the difference lays in the computational costs, that outward-

chamfer as shown in all cases increases by 5-15 hours. Also, the trigger 

mechanism effects progressive crushing behaviour. The mean crushing force in 

case f has lower value than case e.  

Case g is based on case e, the configuration of the trigger is the same. In this 

trigger mechanism, the element size is reduced to a smaller size and this acts as 
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the trigger mechanism, this technique is supported by [143,144,188, 198]. In 

Figure 6-11, the reduced element sizes are compared against their initial peak 

value and mean crushing force and computational costs. It can be concluded that 

as the element size becomes thicker, the peak value increases and from 0.05 

mm onwards, this reduction of element size has no effect on initial peak value.  

The prevailing case that matches experimental results are 2.5 mm sectioned 

double shell configuration with inward-chamfering trigger mechanism with 

reduced element size of 0.05 mm.  
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Figure 6-9 Trigger mechanism modelling cases, a) single shell no trigger, b) 

single shell inward-chamfer, c) single shell Outward-chamfer, d) double shell 

level size inward-chamfer, e) double shell 2.5 mm shell size difference inward-

chamfer, f) double shell 2.5 mm shell size difference outward-chamfer, g) double 

shell 2.5 mm shell size difference inward-chamfer different reduced element 

sizes, h) double shell with 5 mm shell size difference inward-chamfer, i) double 

shell 2.5 mm shell size difference inward and outward-chamfer 
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Figure 6-10 Trigger model comparison  

Figure 6-11 Trigger model case g comparison 

6.4.7 Number of shell(s) configuration  

The effect of number of shells on the energy absorption prediction of FEM is 

investigated. The studied cases are, 1 shell, 2 shells, 3 shells, 4 shells, 6 shells, 

and 12 shells (see Figure 6-12). 
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Figure 6-12 Number of shell configuration, a) 1 shell, b) 2 shells, c) 3 shells, d) 4 

shells, e) 6 shells, f) 12 shells.   

In this study, since the crushed morphology is also one of the factors that is 

greatly influenced, hence is implemented in Figure 6-12. From the crushed 
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morphology point of view, it can be concluded that, as the number of shells 

increase, the symmetricity and predication of crushing behaviour improves. Since 

12 plies were used in experimental studies, six case study were considered. All 

cases were subjected to the same trigger mechanism and applied energy.  

In Figure 6-13, the shell configurations are compared. In single shell 

configuration, the initial peak and mean crushing force is off by 45%. However, in 

double shell configuration, this improves to 5% difference. The initial peak value 

is 80 kN with crushing force of 67 kN. Hereafter, the computational cost is the 

deciding parameter. Since the crushing behaviour slightly or minimally improves 

by adding more shells. This improvement is in both initial peak value and mean 

crushing force value. However, the computational cost increases rapidly by 

adding more shells to the model. Using 12 shells configuration compared with 

experimental data, it has 1.5% difference and using double shell configuration 

has 5% difference. As an engineering point of view, this compromising 3.5% 

results into solving the problem in 4.5 times less computational costs, one takes 

28 hours to converge and the other 123 hours.  

At this stage since the main concentration is energy absorption capability, the 

reliable and cheaper computational cost of double shell configuration is 

considered in this study, and also supported by [143,144,188, 198]. 
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Figure 6-13 Shell configuration comparison 

6.5 Model sensitivity to physical parameters  

A robust finite element model needs to tolerate small variations in modelling 

parameters and be able to capture the differences. The aim of this section is to 

carry out a study of stability and sensitivity with respect to the material 

parameters, delamination, friction and impact loading. The reference model is the 

one developed earlier in this chapter and with tweaking the parameters by ± 10%.  

6.5.1 Material model  

The following parameters from Mat_54-55 in Ls-Dyna (see chapter 6.4.3.1), have 

been studied, stiffness, compressive strength, strain to failure in compression and 

strain to failure in tension. The stiffness and strength have an influence in fibre 

and matrix arrangements, and the strain to failure is a parameter that influences 

the experimental energy absorbed per unit of crushed volume/mass. The 

developed model needs to be compared with the experimental data. SEA value 

from the experimental data and numerical should be around the error percentage, 

which is 5%. When energy absorption capability is the main concern, SEA value, 
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which indicates the absorbed energy per crushed mass should be resembled in 

both to have a reliable FEM that predicts energy absorption capability.  

6.5.1.1 Laminate stiffness  

In Figure 6-14, the comparison of laminate stiffness is shown with stiffness 

increase and reduction of ± 10%. The SEA, initial peak and average crushing 

force is the main concentration of this study compared with reference FEM. It is 

noticeable that the computational cost remained the same with minimal change 

in all cases. The influence of stiffness on crushing behaviour is illustrated in the 

results. 10% increase, resulted into increase of initial peak value by 3 kN, mean 

crushing force increased to 71 kN, the SEA value increased by 4 kJ/kg. The 

displacement value was affected by a drop of 2 mm.  10% decease, resulted into 

reduction of initial peak value by 2.2 kN, mean crushing force decreased to 63 

kN, the SEA value dropped by 12 kJ/kg. The displacement value was affected by 

an increase of 6 mm.  

The results showed that increase in laminate stiffness caused higher initial peak 

value and mean crushing force value. Vice versa, the reduction of laminate 

stiffness caused reduction of these values, which shows the model is responsive 

toward small changes in the parameters.  

Figure 6-14 Laminate stiffness comparison 
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6.5.1.2 Compressive strength  

Regarding energy absorption capability in Mat_54-55 card, compressive strength 

play an important role. Figure 6-15, shows the comparison between compressive 

strength with increase and reduction of ± 10%. The SEA, initial peak and average 

crushing force are the main concentration of this study compared with reference 

FEM. The computational cost remained the same with minimal changes in all 

cases. Increasing compressive strength, it results into increase of initial peak 

value by 6.5 kN, increase of mean crush force by 4 kN, reduction of displacement 

by 3 mm and increase in SEA value by 2 kJ/kg. Reduction of compressive 

strength by 10% results into, reduction of initial peak force value by 3 kN, 

reduction of mean crushing force by 1 kN, increase of displacement by 1 mm, 

and reduction of SEA value by 3 kJ/kg.  

The results showed that reduction of compressive strength, caused the mean 

crushing force value to drop along with the initial peak value. 

Figure 6-15 Compressive strength comparison 
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6.5.1.3 Strain to failure  

The strain determines the elements deletion, which is an important parameter to 

adjust the model with experimental results. The Mat_54-55, allows defining 

different failure strains for shear and tension/compression. The model response 

is governed by the deletion of elements as previously mentioned. The failure of 

the elements is mainly affected by the strain to failure in compression (DFAILC) 

and failure in tension (DFAILT) that have been analysed by increase and 

reduction of ± 10% of these parameters.  

6.5.1.3.1 Strain to failure in compression  

In Figure 6-16, an important influence of the failure strain in compression with 

increase and reduction of ± 10% on the crushing efficiency is shown. The effect 

of 10% increase in DFAILC, results into increase in mean crush force by 6 kN, 

the initial peak was not affected, the displacement decreased by 4 mm and the 

SEA value increased to 53.7 kJ/kg with 6 kJ/kg difference in comparison to the 

reference model. The effect of 10% drop in DFAILC, results into a drop in mean 

crushing force value by 5 kN, increase in displacement by 7 mm, and 10 kJ/kg 

drop in SEA value.  

Figure 6-16 Strain to failure in compression (DFAILC) 
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6.5.1.3.2 Strain to failure in tension 

In Figure 6-17, an important influence of the failure strain in tension with increase 

and reduction of ± 10% on the crushing efficiency is shown. The effect of 10% 

increase in DFAILT, results into increase in mean crush force by 5 kN, the initial 

peak increased by 2 kN, the displacement decreased by 2 mm and the SEA value 

increased to 55 kJ/kg with 7 kJ/kg difference in comparison to the reference 

model. The effect of 10% drop in DFAILT, results into drop in mean crushing force 

value by 2 kN, increase in initial peak value by 5 kN, increase in displacement by 

2 mm, and 3 kJ/kg drop in SEA value.  

Figure 6-17 Strain to failure in tension (DFAILT) 

6.5.2 Delamination model  

The delamination between the shell was modelled with tiebreak option 8 

described in section 6.3.2 and 6.5.1 in details. The current study in this section is 

to determine the element size and the sensitivity of the delamination algorithms 

according to Table 6-2. To ensure the mesh is fine enough to avoid premature 

failure of the interface and instability. The model sensitivity towards energy 

release rate would be analysed. 
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6.5.2.1 Tiebreak contact element size sensitivity  

To capture the debonding of the plies, a simple model was created to simulate a 

DCB test for Mode-I delamination test. Different mesh sizes were considered 1.5 

mm x 1.5 mm, 2.5 mm x 2.5 mm and 3.5 mm x 3.5 mm (see Figure 6-18). The 

relevant results were plotted against experimental studies [203] (see Figure 6-

19).   

Figure 6-18 Tiebreak contact element size test 

To assure the obtained results would be relevant towards experimental data, the 

FE results were compared with the experimental data. In Figure 6-19, all cases 

have captured the experimental curve, however, the 1.5x1.5 mm and 2.5x2.5 mm 

element sizes have closer values with minimal differences. The element size 

3.5x3.5 mm overestimated the results throughout, and 2.5x2.5 mm which is the 

element size (see chapter 6.4.5) concluded to be both accurate enough and 

computational cost efficient.  
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Figure 6-19 Force-distance curve of Mode-I delamination, experimental and FEA 

comparison 

6.5.2.2 Delamination resistance  

The aim of this study is to examine the sensitivity and the importance of the effect 

of tiebreak contact PARAM function on energy absorption capability of the 

developed FEM. Once the progressive failure has been stablished, the 

debonding of the plies is ruled purely by normal stress and according to equation 

6-13, the GIC is governed by normal stress and PARAM from the contact card. 

Increase in PARAM, therefore results into increase of GIC proportionally. This 

effect has been used in this study to analyse its effect on Mode-I delamination 

resistance.  

Figure 6-20 illustrates the effect of this parameter on crushing behaviour and 

energy absorption capability of the FEM by an increase and reduction of ± 10%. 

The effect of 10% increase in GIC, results into increase in mean crush force by 6 

kN, no change in initial peak, the displacement decreased by 5 mm and the SEA 

value increased to 54.5 kJ/kg with 6 kJ/kg difference in comparison to the 

reference model. The effect of 10% decrease in GIC, results into drop in mean 

crushing force value by 6 kN, no change in initial peak value, increase in 

displacement by 7 mm, and 5.5 kJ/kg drop in SEA value. 
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The result indicate that Mode-I energy release rate has an important influence on 

the energy absorption capability, mean crushing force value, displacement and 

SEA value. To conclude this, it can be noted that modelling delamination as 

Tiebreak option 8, has been established to be sensitive towards capturing and 

effecting Mode-I delamination. The input parameters have a major effect on 

delamination resistance. Therefore, it is essential to validate Tiebreak input 

parameters as it has been carried out in previous sections, (see chapter 6.2.2, 

6.4.1 and 6.5.2.1).  

Figure 6-20 Delamination resistance comparison  

6.5.3 Friction  

Coefficient of friction is one the physical parameters that influences the 

progression of the simulation. In literature, many values have been stated varying 

from 0.1 to 0.3 for static and 0.1 to 0.2 for dynamic. The chosen values for static 

friction coefficient is 0.3 and 0.2 for dynamic friction coefficient [143,144,154-

158,188, 198]. Both impactor to inner-shell and inner shell to outer shell friction 

coefficients are set to 0.3 and 0.2 for static and dynamic respectively. This is 

based on trial and error and based on previous researchers [143,144,154-

158,188, 198]. This combination enables a sensitive crushing performance. In 
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this study the sensitivity of the FEM to friction is studied. The two scenarios are 

the friction between the impactor and the inner-shell and the friction between the 

shells.  

6.5.3.1 Impactor to shell  

In Figure 6-21, the results from the friction between the impactor and the inner-

shell is compared based on an increase and decrease of ± 10%. The influence 

of coefficient of friction on mean crushing force is 2.5 kN and -3.5 kN. The only 

parameter that is not influenced by friction is computational cost. The initial peak 

force increased by 0.5 kN which is minimal and small enough to neglect when 

increased by 10% and no change with 10% reduction. The main concentration 

was mean crushing force, displacement and SEA. By 10% increasing the mean 

crushing force increased by 2.5 kN, the displacement dropped by 2 mm, and SEA 

value increased by 3 kJ/kg. By decreasing the friction by 10%, the initial peak had 

no effect, the mean crushing force dropped by 3.5 kN, the displacement 

increased by 2 mm, and the specific energy absorption decreased to 45.3 kJ/kg, 

which is around 2.5 kJ/kg. This parameter can influence the energy absorption 

capability and based on literature the optimum value is 0.3 and 0.2 for static and 

dynamic respectively [143,144].    

Figure 6-21 Impactor to inner-shell friction coefficient comparison 
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6.5.3.2 Shell to shell 

Many researchers have used friction to simulate delamination, e.g. [143,144]. 

Friction influences the energy absorption capability of the model and using friction 

influences the SEA value, for example, increasing friction between the shells, 

causes higher SEA value. This technique cannot be used, as numerical and 

experimental results due to the increase in SEA value will be significantly 

different. Therefore, a different approach was considered. Tiebreak option 8 was 

utilised instead of friction to model delamination as this contact card can define 

Mode-I and Mode-II energy release rate which simulates delamination. However, 

the correct friction between the shells must be implemented. This friction between 

the plies also exist in real scenarios, and its effect on the energy absorption 

capability must be addressed.  

In Figure 6-22, the results from friction between the inner-shell and the outer-shell 

is compared based on an increase and decrease of ± 10%. The influence of 

coefficient of friction on mean crushing force is 3 kN and -3.5 kN. Throughout the 

study the computational cost and initial peak force was unaffected. The main 

concentration was mean crushing force, displacement and SEA. By 10% 

increasing the mean crushing force increased by 3 kN, the displacement dropped 

by 1 mm, and SEA value increased by 3.5 kJ/kg. By decreasing the friction by 

10%, the initial peak had no effect, the mean crushing force dropped by 3.5 kN, 

the displacement increased by 3 mm, and the specific energy absorption 

decreased to 41.8 kJ/kg, which is around 6.5 kJ/kg. This parameter can influence 

the energy absorption capability and based on literature the optimum value is 0.3 

and 0.2 for static and dynamic respectively [143,144].    
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Figure 6-22 Inner-shell to outer-shell friction coefficient comparison 

6.5.4 Impact velocity  

In this section various impact velocities are raised to study and analyse the 

developed model against its sensitivity towards capturing the initial peak, mean 

crush force, displacement (stroke) and specific energy absorption. In this study 

the experimental data and reference model is compared with different impact 

velocities and applied kinetic energies. The cases are, 4 m/s (0.84 kJ), 5 m/s 

(1.31 kJ), 6 m/s (1.89 kJ) and 8 m/s (3.4 kJ). Understanding how robust the model 

is with respect to the input kinetic energy, would indicate the range of impact 

conditions the model can predict with certain tolerance.  

Figure 6-23 show the extracted results from the simulations. The simulation 

results illustrate a similar or within 0.4% difference in initial peak value and the 

specific energy absorption which indicates the energy absorption per crushed 

mass and is within 4% difference between the reference model. The lower the 

input kinetic energy the lower the displacement, the displacement values indicate 

the similar trend. The mean crushing force are slightly affected although the 

highest difference from the reference model is 3.5%. 
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Figure 6-23 Impact velocity or kinetic energy input sensitivity data 

6.6 Modelling limitations  

Based on the study carried out in section 6.5 where sensitivity towards physical 

parameters were studied based on the developed model. The FEA results is 

influenced by many input parameters. To develop a model that is capable of 

predicting energy absorption in an accurate enough format, few extracted results 

must also be acceptable. These parameters are computational cost, initial peak 

force, mean crushing force, displacement and specific energy absorption. A 

relative simple model approach leads to high efficiency and this was the main 

concentration of this chapter. There is a balance between computational cost and 

final results that needs to be within an acceptable range of up to 10% [143].  

In Mat_54 some setting parameters have no physical meaning, this limitation 

might cause the simulation model to be ruled by non-physical process when not 

near validated crush scenarios are being simulated. Therefore, the applicability 

of the model to another crush scenario must be carried out with care. A change 

in geometry and the mechanical properties mean that the model can be adopted 

to that specific crash scenario with care and some adjustments.  
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More advanced material cards are being developed with delamination models 

with solid elements to improve capturing delamination energy, this needs further 

studies on the mechanical properties of the material and energy release rate in 

Mode-I and Mode-II. Most importantly using solid elements rapidly increases 

computational costs compared with shell elements. This technique increases 

accuracy, although both testing and computational costs increases.  

Increasing the material model complexity leads to further test data which is 

expensive and increases computational costs. Depending on case studies, from 

an engineering point of view, finite element model with accuracy of up to 10% is 

acceptable [143-144]. However, the developed model has its limitation to portray 

or show the fracture and crushed in smaller scale, force-displacement 

characteristics and debris wedge.  

6.6.1 Fracture morphology  

Regarding crushed morphologies, to capture axial splits using Mat_54, the 

DFAILM, which is the failure strain in the matrix direction [192] can be utilised. 

Adjusting the value of DFAILM enabled matrix splitting to occur (see Figure 6-

24), as observed in the experiments (See Chapters 3 to 5). However, this 

parameter influenced the computational costs to be unreasonably high. Due to 

this fact and keeping a reasonable experimental efficiency, DFAILM values were 

retracted to original values. It is worth mentioning that, in this research the main 

concentration was capturing energy absorption capability. DFAILM had marginal 

effect on energy absorption capability as mentioned above. In material model 

Mat_54-55, the stacking sequence plays an important factor on crushed 

morphologies. In Figure 6-25, the FEM crushed morphologies of [0]12 is shown, 

which resembles the experimental crushed morphologies. However, using ± 45 

leads to inadequate failure modes if DFAILM values exceeds 10% to obtain 

matrix splitting/separation (see Figure 6-24 b).  

Figure 6-26 show the comparison between reference FEM and increase in 

DFAILM by 10% and 20%. The effect of DFAILM on axial split is shown in Figure 

6-24, this improves crushed morphology representation. Although, the results 

regarding energy absorption capability including SEA values were unaffected by 
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this parameter. At 10% increase, the axial split occurs in this FEM, this causes 

138% increase in computational costs. Increasing DFAILM by 20% causes 176% 

increase in computational costs. 

In consideration of these results, capturing axial split seems rather unreasonable 

due to its effect on computational costs. Increasing DFAILM value by 10 to 20% 

had minimal or no effect on the results and below 10% axial split in this FEM does 

not occur.      

Figure 6-24 Effect of DFAILM on axial split, a) reference model b) 10% increase 

DFAILM 

Figure 6-25 Effect of stacking sequence of [0]12 configuration on petal formation 

of FEM crushed morphologies using DFAILM 

a b 
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Figure 6-26 Strain to failure in matrix direction (DFAILM) 

6.6.2 Force-displacement characteristics 

The visual differences in crushed morphologies and crushing process of 

composite tubes and FEA are captured by the force-displacement curve diagram. 

Figure 6-27 show the numerical and experimental data and by carrying out a 

comparison, the model limitations are manifested. 

Figure 6-27 force-displacement characteristic experimental and numerical 

comparison  
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As described by Hall [17], the experimental (solid black), has a serrated shape 

where the positive slope segments such as (ab) represent the increase in 

resistance load due to multiply tracks propagate and initiate until point (b) is 

reached. Further crushing is initiated causing a negative slope or drop in 

resistance force.  

In finite element (Dotted black), the oscillations are governed by the elements 

deletion between fronds, and the amplitudes are a function of the strain to failure 

of the element controlling the tearing and the mode-I delamination resistance.  

At any stage of the crushing process, the experimental resistance force is 

governed by the weakest possible collapse mode(s). The curves from the FEA 

and the experimental (see Figure 6-27) are different amplitudes and ranges. The 

amplitudes of the curve and wavelength of FEA is governed by elements deletion 

as mentioned and the element size effect the wavelengths. Nevertheless, this 

means that some collapse modes are not captured by the model properly.    

6.6.3 Debris wedge   

During the crushing process, the fractured material is usually trapped between 

the main fronds of the tube. This increases the friction and affects the crack 

growth and delamination resistance.  

The FEM is not able to simulate this effect if element deletion takes place and do 

not interfere any longer with the remaining structure. This issue can be resolve 

by increasing delamination resistance or increasing friction between the shells if 

multi-shell configuration is utilised.  

Some researchers have tried modelling debris wedge, McGregor [161] used a 

predefined debris wedge designed as rigid, and Mamalis [155] defined an 

intermediate layer trying to represent the pulverised material. 

6.7 Conclusion  

The aim of this chapter was to develop a finite element model using LS-DYNA to 

simulate the crushing behaviour of composite tubes with chamfer failure trigger 

mechanism. Various shell configurations were studied and multi-layer shell 
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element with double-shell configuration produced accurate enough results with 

difference of less than 5% with minimal computational cost compared with other 

configurations. This configuration was used to predict energy absorption 

capability and specific energy absorption, other considerations were deformation 

and damage progression of the composite tubes. Each shell element or layer can 

contain either a single ply or multiple plies. The layers were tied using Tiebreak 

option 8 contact definitions. This contact card has the capability of modelling 

delamination between the layers through energy-based approach. The material 

card of Mat_54 was used to represent each ply and few parameters in the 

material cards were studied to find the optimum configurations to match the 

experimental studies. SOFT and DFAILC (compression failure strain) were the 

main parameter that effected energy absorption capability and specific energy 

absorption was influenced by these parameters. The sensitivity of the model was 

studied against material model, delamination model, friction and impact velocity. 

The results show that the model is sensitive towards minimal input change. The 

simulation results showed that the failure peak load, mean crushing force, SEA, 

all compared very well with the experimental results.  

In conclusion, the developed model in this study was shown to be capable of 

accurately capturing crushing behaviour of the tubes with minimal differences 

whilst being computational cost efficient. The numerical and experimental studies 

are in good agreement.  
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7 Numerical Study of Axial, Off-Axis, Stitched and Non-

Stitched Sections under Quasi-Static and Impact 

Loading 

7.1 Introduction 

This chapter presents numerical studies on the effect of off axis and multi-

stitching pattern on the energy absorption capability of composite tubular 

structures under quasi-static and impact loading. A new multi-stitching pattern 

was developed to study the increase of specific energy absorption capabilities in 

GFRP and CFRP tube absorbers (chapter 4 and 5). The stitching pattern on both 

specimens showed a significant increase in specific energy absorption 

capabilities under quasi-static and impact loading. A multi-shell finite element 

model was constructed to predict the axial and off-axis crushing behaviour and 

energy absorption capability of composite structures under quasi-static and 

impact loading. The method is based on surface contact modelling technique 

definition in the stitched area to represent the functionality of the stitched area 

during an impact event. This energy-based approach was used to determine the 

input parameters for the tiebreak formulations to accurately simulate 

delamination between the plies. Tiebreak option 8 was utilised to model 

delamination as this contact card can define Mode-I and Mode-II energy release 

rate which simulates delamination. A scaling factor was introduced to account for 

ply interfaces that were not represented by a tiebreak definition. The contact card, 

tiebreak option 8 was then defined between the shells in respect to the 

parameters obtained experimentally for stitched and non-stitched specimens. In 

the stitched area the PARAM’ was increased according to the experimental data 

and validation, and in the non-stitched area normal PARAM’ was used. This 

increases GIC energy release rate within the stitched area and demonstrated 

similar behaviour as the experimental stitched specimen. The developed 

numerical approach is efficient in terms of accuracy and simplicity in comparison 

with the existing methods for multi-layered composites structures. 

In all previous studies, several FE modelling was introduced with unique 

techniques to achieve ideal force/displacement curves focusing on different 
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parameters including contact definition and crack propagation modelling. The aim 

of this chapter is to fulfil demands for a crushing finite element model, that can be 

used in axial and off-axis under quasi-static and impact loading using multi-shell 

configuration using LS-DYNA software, based on chapter 6. This chapter also 

focuses on developing a technique to model stitching through thickness to locally 

increase energy absorption capability that consequently increases overall energy 

absorption representing experimental studies. 

7.2 Experimental testing of circular tubes  

7.2.1 Material and tube geometry  

In this study, composite sections were fabricated from CFRP and GFRP 

unidirectional pre-pregs. Glass/epoxy (�	= 2250 kg/m3) tubes consists of twelve 

individual unidirectional (UD) pre-impregnated layers with inner diameter of 74 

mm, outer dimeter of 80 mm and length of 80 mm with laminate design of [-

45/45/0/90/0/90]S. The integrated sequence of [-55/35/-10/80/-10/80]S was 

adopted and used to cancel the 10o off axis effect. Carbon/epoxy (�	= 1800 kg/m3) 

tubes consists of twenty two individual unidirectional (UD) pre-impregnated layers 

with inner diameter of 97.4 mm, outer dimeter of 100 mm and length of 150 mm 

with laminate design of [-45/45/-45/45/0/90/0/90/0/90/0]S using hand lay-up 

technique. The specimens subjected to stitching through the thickness, a novel 

stitching pattern of 10-15-20-25-30-35 mm utilised from the 45o chamfered end 

using Kevlar.  

Each case study was modelled regarding the experimental setup and all 

parameters that effected energy absorption capabilities were kept constant, 

including strain rate, loading rate, lay-up and geometry. The concentration of this 

study is to find energy absorption capabilities at different conditions of axial, off 

axis loading, stitched and non-stitched under quasi-static or impact loading.  

The material properties were based on experimental studies of 

[143,144,155,158,182,200,203,204]. 
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Table 7-1 Material properties of CFRP and GFRP [143,144,155,158,182,200,203,204] 

 GFRP (TenCate 7781/E772) 

��

(GPa)

��

(GPa) 

���

(GPa) 

��� �� 0�

(MPa) 

�� 90�

(MPa)

��

(MPa) 

��

(%) 

39±3 11.8±1 3.2±0.5 0.29 836±20 29±2 97±4 58 

CFRP (Hexcel T300/914C) 

��

(GPa)

��

(GPa) 

���

(GPa) 

��� �� 0�

(MPa) 

�� 90�

(MPa)

��

(MPa) 

��

(%) 

67±5 9.8±1 4.8±1 0.32 296±10 27±3 115.5±2 42.5 

7.2.2 Experimental setup  

In quasi-static testing, a 500 kN load cell capacity hydraulic press was used with 

2 mm/second loading rate. All specimens were allocated in respect to the centre 

of the stroke for equal load distributions. The stroke displacement for all 

specimens was kept at 50 mm. The profile of load-displacement consists of load 

cell and stroke displacement.    

In impact testing, a drop tower with impactor mass of 108.4 kg was used at 2.0 

m height and 7.022 m/s velocity, a total energy of 2672 J was applied to each 

specimen. The mass is dropped from a pre-determined height of 2.0 m to initiate 

and record the load against time once it reaches the specimen. It will only stop 

when the applied energy of 2672 J is absorbed by the specimen. The hammer is 

then pulled back up by the machine. The impactor once hitting the tube leading 

edge, the load cell records the force history. A high speed full HD video camera 

with resolutions of 2,000 frames per second was used to capture the crushing 

event. 
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7.3 Finite element modelling 

7.3.1 Basic consideration 

For the simulations, an Explicit FE LS-DYNA code was used with multi-layered 

shell configuration to reduce numerical cost. Composite tubes were modelled as 

double layers of Belytschko-Tsay circular shell elements with one integration 

point in the element plane to represent the direction of the stacking sequence. 

The GFRP innermost shell has six integration points with another six integration 

points being assigned to the outermost shell to represent all twelve UD-layers. In 

GFRP tube each individual layer has a thickness of 0.25 mm. The total thickness 

of both shells is 3 mm. In CFRP the innermost shell has eleven integration point 

with another eleven integration points being assigned to the outermost shell to 

represent all 22 UD-layers with a thickness of each individual layer being 0.118 

mm. The total thickness of both shells is 2.6 mm. Each fibre orientation is 

assigned with insertion of an integration point in respect to the stacking sequence 

used with its associated thickness.   

7.3.2 FE model setup 

In shell theory the thickness of the shell is considered as mid-plane. The outer 

radius of the GFRP tube was 40 mm with a thickness of 3 mm. Two Shells with 

radiuses of 37.75 mm and 39.25 mm to represent the inner and outer shells with 

lengths of 80 mm and 77.5 mm were modelled respectively using LS-PrePost 

representing the GFRP tube geometry (see Figure 7-1). Each shell was glued 

together so that the triggering at the top of the shell would not detach during the 

crushing process. In this triggering approach, two shells were used, one with 2.5 

mm in height acting as the trigger, and the other depending on being inner or 

outer shell had its representative height assigned. Therefore, the top shell at each 

FEA case study represents the trigger. Similarly, the CFRP tubes were modelled 

as double shells with radiuses of 48.05 mm and 49.35 mm representing the inner 

and outer shells with length of 150 mm and 147.5 mm respectively.  

Quadrilateral shell elements were used with each element size of 2.5 mm x 2.5 

mm. The trigger mechanism was modelled by reducing first row thickness of the 
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shell elements to represent the bevel trigger, from 1.5 mm to 0.05 mm in each 

shell. A solid element rigid block was modelled to represent the striker. LS-DYNA 

Material model of Enhanced_composite_damage (Mat_54-55), which is an 

orthotropic material with failure criterion of Chang-Chang was used. This failure 

criterion is a modification of Hashin’s failure criterion for assessing lamina failure. 

The hourglass was set at 10% [154-158,188, 198]. 

Figure 7-1 shell geometry configuration. a) GFRP shell configuration b) CFRP 

shell configuration

Modelling interlaminar separation or delamination failure (Mode-I) requires either 

detailed experimental investigation for cohesive zone or three-dimensional 

representation that both result into increase of computational and experimental 

costs. Delamination failure causes energy absorption and this can be modelled 

with multi-layered shell configuration with a contact card that is capable of GIC
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implemented energy release rate [185-188]. Defining 

One_Way_Surface_To_Surface_Tiebreak contact between the two shells with 

inner tube being master and outer being slave.  

The tiebreak option enables the detachment of the contact surfaces after 

reaching a maximum normal stress (NFLS) or shear stress (SFLS). If the failure 

parameter, driven by occurring normal and shear stresses, become 1, the contact 

forces soften linearly until contact distance PARAM is reached and the interface 

failure is completed. Based on the interlaminar utilisation of the contact, the 

parameters are determined by the mechanical properties of the matrix material. 

Consequently, shell layers detach when the interlaminar stress exceeds the 

matrix properties, which are mainly responsible for interlaminar strength. 

Maximum normal and shear contact stresses for the tiebreak contact are based 

upon the mechanical properties of the epoxy resin. The critical normal separation 

of the surface is set to 0.15 mm and 0.32 mm for non-stitched and stitched 

specimen. Automatic_Node_To_Surface contact was defined for the striker and 

inner shell with striker being master and inner shell being slave. 

Automatic_Single_Surface contact algorithm was utilised. This prevents 

penetration of the crushing tube by its own nodes. In the calibration procedure, 

parameters DFAILT, DFAILM and DFAILS (shear failure strains) were found to 

have a marginal effect on the results and were kept constant at arbitrarily selected 

values of 0.02, 0.02 and 0.03, respectively. However, increasing DFAILM value, 

increased computational cost unreasonably, and produced unrealistic crushed 

morphologies, this is due the stacking sequence, when ±45 are used the matrix 

split becomes unpredictable (see Figure 6-24). utilising a stacking sequence of 

[0]12 has shown effective with realistic axial splits and petal formations (see Figure 

6-25). It was found that simulations with DFAILC = -0.004 and SOFT = 0.75 

yielded the mean crushing force value and displacement behaviour for chamfered 

tubes that matched very well with experimental data. 

To satisfy quasi-static conditions, it is important that the load is applied in a 

manner that would yield a minimal inertial effect on the results and the ratio of the 

kinetic energy to the internal energy must be reasonably small. Time-scaling was 
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utilised to apply the load in higher rate to reduce total simulation time. A constant 

loading rate of 0.65 m/s was applied and the kinetic energy to the internal energy 

were less than 10% upon initial contact and less than 5% throughout the 

remaining of the crushing process.  

All bottommost nodes of all shell element layers are constrained in their 

translational degrees of freedom. The impactor is modelled as rigid with a mass 

of 108.4kg and velocity of 7.022 m/s. Gravity is modelled with an acceleration 

factor of 9.81 m/s2. All simulation results are smoothed using SAE 300 Hz filter 

[188]. 

7.3.3 Stitch modelling  

In simple non-stitched specimen, three different components were defined, inner 

shell, outer shell and the striker. The contact definition for inner shell and out shell 

was One_Way_Surface_To_Surface_Tiebreak option 8 with static and dynamic 

coefficient of frictions of 0.3 and 0.2 respectively. To model stitching between the 

shells, different approaches were taken place, it is worth mentioning that the 

stitching improves Mode-I interlaminar fracture toughness, therefore the crack 

propagation resistance improves, to implicate this in finite element, an energy-

based contact card was used. Since contacts are defined for components in LS-

DYNA explicit, five components were defined, inner shell, stitching of inner shell, 

outer shell, stitching of outer shell and the striker. The construction of either inner 

shell or outer shell consists of 14 shells, all these shells were glued together to 

perform as one shell. This enables defining different components on a shell. This 

method is used to define the trigger mechanism, defining two contact card for the 

stitched models. Fourteen shells were used as mentioned, one for the trigger, 6 

for the stitching, and 7 shells for the main body, this process was used for both 

inner and outer shells (see Figure 7-2) and the stitch area on both shells align. 

The double contact definition technique consists of Tiebreak (option 8) contact 

with static and dynamic coefficient of frictions of 0.3 and 0.2 respectively were 

assigned to inner and outer shells. In stitched delamination, the Mode-I crack 

propagation resistance increases, hence in the modelling of stitching, ��� is 

increased. Therefore, in non-stitched regions the contact has the parameters 
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mentioned in table 6-2, and in stitched regions the contact has the parameters 

mentioned in table 6-3. The critical normal separation of the surface is considered 

in this contact card, known as PARAM, based on the energy release rate in Mode-

I (���) and the critical normal stress. In the stitched region, the Mode-I energy 

release rate (GI) for delamination growth increases according to table 6-3, which 

is based on experimental studies and in non-stitched region these parameters 

are set for normal Mode-I energy release rate (GI) for delamination growth 

according to table 6-2. 

This method increases the Mode-I delamination crack growth resistance during 

the crushing process within the stitched area and consequently simulates the 

stitched area similar to experimental data (see Figure 7-3). The setup and the 

contact definitions used in the non-stitched and stitched finite element model are 

shown in Figure 7-3.  

Figure 7-2 construction of either inner or outer stitched shell. a) trigger 

mechanism (1 shell), b) main body of the inner/outer shell (7 shells), c) stitching 

(6 shells), d) final stitched shell, glued as one shell 
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Figure 7-3 FEA contact definition of double shell stitched and non-stitched. a) 

GFRP non-stitched elements with thickness (3D), b) GFRP non-stitched without 

thickness (2D), c) GFRP intrawall non-stitched with thickness (3D), d) GFRP 

intrawall stitched with thickness (3D), GFRP stitched without thickness (2D) 

Stitching was modelled using Table 6-2 and 6-3 values with 

One_Way_Surface_To_Surface_Tiebreak contact card. This technique has led 

to capture both stitched and non-stitched crack growth behaviour through FEA. 

Figure 7-4, a) the comparison of stitched and non-stitched DCB tests for mid-

plane interface is shown. The stitched specimen has increase Mode-I resistance 

and delayed crack initiation. Stitching through the thickness has increased crack 

propagation force by 40 kN.  Figure 7-4, b) the FEA analysis for DCB tests for 

mid-plane interface for stitched and non-stitched specimen has been investigated 

to establish the effect of the contact definition to increase Mode-I delamination 

resistance. The combination of this effect on the stitched tubes (see Figure 7-2 

and 7-3) can simulate the stitching effect. 
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Figure 7-4 a) force- displacement (crack growth) comparison of stitched and non-

stitched DCB tests for mid-plane interface [203]. b) FEA and experimental 

comparison of stitched and non-stitched DCB tests for mid-plane interface 

To summarise, Stitch modelling was the main concentration of this section. The 

approach was through Tiebreak option 8, to model delamination as this contact 

card can define Mode-I and Mode-II energy release rate which simulates 

II III I 

I = Elastic deformation, II = Crack initiation, II = Crack propagation  

b 

a 
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delamination. An energy-based approach was used to determine the input 

parameters for the tiebreak formulations to accurately simulate delamination 

between the plies. A scaling factor was introduced to account for ply interfaces 

that were not represented by a tiebreak definition. Using PARAM function to 

increase GIC energy release rate based on experimental studies.  

CFRP and GFRP specimens were both modelled using the technique mentioned. 

Since contacts are defined for components in LS-DYNA explicit, 14 shells were 

used in total, 6 of which represent the stitching area. A total of 5 components 

were defined. Using multiple shells to represent the trigger, main body and 6 rows 

of stitching on each shell. The shell was then glued and meshed. This enables 

the shell to be recognised as one shell. The contact card, tiebreak option 8 was 

then defined between the shells in respect to the parameters obtained 

experimentally for stitched and non-stitched specimens. The current tiebreak 

formulations require a fixed set of input parameters that include, or can be 

calculated from, the Mode I and Mode II interlaminar fracture toughness values. 

In the stitched area the PARAM’ was increased according to the experimental 

data and non-stitched area normal PARAM’ was used. This increases GIC energy 

release rate within the stitched area and replicates the stitched specimen. 

7.4 Results and discussion 

7.4.1 Axial and off-axis crushing under quasi-static loading 

This study experimentally and numerically investigates the structural integrity of 

GFRP composite tubes against axial and off axis loading under quasi-static 

loading. Off-axis loading angles of 5o, 10o, 20o and 30o were selected for the 

study. The results indicated that as the lateral incline angle increases the mean 

crush force and energy absorption decreases. Axial loading compared with off-

axis loading had better energy absorption capability with mean crush force of 100 

kN. The experimental (see Figures 7-6 and 7-7) morphologies of axial and off-

axis angle 5o illustrated bundle fracture and close to brittle failure mechanism 

which is a combination of lamina bending and transverse shearing modes. Off-
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axis angle 10o showed transverse shearing mode characterised by wedge-

shaped laminate cross section with multiple short interlaminar fractures and axial 

cracks. Off-axis angle 20o and 30o showed catastrophic failure mechanism with 

unsymmetrical damage. This results into minimal energy absorption capability.  

Figure 7-5 represents the various stages of the axial and off-axis loading 

conditions. Both experiment and FEA in all cases demonstrate a similar crushing 

behaviour. In respect to morphologies of the crushed tubes (see Figure 7-6), the 

effect of off-axis and unsymmetrical crushing behaviour shown in Figure 7-7 d is 

observed with inner and outer fronds formation.  

The main concentration of this study was based on energy absorption capability 

on each case. The failure mechanism is a factor of how the energy was absorbed 

and force-displacement curve indicates the amount of energy absorbed in each 

case. To compare FEA and experimental, the mean crush force values are 

compared. Figure 7-8 a, shows the five experimental studies at axial and off-axis 

with angles of 5o, 10o, 20o and 30o. It can be concluded from the graph that as 

the lateral incline angle increases the energy absorption decreases. Figure 7-8 b 

represents force-displacement of GFRP axial crushing. The axial experiment 

data has a mean crush force of 100 kN with FEA being 98 kN. The mean crush 

force values of experimental and FEA is very close in all cases. In off-axis 5o (see 

Figure 7-8 c) the experimental data has a mean crushing force of 82 kN and FEA 

is 80 kN. The experiment and FEA difference in mean crush force at 10o (see 

Figure 7-8 d) is 2 kN, 61 kN and 59 kN respectively, followed by 3 kN at 20o (see 

Figure 7-8 e) with mean crush force of 39 kN and FEA 36 kN respectively. At 30o 

(see Figure 7-8 f) the experimental mean crush force is 25 kN and FEA is 22 kN. 

The experimental and FE analysis are in good agreement and showed similar 

trending curves with FEA sensitivity towards lateral inclined angles. 
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Figure 7-5 Various stages of axial and off-axis crushing a) axial FEA b) axial 

experiment c) 5o FEA d) 5o experiment e) 10o FEA f) 10o experiment g) 20o FEA h) 

20o experiment i) 30o FEA j) 30o experiment 
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Figure 7-6 Plane view of crushed axial and off-axis specimens a) axial 

experiment b) axial FEA c) 5o experiment d) 5o FEA e) 10o experiment f) 10o FEA 

g) 20o experiment h) 20o FEA i) 30o experiment j) 30o FEA 
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Figure 7-7 Plane view of crushed axial and off-axis specimens a) axial with brittle 

fracture crushing mode, b) 5o with brittle fracture mode c)10o with transverse 

shearing mode d) catastrophic failure 
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Figure 7-8 Force-displacement of axial and off-axis a) axial and off-axis 

experimental comparison b) axial experimental and FEA c) 5o experimental and 

FEA d) 10o experimental and FEA e) 20o experimental and FEA f) 30o

experimental and FEA 

7.4.2 Axial crushing and improvement of off-axis loading 

In this section, the integrated off-axis at 10o is modelled and simulated. This 

configuration cancels the off-axis effect and improves energy absorption 

capability. Various crushing stages of the specimens at off-axis loading is shown 

in Figure 7-9 where the experiment and numerical stages are compared. 

According to the morphologies of crushed tubes (see Figure 7-10), the effect of 

ply-orientation and trigger mechanism were modelled to increase energy 

a

c d

b

fe
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absorption capability. By observing both experimental and numerical results, it 

can be concluded that by altering and tailoring the stacking sequence in respect 

to composite tube axis and altering the trigger mechanism, the energy absorption 

can be significantly improved. Figure 7-11 represents the force-displacement 

history of GFRP integrated specimen and its comparison with the related 

experimental data. The experimental data has a mean crush force value of 100 

kN while the value of the FEA result is 98 kN which shows similar trending curves 

and high sensitivity towards stacking sequence and trigger mechanism. 

Figure 7-9 Various stages of integrated off-axis at 10o crushing of specimens a) 

FEA and b) experiment 

b 

a 
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Figure 7-10 Plane view of crushed integrated off-axis at 10o specimen a) 

experiment b) FEA 

Figure 7-11 Force-displacement comparison of experimental and numerical 

results of integrated off-axis at 10o

a b 
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7.4.3 GFRP and CFRP stitched crushing under quasi-static loading 

The developed stitching pattern utilised based on previous chapter 4 study, this 

technique has shown to increase local and global energy absorption capability by 

increasing interlaminar fracture toughness, friction and bending. Figure 7-12 a 

and 7-12 e, illustrate the experiment morphologies of stitched specimens followed 

by FE analysis in Figure 7-12 b and 7-12 f, for GFRP and CFRP respectively. 

CFRP non-stitched specimen (figure 7-12 c) showed fragmentation with fibre 

fracture through brittle fracture failure mechanism along with bundle fracture. 

Whereas in CFRP stitched specimen Figure 7-9 e, the bundle fracture increased, 

forming external fronds. Figure 7-7 a, shows GFRP non-stitched sample with 

failure mechanism of continuous internal and external fronds through brittle 

fracture and lamina fracture combination. Compared with GFRP stitched 

specimen Figure 7-12 a, it dominates brittle failure mechanism with increased 

fragmentation failure mechanism and axial cracks.  

Introducing stitching through the thickness, the fracture toughness is increased, 

consequently increasing local and global energy absorption capabilities indicating 

better crashworthiness behaviour. All the specimens showed progressive 

crushing behaviour with sudden increase in localised stitched locations (Figure 

7-13 a and 7-13 b). Both CFRP and GFRP specimens subjected to stitching 

through the thickness has shown better energy absorption capabilities. FEA and 

experimental data are in close agreement. In Figure 7-13 c the GFRP stitched 

specimen has an experimental mean crush force of 116.3 kN and FEA of 115 kN. 

Figure 7-13 d shows the CFRP specimen with mean crush force of 65 kN for 

experimental and 64 kN for FEA. Figure 7-13 e shows the CFRP stitched 

specimen with mean crush force of 75 kN for experimental and 77 kN for FEA. 
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Figure 7-12 Plane view of GFRP and CFRP a) GFRP quasi-static Stitched 

experiment b) GFRP quasi-static stitched FEA c) CFRP quasi-static non-stitched 

experiment d) CFRP quasi-static non-stitched FEA e) CFRP quasi-static stitched 

experiment f) CFRP quasi-static stitched FEA 



203 

a b

c d

e

Figure 7-13 Force-displacement of GFRP and CFRP quasi-static Stitched 

experiment a) GFRP quasi-static stitched and non-stitched b) CFRP quasi-static 

stitched and non-stitched c) GFRP stitched FEA and experimental d) CFRP non-

stitched FEA and experimental e) CFRP stitched FEA and experimental 

Stitching caused significant increase in crashworthiness behaviour  
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7.4.4 Stitched GFRP and CFRP crushing under impact loading  

Tubes utilising the stitching pattern under quasi-static has shown better energy 

absorption than non-stitched specimen in both GFRP and CFRP. Similarly, the 

crashworthiness of the composite tubes subjected to stitching through the 

thickness has significantly increased. Figure 7-14 shows different stages of 

experimental test and numerical simulation under impact loading, which are in 

good agreement. The failure mechanisms are different than quasi-static in GFRP. 

The difference between the two are transverse shearing mode with multiple short 

interlaminar cracks in addition to brittle and lamina bending mechanism. 

However, the dominant failure mechanism is a combination of lamina bending 

and transverse shearing mode with observation of axial cracks and bundle 

fracture (see Figure 7-15 a and 7-15 c). In CFRP (see Figure 7-15 e and 7-15 g) 

morphologies, the failure mechanisms is dominated by transverse mode with 

multiple short interlaminar fracture and axial cracks.  

Utilising stitching through the thickness has significantly influenced the 

crashworthiness capability of the composite tubes (see Figure 7-16 a and 7-16 

b). GFRP stitched specimen managed to absorb the same amount of energy as 

non-stitched specimen with 25% penetration reduction indicating better 

crashworthiness behaviour. The aim of introducing stitching through the 

thickness was to increase fracture toughness and consequently increase energy 

absorption capability which has been achieved in both materials.  

Figure 7-16 c represents GFRP non-stitched experimental and numerical results. 

The mean crush force is 69 kN for experimental and 68 kN for numerical. Figure 

7-16 d represents CFRP non-stitched and it has a mean crush force of 63 kN and 

62 kN for experimental and numerical respectively. GFRP stitched (see Figure 7-

16 e) has a mean crush force of 84 kN and 82 kN for experimental and numerical 

respectively. In figure 16 f, CFRP stitched specimen has a mean crush force of 

75.5 kN and 77 kN for experimental and numerical respectively.     
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Figure 7-14 Various stages of GFRP and CFRP subjected to impact loading a) 

GFRP non-stitched FEA b) GFRP non-stitched experimental c) GFRP stitched 

FEA d) GFRP stitched experimental e) CFRP non-stitched FEA f) CFRP non-

stitched experimental g) CFRP stitched FEA h) CFRP stitched experimental 
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Figure 7-15 Plane view of GFRP and CFRP under impact loading a) GFRP non-

stitched FEA b) GFRP non-stitched experimental c) GFRP stitched FEA d) GFRP 

stitched experimental e) CFRP non-stitched FEA f) CFRP non-stitched 

experimental g) CFRP stitched FEA h) CFRP stitched experimental 
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a b

c

e

d

f

Figure 7-16 Force-displacement of GFRP and CFRP under impact loading a) 

GFRP stitched and non-stitched b) CFRP stitched and non-stitched c) GFRP 

stitched FEA and experimental d) CFRP non-stitched FEA and experimental e) 

GFRP stitched FEA and experimental f) CFRP re-stitched FEA and experimental 

Stitching caused significant increase in crashworthiness behaviour  
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7.4.5 Specific energy absorption comparison of FEA and experiment 

results 

The SEA value comparison in this section is to determine the energy absorption 

capability of finite element model compared with experimental studies. In this 

section, the differences of numerical and experimental studies are compared. In 

Figure 7-17, part a, compares the SEA values of stitched and non-stitched CFRP 

and GFRP FEA and experimental under impact loading. The GFRP non-stitched 

has 3.8% difference, GFRP stitched has 2% difference. CFRP non-stitched has 

2.3% difference, and CFRP stitched has 1.6% difference. In Figure 7-17, part b, 

compares the SEA values of stitched and non-stitched CFRP and GFRP FEA 

and experimental under quasi-static loading. The GFRP non-stitched has 2.8% 

difference, GFRP stitched has 2.6% difference. CFRP non-stitched has 3% 

difference, and CFRP stitched has 1.9% difference.  
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Figure 7-17 SEA comparison of experimental and numerical a) impact loading b) 

quasi-static loading  
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7.5 Conclusion  

In the present study, the crashworthiness and numerical simulation of circular 

GFRP and CFRP composite absorbers under axial and off axis, quasi-static and 

impact loading have been investigated. Axial compared to off-axis loading had 

better crashworthiness behaviour with mean crush force of 100 kN. It can be 

concluded that as the lateral inclined angle increased the energy absorption 

decreased.  

Stitching through the thickness has shown significant lightweight potential. This 

method increases crashworthiness behaviour without increasing the structural 

weight. The impact loading specific energy absorption of GFRP and CFRP are 

17% and 18% higher than non-stitched sections respectively. 

Stitch modelling was the main concentration of this section. The approach was 

through Tiebreak option 8, to model delamination as this contact card can define 

Mode-I and Mode-II energy release rate which simulates delamination. An 

energy-based approach was used to determine the input parameters for the 

tiebreak formulations to accurately simulate delamination between the plies. A 

scaling factor was introduced to account for ply interfaces that were not 

represented by a tiebreak definition. The PARAM function was used to increase 

GIC energy release rate based on experimental studies.  

CFRP and GFRP specimens were both modelled using the technique mentioned. 

Since contacts are defined for components in LS-DYNA explicit, 14 shells were 

used in total, 6 of which represent the stitching area. A total of 5 components 

were defined. Using multiple shells to represent the trigger, main body and 6 rows 

of stitching on each shell. The shell was then glued and meshed. This enables 

the shell to be recognised as one shell. The contact card, tiebreak option 8 was 

then defined between the shells in respect to the parameters obtained 

experimentally for stitched and non-stitched specimens. The current tiebreak 

formulations require a fixed set of input parameters that include, or can be 

calculated from, the Mode I and Mode II interlaminar fracture toughness values. 

In the stitched area the PARAM’ was increased according to the experimental 

data and non-stitched area normal PARAM’ was used. This increases GIC energy 
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release rate within the stitched area and demonstrates the experimental stitched 

specimen behaviour under various loadings. 

The multi-layer shell configuration has shown reliable to predict energy 

absorption of GFRP and CFRP composite tubes. The method used in different 

loading conditions has shown sensitivity towards axial and off-axis loading and 

quasi-static and impact loading conditions. The experimental results and 

numerical results are in good agreement. Utilising stitching increases interlaminar 

fracture toughness, the stitch modelling approach took this into consideration and 

used contact definition to increase crack propagation resistance. This method 

uses double contact definitions and increases the crack propagation resistance 

in the stitched area. Each shell was constructed from 14 shells, which were glued 

as one, therefore in double shell configuration, a total of 28 shells were modelled 

and used. This method increases local and global energy absorption capability. 

Simulations of FRP-crushing is possible with a commercial material model along 

with stitch modelling. The modelling technique approach led to equally good 

results when the material and geometry of the specimens were changed. Utilising 

multi-shell configuration with the used contact definitions, the modelling 

technique were effective in simulations of axial and off-axis loading composite 

structure under quasi-static and impact loading. Stitching through the thickness 

enables an efficient design for composite structures and this numerical approach 

is efficient for multi-layered composites structures.  

Finite element models were developed for CFRP and GFRP specimens as 

mentioned above with and without stitching. Figure 7-18 shows the intrawall 

failure mechanisms comparison between experimental results and FEA results, 

and it can be noted that, a double shell configuration can represent the axial and 

off-axis crushing behaviour. These models were subjected to quasi-static and 

impact loading. In all cases the FEMs were within 2-4% different from 

experimental SEA values. The force-displacement curves were compared along 

with the crushed morphologies and crushing process. In all cases the numerical 

results were found to be in good agreement with the experiments.
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Figure 7-18 Crack Propagation at central intrawall a) axial failure mechanism b) 

axial FEA zoomed in c) Axial experimental d) axial FEA e) 5o experiment f) 5o FEA 

g) 10o experiment h) 10o FEA i) 20o experiment j) 20o FEA 
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8 Conclusions and Recommendations  

8.1 Conclusions 

In this thesis, the aim was to improve specific energy absorption capability of 

unidirectional composite crash absorbers. This requires the sustained crush load 

to be increased. The axial and off-axis crushing behaviour of GFRP composite 

crash absorbers was studied. The Various angles of 5o, 10o, 20o and 30o degrees 

were selected for the study of off-axis loading. The results indicate that by 

increasing the lateral inclination angle the mean crushing force and consequently 

energy absorption capability of all tested sections decreased. The fracture 

mechanism and crushing process were studied to determine the failure 

mechanism. From a design perspective, it is necessary to investigate the 

parameters affecting the energy absorption capability of composite tubes at off-

axis loading. The effect of lay-up sequence and flat trimming at one end of the 

composite tube was investigated and tested under quasi-static loading. 10o off-

axis angle was chosen as mentioned in chapter 3. The effect of lay-up sequence 

and flat trimming improved energy absorption capability with similar mean 

crushing force as axially tested specimens. 

To improve specific energy absorption, stitching through the thickness was 

utilised. This method improves friction, fronds bending and main central crack 

propagation resistance. The through-thickness reinforcements were applied into 

locations of 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 

mm and 10-15-20-25-30-35 mm from top of the composite crash absorbers and 

tested under quasi-static loading conditions. It is shown that multi-stitched 

locations can cause multiple increases in crushing load and consequently 

increase in energy absorption capability of composite crash absorbers. In single 

stitching at 30 mm a significant improvement was observed. In most cases of 

single stitching and double stitching caused lower specific energy absorption. 

However, pattern-stitching of 10-15-20-25-30-35 has shown significant 

improvement in Mode-I delamination resistance with higher friction and fronds 

bending that contributed to achieving higher SEA value than the non-stitched 
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specimen. The pattern-stitched design has shown a 15% increase in specific 

energy absorption than the non-stitched specimen. 

Multi-stitching on GFRP crash absorbers showed significant improvement in 

specific energy absorption under quasi-static loading. Crashworthiness of multi-

stitched crash absorbers under impact loading was studied. To determine the 

effect of the designed pattern stitching, a material with a different fibre and matrix 

was chosen (T300/914) with a different geometry. The force-displacement history 

and crushed morphologies were studied and compared with non-stitched 

specimens. The stitching pattern on both materials showed significant 

improvement under quasi-static and impact loading conditions. This technique 

significantly increased crashworthiness behaviour of composite absorbers 

subjected to quasi-static and impact loading and consequently improved energy 

absorption capability without increasing of structural weight, which indicates, 

improvement in SEA value. The CFRP and GFRP stitched specimens subjected 

to quasi-static loading showed an increase in SEA percentage values of 14% and 

15% respectively. Similarly, the CFRP and GFRP stitched specimens subjected 

to impact loading showed an increase in SEA percentage values of 18% and 17% 

respectively. This shows the significant influence of through-thickness stitching 

on specific energy absorption. 

A comprehensive investigation was performed to develop a methodology to 

model the crushing behaviour of the composite members. This included 

determining the most effective number of shells, friction, element size, 

formulation, contact definitions, loading rate, delamination interfaces, trigger 

mechanism and material model. The aim was to develop a FEM that can predict 

energy absorption capability with a high accuracy of around 5% error. 

Various shell configurations were studied and a multi-layer shell element with 

double-shell configuration produced accurate results with a difference of less 

than 5% with minimal computational cost compared with other configurations. 

This configuration was used to predict energy absorption capability and specific 

energy absorption, other considerations were deformation and damage 

progression of the composite tubes. Each shell element or layer can contain 



215 

either a single ply or multiple plies. The layers were tied using Tiebreak option 8 

contact definitions. This contact card has the capability of modelling delamination 

between the layers through energy-based approach. The material card of Mat_54 

was used to represent each ply and few parameters in the material cards were 

studied to find the optimum configurations to match the experimental studies. A 

parametric study was performed in order to obtain the values of the unknown 

parameters. It was determined that SOFT and DFAILC (compression failure 

strain) were the main parameters that affected energy absorption capability and 

specific energy absorption was influenced by these parameters. The sensitivity 

of the model was studied against the material model, delamination model, friction 

and impact velocity. The results show that the model is sensitive towards minimal 

input change. The simulation results showed that the failure peak load, mean 

crushing force, SEA, all compared very well with the experimental results. 

A multi-shell finite element model was constructed to predict the axial and off-axis 

crushing behaviour and energy absorption capability of composite structures 

under quasi-static and impact loading. The stitch modelling method is based on 

surface contact modelling technique definition in the stitched area to represent 

the functionality of the stitched area during an impact event. Tiebreak option 8 

was utilised to model delamination as this contact card can define Mode-I and 

Mode-II energy release rate which simulates delamination. This energy-based 

approach was used to determine the input parameters for the tiebreak 

formulations to accurately simulate delamination between the plies. A scaling 

factor was introduced to account for all ply delamination that was not represented 

by a tiebreak definition. The SEA value comparison can determine the energy 

absorption capability of the finite element model compared with experimental 

studies. The differences were less than 4% in all cases. in comparison with the 

existing methods for multi-layered composites structures. 

The present study has established sufficient experimental and numerical 

investigation on the effect of stitching through the thickness on composite tubular 

structures under quasi-static and impact loading. 
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8.2 Future work 

The different directions of work which could be undertaken for future research are 

summarised below: 

In this project it was concluded that some fibres repel some resins. This has been 

clearly illustrated in CFRP specimen (chapter 5), when subjected to Kevlar 

specimen, the SEA improved by 11%, further investigation led to changing the 

fibre yarn and obtained specimen that fully bonded with the matrix. This led to 

18% increase in SEA compared with 11% partially bonded specimen. Therefore, 

it is recommend that further investigation on fibres that react well and are fully 

absorbent towards the applied resin for better bonding.     

LS-Dyna has been extensively used for crashworthiness of composite structures 

using shell and cohesive elements. More material models are being added to the 

its library for better and wider use of the software. Cohesive zone models are 

used in research for detecting cracks and for better prediction of deformations. 

Below are some of the recommendations for the future work: 

• For better prediction of cracks and deformations and numerical and 

experimental comparison, a user defined material model can be 

implemented for the composite tubes based on the material properties and 

failure criteria to get better results.  

• Cohesive zone material models can be used further for detecting 

delamination(s) in the composite tubes.   

• The effect of additional post-failure parameters available for the composite 

material models in the latest version of LS-Dyna can be studied.  

• Other cohesive material models which are available in LS-Dyna library can 

also be assigned for the composite tubes for better comparison. 

• Cohesive material models for modelling delamination and studying 

different enhanced material models available in LS-DYNA such as 

Mat_161, Mat_162, Mat_Composite_Msc_Dmg which require solid 

elements for delamination modelling can be beneficial to produce and 

develop engineering solutions with reasonable time and resources.  
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The best position of stitched area in the wall of CFRP and GFRP composite 

sections can be optimised through an analytical approach. A novel analytical 

model based on an energy balance approach and multi-objective optimisation 

problem will be proposed to estimate the optimum position of the stitched area in 

the wall of composite sections. The optimised position will be maximising the 

energy absorption capability under axial and off-axis crushing load.   
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