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Abstract 

In this article, we compare and evaluate two methods of procedure design using an aircraft 

go-around (GA) as a test scenario. We contrast the manufacturer specified, crew-centric 

procedure with a redesigned process-centred perspective. We test the claim that the 

process-centred design can take into account situational factors more effectively and 

generate less workload. We report a heuristic assessment of the new procedure against 

design guidelines and an evaluation in a full-flight simulator at the German Aerospace 

Centre (DLR) using qualified airline pilots to assess workload and performance. Both the 

manufacturer specified and new procedure were employed in three GA scenarios 

representative of increasing operational complexity. Results demonstrate an advantage for 

the new procedure design in the most complex scenario. The new, process-based procedure 

can reduce reported crew workload and improve response flexibility in more complex 

scenarios, improving rated performance. This study suggests that the process-based 

account in procedure design has advantages when compared to the flight crew-centric 

approach. These advantages include an enhanced flexibility, robustness and improved crew 

performance during GA.  
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1 INTRODUCTION 

In this article, we evaluate two methods of procedure design using an aircraft go-around 

(GA) as a test scenario. We redesign a manufacturer specified procedure using the process-

centred perspective. This perspective can take into account situation changes in dynamic 

flight operations more effectively. Our evaluation contributes to a new practical application of 

a process-centred procedural design demonstrating how this is achieved in the selected 

scenario. In addition, we report preliminary empirical evidence of the performance 

improvement that could be achieved using this alternative theoretical perspective on 

standard operating procedure (SOP) design. 

SOPs provide the basis of conducting safe flight operations (Cahill et al., 2017). Procedures 

define the script for the wide-ranging interactions between aircrew (Degani et al., 1999), 

aircraft systems (Mauro et al., 2012) and the operational environment (Barshi et al., 2016). 

The workflows defined by SOPs should be appropriate for the operation (FAA, 2003) such 

that tasks are completed in a logical, intuitive sequence, avoiding any overlaps or disruption 

(Kourdali & Sherry, 2016b). To be effective, SOPs should be clearly communicated by 

procedures and checklists (Drury, 1998; Patel et al. 1994). 

In reality, this goal is at times not achieved. Indeed, problems with the use of procedures 

have not decreased over time (Drury et al., 2017a; 2017b) and continue to be represented in 

aircraft accidents and incidents (Drury & Johnson, 2013). The human factors literature highlights 

that procedures can lack a clear operational logic (Degani & Wiener, 1998), are poorly 

designed (Funk et al., 2009), inherently incorrect (Degani & Wiener, 1997) or do not 

adequately address human limitations (Kemeny & Popp, 2016). These issues can disrupt 

safe operation of the aircraft or create unanticipated work for the aircrew. Moreover, SOPs 

that are not practical to use can impose multiple task demands (Loukupoulos et al., 2003, 

2009) leading flight crews to deviate from the procedures and to adapt the task sequence to 

the operational environment (de Terssac & Chabaud, 1990; de Brito, 1998; BEA, 2013; 

Carim et al., 2016; Jones et al., 2018). Compliance with procedures remains an ongoing 



issue despite our increased understanding of their effective design and implementation 

(Drury et al. 2017a). 

Cahill et al. (2014) identify two types of procedure design: crew and process-based centric 

design. Characteristics of both approaches are summarised in Table 1. The crew-centric 

design philosophy captures the linear workflows typically associated with procedure design; 

the process-based perspective captures the ways in which the flight crew actually apply 

procedures. In this research we extend the theoretical to a simulator evaluation of the two 

different procedure philosophies. 

The crew-centric approach emphasises that cockpit operations do not always follow the 

workflow linearly, and therefore not all operational conditions can be considered in a written 

procedure while maintaining an appropriate length (Pelegrin, 2007; Cahill et al., 2014; Maille, 

2016; Surabatualla et al., 2019). However, situation-dependent deviations from SOPs can 

vary from flight to flight and even from moment to moment (Loukupoulos et al., 2009). These 

deviations can interfere with the execution of habitual tasks which can impact on safety 

(Loukupoulos et al., 2009), particularly in dynamic or complex flight phases such as the GA. 

The process-based procedures can contextualise these deviations and may offer a way in 

which to bring work as imagined and work as done closer together (Cahill et al., 2014). 

Table 1 Characteristics of crew-centric and process-based perspective in procedure design. 

Crew Centric Perspective on Task 

Performance 

Process-Based Perspective on Task 

Performance  

Local explanation. General explanation.  

Good performance is through application of 

SOPs. 

Good performance can be inhibited by the 

organization of procedural steps as written 

down in SOPs. 

Linear workflow structured through process-

gates that must be accomplished or the task 

flow does not move forward. 

Non-linear workflow that varies according to the 

level of operational and environmental 

complexity. 



Focus on when and how information is shared at 

pre-defined times in the process. 

Focus on collaborative requirements at pre-

defined times in the process. 

SOP design can be difficult to follow due to a 

narrow picture of task operation which fails to 

capture the management of operational and 

environmental complexity. 

SOP design represents the normal practice of 

how flight crews apply procedures and expertise 

to support a safe outcome. 

In this article, we focus on the GA procedure as a candidate with which to test the two 

different approaches to design. The GA is a normal flight manoeuvre conducted by flight 

crews if a landing cannot be completed (Manchanda & Sikora, 2016). This may be for a 

number of reasons including obstruction on a runway or an unstable approach necessitating 

reconfiguration of the aircraft. For most commercial pilots the GA is not a common event 

(Blajev & Curtis, 2017). Across the worldwide Airbus A320 fleet, the GA rate equals to 0.29 

percent which corresponds to one GA for every 340 approaches (Marconnet & Roland, 

2014). Regular training and compliance to SOPs ensure that the GA procedure flows well 

when performed correctly (ATSB, 2014). Nonetheless, characterising the GA as a normal 

and scripted flight phase does not exclude risk (GA Safety Forum, 2013). High workload and 

the different circumstances under which a GA can arise (Airbus, 2017a) may lead to a loss 

of state awareness (BEA, 2013). Several GA accident and incidents support this conclusion 

(for example Kingdom of Bahrain CAA, 2000; ATSB, 2007, 2014; BEA, 2000, 2007, 2009; 

JTSB, 2016). 

Investigative findings from these incidents and accidents point to variable performance of 

SOP implementation and shortcomings in crew resource management (CRM) (BEA, 2013) 

which can impact on safety (Dehais et al., 2017). Cahill et al. (2014) argue that these 

deficiencies are partially caused by the design of rigid crew function allocations that are 

based on a flight crew-centric perspective on task activities. This perspective assumes that 

information within the flight crew and external agents like air traffic control are shared at 

predefined times (Cahill et al. 2014). During the GA, this perspective is perhaps justified 

because the flight crew acts across different operational roles and their activities are directly 



related to changes of the aircraft states that may occur at predefined times depending on 

aircraft performance (Cahill et al., 2014). However, the crew-centric perspective is solely 

based on the physical configuration of multi-crew cockpits (Kemeny & Popp, 2016) that may 

not reflect the operational complexity of the GA. This complexity arises since pilots are 

sometimes unable to execute the procedural steps, either because the situation requires 

handling unexpected tasks so that procedural steps are interleaved or because the action by 

one pilot cannot be performed because the necessary trigger is not yet available 

(Loukupoulos et al., 2003, 2009). The necessary trigger during the GA can be a callout such 

as ‘Positive Climb’. The pilot monitoring (PM) must perform the callout before the pilot flying 

(PF) requests ‘Gear Up’, otherwise, the task sequence is interrupted which may cause risk.  

During a GA, the problem of interleaving or deferment tasks is acute for the operational role 

of the pilot monitoring (PM). On the flight deck the PM performs multiple roles monitoring 

system related states and performing tasks on command by the PF, all while communicating 

with air traffic control. Recent GA studies (BEA, 2013; Dehais et al., 2017; Blajev & Curtis, 

2017) suggest that safety-critical tasks like flight path monitoring and mode awareness are 

vulnerable to error. We suggest that the procedure design contributes to this vulnerability 

because the task sharing does not account for the complex operation (Cahill et al., 2014). 

Instead, the numerous tasks during GA can leave the PM ill-equipped to handle the sudden 

onset of additional task demands while concurrently monitoring the flight path (Dehais et al., 

2017). 

A broader process-based account in procedure design may improve this situation by taking a 

holistic view on flight crew activities and it is this hypothesis that we test in this article. The 

process-based approach takes into account the team dimension of flight crew tasks that are 

linked to the wider operational process and associated information flow requirements. 

Following this approach, the procedure design mirrors the operational process in which the 

flight crew manages the flight involving different levels of operational complexity (Cahill et al., 

2014). 



In this study, we develop a new process-based procedure for the GA. We compare 

performance of this design with the manufacturer-specified crew-centric procedure. We 

measure workload of pilots performing the GA procedures under different contexts and 

present a heuristic evaluation of the new procedure design. The research addresses two 

aims: 

1) To evaluate and compare a crew-centric procedure and develop a process-based 

procedure. 

2) To assess differences in performance and workload associated with the two different 

procedural designs. 

To address the aims of the study the new GA procedure was developed and tested using a 

heuristic evaluation and through a high-fidelity simulation using three different scenarios. We 

first present the development of the new procedure then the evaluative components of the 

work. 

2 Crew-centric and process-based go-around procedure 

2.1 Development of new process-centred procedure 

To meet the study aims, two GA procedures were compared. The manufacturer crew-centric 

procedure and the new, process-based procedure (refer to Figure 1). 

We developed the new procedure starting with multi-scenario based modelling of the GA. 

Multi-scenario based modelling considers different levels of complexity in the selected 

operation. The objective of this modelling activity is to define an ideal cockpit operation. This 

is then followed by creation and identification of a range of different scenarios that may place 

higher demands on the crew. In this article we consider three different GA scenarios. 

Firstly, we captured the ideal sequence of cockpit duties demanded by considering the 

manufacturer specified, crew-centred GA procedure. To achieve this, a review of the flight 

crew training manual (Airbus, 2017b) and the related flight guidance systems descriptions 



(ATG, 1999; Norden, 2010; Granger & Jeanpierre, 2011; Marconnet & Roland, 2014; 

Fernandez et al., 2017) was conducted. 

Secondly, to identify different scenarios in which pilots may be more challenged, we 

reviewed both literature (Dehais et al., 2017; BEA, 2013) and accident/ incident reports 

associated with GA (for example Kingdom of Bahrain CAA, 2000; ATSB, 2007, 2014; BEA 

2000, 2007, 2009; JTSB, 2016). Following this review we identified two additional scenarios 

with different operational complexity. These additional scenarios represent operations where 

there is pressure on the appropriate completion of the crew-centred procedure and 

increased risk for procedural non-compliance during the GA. As such, these scenarios are 

treated as candidates for the process-based modification. 

For all three scenarios we then conducted hierarchical task analyses (HTA) using the Airbus 

extended HTA tool (xHTA) (Rabl et al., 2018). This tool supports the development of an HTA 

and offers the opportunity to visualise procedural sequences showing concurrent tasks and 

task-type. The HTA was validated using interviews with six airline pilots followed by full-flight 

simulator observations to compare behaviour against the task sequences. Using the xHTA 

visualisation functionality we were able to identify the sequence of interactions between flight 

crew members and the aircraft systems. Examples of the xHTA visualisations are shown in 

the electronic supplementary material and could just as well be achieved using an off-the-

shelf diagramming package.  

Through consideration of the visualisations we identified triggers for different tasks, task-

timing and tempo, to understand how flight crews interact during the GA while performing the 

procedure in the different scenarios. Difficulties in the areas of crew coordination, workload 

management and rigidity in the procedure were identified as candidate task groups or 

procedural steps to apply the process centred philosophy. In addition, the difficulties 

identified were reported as problematic in the literature considered in the earlier review 

(Dehais et al., 2017; BEA, 2013) confirming suitability for further procedure development. 



To achieve the process-based procedure, we applied three design modifications: simplified 

aircraft configuration management, parallel workflows and adaptive task management. 

These key design goals were specified after the HTA review and are informed by the 

process-based philosophy that emphasises context and expertise. The specifics of the 

design decisions can be found in the electronic supplementary material. Informed by the 

process-based perspective, we developed design modifications to resolve the issues 

identified in the HTAs. This was done in conjunction with SMEs that included airline pilots. 

Finally, we re-visualised the new procedural sequences using xHTA to provide a direct 

comparison between the crew-centric and process-based procedure ready for the heuristic 

assessment. Each of the three key modifications are discussed in this section. 

Simplify configuration management  

The main challenge for the performance of a safe GA remains finding ways of giving the 

flight crew time to perform their actions (BEA, 2013). From a process-based perspective, this 

requires addressing the operational complexity through simplification of lower priority tasks. 

The process-based procedure captures this requirement by simplifying the aircraft 

configuration change management through a delay of the flap retraction to increase the 

PM´s monitoring ability at GA initiation. In doing so, monitoring of the aircraft attitude and 

energy state at GA initiation becomes a primary task of the PM (see Figure 1) while in the 

manufacturer procedure it is a secondary task to be performed concurrently with the 

configuration change. 



Figure 1. Manufacturer specific and process-based GA procedure. 

Developing parallel workflows 

The manufacturer procedure allocates different tasks and priorities to the PF and PM and 

highlights when and how information is shared at pre-defined times in the process. 

Therefore, the workflows are interleaved. However, the respective workload of each flight 

crew member can limit effective interaction and monitoring (BEA, 2013). The process-based 

procedure implements a parallel workflow that focuses on achieving collaborative 

requirements of the flight crew at pre-defined times in the process.  



Supporting adaptive task management 

The manufacturer procedure defines a linear workflow structured through process-gates that 

must be accomplished, or the task flow does not move forward. The redesigned procedure 

follows the process-based perspective and integrates an adaptive task management (ATM) 

concept allowing the flight crew to vary the task sequence according to the level of 

operational and environmental complexity in a prescribed way in this way. Functional action 

blocks which contain tasks are defined and these can be deployed in an adaptable way. The 

functional action blocks that can be reprioritised by the crew are ATM 1 (Configuration 

Change Management) and ATM2 (Flight Guidance). The ATM concept enhances the 

flexibility of the procedure in so-called disturbed GAs (BEA, 2013) that require immediate 

changes of the flight guidance modes. 

2.2 Evaluation of the new process centred procedure 

Based on SOP design guidelines (e.g. Degani & Wiener, 1994; Degani et al., 1999; 

Loukupoulos et al., 2009; Barshi et al., 2016; Holder et al., 2016) we defined three design 

objectives to evaluate crew function allocations of both procedures in the three scenarios 

tested. The three key heuristics that the procedures are assessed against are the avoidance 

of concurrent task management, robust tasks sequencing and mature feedback loops. 

Concurrent task management 

Concurrent task management refers to the challenge imposed by multiple task demands 

competing for crew’s attention and action (Loukupoulos et al., 2009). As the management of 

concurrent tasks can be vulnerable to human error (Loukupoulos et al., 2009), the design 

shall structure the task flow such that tasks requiring intensive resources are done with focus 

and without concurrent activities (Holder et al., 2016).Management of concurrent tasks can 

be challenging and vulnerable to human error, particularly during high operational demands. 

The manufacturer specified procedure causes concurrent task management, especially for 



the PM, when changing the configuration (flaps and landing gear) and when manipulating 

flight guidance modes during GA initiation. 

This condition is exacerbated during the rejected landing. The take-off configuration warning 

disrupts the task sequence and captures crew’s attention through verification of the warning 

(BEA, 2013). Concurrently, the PM monitors mode changes and system states while 

retracting flaps and landing gear. In both cases, flight path monitoring can be impaired if no 

flexible adjustment of the monitoring strategy in response to the task demands occurs 

(Anderson et al., 2017). 

The impact on PM’s ability to monitor the flight path is acute in the third and most complex 

scenario. The procedure sequence requires the PM to retract the flaps and landing before 

modifying the lateral and vertical flight guidance modes. Dehais et al. (2017) demonstrated 

that the attention shift when changing the configuration prevents the PM frequently from 

monitoring the flight path. The sub-optimal monitoring ability of the PM impacts safety 

considering that the flight guidance modes are not immediately modified. In this event, the 

PF can lose the cockpit aids to follow the correct trajectory while the PM is not able to 

monitor the flight path concurrently. 

In contrast, the modified procedure prevents the PM from an attention shift away from the 

primary flight display (PFD) to the flap lever at GA initiation as this action is delayed by 

design. Likewise, through the ATM the PM can set own priorities in task execution to 

facilitate flight path monitoring and to support the PF through immediate changes of the flight 

guidance modes. The crew-centric design does not provide this flexibility and crews may be 

compelled to deviate from the procedure or reduce resource to monitor the flight path. 

Robust task sequence 

The task sequence refers to the order of actions that are interrelated, performed 

simultaneously and are time-dependent (Degani & Wiener, 1994). A robust task sequence is 

resilient to changing and dynamic contexts such as those found in a GA manoeuvre. The 



task sequence of GA procedures require a dynamic interaction between flight crew 

members, external agents and aircraft systems. Therefore, the procedure sequence need to 

enable interaction patterns that evolve dynamic task management by the flight crew (Holder 

et al., 2016). 

The task sequence of the manufacturer procedure has proven operational viability and 

airline pilots are usually familiar with it. However, the sequence of interactions is fairly tight, 

particularly when initiating the GA. In crew-centric the procedure indicates multiple 

interactions shown with arrows between the PF and PM as shown in Figure 2. The crew 

cooperation is based on ‘command, action and response’ The PF commands ‘Go-Around – 

Flaps’ and the PM performs the required actions followed by a verbal response to notify the 

PF about the current system state. The response can also be silent: the PF announces the 

FMA (command) followed by a visual check of the PM (action). No aural response by the PM 

is necessary as long as the indication on the FMA corresponds to the callout of the PF. 

Figure 2. Crew interactions of the manufacturer SOP at GA initiation



The second scenario tested demonstrates that the delay of the flap retraction may require a 

modification of the callout ‘Go-Around-Flaps’ to ‘Go-Around’. The PF commands the flap 

retraction when the aircraft achieves the target pitch attitude (Airbus, 2005) which likely 

results in a delay of the FMA callout and gear retraction in comparison to the baseline 

scenario. 

The third and most complex scenario, shows how the procedure sequence can impair 

prospective memory (Toglia & McDaniel, 2016; Anderson et al., 2017) of the crew. 

Prospective memory refers to the cognitive processes that are involved in remembering to 

perform activities that were previously deferred or interleaved (Loukupoulos et al., 2009). For 

example, when receiving the clearance by air traffic control, the PM may need to defer the 

task of entering in the new clearance to attend to the aircraft configuration. The PM must 

then remember to return to the deferred task and this can lead to errors where this return is 

omitted (Dismukes, 2012). The process-based approach allow flexibility in the management 

of tasks to avoid procedure driven time constraints which can impair prospective memory 

and subsequent performance (Einstein et al., 1997; McGann et al., 2002). 

Figure 3 shows the modified, process-centred procedure. The arrows show the interactions 

between PM and PF as the procedure is completed by the crew. Compared to Figure 2, 

there are fewer interactions required. The tight cueing of crew interactions can be reduced 

through application of parallel workflows. Interactions between pilot flying and monitoring are 

modified: The FMA is still announced by the PF and checked silently by the PM similar to the 

crew centric design. However, the ‘command-action-response’ loops are removed when 

retracting flaps and landing gear shown by fewer connecting arrows across from PM to PF. 

In a parallel workflow, the PM is fully responsible for these tasks and the loops change from 

‘command-action-response’ to ‘action-inform’.  

During a rejected landing, no adjustment of the task sequence and the standard callout ‘Go-

Around’ is necessary. The flap retraction is already delayed by the design so that pilots do 

not have to consider or decide on the flap setting while in the demanding and time 



constrained immediate response. The ATM provides the required flexibility to potentially 

reduce the time between receiving the clearance changing autopilot modes to manage the 

flightpath. 

Figure 3. Crew interactions of the modified SOP at GA initiation.

Mature feedback loops 

Feedback loops are considered mature if the timing within the workflow and content ensures 

sharing of the same understand of the state of the flight, future plans and actions required to 

configure the aircraft including automation (Kourdali & Sherry, 2016a). 

The feedback loops of the manufacturer procedure at GA initiation are mature but tightly 

cued. Therefore, the timing of actions demands optimal crew coordination (BEA, 2013). 

However, the timing is often controlled by other system agents (Pritchett et al., 2014) such 

as air traffic control. Feedback loops that are associated with configuration changes can be 

vulnerable to task interference and mis-ordering leading to reduced safety, for example mis-



selection of the flap setting. The process-based procedure reduces the risk of overlaying 

status reports and commands by fully allocating the execution of the configuration change to 

the PM. Figure 4 shows that the PF remains in the loop through continuous status reports. 

The philosophy has changed from ‘command-action-response’ to ‘action – inform’. The PM 

manages the timing of the configuration change and associated feedback to the PF. The 

feedback does not trigger a new interaction loop and flows without relying on mutual inputs. 

Therefore, while being in a dynamic situation, the configuration change can be performed 

fully independently, enhancing the robustness of the task sequence. 

Figure 4. Feedback Loops at GA initiation. 

However, we acknowledge that omitting status reports can affect the awareness of the PF 

related to the aircraft system states due to the one-way communication and parallel 

workflows (Degani & Wiener, 1994). The enhanced flexibility may result in a mixture of 

individual actions rather than functional action blocks. This is a limitation of the process-

centred procedure and will be explored in the empirical work. 



3 METHOD 

3.1 Design 

To address the aims of the study the new GA procedure was tested using a high-fidelity 

simulation across three different GA scenarios of differing levels of complexity. Pilots rated 

workload for three task groups for both the modified (process-centred) and unmodified 

(crew-centred) procedures. These task groups give further detail on the workload 

experienced during the procedure. These tasks groups follow the sequence of a go-around 

regardless of the procedure used and comprise immediate response, flight guidance and 

return to clean configuration. In the immediate response the go-around is called, the gear 

raised and the thrust increased. In the flight guidance task, a stable flight trajectory is 

achieved though management of autopilot/flight director modes. In the return to clean 

configuration flaps are fully retracted and a stable flight trajectory is assured by the crew. 

Workload was assessed following each simulation by the PM and PF giving ratings on the 

Bedford Workload Rating Scale (BFRS) (Roscoe & Ellis, 1990). The scale is easy to use 

(Roscoe, 1984) and provides a valid and reliable measure of workload (Corwin et al., 1989). 

Since the BFRS is not diagnostic (NASA, 2014), we report crew feedback and direct 

captured by the first-author during the simulations to understand what may have contributed 

to workload issues. Crew performance was also evaluated in regard to flight path 

management and procedure adherence. 

3.2 Participants 

All participants were ATPL qualified and gave informed consent to complete the study. All 

pilots were experienced on the Airbus A320. Table 2 shows the crew composition and total 

flight experience. 



Table 2 Participants and total flight experience. 

Crew  Flight Experience Captain Flight Experience First Officer 

Crew 1 (Airline Pilots)  300 hours 2500 hours  

Crew 2 (Airline Pilots) 9500 hours  1450 hours  

Crew 3 (Test Pilots)  7000 hours  2900 hours  

3.3 Scenarios 

Three different GA scenarios were used to stimulate aircrew response: GA at minimum 

altitude, rejected landing and revised missed approach. All three scenarios capture different 

elements of the task, and all three require the GA SOP to be fully completed. The defined 

scenarios are operationally relevant since they are either part of the airline training or were 

already applied in other GA studies (e.g. BEA, 2013; Niedermeier & Buch, 2016; Dehais et 

al., 2017). The scenarios rise in complexity with the revised missed approach (scenario 3) 

being the most operationally complex. 

Scenario 1: GA at minimum altitude 

The baseline scenario is the GA at minimum altitude due to a loss of the visual reference to 

the runway. The flight crew initiates the GA at minimum altitude and follows the published 

missed approach procedure as pre-programmed into the aircraft. 

Scenario 2: Rejected landing 

The second scenario is a rejected landing. A rejected landing is a GA upon touchdown when 

the thrust levers are set to idle and reversers must not be selected; if reversers are selected 

and deployed, GA is not possible (Airbus, 2005). No specific procedure is given for this 

manoeuvre. Instead, the manufacturer acknowledges that the rejected landing may require 

an adjustment of the task sequence since the flap retraction shall be delayed to provide 

sufficient lift until the aircraft achieves the target pitch attitude (Airbus, 2005). Finally, a take-



off configuration warning may occur because the flap and trim set up at GA initiation does 

not correspond to the recommended configuration for take-off. 

Scenario 3: Revised missed approach 

The third scenario introduces an element of surprise by assigning a new missed approach 

including a revised heading (20 degrees offset to the runway) and a restrictive level off 

altitude (reduction by 50 per cent) at GA initiation. The scenario is similar to the study by 

Dehais et al. (2017) and the BEA (2013). The simultaneous climbing turn with an altitude 

limitation increases the temporal pressure and demands complex energy and flight path 

management (Dehais et al., 2017). Also, the flight crew cannot rely on the pre-programmed 

missed approach in the flight management system. 

3.4 Procedure 

We conducted three trials in cooperation with the DLR using the AVES A320 full-flight 

research simulator (Richter, 2014). The six participants as outlined in Table 2 performed the 

three scenarios using both types of procedure. 

All crews manually controlled the aircraft at GA initiation and engage automated modes as 

required. Scenario order and procedure type order were counterbalanced across the 

participants to reduce practise effects Training scenarios before the test were conducted to 

familiarise participants with the simulator and workload questionnaire as recommended by 

Harris et al. (1992). 

4 RESULTS 

4.1 Workload Assessment 

Figure 5 shows the plots of individual participant ratings of workload for the PF and PM 

applying the manufacturer versus the modified procedure across the three scenarios. 

Bedford workload scale ratings vary from 1 to 10, a higher number indicating less spare 

capacity and therefore a higher level of workload being experienced. Table 3 combines the 



workload classifications and the overall distribution of BFRS scores across the three 

scenarios for both the manufacturer and modified procedure.  

Figure 5. BFRS ratings for the modified (unfilled) and unmodified (filled) procedures for PF 

and PM. All scores are whole numbers and jitter has been applied to distinguish multiple 

participants scoring the same workload. 



Table 3 Cumulative percentage of Bedford workload ratings for both procedures across the 

three scenarios and crew roles. 

Workload Impact Classification  Crew-centred Process-based 

Satisfactory (BFRS 1-3) 65 73 

Unsatisfactory but Tolerable (BFRS 4-6)  22 20 

Not tolerable but possible to complete the 
task 

13 7 

Task Not completed 0 0 

Workload ratings indicate broadly increasing workload for both flight crew members and both 

procedures across the scenarios from one to three. This finding is in the expected direction 

since the complexity of the GA manoeuvres increases through the scenarios. Workload 

Scores for both flight crew members are higher during immediate response and when 

changing flight guidance modes compared to the return to clean configuration after passing 

the thrust reduction altitude. The flight crews indicated a higher cumulative percentage of 

workload ratings between 1 and 3 (lower workload) when applying the process-based design 

across the three scenarios compared to the manufacturer, crew-centric procedure. The 

cumulative percentage of workload ratings at or above 7 (higher workload) is also lower 

when applying the process-based design. 

Considering the first scenario, flight crew workload is satisfactory without reduction for both 

procedures tested. We cannot claim noteworthy benefit for the new procedure in scenario 1 

based on the results. However, we note that, except for one rating during immediate 

response, the process-based design some participants have rated workload lower when 

operating as the PF. PM workload across the task groups is broadly similar. Scenario 2 

presents a similar pattern of results and there is no compelling trend towards either higher or 

lower workload for either procedure regardless of role or task section. In scenario 3, the 

most complex of the three scenarios tested, there is evidence that workload is reduced when 

using the new, process-based procedure in contrast to the manufacturer specified 



procedure. Overall, workload is reported as tolerable but lower workload is reported across 

the three tasks and the two roles when using the new procedure. We observed that flight 

crew activated the heading mode and selected a lower go-around altitude in scenario 3 more 

quickly when applying the adaptive task management. Pilot feedback confirmed that lower 

workload ratings can be attributed to faster changes of flight guidance modes by the PM 

when initiating the go-around compared to the crew-centric design. 

4.2 Crew performance assessment 

Flight path management 

In scenario 1 and 2, no deviations from altitude or heading were observed using either 

procedure. In scenario 3, minor deviations from the desired heading were observed when 

crews used the process-based procedure. One explanation for this is the ATM concept 

applied to the process based procedure. Given reprioritisation of tasks delay in changing the 

autopilot modes, these minor deviations may have occurred. However, these minor 

deviations did not adversely affect flight safety and the procedure was successfully 

concluded. When using the manufacturer, crew-centric procedure, two crews did not fly the 

correct heading due to improper configuration of autopilot modes. One explanation for this is 

the time constraints impacting prospective memory which are evolved when using the crew-

centred approach where tasks may be deferred and then recalled. 

Crew co-ordination 

A common crew co-ordination issue was observed for both procedures tested, across all 

scenarios. Using both procedures, in at least one scenario, we observed each crew 

performing an early flap retraction towards clean configuration prior to reaching the thrust 

reduction altitude, as prescribed by both procedures. This is problematic for the process-

based approach since this approach lacks the high level of interaction, backwards and 

forwards between PM and PF. In the crew-centred approach the cross-checking quickly 

revealed the early flap retraction. In the process-based procedure there is no command by 



the PF. Although there is the opportunity in the procedure for the PF to call ‘hold-flaps, this 

was not employed by any PF during the simulator trials. However, from observation there is 

also evidence that parallel workflows potentially cause a detriment of cross-checking and 

specific focus of the PF on the primary flight display due to the new function allocation. This 

observation was confirmed by pilot feedback. This represents a one risk when using parallel 

workflows that must be considered if a process-based approach is adopted. This risk must 

be balanced with the reduced task overlays which are produced when using the crew-

centric, manufacturer approach. 

Procedure adherence 

The process-approach gives flexibility through the use of the ATM concepts: groups of tasks 

that can be deployed as needed. In the process-based procedure designed in this article, 

two groups were defined: ATM1 and ATM 2. In simulator trials, we twice observed a 

‘runaway effect’ where two PMs would go beyond the specified task groups. This is not how 

the ATM concept should be used. This behaviour could arise from a lack of familiarity with 

the procedure or indeed a suboptimal design. This is an important result since pilots may go 

beyond the boundary of the process-based philosophy when implementing flexible 

workflows. Figure 6 shows one example of a PM moving tasks between the ATM blocks. In 

this example tasks from ATM1 are completed within ATM 2 and vice-versa. Pilot feedback 

indicates that disconnecting tasks from their ATMs causes unpredictability of the workflows 

performed by the PM. This may lead to confusion and reduced performance. 



Figure 6. One example observed from a PM of combining tasks in opposing ATMs. 

4 DISCUSSION 

In this research we have evolved a process-based procedure for GA management from the 

manufacturer specified, crew-centric procedure. We have found evidence of reduced 

workload using the process-based procedure in the most complex GA scenario tested in the 

simulator. We have also found that pilots have favourable views of the new procedure. We 

have extended the theoretical work conducted by Cahill et al. (2014) into a translation of a 

crew-centric procedure into a process based procedure. 

One explanation for our workload findings concerns that demand for concurrent task 

management in the crew-centric procedure. This concurrent management of tasks could 

affect the PM ability to monitor the rapidly changing flight situation in a complex GA. This 

explanation is supported by other research which has suggested that the use of the crew-

centric procedure demands a wide allocation of visual attention (BEA, 2013; Dehais et al., 

2017). These studies also report flight path deviations which are explained by complex 

interaction with the flight management system concurrently with the monitoring role. These 

reported findings concur with or workload ratings in the most complex scenario demanding 

new flightpath information being entered into the aircraft systems. 



In contrast, the process-based approach suggests beneficial effects on flight path monitoring 

and management. In addition a reduction in workload in the most complex scenario was 

observed. Flight path monitoring by the non-flying pilot was further facilitated by the 

adaptive-task management concept which allows setting own priorities in task execution. 

Through reducing operational complexity by simplifying lower priority tasks supports flight 

path monitoring in the critical stages of the GA. To maintain safe operation in a disturbed 

GA, we emphasise the need described by Cahill et al. (2014) that procedure design needs to 

go beyond linear workflow accounts to ease the procedure execution. Through the ATM 

concept, we demonstrated that this approach is feasible. Participant response in regard to 

the ATM concept was positive, providing the ability of crew members to align the procedure 

sequence with the operational context, providing choice rather than mandatory instruction 

(Carim et al., 2016). 

The crew-centred GA procedure can be executed smoothly providing flight crew are 

proficient in coordinating their tasks and share information at the pre-defined process gates. 

However, the results of the procedure evaluation reflect the observed flight crew 

performance. The tight cueing of feedback loops can results in frequent overlay of status 

reports and commands even at a satisfactory level of workload, potentially risking 

operational safety. Our findings in the simulator trial add to evidence that co-ordination is 

challenging in the GA manoeuvre (Dehais et al., 2017; BEA, 2013). As with many 

procedures, the design can be represent an idealised ‘work as imagined’ description of task 

demands together with the assumption of being applied in a static, rather than dynamic 

environment as is the case with the GA manoeuvre (Surabatulla et al., 2019). This situation 

may impact upon compliance with the procedure as written. Crew workarounds and delayed 

actions may result from a rigidly designed procedure that is not responsive to the context of 

a given operational demand. The process-centred approach may deliver a controlled level of 

flexibility that captures context more effectively and mitigates non-compliance with an overly 

rigid, crew-centred SOP. 



Conversely, it would be incorrect to suggest that current, procedure design is fundamentally 

flawed. Procedure design is conducted with reference to risk and is part of a wider safety 

assessment of cockpit operations. Our results indicate that parallel workflows can result in 

an inadvertent flap retraction before reaching the thrust reduction altitude using the process 

based approach. One explanation for this finding is the reduced cross-checking in the 

process centred procedure resulting in reduced co-ordination. However, our results support 

further examination of how the process-based procedure could have a positive impact on 

more complex, dynamic operations, such as GA. Clearly any implementation of a new 

procedure would need to be subject to the same hazard and risk analyses applied to the 

current manufacturer procedures. 

Naturally, our research has limitations. Our findings are supported by a small sample that 

does not allow for statistical generalisation. However, our sample does comprise trained 

pilots and as such we do claim validity for our results but caution is needed in interpretation. 

In addition, we acknowledge a degree of opacity in the design of the new, process based 

procedure. We have attempted provide clarity in the design decisions that we have made 

and these are explicated further in the electronic supplementary material. There is however, 

a degree of creativity when translating a crew-centric to a process based procedure that is 

difficult to proceduralise. We hope that the overarching design principles that we have 

applied are helpful in this regard. Finally, we have tested a single flight manoeuvre among 

the many that are demanded in flight. 

To conclude, this article has begun to open up the possibility of changing our approach to 

procedures. Of course we do not advocate, and cannot evidence, wholesale transition from 

one philosophy to another. Future research may identify those procedures that would benefit 

from the process-based approach. It may be that the style of procedures that can be 

adjusted safely by taking into account new innovations in the cockpit, particularly decision 

support when conducting procedures. Future research may begin to include these new 



innovations to ensure that procedures always help, rather than hinder performance in the 

most demanding flight manoeuvres and operations. 
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Evaluating process-based and crew- centred approaches to procedure design in 

aviation: workload and performance changes in go-around manoeuvres. 

Tim André Schmidt, Houda Kerkoub Kourdali and Jim Nixon

Electronic Supplementary Material 

This additional material provides a detailed overview of the flight crew function allocations 

(task sharing design) of both procedures. The material clarifies and documents the design 

decisions made to create the new procedure. The designs are divided into the three 

principles that were used to create the process-centred procedures: simplifying configuration 

management, developing parallel workflows and supporting adaptive task management 

1. Simplifying configuration management

To simplify configuration management to increase the PM’s monitoring ability we adjust the 

procedural steps associated with flap-retraction during GA. Figure 1-A shows that the 

manufacturer procedure requires to retract the flaps by one step at GA initiation before 

checking the Flight Mode Annunciator (FMA) located above the Primary Flight Display 

(PFD). Thereafter, the PM calls for “Positive Climb” which is the trigger for the PF to 

command the gear retraction. The PM conducts the entire aircraft configuration change 

process. However, these tasks can be time-consuming during the GA and often undertaken 

to the detriment of flight path monitoring (BEA, 2013). 



Figure 1-A. Manufacturer GA SOP with focus on aircraft configuration change at GA initiation 

In the modified procedure, we delayed the flap retraction after the “Positive Climb” callout. In 

doing so, this callout is no longer attached to the gear retraction. Rather, Figure 1-B shows 

that the callout triggers the adaptive task management shown as ATM1 or ATM2. 



Figure 1-B. Modified GA SOP with focus on safe GA attitude and correct flight guidance 

modes at GA initiation. 

The decision to delay the flap retraction is based on taking advantage of the available 

operational time window (AOTW) i.e. the time in which the procedure must be completed 

(Kourdali & Sherry, 2017).  

We use this time window to apply the idea by Degani & Wiener (1994) that crew activities 

own different criticality levels. To identify those tasks with a high-criticality level, we referred 

to the analysis of 25 GA events conducted by the European Coordination Centre for accident 

and incident reporting system (ECCAIRS) (BEA, 2013). The analysis revealed significant 



lacks in flight path monitoring of pitch, thrust and airspeed notably by the PM (BEA, 2013). 

Therefore, we follow the ECCAIRS and rated flight path monitoring as a fundamental task 

with a high criticality level to prevent a loss of state awareness during GA. By decoupling the 

flap retraction from the GA initiation, we use the AOTW to provide free space for a new task 

explicitly referenced as “Monitoring Aircraft Attitude and Energy State” performed by the PM. 

Also, we included the FMA callout into this AOTW which is triggered by the PF. In doing so, 

monitoring of pitch, thrust and airspeed becomes a primary task of the PM until the aircraft is 

on a safe GA profile and the PF feels comfortable to callout the FMA. 

The prioritisation of these tasks needs to be balanced against the impact of the delayed flap 

retraction on aircraft performance and manoeuvrability. Therefore, during the design phase 

of the modified procedure, we assessed the impact in both normal and contingency 

operations in a full-flight A320 simulator together with test pilots in several trials. Analysing 

flight data and pilot feedback confirmed no concern regarding aircraft performance and 

manoeuvrability during normal operation with all engines operative (AEO). However, with 

one-engine-inoperative (OEI) we determined a significant reduction of airspeed when flying 

the manufacture’s recommended pitch of 12.5 degrees (Airbus, 2017b). The airspeed 

stabilised slightly above the lowest selectable speed (VLS) for autopilot and autothrust when 

initiating the GA. Even when staying above the 1-g stalling speed, the OEI performance was 

assessed as unsatisfactory. Therefore, the scope of this study is limited to normal operations 

with AEO. 

2. Developing Parallel Workflows 

The motivation for the design of parallel workflows was to improve the interaction and mutual 

monitoring of flight crew actions. Figure 2 shows that we fully allocated the configuration 

change to the PM without prior command of the PF when retracting flaps and landing gear. 



Figure 2. Parallel workflow of the PM during flap and gear retraction of the modified 

procedure.

Figure 2 shows that the process gate to perform the flap and gear retraction is opened and 

closed by the PM without prior command. This is the key feature of introducing parallel 

workflows: The PF can focus on flying the aircraft while the PM performs tasks 

independently. The design modification affects the flap and gear retraction at GA initiation, 

configuration management after passing the minimum flap retraction speed for configuration 

1+F (Flap Retraction Phase above F-Speed) as well as the slat retraction when accelerating 

above the minimum slat retraction speed (Slat Retraction Phase above S-Speed). 



Figure 3. Manufacturer (left) versus modified (right) A320 GA SOP showing the flap 

retraction after passing the minimum flap retraction speed for configuration 1+F (F-Speed). 

Figure 3 shows an example when reaching the minimum flap retraction speed for 

configuration 1+F. The PM triggers and executes the action based on a comparison between 

the indicated airspeed and the F-Speed bug (Speed > F-Speed) on the PFD. The PM 

controls the timing of the flap retraction without waiting for a command by the PF that may 

delay the procedure sequence. This improves the smoothness of the workflow. However, 

mutual monitoring by the PF remains necessary. Thus, the PM informs the PF about the 

beginning of the action block by the callout “Speed Checked”. Thereby, the PF can still 

monitor the PM’s action and may decide to interfere by announcing “Hold Flaps” or by 

informing the PM before reaching the scheduled flap retraction speed. Also, the PF may use 

the approach briefing to inform the PM well in advance about the intended flap setting. The 

possibility to interfere is still mandatory since the configuration change influences the energy 

management of the aircraft which remains a primary function allocated to the PF (Cahill et 

al., 2014). In closing, the configuration is still a shared duty, but while being in a dynamic and 

complex phase of flight, it is triggered and executed by the PM in a parallel workflow. 



3. Supporting adaptive task management

The ATM concept enhances the flexibility of the procedure in so-called disturbed GAs (BEA, 

2013) that require immediate changes to the flight guidance modes. Examples are complex 

controller transmissions shortly before initiating the GA through assigning a different 

heading, lower level off altitude, airspeed or rate of climb. Flight crew cannot use the pre-

programmed missed approach of the Flight Management System (FMS) and this may 

increase workload (BEA, 2013). Manual inputs must be made to the Flight Control Unit 

(FCU). These changes affect the flight director bars which assist the PF to maintain a 

specified flightpath. 

The ATM concept introduces two functional action blocks to help in the management of 

these dynamic changes. ATM1 combines both the flap and gear retraction. ATM2 includes 

all required manipulations of the vertical and lateral flight guidance modes at the FCU to 

comply with the air traffic control clearance, ensuring that the flight director bars used by the 

PF are accurate. Activities within the ATM are mainly performed by the PM. Figure 4 shows 

the normal sequence during the GA when applying the modified procedure (Option 1). The 

callout “Positive Climb” triggers the ATM with the standard sequence ATM 1 before ATM2, 

i.e. the PM retracts the flaps and landing gear before changing the flight guidance modes. 

Therefore, the procedure sequence follows the manufacturer philosophy giving priority to 

aviate over navigate which represents the most probable GA scenario when following the 

published missed approach (Granger & Jeanpierre, 2011). The navigational task is less 

critical because the aircraft automatically re-engages the lateral flight guidance mode NAV 

after setting the Take-off/Go-Around Thrust (Owens, 2011). ATM2 only requires a 

crosscheck of the FMA which is triggered by the PF via callout followed by a non-verbal 

check by the PM. 



Figure 4. Adaptive Task Management (Option 1) – ATM1 followed by ATM2. 

In the event of an unexpected change of the published missed approach, the PM can set 

own priorities in task execution by performing ATM2 before ATM1. The ability to modify the 

task sequence addresses the fact that the operational and environmental context at GA 

initiation has an impact on the optimum timing of procedural steps (Cahill et al., 2014). 

Again, we take advantage of the AOTW by completing ATM2 before reaching the maximum 

flaps extended speed (VFE) for Flaps Full. In this case, we exhausted the AOTW leaving no 

margin left between performing ATM2 and ATM1. Therefore, the flight crews are expected to 

perform heading and altitude changes followed by a flap and gear retraction without delay. 

However, once an ATM is initiated, the PM shall complete the tasks without mixing it with the 



next ATM. Since there is no margin left, we acknowledge that an impending overspeed 

situation of the flaps is an exception to this rule. With Flaps Full the VFE of the aircraft is 

exceeded before reaching the structural limitation of the main landing gear. To avoid 

damage to the flaps, the PM can initiate ATM2 and retracts the flaps when approaching 

VFE. The PF might inform the PM about the impending overspeed situation with the 

standard callout “Speed”. 
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