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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction and background 

Big data as defined by its characteristics is batched or 

streaming data that comes in high volume, high variety and high 

velocity [1]. To harness big data for a specific use, a variety of 

technologies (hardware and software) are integrated to enable 

data transmission, storage, processing and analysis [2]. 

Many situations in modern day manufacturing warrant the 

use of big data. For example, big data is needed for data-driven 

ad-hoc queries of the system [3], real-time process and quality 

monitory [4], machine learning [5] and designing digital twins 

[6]. 

The management of a big data project is best captured using 

its data pipeline, which describes the path through which data 

originates from source and goes through a variety of 

technologies to enable user applications [7]. Prior to 

implementing a data pipeline for a specific data driven project, 

a number of concerns arise. For instance, what should be the 

data source and data flow? Which technologies should be added 

to the pipeline? How should the technologies be seamlessly 

integrated to enable data flow? Which technology should be 

chosen? Meanwhile, a data pipeline design may be subjected to 

a number of iterative designs before a suitable one is realized. 

All these make the design process a challenging task. 

Frameworks that have been advanced for data driven 

manufacturing are available [4, 8, 9] but they are not useful for 

guiding one on how to design a data pipeline. There are studies 

where researchers have presented big data architectures and big 

data flow maps for manufacturing systems. For example, [10] 

present a high-level architecture for the semantic analysis of 

complex events in manufacturing. [6] present a MTConect-

based data flow from machine to user application. [11] propose 

a framework for quality prediction and operation control for 

metal casting, with emphasis on cyber physical systems. [12] 

used Integrated Definition diagram to describe their holistic 

approach to fault diagnosis in cyclic manufacturing processes. 

[13] promote a data science toolbox for industrial applications. 

Their toolbox maps the data flow through individual tasks in a 

machine learning analysis. These few examples are 

representative of the extant literature. We realized that 

architectures and data flow maps so far advanced in the 

literature, are not generalizable for the variety of data driven 

manufacturing projects. Additionally, it is unclear how 

manufacturing practitioners design their data pipelines since 
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most researchers present a pre-designed data pipeline in the 

form of an architecture or framework, or simply report the steps 

that were followed in their data driven project.  

While it is a challenge to design the big data pipeline for a 

specific data driven manufacturing project, there is a paucity of 

methods to navigate manufacturing practitioners through these 

challenges. Consequently, the aim of this research is to promote 

a framework that can be used for designing a broad range of 

data pipelines for manufacturing systems. The framework 

consists of a template for identifying the key layers and 

components in the data pipeline. Accordingly, the remainder of 

this paper is structured as follows: section 2 examines the 

literature to reveal key layers and components that make up a 

big data pipeline for manufacturing systems; section 3 is used 

to present the framework and explicate it using a manufacturing 

case while section 4 is the discussions and  conclusions. 

2. Key layers and components in a big data pipeline 

Layers are those points along the data pipeline where data is 

exploited [9]. Components can be described as the individual 

technologies (such as hardware, software and algorithms) in 

each layer. Evidences from the literature suggest there are four 

fundamental layers that make up a big data pipeline [9, 14, 15]. 

We designate these layers as: a) data source; b) raw data 

transmission; c) data communication, processing and analysis 

tools and d) data visualization. We include a fifth, the source 

data types, as being an important element that determines the 

data pipeline layers and their components. These five layers 

cover the main issues that one would come across when 

undertaking a data driven project. Subsequently, we detail, with 

examples from the literature, each layer and the typical 

components for manufacturing systems. 

2.1. Data sources 

For clarity, we define a data source in terms of its root 

source. Under our definition, a database is not a data source but 

a data lake. Based on evidences from the literature, we found 

six main sources of big data in manufacturing systems. They 

include: sensors; cameras; measuring devices; Radio 

Frequency Identification (RFID); machine logs through 

Programmable Logic Controllers (PLCs) and operator logs. 

Sensors are by far the most ubiquitous of all big data sources 

in a manufacturing system [4, 11, 13, 16]. This is not surprising 

due to the different types, functions and uses of sensors. 

Moreover, modern machines are equipped with miscellaneous 

sensors to enable automation and remote monitoring [17]. 

Cameras have been used to capture images of products along 

the production line, to monitor defects [18]. Measuring devices 

such as dynamometers have been used to acquire trust force in 

a drilling operation [19]. RFIDs (and barcodes) are printed 

labels that store information about an item (usually a product), 

to track its location and/or state in time and have been used by 

[20] in the analysis of job processing times. 

Machine PLCs are designed to receive signals from input 

devices such as sensors, and use the inputs to control output 

devices such as switches.  They can be considered as mini-

computers that store data from input and output devices and so 

are able to generate data about machine parts and machine 

operating conditions [12, 21]. 

Situations may warrant machine operators and shopfloor 

employees to manually record data about machine and 

operational activities. [11] investigated a case where operators 

logged quality inspection data directly into legacy database 

systems. In a study by [22], shopfloor employees utilize 

barcode readers to collect data about process events through 

barcode tags placed next to machines. 

2.2. Raw data transmission enablers 

We define raw data transmission enablers as those 

technologies and devices that allow data to be moved from 

source to the point along the data pipeline where the data is first 

exploited. Examples in the literature include Internet of Things 

(IoT)-enabling microcontrollers [4, 16, 23]. We also noticed 

the prevalence of communication protocol software and 

hardware technologies which are used in harmonizing data 

from heterogenous machines, sensors and devices, typically 

found in factory settings. Examples in the literature include the 

use of Zigbee [16], MTConnect [6], OPC Unified Architecture 

[24], MC-SUITE [25] and Representational state transfer 

(REST) [6, 11]. In some situations, removable storage devices 

may be appropriate for use in transferring data from a PLC or 

microcontroller, to a computer that hosts the big data software 

tools [12].  

2.3. Source data types 

With evidences from the literature, data at source has been 

known to come in various forms mainly as lines of text [26]; 

eXtensible Markup Language [27]; JavaScript Object Notation 

[4, 25], frequency signals [28] and images [18]. These data 

types determine the technologies for data communication, 

processing and analysis. For example, image and frequency 

data often warrant the use of feature extraction algorithms, to 

extract only the useful attributes [18, 25]. 

2.4. Data communication, processing and analysis 

There are different software tools for specific pipeline tasks 

[15] and their uses are varied. For data ingestion and 

communication, [4, 25] applied Kafka and Storm for data 

ingestion and publishing respectively, [6, 25] used REST 

application programming interface to pull data from source; 

[25] utilized custom codes to correct sparse sensor data; [6] 

used a MES to receive and store barcode data; [21] used HTTP 

protocol to standardize data from multiple sources; [26] applied 

Apache Pig and Hive to classify data and create relational 

tables for the data. 

For storage, we found that most storage is cloud-based and 

in the form of non-relational, Non-Structured Language 

(NoSQL) format such as MongoDB [4], HBase [29] and 

CouchDB [25]. PostgreSQL, an object relational database 

which allows sensor data, image data and geographical maps to 

be stored in a data base, has been used by [16]. Legacy 

relational databases such as SQL [30] and Microsoft Excel [31] 

have also been used. The choice of data ingestion and storage 
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is dependent on the familiarity with the technology and if the 

tool is appropriate for the project. Other evaluation criteria 

include: ability to handle batch and/or stream processing, 

scalability, fault tolerance, programming language used (i.e. 

the native interface such as python, Scala, java, R and scripting 

language to allow interactive shell support) and latency (the 

time it takes for data to be stored and/or retrieved, whether low 

or high-latency) [15]. 

Data exploration and analysis software tools are used to gain 

deeper understanding of the data and its characteristics. A 

number of software solutions have been applied for data 

analysis, exploration and modelling. [30] used Spark for 

feature extraction regarding different types of temperatures 

relating to a plastic injection molding operation, [32] used 

KNIME for data mining purposes in a predictive maintenance 

study, while [33] used KNIME to gain a better understanding 

of data. [34]  applied Neo4J to label key features. [20] made 

use of TensorFlow to cluster RFID-based data about a 

shopfloor process. [26] used R programming software to create 

prediction models and classification algorithms to enable 

quality prediction. [18] used MATLAB for feature engineering. 

In the literature, a variety of models and algorithms have 

been used, majorly for feature engineering and machine 

learning purposes. These include models for classification 

problems such as Decision Tree, Random Forest and Neural 

Network; models for clustering such as Support Vector 

Machine and Density-based spatial clustering of applications 

with noise (DBSCAN) [4, 12] and regression models for 

regression-based analysis [35]. 

Algorithms that have found widespread use in data driven 

manufacturing projects include Principal Component Analysis, 

k-Nearest Neighbour, Genetic Algorithm [18]. These 

algorithms are mainly applied in situations that warrant feature 

extraction, feature selection and dataset dimensionality 

reduction, for example when dealing with images and high 

frequency data which tend to have a high number of features. 

 Choosing which model or algorithm to use is dictated by 

the problem, but it is common to test different models and 

algorithms and then select the one with the most promising 

prediction performance result [11, 33]. The models and 

algorithms can also be used in a complementary fashion, for 

example [4] used DBSCAN to detect and remove outliers from 

the data, before using Random Forest for real-time predictive 

analysis. 

The use of custom codes and web-based applications for 

enabling data visualization is common. [4] develop a web-

based application for real-time data visualization utilizing 

JSON. [36] develop a web-based maintenance monitoring 

application utilizing the MIMOSA open system architecture. 

For remote monitoring of machine, [21] used a solution 

developed by the machine supplier. Cloud-based services were 

found to be the standard for developing and hosting data 

visualization software and programs, to enable remote data 

visualization 

2.5. Computer hardware 

Computers (desktop and laptops) and hand-held devices 

such as Tablets and smart phones [21] are widely used for data 

entry and visualization. Handheld devices can be used by 

shopfloor workers to monitor the process in real-time [36]. 

Desktop computers are mostly used as servers and hosting of 

big data software as well as cloud-based applications [4]. 

3. The proposed framework 

Our framework for designing data pipelines for 

manufacturing systems is depicted in Fig. 1. It follows 

established convention of depicting frameworks for data 

pipelines, see [9, 14]. The framework shown in Fig. 1 

delineates the key layers and components of data pipelines as 

described in the previous section. A guideline for using the 

framework is shown in Fig. 2. Subsequently, we present a use 

case to explicate how the framework can be utilized in the 

design of a data pipeline for a data driven manufacturing 

project. 

The use case is an ink viscosity monitoring system for a 

gravure printing machine. For the type of operation, printing 

ink viscosity and print drying time are affected majorly by 

ambient temperature and humidity [37]. For uniformity in print 

quality and to prevent excessive ink and solvent usage, ink 

viscosity needs to be as consistent as possible during the 

printing operation. Prior to the study, machine operators 

needed to take manual viscosity readings every four to five 

minutes to monitor ink viscosity.  

 

   

Fig. 1. Framework for designing big data pipelines in manufacturing systems 
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Fig. 2. Guideline for using the framework 

3.1. Establish goal of data driven manufacturing project 

It was necessary to first establish the goal of the data driven 

project, as this helps to scope the pipeline layers and 

components. The goal of the project as set out by the company 

was to generate a predictive model for monitoring ink viscosity 

by way of monitoring ambient temperature and humidity. This 

can be described as a regression or classification modelling 

problem, with two independent variables (temperature and 

humidity) and one dependent variable (ink viscosity). 

3.2. Use template to audit the system 

Using the template (Fig. 1) as a guage, we audited the 

system to determine what components were in place and those 

to be considered. There was no temperature and humidity 

measuring device. Based on the template options, we 

considered the use of an IoT-enabled sensor to allow wireless 

sensing. To facilitate this, we considered a microcontroller 

configuration for ease of installation and cost [4, 16]. 

The viscosity data was not being stored. We considered 

using a tablet-PC as being the most probable option to 

effectively collect operator-logged viscosity measurements. 

The tablet-PC can be mounted on the machine for close 

proximity to the operator. Microsoft Excel software was 

considered sufficient for creating and editing spreadsheets and 

files that would store the viscosity data. With the tablet-PC and 

spreadsheet, the machine operator could record the viscosity 

values in a structured data format with auto date/time stamp 

and auto save on every data entry. The date/time stamp of the 

operator log data was necessary to have a synchronized dataset 

when combined with the sensor data. In addition to the tablet-

PC being used to collect viscosity data, it could also be made 

to communicate with the microcontroller to receive the sensor 

data. A wired or wireless communication would be possible to 

enable this. 

The project on completion was to be transferred to the print 

manager, for replication in other systems in the factory. The 

print manager was not familiar with big data technologies and 

this had to be taken into consideration when selecting the data 

processing and analysis technologies. Using the template and 

references from the literature, we identified three candidate 

software: KNIME, Spark and MATLAB. KNIME, an open 

source big data software, was chosen for its graphical user 

interface and ease of use.  

3.3. Generate conceptual framework 

An audit of the system enabled us delineate the components 

(see Fig. 3) that could be considered for the project. Testing is 

necessary to check the success possibility of the integrated 

components. We were not able to test hardware since none of 

the considered hardware devices were in place in the system. 

We could however hypothesize the raw data type and test the 

software tools. 

Open source experimental datasets exist for testing big data 

software technologies [38]. For the purpose of testing the data 

processing and analysis tools in our designed pipeline, we 

relied on a sample temperature and humidity dataset from 

another project we had undertaken: an excerpt of this dataset is 

show in Fig. 4a. This dataset came from a microcontroller-

enabled sensor system, the type that was being considered for 

the project, see also [38]. For the viscosity measurements, we 

generated a hypothetical dataset. For this we used information 

provided by the operators since they were familiar with the 

readings. An excerpt of this dataset is shown in Fig. 4b.  

Data cleaning is sometimes necessary because raw data 

rarely comes in a form that can be directly processed or 

analyzed by big data software tools. The raw dataset for 

temperature and humidity readings (Fig 4a) shows a semi-

structured dataset, with no column headers or row numbers. 

This is an indication that the dataset would require cleaning, 

(for example, extracting only the important information such as 

time, temperature and humidity values) and manipulation 

(creating a structured dataset with column headers and 

serialized row numbers).  

 

   

Fig. 3. Conceptual framework for proposed data pipeline 
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Fig. 4. (a) excerpt of sensor data; (b) excerpt of operator logged data 

Data cleaning be achieved using a script written with 

programming language. As a result, we amended our initial 

data pipeline to include this component (the first data pipeline 

we generated had no component depicted for data ingestion, 

transformation and publishing).  

3.4. Design the big data pipeline 

On the basis of the audit (section 3.2) and the conceptual 

framework (section Error! Reference source not found.), we 

generated a final design of the data pipeline (Fig. 5), which 

shows the integrated components and data flow. To implement 

the data pipeline at a minimal cost, the following hardware 

components were acquired: for logging viscosity data, a Linx 

12X64 - 12.5-inch Tablet-PC; Arduino Uno R3 microcontroller 

circuit board for programming the sensor to transmit data; 

Arduino compatible DHT22 temperature and humidity sensor; 

Arduino compatible DSD TECH HM-10 Bluetooth module to 

enable wireless communication between sensor and the tablet-

PC; Power bank with 5v output supply pin to power the 

Arduino board. The software tools were KNIME and a python 

script. 

3.5. Implement the big data pipeline 

The acquired components were assembled according to the 

pipeline design. The IoT-enabled sensor configuration is 

shown in Fig. 6. This assemblage was placed close to the ink 

tray of the printing machine, to read the temperature/humidity 

around the ink tray area. The tablet-PC was mounted on the 

machine for the operator to input and record viscosity 

measurements. The microcontroller was connected wirelessly 

to the tablet-PC, using the Bluetooth module on the circuit. This 

allowed the microcontroller and tablet-PC to communicate, and 

by so doing enable the sensor to receive input signals through 

the tablet-PC, while allowing the tablet-PC to receive sensor 

data. The sensor was programmed to read temperature and 

humidity every five minutes, to allow as much synchronization 

with the rate of logging viscosity data and minimize the 

instances of missing data when the two datasets are combined 

based on time stamp attribute. 

To test the assemblage, we used a small dataset generated 

from five consecutive production shifts. The sensor data was 

converted from TXT to XLSX format with labelled columns 

(date, time, temperature, humidity). A python script was run on 

the terminal window of the tablet-PC to enable this. The 

operator logged data was saved in XLSX format. The final 

dataset for the sensor data was a matrix of four columns and 

704 rows. The dataset for the viscosity data was a matrix of 

three columns (date, time, viscosity) and 683 rows. Although 

these datasets are not considered big data by definition, the 

datasets were sufficient to test the data pipeline. Both datasets 

were transferred to a desktop computer that hosted the KNIME 

software. The download was by achieved by connecting the 

tablet-PC to the desktop though Universal Serial Bus cable. 

KNIME software was used to build the prediction models. 

KNIME is able to process datasets in XLSX format, so there 

was no need for any further dataset transformation. Fig. 7 

shows the workflow elements for a polynomial regression 

model. Similar workflows were generated for linear and 

logistic regression models, as well as Decision Tree predictor. 

The KNIME-based models functioned as expected, giving 

confidence that the data pipeline was a success and the project 

could be progressed to gather more data. The regression model 

with the most accurate prediction performance score would be 

selected and used to predict ink viscosity, using temperature 

and humidity readings around the ink tray. 

 

    

Fig 5. Data pipeline design 

 

Fig. 6. IoT-enabled sensor 
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Figure 7. KNIME workflow for generating regression model 

4. Discussions and conclusions 

In this study, we develop and explicate a framework for 

designing big data pipelines for manufacturing systems. The 

framework was developed with generality in mind, and 

embodies the key steps (layers) that need to be traversed in a 

data driven manufacturing project. The framework template 

attempts to be exhaustive, and makes provision for the 

miscellaneous technologies (both hardware and software) that 

are needed to fulfill a data driven manufacturing project. Some 

technologies may have been missed, for example feature 

extraction algorithms which are of many different types. In the 

future, we plan to incorporate more technologies in the 

framework to improve its all-encompassing attribute. 

We believe our framework has the potential to formalize the 

way data pipelines are designed and implemented, as described 

with the use case. We have plans to validate the framework for 

this purpose. The framework did consider qualitative aspects 

relating to a data driven project such as data science expertise 

level of project handlers, project cost and management 

commitment to the data driven project. These are aspects that 

we came across in the case study. In the future, these and other 

qualitative aspects would be considered as supplementary to 

the framework, thereby widening the scope of the framework. 

We also plan to expatiate on the layer components to provide 

users of the framework with in-depth information about the 

individual technologies. At a later date, we intend to utilize the 

framework to update the use case data pipeline for a feature 

engineering project for the same system. This would qualify 

our framework for use in updating an existing data pipeline. 

Data security continues to be a topical issue in data driven 

systems. In our future framework, we intend to include 

components relating to data security. Familiarity with big data 

technologies is advantageous when undertaking big data 

projects. It is the same with using our framework. We believe 

our framework (with the supplementary information contained 

in section 2) can offer inexperienced practitioners an entry level 

approach to their data driven projects.   
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