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ABSTRACT  

The fact that most renewable forms of energy are not available on-demand and are typically 

characterised by intermittent generation currently makes gas turbine engines an important source of 

back-up power. This study focuses on one of the capabilities that ensure that gas turbines are more 

flexible on the electric power grid. The capability here is the minimum environmental load that makes 

it possible to keep a gas turbine engine on the grid without a shut-down, to offer grid stability, adding 

inertia to the grid in periods when there is no demand for peak power from the engine. It is then desirable 

to operate the engine at the lowest possible load, without infringing on carbon monoxide emissions that 

becomes dominant. This paper demonstrates this potential through the extraction of the pressurised air 

from the back end of the compressor into an assumed energy storage system. The simulation of the 

engine performance using an in-house tool shows the additional reduction of the power output when 

the maximum closing of variable inlet guide vane is complemented with air extractions. However, the 

identified key strategy for achieving a lower environmental load (with same carbon monoxide emission 

limit) is to always maintain the design flame temperature. This is contrary to the conventional approach 

that involves a decrease in such temperatures.  Here, a 34% reduction in load was achieved with 24% 

of flow extraction. This is shown to vary with ambient temperatures, in favour of lower temperatures 

when the combustor inlet pressures are higher. The emission models applied were based on empirical 

correlations and shows that higher combustor inlet pressures, high but constant flame temperatures with 

core flow reduction is crucial to obtaining a low environmentally compliant load. The compressor 

analysis shows that choking is a noticeable effect at a higher rate of extractions; this is found to occur 

at the stages closest to the extraction location.   
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1. INTRODUCTION  

Environmental impact has brought about measures to curb air pollution from fossil fuels. The increasing 

adoption of renewable energy to address these concerns means that fossil-fuelled combustion engines 

must be more environmentally friendly and operate flexibly in the emerging European energy mix. 

Natural gas-fired stationary gas turbines in combined cycle operation outperform coal-fired power plant 

in terms of CO2 emissions and thermal efficiency for the same amount of power generated [1]. The 

prioritization of renewables in some countries now means that a conventional power plant has to operate 

more flexibly with wind and solar power. For gas turbines (GTs), operational flexibility is also described 

as the ease with which an engine copes with varying power demand that is linked to the intermittency 

of renewable power.  According to Bistline [2], a few yardsticks determine GT operational flexibility; 

these are: ramp rate, minimum runtimes, part-load efficiency, and minimum turndown (emissions-

compliant or minimum environmental load – MEL). For MEL, the criterion is described by the 

minimum power output a GT operates without infringing on emissions (particularly CO) or combustor 

stability limits.  Table 1 shows the current limits of CO and NOx pollutant for existing gas turbines 

operated in Europe. This indicates that the yearly averaged emission of CO and NOx should not exceed 

50mg/Nm3 for existing gas turbines in continuous operation. Additionally, the daily averaged NOx 

emission is capped at 55mg/Nm3. These limits are specified in the Best Available Technique (BAT) 

reference document (BREF) for large combustion plants [3]. Low load operations exist at periods of 

low power demand. This operation is characterized by an increase in CO, as a result of incomplete 

combustion which occurs when there is a reduced supply of oxygen (air mass flow). Reducing power 

output at the off-peak period has also been found more beneficial than a complete shutdown of the 

machine. This is primarily because every start-up of the engine consumes life in terms of thermo-

mechanical fatigue.  

 

For GTs, it is desirable to reduce the low load capability without exceeding the CO limits. This can be 

made possible by some approaches that include Variable Inlet Guide Vane (VIGV) extension [4], use 

of bleed-off valves (BOV) [5] and through bleed extraction for storage (Compressed Air Energy Storage 

– CAES) that applies to this study. Pratyush et al. [6] in a Siemens study indicated that extended VIGV 

closure, bypassing compressed air around the combustor, and optimizing rotor cooling can bring about 

a MEL of 40% and 28% (without and with catalytic CO capturing respectively). Similarly, Alstom 

explored the use of sequential burners in their GT26, currently owned by Ansaldo Energia; Ruchti et 

al. [7] suggest that the engine could achieve a MEL of 20% by switching off one of its burners and still 

operate satisfactorily in combined cycle operation. More recently, Ansaldo Energia investigated the use 

of BOV, presented in Coiffi et al. [5]. The authors performed a thermodynamic and aerodynamic 

analysis of a BOV, showing a 29% reduction of MEL.  In addition to other modifications presented in 

Malavasi et al. [8], it can be reduced further. The article highlights the trade-off between low load 

operation and efficiency penalty and suggests consideration before implementation. Other methods to 
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reduce MEL such as the use of preheaters to decrease compressor inlet flow and using auto thermal 

syngas generators to facilitate complete combustion are highlighted in Eberhard et al. [9] and Max et 

al. [10] respectively.  

 

Huntorf and Macintosh plants in Germany and the USA respectively, are examples of the successful 

application of CAES technology. These systems operate similar to a gas turbine without a continuous 

connecting shaft between the compressor and the turbine. This type of configuration has inspired several 

research studies that investigate a variation of the turbomachinery arrangements. Nevertheless, the issue 

of MEL does not arise, as the flow extraction does not occur with the combustor in operation; as the 

compressor is driven by an electric motor. Thus, the configuration is likely to pose less constraint on 

how much flow can be extracted from the compressor. The practical application of CAES flow 

extraction from conventional gas turbine configuration does not currently exist. Very few studies have 

investigated this and includes works of Wojcik and Wang [11]  and Parsons Brinckerhoff [12]. The 

former explores the feasibility of integrating adiabatic CAES systems with a combined cycle gas turbine 

(CCGT). Their proposed configuration uses the gas turbine compressor for first stage CAES 

compression, adding: additional compressors, intercoolers, aftercoolers, a thermal energy store and air 

expanders. For air extraction, the bottoming cycle is still in operation, amounting to a total low load of 

20% in CCGT operation. This study does not consider MEL (that is concerning CO emissions) when 

there is a reduced airflow and thus power output. Ref [12] only presents a technical review of the 

potentials of extraction for MEL and not the methodology of the analysis. The stand-alone GT is the 

focus of Igie et al. [13] that investigates the impact of flow extractions at 3 consecutive rear stage 

locations, using a single-shaft engine model of 10 compressor stages. The study was conducted at full 

load extraction and reports that extracting after the last stage proved safer with regards to surge margins 

of the compressor. It also adds that it is the most suitable location if heat storage is considered - related 

to the higher temperatures and pressures when compared to other parts of the compressor. Other 

analyses on interstage flow extractions in the study were shown to cause the stage to move towards 

choke, but subsequent stages towards stall. This behaviour is also highlighted for a two-shaft engine 

with power turbine, in the work of Hackney et al [14]. Similarly, Yang et al. [15] demonstrate the 

impact of air extraction (up to 30%) at the end of the compressor, keeping the exhaust gas temperature 

constant. The purpose of the study was to improve the system efficiency and flexibility for combined 

cooling, heating and power plant at deep-peak load. Conversely, the flexibility explored here relates to 

gas turbine off-peak periods in which renewable power generation is high or generally low demand for 

power. 

  

The published MEL values shown in Figure 1 are indicative values of different engine manufacturers. 

These have been achieved by different technological modifications and in one case, with a different 

combustor design – sequential combustion. The figure also shows that the average MEL value is about 
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49%, while the highest and lowest being at 75% and 25% respectively. Currently, no engine-level 

analysis on air extraction or CAES has addressed the potential MEL extension as shown in the present 

study. Further to this, the work here demonstrates a realistic rated MEL comparable to those presented 

in Figure 1 and based on the emissions limit in Table 1. For the extended MEL, a novel approach has 

been deployed by the combinations of VIGV closure, air extractions and maintaining the combustor 

mean temperature as the control constraint. Other contributions of the papers include the analysis of the 

influence of ambient conditions on extended MEL and the potential of another turndown scheme. The 

main cases investigated include the following: 

1. Effect of varied flow extraction at design point (DP) with maximum VIGV opening 

2. Identification of the design MEL using VIGV closure and subsequent drop in combustor mean 

temperature (CMT) or flame temperature.  

3. MEL extension through VIGV closure and air extraction, while keeping the CMT constant 

during the turndown phases.  

 

Table 1: Maximum BAT-associated emission level for NOx and CO [3] 

NOx emission limits (BREF)- Max (mg/Nm3) ppmv 

Existing OCGT plants (yearly average) 50 26.2 

INDICATIVE- CO emission limits (BREF)- Max  

Existing OCGT plants (yearly average) 50 40.5 

 

 

Figure 1: MEL of different engines [16-36]] [16] [17] [18] [19] [20] [21] [22] [23] [24] 

[25] [26] [27] [28] [29] [30] [31] [32] 
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2. ENGINE MODEL – METHOD  

The gas turbine performance is modelled and simulated using Turbomatch, Cranfield University’s in-

house software. It is a zero-dimensional code in FORTRAN language, which is used for steady-state 

and transient gas turbine simulations. The tool employs a modified Newton-Raphson method to achieve 

convergence. It approximates turbomachinery effects in the compressor and turbine, using standard 

maps that are scaled to match the user-defined parameters. This is achieved by using scaling factor (SF) 

of specified parameters such as pressure ratio (PR), component isentropic efficiency (ηis) and corrected 

mass flow (CMF) as shown in Equation 1 to 3. The denominator in these equations is the original 

values of the standard map, while the numerator is the new specified values. Similarly, DPmap refers 

to the standard map and DP is the design point of the model. For the CMF, the correction of the actual 

mass flow is made with reference to sea level condition as shown in Equation 4.    In addition, the 

embedded generalized combustor map is used to estimate the variations in combustor efficiency and 

pressure drop.  

 ���� =
���� − �������� − � 

 

Equation 1 

����� =
������������� Equation 2 

 ����� =
������������� 

Equation 3 

Where 

��� = �̇�� ∙ ����������� ∙� ������.��� Equation 4 

 

For design and off-design computations, the software performs the calculations that must satisfy the 

compatibility of work, mass flow, and shaft speed as indicated in Equation 5 to 7 respectively. The 

implication of this for Equation 6 is that the term on the left-hand side (non-dimensional mass flow of 

turbine inlet) is approximately constant. This is achieved by varying the terms on the right hand side of 

the equation. On the side of the equation, the inverse of the pressure ratio and the turbine temperature 

ratio (the second and fourth term) vary more significantly than the other terms. �� = �̇�� ∙ ���� ∙ (��� − ���) − �̇� ∙ ��� ∙ (�� − ��) Equation 5 

�̇��������� =
�̇������  ∙  ����  ∙  �����  ∙������  ∙  �̇���̇�  

Equation 6 
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������ =
�����  ∙  ��������� Equation 7 

 

Operational requirements can be attained by modulating the VIGV, which is accomplished through 

further scaling of component maps. Furthermore, models generated can be controlled using shaft speed, 

combustor outlet temperature (COT) or fixed power output. The CMT and exhaust gas temperature 

(EGT) can also be improvised as control constraints [33]. 

 

The heavy-duty gas turbine selected for this study is inspired by a generic Mitsubishi F-class engine. 

This class of engines is chosen as it constitutes a high percentage of the operating fleet of most OEMs. 

The single shaft, 185MW gas turbine, operates on natural gas and consists of 16 compression stages, a 

premixed low NOx combustor, a four-stage turbine and variable inlet guide vanes (VIGV). This engine 

type also features compressor inter-stage bleeds and a separate combustor bypass for the transition piece 

[16]. Figure 2 is a schematic illustrating the engine model configuration and interconnections, which 

accounts for additional turbine cooling using compressor interstage bleeds. The interstage bleed is 

possible, given that the compressor is modelled as four bulk sections (and not individual stages). The 

figure also shows a bypass channel from the compressor exit to the combustor transition piece. It is 

crucial to note that the amount of bypass flow is a function of the load variation; this is similar to the 

schedule presented in Katsunori et al [34]. Thus, the turbine entry temperature (TET) is reduced further 

by the cooler bypass flow.  

 

The specified DP performance at which the engine is modelled is indicated in Table 2. These are typical 

values that are either assumed based on the technology of the engine or from published data. The 

calculated design point parameters are presented in  

Table 3. These parameters are shown to be very close to the OEM published data with a maximum 

percentage error of 1%. In addition to the DP verification, the off-design performance of the model is 

compared to that of publicly available OEM data in Figure A.1 of the Appendix. It shows the effect of 

ambient temperature variations on the power output, heat rate and exhaust flow for the model and 

reference engine. As can be observed, the differences are mostly negligible and are attributed to the 

component maps that is not identical to the OEM proprietary maps.   
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 Figure 2: Engine schematic illustrating the interconnection of components 
 

 

Table 2: Engine model DP and performance specification 

Design Parameters Comment 

Ambient conditions ISO - 

Intake mass flow 457kg/s Ref [16] 

Compressor overall pressure ratio 16 Ref [16] 

Compressor overall efficiency 86% assumed 

Combustor pressure loss 4% Ref [35] 

Combustor efficiency 99% assumed 

Turbine efficiency 89% assumed 

Combustor mean temperature 1786K Ref [36] 

Fuel lower heating value 45.5MJ/kg assumed 

 

Table 3: DP performance – calculated parameters and % error 

 

 

 

 

The compressor air extraction occurs at station 10 that is immediately after the bleed for the turbine 

cooling, indicated in Figure A.2. The air storage system depicted in the figure is only included for 

illustrative purposes and not modelled in this study; therefore, the gas turbine is treated as a standalone. 

The compressed air for storage is bled into the virtual tank, thereby reducing the engine model mass 

flow and moving the operating point of the compressor away from surge. The proximity to surge has 

been described as the surge margin utilisation (SMU), as defined by Equation 8. Assumed SMU value 

of 85% (i.e. 15% surge margin) is specified for the compressors at the design point. 

 ��� (%) = ���������� − ������������ − ����� �× 100 

Equation 8 

 
 

 

 

Performance Parameters OEM Data Model %Error 

Net power output 185.4MW 185.4MW 0.0% 

Thermal efficiency 37.0% 37.0% 0.1% 

Exhaust gas temperature 886.0K 895.3K 1.0% 

Exhaust mass flow 468kg/s 468kg/s 0.0% 
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3. EMISSIONS MODEL – METHOD  

The results from the performance simulation allow for the emission estimation through the calculated 

combustor flame temperature. Gulder [37]  proposes a method to evaluate the primary zone temperature 

of a combustor using engine performance data and some constants. The parameters required include the 

combustor equivalence ratio, normalized fuel temperatures and pressures, and hydrogen to carbon (H/C) 

atomic ratio of fuel. For simplification, a global equivalence ratio is evaluated for the combustor that 

combines the pilot and main injector fuel to air ratios. In addition, the fuel is introduced at an assumed 

temperature and pressure identical to the compressor discharge with a H/C ratio of methane (CH4) 

specified. Equation 9.0-9.6 present the relations between the engine performance parameters and the 

flame temperature.  

������ = � ∙ �� ∙ ��� [�(� + �)�] ∙ �� ∙ �� ∙�� 
Equation 9.0 

� = �� + ���+ ���� 
Equation 9.1 

� = �� + ���+ ���� 
Equation 9.2 

� = �� + ��� + ���� 
Equation 9.3 

� =
����� ��������   Equation 9.4 

� =
�������������   Equation 9.5 

� =
��  ������ ����� �� ����   Equation 9.6 

 

Tflame, σ, π, θ, ψ are primary zone flame temperature, equivalence ratio, normalized fuel pressure, 

normalized fuel temperature, and H/C atomic ratio of fuel respectively. A, α, β, λ, ai, bi, and ci are 

constants with their values presented in Table A1 of Appendix A. Further description of the flame 

temperature estimation is provided in the referred study. 

 

The evaluated flame temperature is used to estimate the carbon monoxide (CO) emission using an 

empirical correlation for total combustor emissions presented in Rizk and Mongia [38]. Other proposed 

methods in the study require detailed combustor data that is not available from the performance model. 

Equation 10 presents a modified correlation from the referred paper which estimates CO emissions.  

 

��(�/��) =

�.��� × ��� × ��� � ���������������� × ��� × (�− �.����) × �∆������ ��.�� Equation 10 
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In the equation, subscript 13 represents the combustor inlet station (w.r.t. Figure 1), while τ symbolizes 

the residence time. τev which is the residence time of evaporation is assumed 0 as the fuel is in gaseous 

form. The primary zone residence times and liner pressure drop are assumed based on estimates from 

Etemad [39] and Lefebvre and Ballal [40].  

 

Sullivan [41] proposes the NOx emissions model as presented in Equation 11. The correlation was 

derived from the evaluation of seven other studies on estimating NOx. The author demonstrates the 

validity of the correlation by computing a combustor geometry parameter (ANox) and identifying it as a 

constant. The value of ANox gives an indication of the residence time, which is usually required for 

detailed NOx estimation. The constant is evaluated as 0.554 (for the specific case considered) through 

the matching of predicted and published NOx emissions data at DP ISO operation [16]. The combustor 

inlet pressure, temperature, airflow and fuel-air ratio are also used in the estimation.  

 ���(����) = ���� × ����.� ∙ ��.� ∙ �̇���.�� ∙ ���(���/���) Equation 11 

 

4. ENGINE CONTROL STRATEGIES AND CASES 

The engine schematic with an emphasis on the combustor temperatures (Tflame, CMT, COT and TET) 

is shown in Figure A.2 of Appendix A.   It can be noted from the previous discussions, that CMT is 

used as a control constraint in the simulations. All but the Tflame  is obtained from the engine model. The 

control strategies for the respective cases investigated are shown in  

Figure 3, where rows A, B and C relates to Sections 5, 6 and 7 respectively. Section 5 study provides 

a basic understanding of flow extraction that can be directly compared with Igie et al [13] and Yang et 

al. [15], while Section 6 approach is comparable to Munoz de Escalona et al. [42] that did not account 

for emissions limit. Section 7 is related to the work of Therkorn et al [43] with a sequential combustor 

that involves keeping the first chamber temperatures entirely fixed, however, does not include any air 

extraction.  
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Figure 3: Engine control strategies related to the cases investigated 

 

 

5. EFFECT OF FLOW EXTRACTION AT DP - MAXIMUM VIGV OPENING  

As a precursor, the effect of flow extraction at full load and a constant CMT is presented in this section. 

The set-up of this simulation is illustrated in  

Figure 3A, which shows the extraction location behind the compressor discharge. The flow is extracted 

to a dummy storage, as a percentage of air flowing through station 10, and the quantity of air extracted 

is limited to 15%. The effect of the flow extraction is a drop in the pressure at the exit of the compressor, 

that brings about a drop in the overall pressure ratio (OPR) shown in Figure 4. There is also a drop in 

the compressor discharge temperature (CDT), arising from the reduced compressor work caused by 

mass flow reduction. These reductions bring about a decrease in the power output as shown in Figure 

5. As the transition piece bypass cooling flow increases with lower power outputs for this engine type, 

the TET reduces further with more air extraction. The lower OPR of the compressor also translates to 
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lesser turbine inlet pressure that usually causes less expansion in the turbine section. However, this does 

not bring about a rise in EGT, due to a drop in the TET. The drop in TET provides potential life 

extension benefits for the turbine blades, although the EGT reduction can affect steam quality in CCGT 

operation. As for the power output change mentioned, the decline is primarily attributed to the reduced 

compressed airflow that is accompanied by a drop in the fuel flow. However, the decrease in fuel flow 

is necessary to maintain constant CMT. From Figure 5, it can also be observed that the fuel flow drops 

at a lower magnitude than the power output, resulting in lower thermal efficiency. There is a consistent 

reduction to all the parameters as the extracted flow increases from 5 to 15%.   
 

 

Figure 4: Effect of flow extraction on OPR and temperatures – max VIGV opening 

 

Figure 5: Effect of flow extractions on performance – max VIGV opening 
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The compressor characteristic map for comp.4 shown in Figure 2, is presented in Figure 6, highlighting 

the changes with flow extraction. It is important to note that the DP operating speed is 1 (100%) and 

the reason why this operating point does not coincide on the 1.01 corrected speed line. This compressor 

section has been selected as a result of the proximity to the station of air extraction. Figure 6 shows 

that with increasing flow extraction, the operating points move towards choke that occurs at lower OPR 

and TET. It is noticeable that the operating point moves away from the surge line, thereby reducing the 

SMU as described by Equation 8. Towards choke, the inlet mass flow increases as shown from the 

operating points (DP to 15%). It is caused by reduced turbine work and less backpressure on the 

compressor. A similar effect also occurs in the early stages/compressors but to a lesser magnitude. The 

isentropic efficiency of comp. 4 changes with higher extraction as shown. At 5% and 10% extractions 

there is little or no change; this is determined by the shape (characteristics) of the map. Further 

extraction (at 15%) shows a marked reduction in the parameter.   

 

 

Figure 6: Operating points of comp. 4 with flow extractions 

 

6. DESIGN MEL  

In this section, the design or rated MEL of the engine is determined. As shown in  

Figure 3B, this is achieved by modulating the VIGV to its maximum closure at constant CMT in the 

first phase. It is important to note that the VIGV closure is limited by EGT that increases with the 

closure. Munoz de Escalona et al. [42] indicates that the EGT is allowed to increase up to 5% and 

suitable for CCGT operations. Nevertheless, the rise in EGT is not obtained in this operation due to the 

transition piece bypass cooling, as discussed previously. The second phase of turndown shown in  

Figure 3B indicates that only the CMT is reduced; this is until the limit to CO in Table 1 is reached.  

 

Figure 7 confirms the implications of the VIGIV closure on the characteristic behaviour in the front 

and back compressor, where 0° is the maximum opening and 40° is the maximum closing position. It 



13 

 

is shown that the comp. 1 is rescaled and tends towards the left of the map to a lower pressure ratio and 

CMF. For the back comp. 4, the map remains unchanged, however, the operating point shifts towards 

the right-hand side of the map to higher pressure ratio and CMF. This is caused by a higher drop in inlet 

pressure than the corresponding drop in flow and temperature, respectively. With the increase in 

pressure ratio at the back compressor, the SMU increases, while for the front compressor it is a reduction 

in the SMU as it becomes unloaded.  Figure 8 shows a complete view of the strategy for the operation, 

that includes phase 2 on the left of the figure. This shows the drop in power output for both phases; at 

the end of VIGV closure, it is 68% of the DP, while at the end of the drop in CMT it is 45% of DP. It 

also indicates that reductions in the parameters are more drastic in the first phase than in the latter.  

 

  

comp. 1 comp. 4 

Figure 7: Front and back compressor maps at the max opening of VIGV – phase 1 
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Figure 8: Variation of performance parameters – phase 1 and 2 

The changes in the temperatures associated with the combustor in both phases are shown in Figure 9. 

They show similar trends but differ in the magnitude of change. The TET drop is influenced by a 

decreasing cooling flow temperature, at lower power outputs, though the cooling flow increases. The 

EGT drop is directly influenced by the reduced turbine flow expansion. For the flame temperature 

shown on the right of the figure, based on Equation 9, the plot is similar.  An approximate temperature 

difference between the flame and CMT of 123 K is calculated for the turndown process. 

 

 

A. Engine model temperatures  B. Emission model temperature  

Figure 9: Variation of temperatures – phase 1 and 2 

 

To attain the MEL, the corresponding NOx and CO emissions were calculated based on Section 3, for 

both phases. The estimated NOx emission is mostly impacted by the fuel-air ratio, combustor inlet mass 

flow and temperature as can be observed from Equation 11. These parameters decrease when the 

engine is turned down to lower loads and contribute to the drop in the NOx emission. On Figure 10, a 

gradual slope is observed for NOx values during VIGV closing; it becomes steeper as the CMT is 

reduced (phase 2). Furthermore, this trend conforms to the general theory that reduced flame 

temperatures inhibit NOx production. On the other hand, CO emissions are seen to increase 

exponentially across the turndown. The exponential nature of the curve suggests that the emission is 

most sensitive to flame temperature variations. Like NOx, the reduction in OPR leading to a lower 

combustor inlet pressure, compliments the flame temperature effect by further reducing the reaction 

rate. This results in incomplete combustion which fosters the production of CO. The figure also shows 

an intersection of the estimated CO emission curve with the CO limit (40.5 ppm) as indicated in Table 

1. This point is the DP MEL, achieved at 47% of the engine’s PO. 
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Figure 10: Variation of CO and NOx – phase 1 and 2 

 

7. MEL EXTENSION 

The new MEL (E-MEL) presented here and shown in  

Figure 3C is achieved through the VIGV full closure in phase 1, followed by the extraction of airflow 

from the compressor discharge in phase 2. Unlike the design case, the CMT is maintained for both 

phases (and not just the first). The aim here is to obtain the same levels of CO emissions as in the design 

case, at lower power output. Continuously keeping CMT fixed, with further reductions of mass flow in 

the engine, is seen to slow the inevitable rate of rise in CO at low loads, as shown subsequently.  

 

Figure 11 shows phase 1 (right-hand side) that is identical to the design case. Phase 2 shows discrete 

extractions that drops the OPR less significantly for a given power when compared to the design case 

in Figure 8.  This also infers a higher combustor inlet pressure - P13 than the corresponding power for 

the design case. From Equation 10, it can be deduced that higher P13 with the numerator being constant, 

amounts to a lower value of CO. The temperature variations in this operation are shown in Figure 12, 

also indicating generally higher values than in Figure 9 at phase 2. For the same comparative power 

output with the design case, it can also be deduced that the EGT here is greater, and the flame 

temperature is almost unchanged. The negligible decline in flame temperature (observed below 70% of 

power) is due to the reductions in combustion airflow properties; which is compensated by increments 

in fuel-air ratio to maintain the CMT.   
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Figure 11: E-MEL: variation of performance parameters – phase 1 and 2 

 

 

A. Engine model temperatures  B. Emission model temperature  

Figure 12: E-MEL: variation of temperatures – phase 1 and 2 

 

For the emissions (CO and NOx) calculated, it can be observed from  Figure 13, that 40.5 ppm of CO 

is achieved at lower power of 31% of the design. This signifies an improvement in MEL from 47% and 

indicates a 34% reduction. The figure also shows that if the design MEL (47%) is to be maintained, CO 

emissions will be reduced by about 10 ppm with 14% of air extraction. The E-MEL occurs at 24% 

extraction of the compressor discharge flow, which is 20% of the compressor inlet airflow. However, 

it is important to reiterate that the back of the compressor (comp.4) still operates satisfactorily in this 

condition. 
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 Figure 13: E-MEL: variation of CO and NOx – phase 1 and 2 

 

The influence of ambient temperature on MEL extension is shown in Figure 14. The figure shows a 

higher capacity to improve MEL at lower ambient temperatures that are associated with higher OPR 

(due to increased air density). This results in higher combustor inlet pressure, P13 that brings about a 

lower CO for the same Tflame or CMT as explained. Hence, higher ambient temperatures are shown to 

reduce the MEL extension. The figure also illustrates the extraction quantities required to achieve the 

MEL extension. At lower ambient temperatures, higher percentages of airflow are extracted in 

comparison to higher temperatures. This suggests a higher potential for more storage at cold 

temperatures, though, at the expense of lower CDT (also extraction temperature) that is important for 

energy storage. The figure highlights the trade-off between flow quantity and temperature during 

extraction. It is worth mentioning that there is only a small variation in the design MEL at different 

ambient temperatures and not included in Figure 14. 
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Figure 14:  Influence of ambient temperatures on MEL extension 

 

Following, the case presented in  

Figure 3C, another variant of MEL extension is considered. It includes a drop in the CMT in phase 2 

(following VIGV closure and air extraction) as shown in Figure 15, for different cases of air extractions. 

As expected, the highest extraction leads to the biggest drop in power. It also indicates that lower MEL 

is achieved with more extractions at higher CMT. This will not be the case if the same amount of 

extraction is maintained with a lower CMT, as a reduction in Tflame will decrease P13 more adversely. 

Equation 10 shows an exponential operator on temperature that will amount to a larger numerator when 

Tflame is reduced. This confirms that maintaining the design CMT throughout the operation (as in Figure 

12) is the most favourable. At 20% extraction here, the corresponding new MEL of 35% is at a lower 

CMT, with a drop of 33 K. Though not the optimal in comparison to the 31% MEL obtained at fixed 

CMT and 24% air extraction, it brings about a substantive reduction in operating temperature that can 

extend the life of the combustor.   
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Figure 15: Alternative approach to MEL extension 

 

8. CONCLUSIONS 

The study has investigated the potentials to improve the minimum environmental load (MEL) of a stand-

alone gas turbine engine. An MEL extension of 34% was achieved with 24% of flow extraction. This 

is possible when the regime includes constant combustor mean temperature (CMT) and variable inlet 

guide vane (VIGV) closure. The analysis shows that airflow extraction at the back of the compressor 

will: 

 reduce the rate of CO rise when conducted immediately following VIGV closure and at a 

constant CMT, hence improve the MEL. This is achieved with a relatively smaller drop in 

combustor inlet pressure, in relation to the mass flow decrease.  

 improve the MEL at lower ambient temperature at the expense of lower compressor discharge 

temperature (CDT) and hence less heat for storage. 

 lead to choking of compressor stages nearest to the extraction location, at higher values of 

extractions  

 reduce the overall pressure ratio (OPR), CDT, power output (PO) and thermal efficiency  

 

Two strategies were implemented; one based on keeping CMT constant in all phases. While the second 

is by reducing the CMT after VIGV closure and air extractions.  The former achieves an extended MEL 
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of 31%, whilst the latter shows less improvement in MEL. Nevertheless, the second case is beneficial 

for operational temperatures in the combustor that can improve lifing.  

 

The corresponding amount of air extraction for the constant CMT operation is 24% of compressor 

discharge flow (20% with respect to the compressor inlet flow at part-load and 15.5% of full-load). 

However, the extracted quantity is expected to vary slightly with different compressor design. 

Maintaining the same CMT means the temperatures are not unusual for combustor durability and lifing, 

although the flame stability is open to investigation. The flame temperature and emission correlations 

used are fair approximations in the absence of very detailed methods and some combustor descriptions.  

Uncertainties related to this is not likely to affect the analysis of the results and overall conclusions as 

far as changes in parameters are concerned.  A significant amount of effort has been put into the 

modelling of the engine, also accounting for a cooling flow schedule into the combustor exit. The 

schedule is as a function of load, apart from other cooling that exists. These affect the off-design 

behaviour of the engine and outcomes.  

 

Finally, this work shows effects of air extraction for compressed air energy storage (CAES) that differ 

from other turndown approaches, in the larger amount of air that can be extracted from the compressor, 

as well as the extraction position (compressor discharge), unlike extra closing of VIGV. The outcomes 

show how important it is to maintain the CMT, hence higher combustor inlet pressure, to achieve lower 

MEL with flow extractions. 
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NOMENCLATURE  

01 - 22 Location on Engine Schematic 

BAT  Best Available Techniques  

BOV  Blow Off Valves 

BREF BAT Reference Documents  

CAES  Compressed Air Energy Storage  

CCGT  Combined Cycle Gas Turbine 

CDT Compressor Discharge Temperature, K 

CDP Compressor Discharge Pressure, bar 
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CMF Corrected Mass Flow, kg/s 

CMT Combustor Mean Temperature, K 

CO  Carbon Monoxide 

COT  Combustor Outlet Temperature, K 

DP  Design Point  

EGT  Exhaust Gas Temperature, K  

GT  Gas Turbine 

IMF Inlet Mass Flow, kg/s 

ISO International Organization for Standardization 

ṁ Mass Flow, kg/s 

Max  Maximum 

MEL Minimum Environmental Load  

N Spool Speed (rpm) 

NOx Nitrous Oxides 

OCGT Open Cycle Gas Turbine  

OEM  Original Engine manufacturers 

OPR  Overall Pressure Ratio 

P Pressure, Pa 

PO  Power Output, MW 

PR  Pressure Ratio 

SF Scaling Factor 

SMU  Surge Margin Utilisation  

T Temperature, K 

TET  Turbine Entry Temperature, K 

VIGV Variable Inlet Guide Vanes 

  

  

  
ψ Hydrogen to Carbon atomic ratio of fuel  

θ Normalized fuel Temperature  

π Normalized fuel Pressure 

τ Residence time, s 

ηis Isentropic Efficiency 
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APPENDIX A 

 

Figure A.1 Effect of inlet air temperature on the PO, heat rate and exhaust flow - model and 

reference engine 

 

 

Figure A.2 Engine schematic with emphasis on combustion temperatures 
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Table A.1 Constants for Calculating Flame Temperature 
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