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Abstract Part Ⅰ has illustrated the procedures to apply the Linkage Learning Genetic Algorithm

(LLGA) in Gas Turbine Engine (GTE) controller gains tuning and generated the optimization

results for runway conditions from idle to takeoff. However, the total pressure and temperature

of the engine inlet vary as the changing of altitude and Mach number, which would lead to the vari-

ation in fuel flow supply regulation. As a result, the optimized gains in runway might not be suitable

for other flight conditions. In order to maintain the optimal control performance, the GTE con-

troller gains should be adjusted according to the flight conditions. This paper extends the applica-

tion of the LLGA method to other flight conditions and then simulates a complete flight mission

with different gains and weather condition configurations. For this purpose, the control parameters

in the Simulink model of the GTE controller are first corrected by the weather condition in altitude.

Then, a typical flight mission is defined and divided into different flight segments based on the alti-

tude and Mach number configuration. One representative point is selected from each segment as the

datum point for optimization process. After this step, the LLGA method is used to find the best

gains combinations for different flight conditions and the differences in optimization effects for dif-

ferent flight conditions are analyzed subsequently. The simulation results show that the optimiza-

tion effect of the control performance of each flight condition is dependent on the value of
p
hd
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and the optimal Kpla in some flight conditions is approximately equal to
p
hd times of the Kpla value

in sea level standard condition. Finally, the complete flight mission is simulated with different gains

and weather condition configurations. The simulation results show that the engine performance has

been greatly improved after optimization by LLGA in the transient state and the high altitude con-

ditions. In other steady states, the optimization effect is not very obvious.

� 2020 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When an aircraft flies in the sky, the total pressure and temper-
ature of the engine inlet vary as the changing of altitude and

Mach number. This will lead to the variation in fuel flow sup-
ply regulation.1 As a result, the GTE controller gains which
work well in Sea Level Standard (SLS) condition may not be

suitable for other flight conditions. In order to maintain the
good control performance, the GTE controller gains should
be adjusted according to the weather condition during the

flight mission. Many Meta-heuristic Global Optimization
(MGO) algorithms have been proposed and applied in GTE
controller optimization problems, including Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), Inva-

sive Weed Optimization (IWO), and Bee Colony Optimization
(BCO).2–5 However, most of these studies only focus on the
controller optimization in SLS condition and the influence of

the weather condition exerted on the optimization effect is
rarely studied.

The Min-Max controller has been widely used in the indus-

trial control domain and many researches about its applica-
tions in aero engine controller were also published.2 The
fuzzy theory is regarded as one potential methodology to opti-

mize the control performance or tracking performance. Many
different T-S fuzzy norms are applied in the Min-Max con-
troller to improve the control performance6 The nonfragile
H1 filter design method is applied for continuous-time T-S

fuzzy systems in7 in which the designed filter is assumed to
have two types of multiplicative gain variations. The fuzzy
adaptive control strategy is also used to solve the asymptotic

tracking control problem of a class of uncertain switched non-
linear systems in8 where a novel discontinuous controller with
dynamic feedback compensator is designed. The nature and

characteristics of non-linear switching systems are well-
studies in the literature from different points of view including
performance and modelling,9,10 control strategy design and

analysis,11,12,13 implementation considerations,14,15,16 stabiliza-
tion,17,18 and stability analysis.19,20,21 However, most of the
papers in gas turbine aero-engines applications treat the
Min-Max controller (or other fuzzy norms) as a black box

and do not analyze the detail working process inside.3,5,6 As
a result, sometimes it is not known that which transient loops
are activated and which constraint is the dominant limitation

during the control process, especially for the transient process.
But this detail information is very important to help the
designers to analyze the reasons for fluctuation and deviation

of the engine performance and guide the direction of improv-
ing the control performance.

In part Ⅰ, a new LLGA method was proposed for GTE con-
troller gains tuning problem and applied in runway condition

from idle to takeoff. In this paper, the influence of flight con-
ditions including altitude and Mach number will be considered
in the controller performance and then the LLGA method will
be extended to GTE controller optimization in different flight

conditions. As a result, by adopting different optimized con-
troller gains according to the changing of flight conditions dur-
ing the whole flight mission, better control performance is

expected to be achieved than applying the constant gain values
in different flight conditions. For this purpose, the principle to
correct the control parameters by weather condition is first
presented. Then a classical flight mission is defined and the

typical operational points are selected to characterize different
flight segments in the flight mission. After this, the LLGA
method is used to optimize the controller gains for different

flight conditions. The simulation results are analyzed from
the aspects of weather condition, working process of the
Min-Max selection and the robustness of the GTE controller.

Moreover, the complete flight mission simulation is imple-
mented with the GTE controller configured with different
gains and weather condition combinations. However, the flight
condition changes continuously during the whole flight mis-

sion while the optimization controller gains are acquired only
based on the representative condition points. This will make
the engine performance during the flight condition to be a little

different from the simulation results in separate flight condi-
tions, which will also be illustrated in this paper. Finally, the
flight mission simulations are implemented with three different

control parameter configurations. The simulation results are
analyzed and the detail working processes within the Min-
Max controller during the flight mission are illustrated. In

addition, the control performances of different control param-
eter configurations are compared to confirm the effectiveness
of the proposed methodology to optimize the performance of
the engine and controller as a closed-loop system.
2. Control parameters correction

In order to simulate the flight conditions, the altitude and

Mach number will be taken into consideration and the rota-
tional speed and fuel flow will be corrected by weather condi-
tions. Therefore, weather condition block is added into the

GTE controller model as shown in Fig. 1.
In the SLS, the ambient temperature and pressure are set as

288.15 K and 101325 Pa. The ambient temperature tH and

pressure pH at altitude H can be calculated by utilizing Eqs.
(1) and (2).1

tH ¼ �0:00657Hþ 288:15 ð1Þ

pH ¼ �8:6462� 10�9H3 þ 0:000522H2 � 11:863H

þ 101325 ð2Þ

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Schematic of aero-engine fuel controller structure.

Fig. 2 Altitude and Mach number changing during flight

mission.
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Considering the flight Mach number, the total temperature
TH and total pressure PH of the engine inlet at altitude H and

Mach number Ma can be calculated by Eqs. (3) and (4).1

TH ¼ ð1þ c� 1

2
Ma2ÞtH ð3Þ

PH ¼ 1þ c� 1

2
Ma2

� � c
c�1

pH ð4Þ

where c is the ratio of specific heats and has the constant value

of 1.4.
Then non-dimensional temperature h and pressure d are

calculated by Eqs. (5) and (6).

h ¼ TH=288:15 ð5Þ

d ¼ PH=101325 ð6Þ
In the limitation loops, the safety concern is evaluated by

the physical rotational speed and physical acceleration or
deceleration, so the relative corrected rotational speed under

SLS, i.e. Ngcr, should be converted into the relative physical
rotational speed Ngr before entering the limitation loops as
depicted in Eq. (7). As a result, the output of Min-Max selec-
tion is the physical transient fuel flow Wftrans. The corrected

steady state fuel flow Wfssc is calculated through interpolation
method from the fuel-Ngcr schedule. In order to keep consis-
tent with the transient fuel flow, the output fuel flow from

the steady state control loop should also be converted into
physical fuel flow Wfss by Eq. (8).1 Before entering the engine,
the physical total fuel flow Wftotal should be corrected to

Wftotalc under SLS by Eq. (9). After these steps, the work of
building the GTE controller is finished.

Ngr ¼
ffiffiffi
h

p
�Ngcr ð7Þ
Wfss ¼
ffiffiffi
h

p
� d �Wfssc ð8Þ

Wftotalc ¼ Wftotal=ð
ffiffiffi
h

p
� dÞ ð9Þ
3. Description of the flight mission and definition of the flight

conditions

Fig. 2 shows the altitude and Mach number curves during a
typical flight mission. Based on the altitude & Mach number
configurations, the flight mission is divided into ten segments

which are specified in Appendix. The altitudes of three climb
segments are 0–1524 m, 1524–7620 m and 7620–11100 m
respectively. The equivalent air speed during the altitude range

457.2–7620 m is around 128.5 m/s (250 kts). For the sake of
simplicity, one representative point is selected from each seg-
ment and depicted in Table 1. In Section 4, the LLGA method

will be applied on GTE controller gains tuning in different



Table 1 Representative weather conditions for different flight mission segments.

Parameter Ground idle Take-off BOC Climb TOC Cruise Approach

Height (m) 0 0 457.2 6096 10000 11100 457.2

Ma 0 0.222 0.388 0.589 0.78 0.792 0.233ffiffiffi
h

p
1 1.005 1.01 0.9596 0.9306 0.9169 1

d 1 1.035 1.051 0.5818 0.3912 0.3349 0.9842ffiffiffi
h

p � d 1 1.04 1.061 0.5582 0.364 0.307 0.9843

Notes: BOC—begin of climb; TOC—top of climb; Begin of descent (BOD) and decent have the same weather conditions as TOC and climb

respectively.

Fig. 3 Variation of PLA value for simulation.

Fig. 4 Static convergence of the minimum fitness value.

Fig. 5 Standard deviation of the fitness value at each generation.
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flight conditions and the genetic process parameters are the

same as part Ⅰ. The optimized engine control performance will
be compared with that of initial controller gains as shown in
Table 2. In order to keep the consistency, the PLA command
in each simulation scenario will be the same as part Ⅰ which is

shown in Fig. 3. In this figure, the PLA experiences a step
increase from 0.6 to 1.0 at t= 15 s and a step decrease from
1.0 to 0.7 at t = 30 s. This PLA command is used to simulate

the sudden change in the input command to the controller as
the worst case scenario. Moreover, the definition of the objec-
tive function for control performance is also the same as part Ⅰ
which is shown in Eq. (10).

J gainsð Þ ¼ 0:5RTþ 0:5FC

þ 1=6 P1 þ P2 þ P3 þ P4 þ P5 þ P6ð Þ ð10Þ
where RT is the normalized response time; FC is the normal-

ized fuel consumption; P1 is the penalty for oscillation during
0–15 s; P2 is the penalty for oscillation during 30–45 s; P3 is the
penalty for the error between CPR and PLA; P4 is the penalty

for overspeed; P5 is the penalty for over acceleration; P6 is the
penalty for over deceleration. The specific definition of each
item has been illustrated in part Ⅰ.

4. Optimization results for different flight conditions

4.1. Take-off (H = 0, Ma = 0.222)

In the take-off condition, the aircraft is on the ground while

the flight speed is accelerated, and the aero-engine works under
the maximum power/thrust setting. Apply LLGA on con-
troller gains tuning, then the fitness value convergence is
shown in Fig. 4. In the figure, the minimum fitness value is

already very low at the first generation and it only decreases
by 2.3% during the next 29 generations. This verifies the fact
that the minimum fitness value is reduced after BBs detection.

The standard deviation of the fitness value is shown in
Fig. 5. The standard deviation has a great decrease in the first
2 generations, then it maintains at a relative high level during

the generations of 3–22 and finally experiences an obvious
reduction in the last 8 generations. This phenomenon is very
Table 2 Initial gains of GTE controller.3

Parameter Kpla KNmax Kacc Kdec

Value 1.7 3 �0.01 5
similar to the scenario of ground idle and the reason for this
has been illustrated in part Ⅰ.

The final optimization results are depicted in Table 3. Sim-
ulate the GTE controller model with the optimized gains and
the initial gains respectively, then get the engine performance

as shown in Table 4 and Fig. 6. The fitness value is reduced
from 1.2029 to 1.0545 after optimization. The RT is reduced
by 14.6% while the FC almost remains the same. As for the

penalty items, the fluctuation (P1, P2) and the tracking error
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(P3) are greatly reduced, while the maximum acceleration and
deceleration value (P5, P6) have some increase. Overall, the
benefits brought in by the optimization greatly outweighs the

side effects. In addition, the tracking error in this flight condi-
tion is caused by the limitation on physical rotational speed.

As
ffiffiffi
h

p
(=1.005) is larger than 1 in take-off, the Ngcr should

be lower than 1 to make sure that Ngr would not exceed the
speed limitation. Therefore, the CPRr also cannot reach the
value 1.

The Ngr derivative is shown in Fig. 7. In the figure, both the
Ngr derivative before and after optimization have not exceeded
the safe bounds. Moreover, the optimized controller has used

the safety margins to improve the engine performance.

4.2. Begin of climb (H = 457.2, Ma = 0.388)

During the climb part of a flight condition, the aircraft rises
from altitude of 0 m to 11,100 m and the Mach number
increases from 0.222 Ma to 0.792 Ma. As a result, the GTE
inlet total temperature and pressure change a lot during the

climb process. In order to ensure the reliability of the opti-
mized controller gains, the climb process is divided into three
scenarios, i.e. begin of climb (BOC), climb and top of climb

(TOC). The gains tuning of these three flight conditions are
studied in Sections 4.2, 4.3 and 4.4 respectively.

In ground idle and take-off, the best fitness values are

found in the 28th and the 30th generation respectively. In
order to verify whether the fitness value would continue to
decrease beyond the 30th generation, the iteration generation
in climb is set to be 40. Apply LLGA on controller gains tun-

ing, then the fitness value convergence is shown in Fig. 8. Dur-
ing the whole evaluation process, the minimum fitness value
decreases by 3.3% and reaches the bottom at the 26th genera-

tion which means that 30 generations are large enough for suf-
ficient convergence. The standard deviation of the fitness value
is shown in Fig. 9. It increases in the first 7 generations, then it

maintains at a relative high level during the generations of 8–
27 and finally experiences an obvious reduction during the gen-
erations of 28–35.

The final optimization results are depicted in Table 5. Sim-
ulate the GTE controller model with the optimized gains and
the initial gains respectively, then get the engine performance
as shown in Table 6 and Fig. 10. The fitness value is reduced

from 1.5940 to 1.1229 after optimization. The main improve-
ment after optimization is the RT which is reduced by
46.1% while the FC increases by only 0.48%. As the tracking

requirement for CPR at PLA = 1 is CPRr�0.985 which can-
not be satisfied with the initial gains, thus the RT value with
initial gains is very large. As for the penalty items, the fluctu-

ation (P1, P2) and the maximum tracking error (P3) are greatly
reduced; the maximum acceleration and deceleration values
(P5, P6) have some increase. Overall, the benefits brought in
by the optimization greatly outweighs the side effects. In addi-

tion, the tracking error in this flight condition is caused by the
Table 3 Optimized controller parameters.

Parameter Kpla KNmax Kacc

Optimized results 1.8307 4.9295 �0.030
large
ffiffiffi
h

p
value (=1.005) which has been illustrated in

Section 4.1.

The Ngr derivative is shown in Fig. 11. In the figure, both
the Ngr derivative before and after optimization have not
exceeded the safe bounds. Moreover, the optimized controller
has used the safety margins to improve the engine

performance.

4.3. Climb (H= 6096, Ma = 0.589)

Climb is the middle part of the rise phase of a flight mission,
and its representative condition point is H= 6096,
Ma= 0.589. Set this weather condition in the GTE controller

model and apply LLGA on controller gains tuning, then the
fitness value convergence is shown in Fig. 12. In the figure,
the minimum fitness value is already very low at the first gen-

eration and it only decreases by 0.76% during the next 29 gen-
erations. Fig. 13 shows the standard deviation of the fitness
value at each generation. In this figure, the standard deviation
of the fitness value has a dramatic decrease at the first three

generations and then maintains at a relative low level during
the following generations except for the 23th and 24th genera-
tions. The high standard deviations in these two generations

are caused by the mutation operator which generates some
individuals of high fitness values.

The final optimization results are depicted in Table 7. Sim-

ulate the GTE controller model with the optimized gains and
the initial gains respectively, then the comparison between
the controller performance before and after optimized is
depicted in Table 8. The fitness value is greatly reduced from

1.2381 to 0.7990 after optimization. Almost all the items in
the objective function are greatly improved after optimization
except for RT.

The engine performance with initial gains is shown in
Fig. 14. In this figure, the CPR and Ngr fluctuates dramatically
especially at the PLA settings of 0.6 and 0.7. Moreover, the

short response time of initial controller is achieved at the
expense of inducing more tracking error and fluctuation.
Undoubtedly, the initial gains are unacceptable in the flight

condition of climb. The normalized acceleration/deceleration
is shown in Fig. 15 and the maximum acceleration has
exceeded the surge bound.

The engine performance after controller optimization is

shown in Fig. 16. In the figure, the CPR can track with the
PLA well while the Ngr cannot reach 1. This is becauseffiffiffi
h

p
< 1 and Ngr will be lower than 1 when Ngcr = 1. The nor-

malized acceleration/deceleration is shown in Fig. 17 and it
stays within the safe zone during the whole simulation time.

4.4. Top of climb (H = 10000, Ma = 0.78)

TOC is the third part of the rise phase of a flight mission, and
its typical condition point is H= 10000, Ma= 0.78. Set this

weather condition in the GTE controller model and apply
Kdec Fitness Optimization time

2 8.2035 1.0545 2498 s



Table 4 Performance and penalty function values before and after optimization.

Parameter RT FC P1 P2 P3 P4 P5 P6 Fitness

Initial 1.0567 1.0054 0.1775 0.1961 0.5882 0 0.0696 0 1.2029

Optimized 0.9027 1.0073 0.1024 0.1945 0.1961 0 0.0813 0.0229 1.0545

Fig. 6 Engine performance before and after optimization.

Fig. 7 Derivative of engine rotor speed before and after

optimization.

Fig. 8 Static convergence of the minimum fitness value.

Fig. 9 Standard deviation of the fitness value at each generation.
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LLGA on controller gains tuning, then the fitness value con-
vergence is shown in Fig. 18. In the figure, the minimum fitness

value decreases by 1% during 30 generations. Fig. 19 shows
the standard deviation of the fitness value at each generation.
In this figure, the standard deviation reduces a lot as the gen-

eration increases, especially for the first four generations.
The final optimization results are depicted in Table 9. Sim-

ulate the GTE controller model with the optimized gains and
the initial gains respectively, then the comparison between
the controller performance before and after optimized is

depicted in Table 10. The fitness value is reduced from
3.7445 to 0.7089 after optimization. Almost all the items in
the objective function are greatly improved after optimization

except for RT.
The engine performance with initial gains is shown in

Fig. 20. In this figure, the CPR and Ngr fluctuates dramatically

and follow the rule that the lower the PLA setting is, the more
dramatical fluctuation they have. Moreover, the short response
time of initial controller is achieved at the expense of inducing
more fluctuation, more tracking error and overspeed. In addi-

tion, the CPR has deviated from PLA when PLA = 0.6.
Undoubtedly, the initial gains are unacceptable in TOC. The
normalized acceleration/deceleration is shown in Fig. 21 and

the maximum acceleration/deceleration has exceeded both
the surge bound and the flame out bound.

The engine performance after controller optimization is

shown in Fig. 22. In the figure, the CPR can track with the
PLA well while the Ngr cannot reach 1. The reason for this
has been illustrated in Section 4.3. The normalized accelera-
tion/deceleration is shown in Fig. 23 and it stays within the

safe zone during the whole simulation time.

4.5. Cruise (H = 11100, Ma = 0.792)

Cruise is the main part of a whole flight mission. In this con-
dition, the aircraft flies in the highest altitude and highest
Mach number and the representative condition point is

H= 11100, Ma= 0.92. Set this weather condition in the
GTE controller model and apply LLGA on controller gains
tuning, then the fitness value convergence is shown in

Fig. 24. In the figure, the minimum fitness value decreases by
2.5% during 30 generations. Fig. 25 shows the standard devi-
ation of the fitness value at each generation. In this figure, the
standard deviation reduces a lot as the generation increases,

especially for the first three generations.



Table 5 Optimized controller parameters.

Parameter Kpla KNmax Kacc Kdec Fitness Optimization time

Optimized results 1.8454 4.9452 �0.0496 7.9746 1.1229 3321 s

Table 6 Performance and penalty function values before and after optimization.

Parameter RT FC P1 P2 P3 P4 P5 P6 Fitness

Initial 1.6993 1.0173 0.1719 0.1886 0.9804 0 0.0696 0.0035 1.5940

Optimized 0.9167 1.0222 0.0504 0.1780 0.5882 0 0.0813 0.0229 1.1229

Fig. 10 Engine performance before and after optimization.

Fig. 11 Derivative of engine rotor speed before and after

optimization.

Fig. 12 Static convergence of the minimum fitness value.

Fig. 13 Standard deviation of the fitness value at each

generation.
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The final optimization results are depicted in Table 11. Sim-
ulate the GTE controller model with the optimized gains and

the initial gains respectively, then the comparison between
the controller performance before and after optimized is
depicted in Table 12. The fitness value is reduced from

7.2427 to 0.7061 after optimization. Almost all the items in
the objective function are greatly improved after optimization
except for RT.

The engine performance with initial gains is shown in
Fig. 26. In this figure, the CPR and Ngr fluctuate dramatically
and follow the rule that the lower the PLA setting is, the more

dramatical fluctuation they have. Moreover, the short response
time of initial controller is achieved at the expense of inducing
more fluctuation, more tracking error and overspeed. In addi-
tion, the CPR has deviated from PLA during the whole simu-

lation time. Undoubtedly, the initial gains are unacceptable in
cruise. The normalized acceleration/deceleration is shown in
Fig. 27 and the maximum acceleration/deceleration has

exceeded both the surge bound and the flame out bound.
The engine performance after controller optimization is

shown in Fig. 28. In the figure, the CPR can track with the

PLA well while the Ngr cannot reach 1. The reason for this
has been illustrated in Section 4.3. The normalized accelera-
tion/deceleration is shown in Fig. 29 and it stays within the

safe zone during the whole simulation time.
The comparisons between the engine performance in climb,

TOC and cruise before and after optimization verifies the
necessity of gains optimization, especially in the flight condi-

tion of high altitude and high Mach number.



Table 7 Optimized fuel controller parameters.

Parameter Kpla KNmax Kacc Kdec Fitness Optimization time

Optimized results 0.8327 1.1644 �0.0056 9.2603 0.7990 2490 s

Table 8 Performance and penalty function values before and after optimization.

Parameter RT FC P1 P2 P3 P4 P5 P6 Fitness

Initial 0.5947 0.5539 1.6522 1.2033 0.6209 0 0.4444 0.0618 1.2381

Optimized 0.9353 0.5349 0.1495 0.1570 0 0 0.0540 0.0229 0.7990

Fig. 14 Tracking performance of CPR and Ngr with PLA before

optimization.

Fig. 15 Derivative of engine rotor speed before the controller

optimization.

Fig. 16 Tracking performance of CPR and Ngr with PLA after

optimization.

Fig. 17 Derivative of engine rotor speed after controller

optimization.

Fig. 18 Static convergence of the minimum fitness value.
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4.6. Approach (H = 457.2, Ma = 0.233)

The weather condition of approach is very similar to BOC.
The main difference is that both the altitude and flight speed
decrease during the approach condition while it is increase dur-

ing BOC. The typical condition point of approach is
H = 457.2, Ma= 0.233. Set this weather condition in the
GTE controller model and apply LLGA on controller gains

tuning, then the fitness value convergence and the standard
deviation of the fitness value is shown in Fig. 30 and Fig. 31
respectively.



Fig. 19 Standard deviation of the fitness value at each

generation.

Table 9 Optimized controller parameters.

Parameter Kpla KNmax Kacc

Optimized results 0.5391 2.5499 �0.011

Table 10 Performance and penalty function values before and afte

Parameter RT FC P1 P2

Initial 0.5900 0.4038 3.4848 1.6902

Optimized 0.9260 0.3484 0.1651 0.1802

Fig. 20 Tracking performance of CPR and Ngr with PLA before

optimization.

Fig. 21 Derivative of engine rotor speed before the controller

optimization.

Fig. 22 Tracking performance of CPR and Ngr with PLA after

optimization.

Fig. 23 Derivative of engine rotor speed after optimization.
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The final optimization results are depicted in Table 13. Sim-
ulate the GTE controller model with the optimized gains and

the initial gains respectively, then get the engine performance
as shown in Table 14 and Fig. 32. The fitness value is reduced
from 1.0780 to 1.0002 after optimization. The main improve-

ments after optimization are the RT, fluctuation (P1, P2) and
the tracking error (P3). The bad effect after optimization is
that the maximum acceleration/deceleration value (P5, P6)

have some increase but does not exceed the limitation. The fuel
consumption remains almost the same. Overall, the benefits
Kdec Fitness Optimization time

3 8.6438 0.7089 2488 s

r optimization.

P3 P4 P5 P6 Fitness

8.7582 4.3137 0.9501 0.2887 3.7445

0 0 0.0618 0.0229 0.7089



Fig. 24 Static convergence of the minimum fitness value.

Fig. 25 Standard deviation of the fitness value at each

generation.

Fig. 26 Tracking performance of CPR and Ngr with PLA before

optimization.

Fig. 27 Derivative of engine rotor speed before the controller

optimization.

Fig. 28 Tracking performance of CPR and Ngr with PLA after

optimization.
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brought in by the optimization greatly outweighs the side
effects. In Fig. 32, the PLA, CPRr and Ngr curves coincide at
PLA= 1, the tracking error is negligible. This is because the

rotational speed correction factor
ffiffiffi
h

p
= 1 at approach condi-

tion. Therefore, both the values of CPRr and Ngr will reach 1
when PLA = 1.

The normalized acceleration/deceleration is shown in
Fig. 33. In the figure, both the Ngr derivative before and after
optimization have not exceeded the safe bounds. Moreover,

the optimized controller has used the safety margins to
improve the engine performance.

5. Analysis of the control performance optimization effect in

different flight conditions

Studying from the controller optimization results in all the
flight conditions, it can be concluded that the control perfor-

mance in each flight condition is improved in varying degrees
by gains tuning through LLGA. The optimization effect is

dependent on the value of
ffiffiffi
h

p
d and obeys the rules as below:
Table 11 Optimized fuel controller parameters.

Parameter Kpla KNmax Kacc Kdec Fitness Optimization time

Optimized results 0.5734 1.0783 �0.0388 2.7260 0.7061 2525 s

Table 12 Performance and penalty function values before and after optimization.

Parameter RT FC P1 P2 P3 P4 P5 P6 Fitness

Initial 0.3567 0.3851 4.8890 2.6507 17.0153 13.7255 1.8060 1.1446 7.2427

Optimized 0.8560 0.2980 0.2405 0.2453 0.1961 0 0.0657 0.0268 0.7061



Fig. 29 Derivative of engine rotor speed.

Fig. 30 Static convergence of the minimum fitness value.

Fig. 31 Standard deviation of the fitness value at each

generation.

Fig. 32 Engine performance before and after optimization.
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� When
ffiffiffi
h

p
d�1, the control performance is improved after

optimization, but the effect is not very remarkable;
Table 13 Optimized fuel controller parameters.

Parameter Kpla KNmax Kacc

Optimized results 1.7280 4.0528 �0.023

Table 14 Performance and penalty function values before and afte

Parameter RT FC P1 P2

Initial 0.9633 0.9593 0.1833 0.2438

Optimized 0.9073 0.9570 0.1267 0.1732
� When
ffiffiffi
h

p
d�1, the control performance with initial gains is

too bad to be accepted, but it becomes very good after
optimization;

� When
ffiffiffi
h

p
d�1 and with initial gains, the CPR and Ngr fluc-

tuates dramatically and may deviate from the PLA com-
mand. The level of fluctuation and deviation is dependent

on the value of
p
hd and PLA settings. The smaller

ffiffiffi
h

p
d

or PLA values will result in higher level of fluctuation
and deviation of CPR and Ngr;

� When
ffiffiffi
h

p
d�1, the standard deviation of the fitness value

becomes much larger but converges fast.

5.1. Why the optimization effects are different?

Considering the fuel flow correction Eq. (9), the sensitivity of
the rotational speed relative to the fuel flow is shown in Eq.

(11). The equation shows the fact that the rotational speed

in high conditions (weather conditions with low
ffiffiffi
h

p
d) is more

sensitive to the fuel flow change than in low conditions

(weather conditions with high
ffiffiffi
h

p
d). This leads to the differ-

ence in optimization effects for different flight conditions.
Based on Eq. (11) and the Ngcr-fuel flow schedule shown in

Table 18, the working line of the engine in different flight con-
ditions are depicted in Fig. 34. In this figure, the slope of the

working line in altitude is
ffiffiffi
h

p
d times as in SLS condition.

dNgr

dWftotal

¼ dNgr

dð ffiffiffi
h

p
d �WftotalcÞ

¼ 1ffiffiffi
h

p
d
:

dNgr

dWftotalc

ð11Þ
Kdec Fitness Optimization time

7 9.4364 1.0002 2504 s

r optimization.

P3 P4 P5 P6 Fitness

0.1961 0 0.0735 0.0035 1.0780

0 0 0.0774 0.0307 1.0002



Fig. 33 Derivative of engine rotor speed before and after

optimization.

Optimization of gas turbine aero-engine transient performance 579
5.2. Why fluctuation is more dramatical in high conditions and

low PLA settings?

In high conditions, if the Kpla keeps constant, the same CPR

error would induce the same fuel change and finally cause 1/

(
ffiffiffi
h

p
d) times Ngr change amount as in SLS condition. This is

the reason why the controller with initial gains works well in

low conditions while causes the fluctuation of CPR and Ngr

in high conditions.
In low PLA settings, the Ngr is lower and the working line is

flatter (see Fig. 34), which means the same fuel flow change will
cause more rotational speed change. This is the reason why
fluctuation is more dramatical at low PLA settings.

5.3. Why deviation is more serious in high conditions and low

PLA settings?

In climb, as shown in Fig. 14, although the engine performance
fluctuates, there is no obvious deviation of CPR from the PLA
command. In TOC, as shown in Fig. 20, the CPR has a big

deviation at PLA= 0.6. In cruise, as shown in Fig. 26, the
CPR deviates at both PLA = 0.6 and PLA = 0.7 and the
amplitude of deviation is larger than that of TOC. In order
to explain this phenomenon, it is necessary to study the work-

ing process inside the Min-Max controller. As discussed in part
Ⅰ, the Min-Max selection rule is defined as below:

Wftrans ¼ Min Min Max Wfdec;Wfpla

� �
;Wfacc

� �
;WfNmax

� � ð12Þ
where Wftrans is the fuel flow in transient control mode; Wfpla,
Wfdec,Wfacc and WfNmax are the fuel flows in the transient con-
trol loops of PLA loop, deceleration limitation loop, accelera-
Fig. 34 Fuel-speed schedule in different flight conditions.
tion limitation loop and rotational speed limitation loop

respectively.
In high conditions, the dramatical change in Ngr will

increase the acceleration and deceleration, and this would

make the Wfdec to be the winner in the Min-Max selection in
most time. The dominance of deceleration loop in Min-Max
selection would make the average Wftrans to be higher than
zero, which will finally cause the upward deviation of CPR

and Ngr from the PLA command. Fig. 35 illustrates the fuel
flow of different transient loops in Min-Max selection at cruise
condition. Combining this figure with the tracking perfor-

mance plot in cruise (Fig. 26), it can be found that Wfdec

becomes the winner in the Min-Max selection in most time
after the CPR reaches the PLA command for the first time

(about the 5th second). The average Wftrans during the time
segments 5–15 s, 15–30 s and 35–45 s are 0.1557, �0.02658
and 0.03257 respectively. This means the deviation will first
increases at PLA= 0.6 and then decreases at PLA= 1, and

finally increases again at PLA = 0.7. The changing tendency
of the deviation meets the simulation result in Fig. 26 very
well.

In low PLA settings, the fluctuation is more serious as dis-
cussed in Section 5.2 and this will result in larger acceleration/
deceleration and cause larger Wfdec which would finally result

in higher Wftrans. In addition, the Ngr is lower in low PLA set-
tings and the working line is flatter (see Fig. 34) which means
the same positive average Wftrans fuel flow change will cause

more rotational speed change. These two factors together
aggravate the deviation of CPR and Ngr from the PLA com-
mand at low PLA settings.

5.4. A rough but effective estimation of optimal Kpla in different
flight conditions to solve the fluctuation and deviation problems.

According to the analysis above, the deviation is caused by the

too large Wfdec, and the large Wfdec is caused by the large fluc-
tuation, while the large fluctuation is resulted from the too
large Kpla relative to the sensitive Ngr in high conditions.

Therefore, the fundamental cause of fluctuation and deviation
is that the Kpla is too large in high conditions. As a result, the

solution is reducing the Kpla to about
ffiffiffi
h

p
d times of the value in

SLS condition (1.7
ffiffiffi
h

p
d) so that the same amount of error

between CPR and PLA command in different flight conditions
will induce the same change in Ngr. This speculation is verified
Fig. 35 Fuel flow of different transient loops in Min-Max

selection at cruise condition.
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by the value of
ffiffiffi
h

p
d times of initial Kpla and the optimized Kpla

shown in Table 15 where the speculated Kpla is very approxi-

mately to the optimized Kpla in each flight condition.
In order to confirm the rationality of the speculated Kpla,

the GTE controller with Kpla = 1.7
ffiffiffi
h

p
d and the other three

gains remain the same as Table 2 will be simulated in the flight
conditions of climb, TOC and cruise respectively. The engine
performance in these three scenarios are depicted in Fig. 36,
Fig. 37, and Fig. 38 respectively. In the three figures, it can

be seen that the fluctuation and deviation are eliminated after
replacing the initial Kpla as the speculated Kpla, which means
Kpla is the most deterministic gain for control performance in

high conditions. However, the appropriate Kpla value can only
eliminates the fluctuation and deviation. If want to further
improve the control performance, the gains optimization pro-

cess is still indispensable. Table 16 shows the specific control
performance which illustrates the optimization effects of
LLGA relative to the controller with speculated Kpla. The

results in this table show that the fitness values of optimized
gains are a little lower than that of the speculated Kpla.

The correlation between Kpla and the flight condition above
is based on the principle that the same amount of error

between CPR and PLA command in different flight conditions
should induce the same change in Ngr. The basement of the
derivation is the fuel flow correction equation of turbojet

engine which has been shown in Eq. (9). As the turboshaft
engine has the same fuel flow correction equation as turbojet
engine, so the correlation of Kpla is also applicable. If apply

the correlation on turbofan engine, the non-dimensional tem-
perature h and pressure d should be calculated in the section
of the inlet of the compressor, i.e. the ratio between the total
temperature/pressure of the outlet of the fan in flight condition

and SLS condition.

5.5. Why the fitness standard deviation is much larger but
converges faster in high conditions?

Comparing the simulation results from ground idle to cruise, it
can be concluded that the fitness standard deviation varies

greatly as the changing of flight conditions. The general trend
is that the lower the

p
hd value is, the larger the standard devi-

ation is and also the faster it converges. The variation range

and decreasing rate of the fitness standard deviation in differ-
ent flight conditions are specified in Table 17 In this table, the
standard deviation range of fitness value in the flight condi-
tions of ground idle, take-off, approach and BOC are much

smaller than that of climb, TOC and cruise. On the other hand,
the generation needed to reduce the standard deviation by half
for the former four flight conditions are much larger than that

of the latter three flight conditions. In high conditions, for a
given CPR error, the same Kpla change would induce the same

fuel change and finally cause 1/(
ffiffiffi
h

p
d) times Ngr change amount

as in SLS condition. As a result, the control performance is
more sensitive to the change of Kpla and thus the gradient of
the fitness value relative to the gains value is steeper in high

conditions. This means that in the same gains searching
domain, the variation range of the fitness value is larger in high
conditions, which will cause the larger fitness standard devia-

tion. However, this also means in high conditions the solution
space for relative low fitness values is smaller and the local
optimizations are fewer. As a result, most of the individuals
gather to the global optimization in a faster speed and the
standard deviation converges faster than that in low

conditions.

6. Parameter settings for flight mission simulation

The altitude and Mach number curves of the flight mission has
been shown in Fig. 2 and the optimized gains for different
flight conditions are specified in Appendix. The next important

issue of flight mission simulation is to determine the PLA set-
ting in each flight condition. For the turbojet engines, the PLA
value is used to deliver the requirements for engine thrust from

the aircraft in different flight conditions. Therefore, the PLA
setting problem can be divided into two parts: the flight condi-
tion - thrust level regulation and the PLA- thrust regulation.

As for the first part, a classical thrust level-flight condition
schedule of turbojet engine is depicted in Fig. 39. As for the
second part, the PLA- thrust regulation varies as the specific
engines. In this paper, the engine controller model is based

on the data of turbojet engine TRI 60-1. The PLA setting
for each thrust level can be acquired by applying interpolation
in thrust-Ngcr schedule (Fig. 40), Ngcr-fuel schedule (Table 18)

and CPRr-fuel schedule (Table 19) successively. After this step,
all the simulation parameters are confirmed and depicted in
Appendix. In addition, the Simulink model of the GTE con-

troller for flight mission simulation is shown in Fig. 41.

7. Simulation results analysis

In order to verify the influences of the controller gains and
weather conditions exerted on the engine performance, both
variable and constant gain values will be applied to simulate

the complete flight mission. In this section the flight mission
will be simulated in three parameter configurations as shown
in below:

Configuration 1: Initial gains and gradually changed alti-
tude and Mach number;
Configuration 2: Optimized gains and gradually changed

altitude and Mach number;
Configuration 3: Optimized gains and step changed altitude
and Mach number.

7.1. Result of configuration 1

In this scenario, the controller with the initial gains will remain

constant (shown in Table 2) and the flight conditions will
change gradually as Fig. 2. The simulation result of this config-
uration is shown in Fig. 42. In this figure, the dramatical fluc-

tuation and deviation of the CPR and Ngr begin from 20th
minute and end at 92.5th minute, including the flight condi-
tions of TOC, cruise, BOD and part of descent. This phe-

nomenon for constant gains is caused by the small
ffiffiffi
h

p
d

value which has been illustrated in Section 5. However, the
separate flight condition simulation results in Section 4 have

shown that the CPR and Ngr fluctuations with the initial con-
troller are unstoppable in both climb and descent. Why the
fluctuations in these two flight conditions are suppressed or



Table 15 Comparison between the speculated Kpla and the optimized Kpla.

Flight condition Ground idle Take-off BOC Climb TOC Cruise Approachffiffiffi
h

p
d 1 1.04 1.061 0.5582 0.364 0.307 0.9843

Speculated Kpla(1.7
ffiffiffi
h

p
d) 1.7 1.7680 1.8037 0.9489 0.6188 0.5219 1.6733

Optimized Kpla 1.7182 1.8307 1.8454 0.8327 0.5391 0.5734 1.7280

Fig. 36 Tracking performance of CPR and Ngr with speculated

Kpla in climb.

Fig. 37 Tracking performance of CPR and Ngr with speculated

Kpla in TOC.

Fig. 38 Tracking performance of CPR and Ngr with speculated

Kpla in cruise.
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partly suppressed in flight mission simulation? The reason will
be illustrated in follow.

It has been analyzed in Section 5 that smaller
ffiffiffi
h

p
d, too large

Kpla and lower PLA setting would aggravate the fluctuation
and deviation of the engine performance. However, these three
factors could only reduce the robustness of the Min-Max con-
troller and aggravate the fluctuation when some initial fluctu-

ation is already generated. In principle, if there is no initial
fluctuation, these factors will not generate fluctuation by them-
selves. In parameter configuration 1, the step change of PLA

can be regarded as a sudden disturbance of the input which
would trigger the initial fluctuation.

In order to analyse the causes for fluctuation and deviation

in flight mission simulation with parameter configuration 1,

the continuous changing of
ffiffiffi
h

p
d in the whole flight mission

are shown in Fig. 43. In addition, the PLA setting, step change

in PLA and
ffiffiffi
h

p
d values in the fluctuation flight conditions are

specified in Table 20. Kpla values are not listed because their
values are the same between separate flight condition simula-

tion and flight mission simulation.

In Fig. 43, the value of
ffiffiffi
h

p
d decreases from 0.98 to 0.46

during the climb segment (15th-20th min). This means when

the step change of PLA occurs at the beginning of climb seg-

ment, the
ffiffiffi
h

p
d value is large enough (0.98) to suppress the

fluctuation. As a result, although the
ffiffiffi
h

p
d value is small

enough (0.56, approximate to the representative
ffiffiffi
h

p
d value

for climb segment) at 18th min, the fluctuation is still not gen-
erated because there is no initial fluctuation at this moment.

At the beginning of TOC, the
ffiffiffi
h

p
d value is 0.46 and thereby

the fluctuation of engine performance is triggered and aggra-
vated immediately when the PLA setting has a small change.

Fig. 44(a) shows the fuel flow of different transient loops in
Min-Max selection at the beginning of TOC. At this moment,
the dramatical fluctuation in Ngr leads to the increase of the

acceleration and deceleration, and this makes the Wfdec to
be the winner in the Min-Max selection in most time. More-
over, the dominance of deceleration loop in Min-Max selec-

tion makes the average Wftrans to be higher than zero,
which finally cause the upward deviation of CPR and Ngr

from the PLA command (see Fig. 42). In this circumstance,
the Min-Max controller cannot suppress the upward trend

of fluctuation and deviation because it has entered the situa-

tion of positive feedback. In addition, the decrease of
ffiffiffi
h

p
d

would aggravate this situation. As the increasing of fluctua-

tion and deviation, the overspeed loop will finally be acti-
vated and become the winner of the Min-Max selection
which makes the average Wftrans to be zero again (see

Fig. 44(b)). As a result, the fluctuation and deviation will
no longer increase and remain in the high level during the
cruise segment (see Fig. 42).

After the cruise condition, the fluctuation and deviation

have a decrease in BOD as the increase of the
ffiffiffi
h

p
d value.

The weather condition in descent segment is symmetrical with

that in climb segment (see in Fig. 43), but their fluctuation
characteristics are very different. This is also caused by the ini-



Table 16 Comparison of control performance with speculated Kpla and after optimization by LLGA.

Flight condition Climb TOC Cruise

Gains configuration Speculated Kpla Optimized gains Speculated Kpla Optimized gains Speculated Kpla Optimized gains

RT 0.9073 0.9353 0.912 0.926 0.9167 0.856

FC 0.54 0.5349 0.352 0.3484 0.2961 0.298

P1 0.1907 0.1495 0.1898 0.1651 0.6275 0.2405

P2 0.1814 0.157 0.1562 0.1802 0.2072 0.2453

P3 0.1961 0 0.1743 0 0.1743 0.1961

P4 0 0 0 0 0 0

P5 0.0735 0.054 0.0696 0.0618 0.0657 0.0657

P6 0.0268 0.0229 0.0268 0.0229 0.0268 0.0268

Fitness 0.8351 0.7990 0.7348 0.7089 0.7899 0.7061

Table 17 Fitness standard deviation ranges and convergence speed in different flight conditions.

Parameter Ground idle Take-off BOC Climb TOC Cruise Approachffiffiffi
h

p � d 1 1.04 1.061 0.5582 0.364 0.307 0.9843

Range of standard deviation 0–0.25 0–0.28 0–0.28 0–0.7 0–2.5 0–3.5 0–2.5

Generation of standard deviation reduced by half 25 25 >40 2 2 3 22

Table 18 Fuel schedule between Ngcr and fuel flow.

Ngcr 0 0.6100 0.6367 0.6550 0.6833 0.7057 0.7293 0.7333 0.7567 0.7683 0.7733

Wfc(kg/h) 0 139.4 144.7 149.9 155.2 160.4 171.0 173.6 184.1 205.1 210.4

Ngcr 0.8033 0.8133 0.8430 0.8570 0.8707 0.8903 0.8980 0.9097 0.9137 0.9217 1.0

Wfc(kg/h) 228.8 236.7 263.0 278.8 289.3 313.0 323.5 336.6 344.5 349.8 447.1

Notes: Ngcr—relative corrected rotational speed; Wfc—corrected fuel flow;

Fig. 39 Thrust setting of a turbojet engine during a flight cycle.

Fig. 40 Thrust-speed curve of TRI 60-1.
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tial fluctuation. At the beginning of descent segment, the
ffiffiffi
h

p
d

value is 0.46 and there already exists some big fluctuation at
this moment. As a result, the fluctuation can be continued
although the step change is very tiny (0.005). However, when

the
ffiffiffi
h

p
d value increases to about 0.68 at 92.5th min, the

Min-Max controller becomes robust enough to suppress the
fluctuation and deviation. As a result, the PLA loop will
become the winner of the Min-Max selection again (see

Fig. 44(c)). Therefore, there is no fluctuation in the second half
part of the descent segment.
Combining Fig. 42 and Fig. 43, it can be concluded that the
robustness of the Min-Max controller becomes very weak

when
ffiffiffi
h

p
d is smaller than 0.68 if the gains remain constant.

In this circumstance, the fluctuation and deviation of CPR
and Ngr can be easily triggered by some sudden disturbance
such as step change in PLA. In addition, the initial fluctuation

will be aggravated and leads to upward deviation as the

decrease of
ffiffiffi
h

p
d while the existing fluctuation will decay as

the increase of
ffiffiffi
h

p
d.



Table 19 Fuel schedule between CPRr and fuel flow.

CPRr 0.2703 0.5792 0.5881 0.6108 0.6811 0.7108 0.7270 0.7459 0.7595 0.7838 0.8108 0.8297 0.8541 0.8649 1.0

Wfc

(kg/h)

0a 194.6 199.9 205.1 226.2 247.2 255.1 265.6 278.8 289.3 313.0 323.5 336.6 344.5 447.1

Notes: Wfc—corrected fuel flow; a—when fuel flow is zero, CPR= 1.

Fig. 41 Simulink model of engine controller for flight mission simulation.
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7.2. Result of configuration 2

The parameter settings and weather condition of this configu-
ration are shown in the Appendix A and Fig. 2. Fig. 45 is the

simulation result of this scenario. In the figure, the tracking
performance of CPR and Ngr with PLA is very good during
the whole flight mission. The tracking error is negligible and

the overshoot/undershoot is very small. This verifies the fact
that the robustness of the Min-Max controller in high condi-
tions has been enhanced with the optimized controller gains
(mainly is the Kpla). As a result, the control performance is sig-

nificantly improved after optimization.

7.3. Result of configuration 3

In this scenario, the altitude and Mach number keep con-
stant in a flight condition. Therefore, there is a step change
between two flight conditions (see Fig. 46). Although in

practice it is impossible for altitude and Mach number to
have a sudden change, the simulation with this configuration
can illustrate the influence of the dramatically changed flight

condition exerts on the control performance. Fig. 47 is the
simulation result of this scenario. The tracking performance
of CPR and Ngr with PLA is very good during the whole

flight mission except the big overshoot/undershoot at the
joint of two flight conditions. The simulation results show
that the sudden change in weather condition would cause
great overshoot or even overspeed. However, with the opti-

mized GTE controller whose robustness has been enhanced
after optimization, the overshoot or overspeed will be elim-
inated in several seconds.
8. Comparison between the control performance with different

parameter configurations

In order to compare the control performance with different
parameter configurations, the quantitative simulation results
are depicted in Table 21 and the specific control performance

of each flight condition segment of the three parameter config-
urations are specified in Table 22, Table 23, and Table 24
respectively.

In Table 21, the flight mission simulation with parameter
configuration 2 has the least response time, overshoot, tracking
error and acceleration. However, almost all the data for the
performance indices and penalty items of configuration 1 are

too bad to be accepted. The main reason for this is that the



Fig. 43 Change of
ffiffiffi
h

p
d during the whole flight mission.

Fig. 42 Tracking performance of CPRr and Ngr with initial gains

and gradually changed altitude and Mach number.
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constant gain values are not suitable for both low conditions

and high conditions which has been discussed in Sections 4
and 5. In addition, as the CPR cannot achieve the value of
Table 20 influence factors of fluctuation for fluctuating flight cond

Flight condition Climb

Separate flight condition simulation PLA 0.6

DPLA 0.6ffiffiffi
h

p
d 0.5582

Fluctuation Yes

Flight mission simulation PLA 0.687

DPLA �0.145ffiffiffi
h

p
d 0.98–0.46

Fluctuation No
PLA during the cruise and BOD segments because of deviation
in parameter configuration 1, the response time of these two
flight condition segments are very long (see Table 22). This

makes the total response time of parameter configuration 1
is much longer than that of other two configurations. The com-
parison between configuration 1 and configuration 2 shows

that the control performance has been greatly improved after
controller optimization.

As for the configuration 3, it can be seen that the fuel con-

sumption is fewer than configuration 2 and CPR tracking error
is equal to configuration 2 while other indices are much worse
than configuration 2. This means the steep change in altitude
and Mach number could get the benefits of fuel saving

although it may induce the safety problems. This verifies the
fact that in order to save fuel, the aircraft should accelerate
and climb to the stratosphere as soon as possible under the

premise of ensuring safety.
It can be seen from the Table 23 and Table 24 that the

response times of BOD, descent and approach condition are

zero. The reason for zero response time is that the definition
of reaching a flight condition is that the difference between
CPR and PLA setting is less than 0.15. Moreover, the PLA

settings for cruise, BOD, descent and approach are quite
approximate to each other. This means there exists some
CPR value that can meet the requirement for the four flight
conditions at the same time and thereby the response time

would be zero.

9. Conclusion

In part Ⅰ, the methodology of using the LLGA based on mGA
to optimize the GTE controller gains is illustrated and the
LLGA method is applied in gains tuning in runway from

ground idle to takeoff condition. In this part, the LLGA
method is extended to the controller optimization problems
in other flight conditions of a complete flight mission. For this

purpose, firstly the weather condition is considered in the GTE
controller model to correct the control parameters under SLS.
Then a typical flight mission is defined and separated into ten

segments. For the sake of simplicity, one representative point
is selected from each segment as the characteristic weather con-
dition for optimization. After that, the LLGA method is used
to optimize the controller gains in each flight condition. The

simulation results show that the control performance of each
flight condition is improved in different extent after optimiza-

tion. The optimization effect is dependent on the value of
ffiffiffi
h

p
d.

In high conditions, the controller with initial gains will cause
itions.

TOC Cruise BOD Descent

0.6 0.6 0.6 0.6

0.6 0.6 0.6 0.6

0.364 0.307 0.364 0.5582

Yes Yes Yes Yes

0.617 0.549 0.538 0.543

�0.07 �0.068 �0.011 0.005

0.46–0.31 0.31 0.31–0.46 0.46–0.68 0.68–0.98

Yes Yes Yes Yes No



Fig. 44 Fuel flow of different transient loops in Min-Max selection.
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deviation and fluctuation of CPR relative to the PLA com-
mand. The fundamental reason for deviation and fluctuation

is that the value of
ffiffiffi
h

p
d is too low and thus the rotational
speed is more sensitive to the fuel flow. The solution to elimi-
nate the deviation and fluctuation is to set the value of Kpla in

high conditions as
ffiffiffi
h

p
d times of Kpla in SLS condition.



Fig. 45 Tracking performance of CPRr and Ngr with optimized

gains and gradually changed altitude and Mach number.

Fig. 46 Step changed altitude and Mach number during flight

mission.

Fig. 47 Tracking performance of CPRr and Ngr with optimized

gains and step changed altitude and Mach number.
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As the aircraft flying in the sky, the altitude and Mach
number vary simultaneously. This leads to the changing offfiffiffi
h

p
d which directly influences the sensitivity of Ngr relative to

the change of fuel flow. As a result, the robustness of the
GTE controller with constant initial gains will be weakened

in the flight conditions with lower
ffiffiffi
h

p
d value such as climb,

TOC, cruise, etc. Therefore, the GTE controller based on the
Table 21 Control performance of the flight mission with different

Configuration Response time (s) Fuel consumption (kg) Max o

Configuration 1 3857.84 272.08 0.618

Configuration 2 28.84 195.08 0.034

Configuration 3 31.53 192.16 0.235

Table 22 Specific control performance of the flight mission with co

Parameter GI TO BOC Climb TO

Response time(s) 6.55 6.16 3.70 2.97

Fuel consumption(kg) 13.31 37.42 27.25 13.39

Max overshoot 0.015 0.014 0.020 0.045

Max error 0 0.008 0 0.001

Max over speed 0 0 0 0

Max Ndot 0.118 0.147 0.005 0.023

Min Ndot �0.004 0 �0.045 �0.051 �
Min-Max selection with constant initial gains is not suitable

for all the flight conditions during the whole flight mission.
There are two preconditions to generate the fluctuation of

the CPR and Ngr, i.e. small
ffiffiffi
h

p
d value and initial fluctuation.

In high conditions with
ffiffiffi
h

p
d smaller than 0.68, the robustness

of the GTE controller with initial gains is too weak to suppress
the initial fluctuation of CPR and Ngr. In this circumstance, a

small disturbance caused by step change of PLA would lead to
the great fluctuation and then make the deceleration loop to be
the winner in the Min-Max selection. As a result, the average
transient fuel flow would be larger than zero which finally

leads to the upward deviation of CPR and Ngr relative to the
PLA command. The growing fluctuation and deviation reach
their limits at the beginning of cruise segment because the over-

speed loop is activated. The robustness of the GTE controller
is strengthened after the gains optimization for different flight
conditions through LLGA. As a result, the fluctuation and

deviation can be eliminated at the initial phase. The engine per-
formance improved by controller optimization is mainly man-
ifested in the transient state and the high conditions. In other

steady states, the optimization effect is not very obvious. In
addition, the simulation results with the step changed weather
parameter configurations.

vershoot Max error Max over-speed Max Ndot Min Ndot

0.618 0.058 0.327 �0.309

0.008 0.004 0.147 �0.053

0.008 0.084 0.355 �0.272

nfiguration 1.

C Cruise BOD Descent Approach GI

1.57 3599.96 231.73 2.02 0.95 2.24

9.15 122.53 10.23 10.70 14.73 13.36

0.114 0.618 0.374 0.293 0.015 0.014

0.575 0.618 0.349 0.232 0 0

0.058 0.046 0.039 0 0 0

0.327 0.327 0.325 0.222 0.012 0.011

0.307 �0.309 �0.304 �0.210 �0.003 �0.024



Table 24 Specific control performance of flight mission with configuration 3.

Parameter GI TO BOC Climb TOC Cruise BOD Descent Approach GI

Response time(s) 6.33 5.71 3.08 8.12 3.70 2.58 0 0 0 2.02

Fuel consumption(kg) 13.31 38.08 28.33 10.89 6.29 53.84 5.10 8.02 14.91 13.36

Max overshoot 0.015 0.015 0.031 0.019 0.031 0.045 0.032 0.235 0.220 0.014

Max error 0 0.008 0 0 0.002 0 0 0 0 0

Max over speed 0 0.005 0 0.084 0 0 0 0 0 0

Max Ndot 0.118 0.163 0.010 0.178 0.087 0.119 0.041 0.308 0.355 0.010

Min Ndot �0.004 �0.024 �0.051 �0.093 �0.080 �0.117 �0.072 �0.210 �0.272 �0.022

Table 23 Specific control performance of the flight mission with configuration 2.

Parameter GI TO BOC Climb TOC Cruise BOD Descent Approach GI

Response time(s) 6.33 5.54 3.19 5.88 2.41 2.07 0 0 1.23 2.18

Fuel consumption(kg) 13.31 37.45 27.25 13.47 6.52 53.81 5.31 9.89 14.73 13.36

Max overshoot 0.015 0.015 0.030 0.015 0.034 0.022 0.010 0.006 0.015 0.015

Max error 0 0.008 0 0.003 0.001 0 0.001 0.002 0 0

Max over speed 0 0.004 0 0 0 0 0 0 0 0

Max Ndot 0.118 0.147 0.009 0 0.008 0.016 0.002 0.004 0.013 0.011

Min Ndot �0.004 �0.003 �0.053 �0.025 �0.026 �0.038 �0.007 �0.001 �0.003 �0.025
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condition show that a relative high altitude and Mach number
is beneficial for fuel saving. In practice, the weather condition

varies continuously during the flight. As a result, if the con-
troller gains could be optimized simultaneously according to
the current condition, then the engine performance is expected

to be further improved. This would become an important
research point in the next stage.
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Table A1 Parameter settings during the Flight mission.

Parameter Time segment (min)

0–5 6–10 11–15 16–20 21–25

Flight condition GI TO BOC Climb TOC

FN 0.41 1 0.77 0.59 0.52

PLA 0.525 1 0.823 0.687 0.617

Kpla 1.7182 1.8307 1.8454 0.8327 0.5391

KNmax 4.2329 4.9295 4.9452 1.1644 2.5499

Kacc �0.0473 �0.0302 �0.0496 �0.0056 �0.0113

Kdec 8.5910 8.2035 7.9746 9.2603 8.6438

Altitude (m) 0 0 0–1524 1524–

7620

7620–

11,100

Time segment

(min)

0–5 6–10 11–12 13–22 23–25

Mach 0 0–0.222 0.222–

0.388

0.388–

0.7

0.7–0.79
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Appendix A

See Table A1 and Table A2
26–85 86–90 91–95 96–100 101–105

Cruise BOD Descent Approach GI

0.46 0.44 0.45 0.48 0.41

0.549 0.538 0.543 0.558 0.525

0.5734 0.5391 0.8327 1.7280 1.7182

1.0783 2.5499 1.1644 4.0528 4.2329

�0.0388 �0.0113 �0.0056 �0.0237 �0.0473

2.7260 8.6438 9.2603 9.4364 8.5910

11,100 11100–

7620

7620–

1524

1524-0 0

26–85 86–88 89–95 96–98 99–

100

101–105

2 0.792 0.792–0.7 0.7–0.48 0.48–

0.233

0.233–

0

0



Table A2 Performance and penalty items for different flight conditions before and after optimization.

Flight condition RT FC P1 P2 P3 P4 P5 P6 Fitness Optimization time

Ground idle Initial 0.9773 0.9735 0.1852 0.2333 0.1961 0 0.0735 0.0035 1.0907

Optimized 0.9120 0.9730 0.0261 0.1808 0 0 0.0696 0.0268 0.9931 2523 s

Take-off Initial 1.0567 1.0054 0.1775 0.1961 0.5882 0 0.0696 0 1.2029 –

Optimized 0.9027 1.0073 0.1024 0.1945 0.1961 0 0.0813 0.0229 1.0545 2498 s

BOC Initial 1.6993 1.0173 0.1719 0.1886 0.9804 0 0.0696 0.0035 1.5940 –

Optimized 0.9167 1.0222 0.0504 0.1780 0.5882 0 0.0813 0.0229 1.1229 3321 s

Climb Initial 0.5947 0.5539 1.6522 1.2033 0.6209 0 0.4444 0.0618 1.2381 –

Optimized 0.9353 0.5349 0.1495 0.1570 0 0 0.0540 0.0229 0.7990 2490 s

TOC Initial 0.5900 0.4038 3.4848 1.6902 8.7582 4.3137 0.9501 0.2887 3.7445 –

Optimized 0.9260 0.3484 0.1651 0.1802 0 0 0.0618 0.0229 0.7089 2488 s

Cruise Initial 0.3567 0.3851 4.8890 2.6507 17.0153 13.7255 1.8060 1.1446 7.2427 –

Optimized 0.8560 0.2980 0.2405 0.2453 0.1961 0 0.0657 0.0268 0.7061 2525 s

Approach Initial 0.9633 0.9593 0.1833 0.2438 0.1961 0 0.0735 0.0035 1.0780 –

Optimized 0.9073 0.9570 0.1267 0.1732 0 0 0.0774 0.0307 1.0002 2504 s
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