Co-gasification of oil palm biomass in a pilot scale downdraft gasifier

Kelechi E. Anyaoha a,1, Ruben Sakrabani a, Kumar Patchigolla b,*, Abdul M. Mouazen c

a Cranfield Soil and Agrofood Institute, Cranfield University, MK43 0AL, United Kingdom
b Centre for Thermal Energy Systems and Materials, Cranfield University, MK43 0AL, United Kingdom
c Department of Environment, Ghent University, Coupure 653, 900, Gent, Belgium

A R T I C L E I N F O
Article history:
Received 25 March 2020
Received in revised form 10 June 2020
Accepted 9 July 2020
Available online xxxx

Keywords:
Empty fruit bunch
Palm kernel shell
Mesocarp fibre
Co-gasification

A B S T R A C T
The present study focused on co-gasification of empty fruit bunch (EFB), mesocarp fibre (MF) and palm kernel shell (PKS) in a 75 kWth pilot scale downdraft gasifier for possible synergic reactions between the biomass. A series of experiments was carried out using equal blend of EFB, MF, and PKS (particle sizes of 14 and 6.7 mm) and equal blend of MF and PKS. Advanced infrared multi-gas analyser, and thermal conductivity gas analyser were employed to measure the produced gases. The elemental compositions of the raw biomass, ash and slag generated were determined using Scanning Field Emission Gun Scanning Electron Microscopy with accelerating voltage 20.0 kV and working distance 6 mm and the measurements processed using AztecEnergy V2.2 software. The co-gasification of blend of EFB, MF, and PKS, compared to the blend of MF and PKS led to higher gasyield (4.82 and 3.47 m 3/kg_biomass), cold gas efficiency (16.2 and 13.37%), and carbon conversion efficiency (56.3 and 34.18%), respectively. When compared to particle size of 14 mm, the PKS of particle size of 6.7 mm in the EFB/MF/PKS blend increased the lower heating value and the higher heating value of the producer gas by 20% and 20.3%, respectively, and the residue yield was 18.6% less. The overall result has provided evidence on the importance of co-gasification of biomass especially EFB, MF and PKS, which will result in increased utilization of EFB.

1. Introduction

Ash content is an important property of biomass, which influences decisions in biomass thermal conversion operations. Ash forming elements in biomass include alkali earth metals and alkalimetals. Ash contains important soil nutrient for soil properties and crop improvement (Shahbaz et al., 2019). Challenges associated with ash in thermal conversion system are bed agglomeration, slugging on the furnace, fouling of heat transfer systems (Kuprianov et al., 2018; Cotton et al., 2014). These will reduce system efficiency and result in increased operational cost (Kuprianov et al., 2018; Aziz et al., 2016). The utilization of biomass in thermal conversion operation will lead to increase in biomass ash generation. The challenge of ash disposal/utilization requires that measures be put in place before and during the thermal conversion process to reduce the amount of ash that would go to landfills and increase agricultural utilization of the residues (Anyaoha et al., 2018a). Increase in the utilization of biomass for energy generation would require the use of a blend of different biomass particularly biomass from the same sources. Therefore, optimizing the effects of co-gasification on thermal conversion process efficiency, thermal conversion infrastructure, and on ash yield and properties is imperative.

Nigeria’s biomass resources is estimated to be about 144 million tonnes/year (Toyese and Jibiril, 2016) of which oil palm (Elaeis guineensis) fresh fruit bunch (FFB) solid wastes are important part of it. The FFB solid wastes include empty fruit bunch (EFB), mesocarp fibre (MF) and palm kernel shell (PKS), which provide energy used for powering boilers in oil palm mills for FFB processing. The mills are known to be independent in power generation from the abundant FFB wastes. There is reliance on PKS and MF especially during peak periods with little or no effort in the use of EFB for energy production. However, there is increasing interest in the utilization of EFB for energy purpose including in Malaysia (Darmawan et al., 2017; Inayat et al., 2020), which is the second largest palm oil producer in the world after Indonesia (Anyaoha et al., 2018b).

Research on gasification has advanced over the years leading to increased utilization of both fossil fuels and biomass, more importantly the utilization of the blend of coal and biomass. As efforts are being made to increase the utilization of EFB, co-gasification offers a better option. For example Moghadam et al. (2014) co-gasified PKS and polyethylene and produced the highest gas yield of 422.40 g syngas/kg feedstock at the temperature
of 800 °C, polyethylene/PKS ratio of 1:0.3, and steam/feedstock ratio of 1:1. Moghadam et al. (2014) concluded that the faster degradation of polyethylene led to increased conversion of the feedstock to gaseous products. Thiagarajan et al. (2018) reported degradation of polyethylene led to increased conversion of the ratio of 1:1. Moghadam et al. (2014) concluded that the faster heating up, flaming pyrolysis, and reduction layers as shown up, flaming pyrolysis, reduction upper layer, reduction lower layer. The ''heating up'' is the layer at the process was continuously monitored to ensure there was smooth gasification in the process. The “viewpoint” suited above the grate was used to monitor the presence of flame and as a guide to feeding the biomass. The operating parameters are given in Table 1. The air supply valve was left closed initially while the ignitor was switched on. After about five minutes of igniting the fuel, the igniter was switched off while the air supply was opened. The gasifier temperature was maintained at 800 °C by varying air/nitrogen ratio. This was done by adjusting the airflow rate or by introducing nitrogen into the reactor.

The gasification process occurs in the following sequence from top to bottom: heating up→flaming pyrolysis→reduction upper layer→reduction lower layer. The “heating up” is the layer at which the biomass was introduced and where the mass gradually

The gasification process occurs in the following sequence from top to bottom: heating up→flaming pyrolysis→reduction upper layer→reduction lower layer. The “heating up” is the layer at which the biomass was introduced and where the mass gradually

The gasification process occurs in the following sequence from top to bottom: heating up→flaming pyrolysis→reduction upper layer→reduction lower layer. The “heating up” is the layer at which the biomass was introduced and where the mass gradually
heats up from bottom to the top. The biomass devolatilization takes place at the “flaming pyrolysis” zone. Gasification occurs at the “reduction layer”, which includes upper layer (reduction reaction) and lower layer (ash bed). The syngas and ash are produced at this layer. The ash and syngas passed through the grate and the bottom ash settled in the ash pot beneath the gasifier. The fly ash settled in the cyclone and the syngas passed through to the cooling system for tar and water condensation. Gas sampling units were used to clean the dirty gaseous products before the measurement by the gas analyser. The gases measured were CO, CO$_2$, CH$_4$, and H$_2$ for MP, EMP1 and EMP2 samples. Finally, the gas passed through a flare and to an exhaust.

The advanced infrared multi-gas analyser was used for measuring CO$_2$, CO and CH$_4$ for MP, EMP1 and EMP2 using non-dispersive infrared absorption with solid-state detector, and thermal conductivity gas analyser was used for measuring H$_2$. The compositions of CO$_2$, CO, CH$_4$ and H$_2$ were measured at intervals of 5 s. Pico Technology data logger was used to monitor the temperature profile continuously throughout the gasifier chamber at 5 s interval for the duration of the operations.

Several assumptions were considered in this study and they are:

- The fuels were evenly mixed
- Stoichiometric air/fuel ratio considered
Fig. 3. (a) Schematic diagram of the 75 kWth pilot scale gasifier and tar sampling unit used in co-gasification of empty fruit bunch, mesocarp fibre and palm kernel shell. (b) Gasifier sampling locations during the test. 1 - gas flow section, 2 - gas preconditioning section, 3 - particle collection unit, 4 - tar collection unit, and 5 - gas volume measurement unit.

Table 1
Operating parameters for the fixed-bed downdraft gasifier.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MP</th>
<th>EMP1</th>
<th>EMP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass particle size (mm)</td>
<td>14</td>
<td>14</td>
<td>6.7</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Biomass feeding rate (kg/h)</td>
<td>2.80</td>
<td>2.80</td>
<td>2.80</td>
</tr>
<tr>
<td>Equivalence ratio</td>
<td>0.54</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>Air (l/min)</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>N₂ (l/min)</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
</tbody>
</table>

MP—mesocarp fibre and palm kernel shell blend, EMP1—palm kernel shell (14 mm), empty fruit bunch and mesocarp fibre blend, EMP2—palm kernel shell (6.7 mm), empty fruit bunch, and mesocarp fibre blend.

- Average biomass calorific value used

The chemical expressions of the biomass used in this study are as shown in Eqs. (1) – (3):

empty fruit bunch

\[2C_{1.32}H_{2.09}O + 2.685O_2 \rightarrow 2.64CO_2 + 2.09H_2O \]

mesocarp fibre

\[C_{2.063}H_{1.42}O + 2.422O_2 \rightarrow 2.067CO_2 + 1.71H_2O \]

palm kernel shell

\[2C_{1.7519}H_{2.33}O + 1.8344O_2 \rightarrow 1.7519CO_2 + 1.165H_2O \]

\[\text{mesocarp fibre} C_{2.063}H_{1.42}O + 2.422O_2 \rightarrow 2.067CO_2 + 1.71H_2O \]

\[\text{palm kernel shell} 2C_{1.7519}H_{2.33}O + 1.8344O_2 \rightarrow 1.7519CO_2 + 1.165H_2O \]

The equivalence ratio (ER) was calculated according to Eq. (4):

\[\text{ER} = \frac{AF_{\text{actual}}}{AF_{\text{stoichiometric}}} \]

\[A_{\text{Factual}} \] is the actual air–fuel ratio, which is equal to the amount of fuel injected into the gasifier divided by the amount of biomass. \[A_{\text{Fstoichiometric}} \] is the stoichiometric air–fuel ratio, which is equal to the amount of air needed to burn the biomass divided by the amount of biomass.

The gas yield in \(m^3/kg_{\text{biomass}} \) was calculated according to Eq. (5) (Kallis et al., 2013):

\[Y_{\text{gas}} = \frac{V_{\text{gas}}}{M_{\text{biomass}}} \]
V_{gas} is the volumetric flow-rate of the dry gas in m3/h calculated using the output gas flow-rate, while $Mass_{biomass}$ is the biomass mass feed rate in kg/h.

The lower heating value of the gas produced (MJ/m3) was calculated according to Eq. (6) (Kallis et al., 2013), while the higher heating value was estimated according to Eq. (7) (Kallis et al., 2013):

$$ LHV_{gas} = \frac{(12.63 + CO + 35.82 + CH_4 + 10.8 + H_2)}{100} \quad (6) $$

$$ HHV_{gas} = \frac{(12.63 + CO + 39.82 + CH_4 + 12.75 + H_2)}{100} \quad (7) $$

The values used for CO, CH$_4$, and H$_2$ were the compositions of the species in the gas product.

The cold gas efficiency (CCE) and the carbon conversion efficiency (CCE) are important indicators of the gasification process. The cold gas efficiency, which is the ratio of the energy in the produced gas to the energy in the biomass, was calculated according to Eq. (8) (Mayat et al., 2016):

$$ CCE = \frac{Y_{gas} \times HHV_{gas}}{HHV_{biomass}} \times 100 \quad (8) $$

CCE$_{gas}$ is the lower heating value of the gas product, Y_{gas} is the gas yield in m3/kg, and HHV$_{biomass}$ is the lower heating value of the biomass used, while HHV$_{gas}$ and HHV$_{biomass}$ are the higher heating values of the gas and biomass, respectively.

The conversion carbon efficiency (CCE), which is the ratio of carbon in the syngas to the carbon in the biomass, was determined according to Eq. (9) (Kallis et al., 2013):

$$ CCE = \frac{(12 + Y_{gas} \times (CO + CO_2 \% + CH_4 \%))}{22.4 \times C \%} \times 100 \quad (9) $$

The compositions of CO, CO$_2$, and CH$_4$ in the syngas were used in the calculation of the carbon conversion efficiency, and C is the percentage composition of the carbon from the ultimate analysis.

The fly/cyclone ash and bottom ash were collected after each experimental run. The ash was used as soil amendment to test the effects of ash on the properties of a loamy sand soil and cassava yield in Nigeria (results were not part of this paper). The experimental residue yield for each of the experimental test was measured by weighing ash, char and the slag left. The calculated residue yield was according to Eq. (10) (Ogi et al., 2013):

$$ Yield\ of\ solid\ residues\ \text{wt.}\% = \frac{weight\ of\ solid\ residues}{weight\ of\ biomass\ feedstock} \times 100 \quad (10) $$

The elemental compositions of the raw biomass, ash and slag generated were determined using Scanning Field Emission Gun Scanning Electron Microscopy (SFEG SEM) with accelerating voltage of 20.0 kV and working distance of 6 mm. The samples were first coated with Gold and the measurements processed using AztecEnergy V2.2 software.

3. Results and discussion
3.1. Biomass characterization

Table 2 shows the proximate and ultimate analyses of Nigerian EFB, MF and PKS as well as the higher heating value (HHV) and lower heating value (LHV). There is consistency in the HHV and LHV for EFB, MF, and PKS with values decreasing in the following order: MF>PKS>EBF. This is important because MF and PKS are used more than EFB as fuel. The moisture contents as received for the fuels were below 15 % making it suitable for use directly as fuel. The ‘dry basis’ ash content of EFB and MF are higher than that of PKS by 3.4 and 3.8 units respectively. The fixed carbon and volatile matter contents of the biomass are similar. The results of the HHV of EFB, MF, PKS, blend of MF and PKS, and blend of EFB, MF, and PKS determined by the bomb calorimeter (Parr 6400) are presented in Table 2. The HHVs are close to the values as obtained by the external laboratory.

3.2. Gaseous product yield

The temperature profiles of the experimental runs are presented in Figs. 4–6. The high lignin content of PKS (44%) compared to lignin contents of EFB (21.3%) and MF (27.3%) (Abnisa et al., 2013), the hard structure and bigger particle size contributed to the poor heat transfer and slow start (70 min) to gasification for sample MP (Fig. 4). High lignin content is associated with higher degradation temperature (Sembiring et al., 2015). The initial phase temperatures of EMP1 and EMP2 were within the range of 30 and 40 min (Figs. 5 and 6), which was an indication of the feedstock blend (EBF, MF and PKS). On the other hand, the gasification phase of EMP1 and EMP2 showed similarity and lasted longer than MP. The PKS in MP blend started burning at the later stage of the process but the heat built up overtime was able to complete the process in a shorter time, while the combination of fibrous EFB and MF in EMP1 and EMP2 initiated the process due to their relatively higher quantity than PKS. The fibrous fuels (EBF and MF) burnt faster than PKS, while PKS led to heat build-up gradually resulting in a longer gasification phase. These were evident in the flaming pyrolysis, reduction upper layer, reduction lower layer and heat up temperature profiles for EMP1, and EMP2, which were different from those of MP. The quantity of PKS in MP, which was higher relative to EMP1 and EMP2 also led to overall very low average temperatures for heat up and flaming pyrolysis stages for MP (Fig. 4).

The slow start to rise in temperature for MP delayed the yield of the gaseous species by 75 min (Fig. 7) while EMP1, and EMP2 took less than 15, and 30 min, respectively (Figs. 8 and 9). The variations in biomass of the MP, and EMP1 and EMP2 also led to a more sinusoid-like profile of the gaseous species for EMP1, and EMP2, than MP, which corresponded to the heat build-up inside the reactor. Mayat et al. (2018) obtained similar fluctuations in
gas composition using 10–25 mm particle size. Operating parameters including pressure, temperature, oxygen to biomass ratio, and gasifying agent can influence the fluctuation in syngas yield (Sulaiman et al., 2016). Emami Taba et al. (2012) reported that heterogeneity of biomass or wastes results in increase of fluctuations in quality, availability and composition. This was evident in the composition of the gas as shown in Figs. 7–9. The fluctuation increased with more than two fuels in the co-gasification process as shown in Figs. 7 and 8. Therefore, the optimization of the operating parameters becomes more important with more fuels (Inayat et al., 2019a). Optimizing the equivalence ratio is very important. Most research reported equivalence ratio of 0.1–0.5 (Inayat et al., 2019a; Doranehgard et al., 2017; Ariffin et al., 2016). Doranehgard et al. (2017) reported tar content, which increased as ER decreased from 0.5 to 0.1. Inayat et al. (2019a) reported that high ER reduced H_2, tar formation, cold gas efficiency, and gas yield and improved the carbonaceous gas species and carbon conversion efficiency. Ramos et al. (2018) reported an optimum ER of 0.2–0.4 but cautioned that these values depend on other operation conditions. It is worthy to note that the ideal ER can be obtained by controlling the blower speed (Ariffin et al., 2016). The lower heating value of MP gas was higher than those of EMP1 and EMP2 (Table 3), which could be due to the relatively high heating values for the feedstock of MP.

This study recorded lower values of species composition compared to literature. This was due to higher particle sizes of the feedstock used in this study (Mohammed et al., 2011). This led to slow devolatilization and char gasification that are favoured by higher surface area, and therefore poor conversion of the biomass to syngas. The gas yields for MP and EMP1 and EMP2 were lower than Mohammed et al. (2011). The operating conditions and particle size in this study differ from Mohammed et al. (2011). This study used a higher particle size (6.7 mm and 14 mm) against <0.3–1 mm for the Mohammed et al. (2011), which influenced gas yield negatively. However, the homogeneity of the fuel used by Mohammed et al. (2011) must have played a significant role. The gas yield of EMP2 (6.7 mm) was lower than that of EMP1 (14 mm particle size) by 0.2 m3/kg. Inayat et al. (2016) reported increase in gas yield with particle size of feedstock from biomass co-gasification, which is in line with this study. The CO_2 yield was higher for in all the experiments, which could be attributed to high reactor temperature. Similar results were obtained by Thiagarajan et al. (2018) in PKS and coal co-gasification and Tamil et al. (2018) in co-gasification of grass and coconut.

From Table 3 the LHV$_{gas}$ and HHV$_{gas}$ increased as the particle size decreased. EMP2 with the low particle size of PKS (6.7 mm) in the blend than in EMP1 had lower syngas yield, higher LHV$_{gas}$ and HHV$_{gas}$. This was because of increased reactivity of the smaller particles leading to better heat transfer (Inayat, 2016). However,
The results from co-gasification of EFB, MF and PKS showed that the addition of EFB to the blend of MF and PKS led to higher gas yield, cold gas efficiency and carbon conversion efficiency, compared to the blend of only MF and PKS. Smaller particle size of PKS increased the lower and higher heating values of the gaseous products, reduced the residue yield and potassium/calcium ratio of EFB/MF/PKS blend. The lower particle size of PKS in the feedstock blend led to relatively lower K/Ca ratio and consequently lower agglomeration. The use of EFB alone will result to high slag yield, though with higher total residue yield of 4.84 and 3.94%, respectively. This was attributed to the lower particle size of PKS in the feedstock blend. The lower particle size, less total residue yield, and lower K/Ca ratio, favour lower agglomeration. EFB had lower silicon content, which resulted in lowering the residue yield in the EMP1 and EMP2 blends. The gasification of EFB, MF or PKS will therefore be problematic in terms of agglomeration but the co-gasification from this study increased the chances of synergic reactions considering the differences in elemental compositions of each biomass. Reducing the particle size of the fuel led to more positive effects with EFB in the blend. More importantly the potassium content of the resulting ash increased more than the average values of the constituent fuels. The potassium content of MP ash increased only by 9.2% while the potassium content of EMP1 and EMP2 ash increased by 46.7% and 50%, respectively. This is important from agronomic view for increased agricultural productivity.

4. Conclusions

The residues recorded include ash, slag, and char (only PKS char). The residue yield for MP was 2.1% char of the total residue, and more than the sum of ash and slag yields of 1.55 and 0.39%, respectively. This was a result of low carbon conversion as evidenced by the low CCE of 34.18% for MP. Conversely, EMP1 and EMP2 have higher CCE values of 56.3 and 61.65%, and with no char yield, though with higher total residue yield of 4.84 and 3.94%, respectively. The slag yields for EMP1 and EMP2 were higher than that for MP by 1.28 and 0.96%, respectively, which provided evidence of the average potassium content in the feedstock of EMP1, EMP2, and MP, and as shown in the elemental compositions of the raw EFB, MF and PKS, EMP1, EMP2 and MP ash and slag (Tables 4 and 5). EMP2 had lower yield of solid residues (ash and slag), which can be attributed to lower particle size of the PKS used in the feedstock blend (Table 1) resulting in higher reactivity between the fuels. This also led to a higher CCE of 61.65%, higher LHV, HHV and CGE for EMP2 (Table 3) compared to EMP1.

High potassium content EFB ash is a valuable resource in soil amendment, but leads to high agglomeration for example when EFB is used alone. It is important to generate more useable residue from any thermal conversion process especially for agricultural uses. From Tables 4 and 5, the values of alkali and alkali earth metals for the ash and slag are comparably the same and therefore can be used as soil amendment, although slag is undesirable. The sintering behaviour can be explained by the potassium/calcium (K/Ca) ratio. According to Steenari et al. (2009), high silicon, and high K/Ca ratio led to high agglomeration rate in biomass by reducing the ash melting temperature. Tables 4 and 5 show the silicon, potassium, calcium, etc. contents for raw EFB, MF and PKS, the ash and slag of their blends in EMP1 and EMP2. MP recorded lowest K/Ca ratio, which was evident of lower contents of potassium and calcium in the raw MF and PKS feedstock relative to EFB. EMP2 had less K/Ca than EMP1 in line with its low residue yield and more importantly 19% lower slag yield, and as stated above recorded higher carbon conversion efficiency. This was attributed to the lower particle size of PKS in the fuel blend. The lower particle size, less total residue yield, and lower K/Ca ratio, favour lower agglomeration. EFB had lower silicon content, which resulted in lowering the residue yield in the EMP1 and EMP2 blends. The gasification of EFB, MF or PKS will therefore be problematic in terms of agglomeration but the co-gasification from this study increased the chances of synergic reactions considering the differences in elemental compositions of each biomass. Reducing the particle size of the fuel led to more positive effects with EFB in the blend. More importantly the potassium content of the resulting ash increased more than the average values of the constituent fuels. The potassium content of MP ash increased only by 9.2% while the potassium content of EMP1 and EMP2 ash increased by 46.7% and 50%, respectively. This is important from agronomic view for increased agricultural productivity.
Table 5

Elemental compositions of EMP1 ash [feedstock of blend of palm kernel shell (14 mm), empty fruit bunch and mesocarp fibre], EMP2 ash [palm kernel shell (6.7 mm), empty fruit bunch and mesocarp fibre blend] and MP slag [palm kernel shell and mesocarp fibre blend] and their slag as measured using Scanning Field Emission Gun Scanning Electron Microscopy.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EMP1 ash</th>
<th>EMP2 ash</th>
<th>MP slag</th>
<th>EMP1 slag</th>
<th>EMP2 slag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na (%)</td>
<td>0.47 ± 0.18</td>
<td>0.34 ± 0.2</td>
<td>0.58 ± 0.26</td>
<td>0.36 ± 0.1</td>
<td>0.5 ± 0.11</td>
</tr>
<tr>
<td>Mg (%)</td>
<td>6.09 ± 0.28</td>
<td>6.57 ± 0.34</td>
<td>4.37 ± 0.46</td>
<td>4.94 ± 1.38</td>
<td>6.77 ± 1.26</td>
</tr>
<tr>
<td>Al (%)</td>
<td>1.52 ± 0.14</td>
<td>1.74 ± 0.18</td>
<td>4.42 ± 0.92</td>
<td>13.34 ± 5.63</td>
<td>1.72 ± 0.06</td>
</tr>
<tr>
<td>Si (%)</td>
<td>26.71 ± 1.36</td>
<td>24.27 ± 1.19</td>
<td>515 ± 4.84</td>
<td>39.01 ± 2.81</td>
<td>41.04 ± 4.66</td>
</tr>
<tr>
<td>S (%)</td>
<td>1.88 ± 0.1</td>
<td>1.67 ± 0.16</td>
<td>0.00 ± 0.00</td>
<td>0.1 ± 0.1</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Cl (%)</td>
<td>6.44 ± 0.45</td>
<td>7.2 ± 0.14</td>
<td>12.7 ± 1.04</td>
<td>13.56 ± 1.39</td>
<td>0.10 ± 0.11</td>
</tr>
<tr>
<td>K (%)</td>
<td>42.66 ± 0.78</td>
<td>43.6 ± 0.42</td>
<td>26.45 ± 1.96</td>
<td>26.02 ± 2.09</td>
<td>32.04 ± 1.47</td>
</tr>
<tr>
<td>Ca (%)</td>
<td>11.57 ± 0.39</td>
<td>12.02 ± 0.34</td>
<td>13.29 ± 2.24</td>
<td>11.62 ± 3.1</td>
<td>14.62 ± 2.72</td>
</tr>
<tr>
<td>Fe (%)</td>
<td>2.66 ± 0.32</td>
<td>2.61 ± 0.39</td>
<td>1.13 ± 0.74</td>
<td>3.06 ± 0.38</td>
<td>2.54 ± 0.36</td>
</tr>
<tr>
<td>K/Fe</td>
<td>3.69 ± 0.3</td>
<td>3.63 ± 1.24</td>
<td>1.99 ± 0.88</td>
<td>2.24 ± 0.67</td>
<td>2.19 ± 0.54</td>
</tr>
</tbody>
</table>

(4K/Ca – potassium/calcium ratio.

CRediT authorship contribution statement

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This is part of research project supported by Tertiary Education Trust Fund (TETFUND), Nigeria and Imo State Polytechnic Umuagwo, Ohaji Imo State, Nigeria. The APC is funded by Energy and Power theme at Cranfield University.

References

