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Abstract 

A photovoltaic/thermal module assisted heat pump system is investigated in this paper, which provides electrical and thermal 

energy for a domestic building. In-depth evaluation on the system energy production is conducted based on the finite difference 

method for a long-term operating period. The 25 years’ system life cycle cost is assessed via the Monte Carlo simulation under 

the Feed-in Tariff (FiT) and Renewable Heat Incentive schemes, the annual energy savings, income and payback period (PBP) 

are compared for the FiT and Smart Export Guarantee (SEG) schemes. The technical analysis results illustrate that the system is 

able to fulfil the building thermal and electrical energy demands from April to October and from May to August, respectively, 

and the extra electricity of 229.47 kWh is fed into the grid. The economic assessment results clarify that the system achieves a 

net present value (NPV) of £38990 and has a PBP of 4.15 years. Meanwhile, the economic sensitive analyses reveal that the high 

discount rate reduces the system NPV whereas the high investment cost causes a long PBP to realize the positive NPV. Compared 

with the SEG scheme, the FiT is the most cost-effective method for renewable electricity generation and has the shortest PBP. 

Keywords: PV/T-HP system, Thermal and electrical energy production, Monte Carlo simulation, Net Present Value, Payback 

Period 

 

 

 

 

 

 

                                                                 

 Corresponding author. Tel: +44-115-8466141 Fax: +44-115-951315 

  E-mail address: jie.zhu@nottingham.ac.uk 

mailto:jie.zhu@nottingham.ac.uk
e805814
Text Box

Energy, Volume 206, September 2020, Article number 118108
DOI: 10.1016/j.energy.2020.118108



e805814
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.energy.2020.118108. Please refer to any applicable publisher terms of use.





2 

 

1. Introduction 

Climate change has an increasing negative impact on our planet [1] and leads to global warming and ozone layer depletion. The 

greenhouse gas from fossil fuel is widely recognised as the key contributor towards the climate change. Currently, the energy 

consumption in building sector makes up around 40% of the total energy usage in European, therefore enhancing energy 

efficiency and adopting renewable energy are becoming more significant in this sector [2, 3]. This paper presents an alternative 

measure to provide electrical and thermal energy for a domestic building by using a hybrid renewable energy system.  

In the past several years, the solar electricity applications have been increased hugely based on photovoltaic (PV) technology [4, 

5]. The mean efficiencies of mono-crystalline and poly-crystalline modules have been improved from 12% to 17% and from 10% 

to 16%, respectively. This denotes that merely less than 20% of received solar radiation could be transformed into electricity, 

whereas more than 80% of the received solar energy is dissipated [6, 7]. The PV panel efficiency could be increased by using 

active or passive cooling method [8, 9], many researchers employed air and water to cool the PV panel with the extracted heat 

for various purposes, and found that water is superior to air in terms of cooling effect [10,11].  

In order to enhance PV panel efficiency and take full advantage of the residual heat, the PV and thermal technologies are 

combined to form a single knowledge called Photovoltaic/Thermal (PV/T) technology. This technology can simultaneously 

generate heat and electricity with high energy efficiency compared with the separated units. Many researches on the PV/T module 

have been reported. Bigorajski and Chwieduk [12] investigated the performance of a PV/T module for single family house in 

Poland, and found that during winter months electrical and thermal efficiencies of the PV/T module reach approximately 11-12% 

and 18-19%, respectively. Huang et al. [13] tested a PV/T module consisting of a pump, a 120-L storage tank and a 240-W poly-

crystalline silicon collector, and discovered that the module electrical and thermal efficiencies could achieve 12.77% and 35.33%, 

respectively. Herrando et al. [14] established a mathematical model for the PV/T module to evaluate electricity and heat outputs 

for a three-bedroom terraced house in the UK, and concluded that 51% of electricity and 36% of space heating demands could 

be met by the PV/T module, resulting in an annual saving of 0.8 tons of carbon dioxide. Aste et al. [15] setup a numerical model 

of the PV/T module and assessed its precision via using experimental data in Italy, and obtained that the module mean daily 

electrical and thermal energy efficiencies could reach 6% and 25%, respectively. Bianchini et al. [16] investigated a commercial 

PV/T system to supply electrical and thermal energy for a residential building in the central area of Italy, and concluded that the 

system could produce approximately 1362 kWh electricity and up to 443 kWh heat annually. Ramos et al. [17] carried out an 

energy assessment of the PV/T modules for the domestic buildings in different European locations, and confirmed that the 

presented modules are able to cover 60% of heating need and almost 100% of electricity requirement of the households.  

Currently, several researches on the PV/T hybrid system have also been implemented to enhance the system electrical and 

thermal energy production. Bellos and Tzivanidis [18] utilized PV/T panels to drive a heat pump system to investigate the system 
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performance, and found that the daily power and heating generation are 5.13 kWh and 34.9 kWh, respectively. In the meantime, 

the average energy and exergy efficiencies achieve 8.80 % and 65.9%, respectively. Zhou et al. [19] developed a novel heat 

pump system by integrating photovoltaic and thermal panels for space heating under low solar radiation condition, and obtained 

that the average thermal and electrical efficiencies are 33.4% and 15.9%, respectively. The mean thermal efficiency of the thermal 

panels could reach 60.4%, the COP of the heat pump is 4.7. Cai et al [20] developed a dual source heat pump water heater where 

a direct expansion PV/T evaporator and an air source evaporator operate parallel to absorb heat from the solar radiation and 

ambient, respectively. It is found that when the solar irradiation increases from 100 W/m2 to 300 W/m2, the Coefficient of 

Performance (COP) of the hybrid system increases from 2.25 to 2.66. In addition, when the ambient temperature varies from 

10 °C to 30 °C, the COP of the hybrid system rises by 18.22%. Vallati et al. [21] investigated a PV/T assisted heat pump to 

provide electricity for the water source heat pump and thermal energy for building space heating in Craow, Milan and Roma 

based on different climate conditions. Their results demonstrate that when thermal and electrical efficiencies of the PVT are set 

respectively to 0.6 and 0.15, the heating requirement can be covered by 47% for Cracow, 62% for Milan and 70% for Rome. Lu 

et al. [22] proposed a PV/T with heat pump system using vapour injection cycle to harvest thermal energy and electric power in 

cold winter. Their results reflect that the total generated heat and electricity of the system reach 23.68 kWh and 0.51 kWh, 

respectively. Moreover, the average thermal COPth and PV/T COPPVT values are 3.27 and 3.45, respectively. Xu et al. [23] 

developed a PV/T with heat pump (PV/T-HP) system in Nanjing, China, which could achieve a mean COP of 4.8 and an electrical 

efficiency of 17.5% on a sunny day. Wang et al. [24] designed a multi-function PV/T-HP system for domestic building 

application, and denoted that the system mean thermal efficiency is approximately 37% and the heat pump COP ranges from 2.5 

to 3.2. Zhou et al. [25] investigated an innovative hybrid PV/T system with novel mini channel and a heat pump for space heating, 

and concluded that the hybrid system reaches the mean solar efficiency of 45.0% and average COP of 4.9. Chen et al. [26] 

performed a study numerically and experimentally on an innovative heat-pipe solar PV/T-HP system, and discovered that high 

ambient temperature, solar radiation and PV backboard absorptivity contribute to the heat pump COP improvement. 

Most economic evaluations regarding the hybrid PV/T system concentrate on the fundamental indicators and are performed by 

the life cycle cost (LCC) assessment method, such as levelized cost of heat (LCOH), levelized cost of energy (LCOE), net present 

value (NPV) as well as simple/discounted payback period (PBP). Riggs et al. [27] conducted an economic analysis for an 

innovative hybrid PV/T module based on the LCOH approach in the United States, and concluded that the PV/T with waste heat 

recovery could increase the lowest LCOH. Bianchini et al. [16] compared a PV/T system with the separated flat plate solar 

collector and PV module by the LCOE approach, and confirmed that the PV/T system is more economical in comparison to the 

separated systems. Gu et al. [30] performed an economic study for the PV/T technology based on Monte Carlo method in Sweden, 

and found that the capital investment on the PV/T module could be profitable since the planned earnings exceed the expected 
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expenses over the whole lifetime period. Meanwhile, according to their sensitivity analysis, the solar irradiance, heating price 

and debt to equity ratio have high impact on the module PBP which ranges from 6 to 10 years. Thygesen and Karlsson [31] 

investigated the economic benefits of a PV heat pump (PV-HP), a solar thermal heat pump (SHP) and a PV/T-HP system by 

using the NPV approach, and demonstrated that the PV-HP system is the most cost-effective and has the highest solar energy 

fraction in comparison to the SHP and PV/T-HP systems. Buker et al. [32] performed the LCC assessment for a PV/T module 

in the UK, and obtained that the NPV reaches €19456.14 with an 11-year PBP. Zhang et al. [33] carried out the PV/T-HP 

economic analyses in Stockholm, London and Madrid by means of the NPV and PBP methods, and found that the yearly running 

expenses could be saved €2051.4, €1667.0 and €2768.7 respectively in above three locations. Moreover, the PBPs of all three 

locations are less than 5 years. Herrando and Markides [34] undertook an economic investigation of a hybrid PV/T system for 

distributed power and hot water supplies in London, UK, and discovered that the PBP is in the range of 10 to 13 years, which 

depends on the variations of inflation and discounted rates.  

For these studies, only a few researchers deliberated the present values of both costs and savings whereas the remaining only 

took into account the present value of cost. Also in most cases, LCOE, LCOH, NPV are only determined by point values for all 

inputs parameters, disregarding the integrated uncertainty for investment decision. These methods are restricted because they 

could not provide a sense of the likelihood of different outcomes, resulting in a certain disagreement in real case. By comparison, 

the Monte Carlo simulation is an effective approach to solve complex economic assessment, which is a comparatively simple 

and established technique for including uncertainty and risk in quantitative model. In the Monte Carlo model, a calculation is 

carried out many times (usually hundred to millions), and each time with a set of input parameters is selected randomly based 

on the pre-defined distributions for each estimation. For example, Meschede et al. [35] analysed the effects of probabilistic 

distributed factors on PV system performance for hotels by means of Monte Carlo simulation, and concluded that occupancy 

fluctuation and weather condition are sensitive to investment decision. Meanwhile, Monte Carlo simulation contributes to 

defining the average of the annuity more precisely and to rate the risk of fluctuating weather and occupancy better. Rezvani et 

al. [36] performed a techno-economic evaluation of solar water heaters in Australia based on Monte Carlo simulation, and 

revealed that the solar water heaters could provide better long-term economic viability significantly in comparison with 

traditional systems at moderate auxiliary energy consumptions. Gu et al. [37] implemented a techno-economic analysis of a solar 

PV/T concentrator in Sweden through Monte Carlo simulation, and found that the solar irradiance, local heating price, product 

capital price, discount rate and debt to equity ratio have significant effects on the decision-makings of long-term investment in 

building sector. 

Even though this approach has been utilized in standalone PV, solar thermal and PV/T domains for several years, currently there 

are rarely economic assessments of hybrid PV/T-HP by using the Monte Carlo simulation. This paper therefore fills the research 
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gap by providing in-depth techno-economic analysis of the hybrid PV/T-HP system for a long-term operation period. To be more 

specific, the 25 years’ cumulative NPV of a hybrid PV/T-HP system for the domestic building application in the UK is studied 

by considering several vital parameters including the initial cost (IC), system energy cost (SEC), mortgage payment (MP), 

maintenance expense (ME), periodic cost (PC), system income tax savings (ITS) and present worth of money under the FiT and 

RHI schemes. The PBP is attained by the SEC and cumulative cash flows, the sensitivity analyses of economic model are 

achieved as well. Furthermore, the annual electrical energy savings, total energy savings and PBP are compared for the FiT and 

new Smart Export Guarantee (SEG) schemes. 

2. Hybrid system energy and economic models 

A hybrid PV/T-HP system is used to meet heat and electricity demands of a domestic building in this study. A basic design 

schematic of the system is illustrated in Fig. 1, it mainly comprises of a water-based glazed PV/T module employing a 

polyethylene heat exchanger (PHE), a water-to-water heat pump unit, an inverter, a hot water tank and a circulation pump. The 

PV/T module provides electricity for the heat pump and water pump and heat for the heat pump evaporator.  

 

Fig. 1. The diagram of the PV/T-HP system applied in domestic building 

2.1 Energy models 

2.1.1 Photovoltaic/Thermal model  

The PV/T module comprises of glass cover, PV array, ethylene-vinyl acetate (EVA) layer, PHE tube and adiabatic material layer. 

The solar cells are located in between two transparent tedlar-polyester-tedlar layers, and the EVA is placed behind the PV array. 

This forms a thermal conduction and electrical insulation structure, and the adiabatic material layer is set at the back of the PHE 

to minimize heat loss. A cross-sectional view of the PV/T module is given in Fig. 2. To be more specific, the solar radiation is 

transformed into electricity by PV array, meanwhile, thermal energy is absorbed by the working fluid within the PHE, and then 

passed to the heat pump evaporator.  
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Fig. 2. A cross-sectional view of the PV/T module 

In order to reduce the computing time and simplify the determination process, some assumptions are established as follows: 

1) The module is at a quasi-steady state. 

2) All material layers have homogeneous surface temperatures. 

3) Heat loss across the piping system is ignored. 

4) The air between the PHE tube and PV array is at the stagnant state. 

5) Heat loss across the adiabatic material is negligible. 

Therefore, the system energy conservation equation is given as: 

PV/T thermal

absorber PV/T loss electricity

Q
Q Q Q

t





  


                                                                                                                               (1) 

where QPV/T-thermal is the useful thermal energy (kW); t is the time (s); Qabsorber is the solar energy absorbed at the front of the PV/T 

surface (kW); QPV/T-loss is the total heat loss (kW); Qelectricity is the overall electricity output (kW).  

Qabsorber is calculated as follows: 

absorber c absorber actual
Q τ α A I                                                                                                                                                                (2) 

where τc is the PV/T transmittance; αabsorber is the PV/T absorptivity (αabsorber=0.9); Aactual is the PV/T actual area (m2); I is the 

incident solar radiation (W/m2).  

The heat losses include the convection heat exchanges between the cover layer and ambient air (Qconv,c,a ), and between the EVA 

and PHE (Qconv, EVA, PHE); the emissive powers (EP) between the cover layer and sky (QEP,c, sky), and between the EVA and PHE 

(QEP,EVA,PHE). 

PV / T loss conv ,c ,a EP ,c ,sky conv ,EVA ,PHE EP ,EVA ,PHE
Q Q Q Q Q                                                                                                                   (3) 

conv,c ,a conv c aQ h (T T )                                                                                                                                                                    (4) 

where hconv is the forced convection coefficient of the ambient air, that can be approximated as a function of wind speed and 

given as [32, 38-40]: 

Air gap

PHE tube

Glass cover

Radiation (sky)

Convection (wind)

Convection (air)

Adiabatic material

PV array

EVA plastic back
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conv wind
h 5.7 3.8 V                                                                                                                                                                        (5) 

In order to get the glass cover temperature, the following empirical equation is adopted [38, 39]: 

c aT 30 0.0175 (Ι 300) 1.14 (T 25)                                                                                                                                       (6) 

where Vwind is the wind velocity (m/s); Tc is the PV cover temperature (°C); Ta is the ambient air temperature (°C). 

The EP between the cover layer and sky is given as: 

4 4

E P ,c ,sky c c sQ ε σ (T T )                                                                                                                                                                (7) 

where εc is the PV/T cover layer emissivity (εc =0.96); σ is the Stefan-Boltzmann’s constant, 5.67x10-8 W/m2·K4; Ts is the sky 

temperature (°C). 

The sky temperature is calculated via Swinbank’s equation [38, 39] 

1.5

s a aT 0.037536 T 0.32T                                                                                                                                                            (8) 

The convection heat exchange between the EVA and PHE is given as: 

conv,EVA ,PHE air EVA PHE
Q h (T T )                                                                                                                                                      (9) 

where hair is the natural convective heat transfer coefficient between the PV array and PHE (W/m2·K); TEVA is the EVA plastic 

layer temperature (°C); TPHE is the PHE outer wall temperature (°C).  

hair is written as: 

u air

air

air

N λ
h

δ


                                                                                                                                                                               (10) 

where λair is the air thermal conductivity (W/m·K); δair is the air gap between the PV layer and glass cover (m).  

Nu is the Nusselt number as follows: 

1/3s
β

Nu [0.06 0.017( )]Gr
90

                                                                                                                                                       (11) 

where βs is the title–angle of PV array; Gr is the Grashoff number as given [38, 39]: 

3

pl heo air

2

air air

g (T T ) δ
Gr

ν T
  




                                                                                                                                                                (12) 

Hence, the EP between the EVA and PHE is given as: 

4 4

E P , EV A , PH E EV A E V A PH EQ ε σ (T T )                                                                                                                                                (13) 

where εEVA is the EVA plastic layer emissivity.  

The PV electrical efficiency can be obtained based on the temperature function [38, 39]: 

electricity ref p absorber ref
η η [1 γ (T T )]                                                                                                                                               (14) 
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where ηelectricity is the PV array electrical efficiency (%); ηref is the PV array efficiency at reference temperature (%); γp is the PV 

cell temperature coefficient (γp= 0.035 °C-1); Tabsorber is the absorber surface temperature (°C); Tref is the reference temperature 

(°C).  

The total electrical energy is written as: 

electricity e actual
Q η A I                                                                                                                                                                       (15) 

The thermal efficiency of the PV/T module is expressed as: 

PV/T thermal

thermal

actual

Qη
A I




                                                                                                                                                                      (16) 

where ηthermal is the thermal efficiency (%). 

2.1.2 Heat pump model 

A mechanical heat pump is coupled with the PV/T module in this case. Based on the local weather condition, the heat pump is 

assumed to run for heating purpose. Considering the influence of the compressor rotational speed, its electricity consumption is 

illustrated [41]:  

1
r,cond n

r c r ,suc v

r,evap

P
m V ωρ [1 C (1 ) ]

P
                                                                                                                                                 (17) 

n 1
r,evap r,cond n

comp r ,dis r ,suc

r ,suc r,evap

P PnΔξ ξ ξ [( ) 1]
n 1 ρ P



     


                                                                                                                   (18) 

r comp

comp

comp

m Δξ
W

η
                                                                                                                                                                          (19) 

where mr is the refrigerant mass flow rate (kg/s); ω is the compressor rotating speed (rev/s); Vc is the compressor suction volume 

(m3); ρr,suc is the compressor inlet working fluid density (kg/m3); Cv is the clearance factor; P is the pressure (kPa); n is the 

refrigerant polytropic compression coefficient; ξ is the specific enthalpy (kJ/kg); Δξ is the specific enthalpy change (kJ/kg); ƞcomp 

is the compressor overall efficiency (%); Wcomp is the compressor electricity consumption (kW).  

The pressure drop of the working fluid within the PV/T module is determined through the friction factor (f) in the Darcy 

Weisbach equation [39], and expressed as: 

2

fluid fluid

H

ρ VLΔp f
D 2

                                                                                                                                                                       (20) 

where L is the length of the PV array (m); DH is the PHE tube hydraulic dimeter (m); ρfluid is the working fluid density (kg/m3); 

Vfluid is the working fluid velocity in PV/T module (m/s). 

The circulation pump electricity consumption is obtained by: 

pump

pump

fluid pump

Δp m
W

ρ η / 100


                                                                                                                                                                    (21) 
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where ηpump is the pump efficiency (%); mpump is the mass flow rate (kg/s).  

2.1.3 Heat pump performance 

The system useful heat (Quseful) is equal to (QPV/T-thermal + Wcomp + Wpump). Furthermore, the COP in heating mode is given as: 

PV / T thermal comp pumpusefu

comp p

l

pum

Q W WQ
COP

W WW

  


                                                                                                                               (22) 

2.2 Economic model 

Economic policies have significant influence on the LCC assessment for the hybrid PV/T-HP system, such as tariff structure, 

fossil fuel penalty and renewable subsidy. The subsidy comes in different forms including investment rebate, Feed-in Tariff (FiT) 

and Export Tariff (ET) for renewable electricity and Renewable Heat Incentive (RHI) for renewable heat production. To obtain 

the accurate LCC evaluation results, the system boundary should be identified at first, which includes its scope and lifetime. The 

scope of the PV/T-HP system comprises of the PHE, PV array, inverter, heat pump and piping system. The lifetime of the PV/T-

HP system is about 25 years [27, 32, 33, 37], which is adopted in this case as well. The inverter has a 5-year manufacturer 

warranty and is anticipated to be replaced at the end of each 5-year period. Based on the international standard of environmental 

management BS ISO 15686 [42], the LCC is the total expense of the PV/T-HP system in all stages from manufacture to disposal, 

and involves initial cost (IC), maintenance expense (ME), mortgage payment (MP), periodic costs (PC), system energy cost 

(SEC) and income tax savings (ITS) [37, 39].  

To be more specific, the MP is a monthly payment made to pay back a mortgage, which consists of principal payment and interest 

of money on the loan borrowed for system installation [43, 44]. The principal portion is used to pay off the original loan whereas 

the interest is paid to the lender. For the property in this paper, it means that the system costs for the PV/T modules, inverter, 

PHE, ground pipes, water pump, heat pump, refrigerant and labour, are borrowed from a bank. Moreover, the PC are also known 

as periodic fixed costs. To keep the system in operating condition, some periodic costs, such as operation and maintenance costs, 

need to be paid. The PC denote the replacement costs of main system parts. For the hybrid PV/T-HP system, the inverter used 

in the system needs to be replaced after certain period of time, this cost is much more expensive compared with the annual 

maintenance fee. Basically, it is expected to be replaced at the end of each 5-year period [32, 40]. The heat pump is required to 

be replaced every 20 years [45]. Furthermore, the SEC is also known as the fuel cost saving, which is the total cost of household 

electricity and heat demands. The LCC of the PV/T-HP system is expressed as follows: 

n

IC SEC MP ME PC ITS

i 1

LCC E (E E E E E )


                                                                                                                              (23) 

where LCC is the system lifespan expense (£); EIC is the initial cost including construction and engineering design expenses (£); 

ESEC is the system energy cost in present worth (£); EMP is the yearly mortgage payment in present worth (£); EME is the system 
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maintenance expense in present worth (£); EPC is the system periodic cost in present worth (£); EITS is the system income tax 

savings in present worth (£). 

The MP composes of the principal payment (PP) and interest payment (IP), which can be given as: 

Y

MP MP
MP Y

MP

d (1 d )
E Z

(1 d ) 1

 
 

 
                                                                                                                                                          (24) 

where Z is the PP (£); dMP is the yearly interest rate (%); Y is the number of MP years.  

To maintain the PV/T-HP system in good operating condition, some expenses for operation and maintenance are required. The 

EPVT-HP savings is defined as the annual net cash flow [38, 40]: 

PVT HP  savings SEC ME PC RHI FIT EMP EPT I S TT
E E E E E E E E EE                                                                                              (25) 

where EET is the Export Tariff that is paid for any surplus electricity sold to the grid. 

The ITS of the PV/T-HP system can be expressed as [38, 40]:  

ITS ETR MP EPTE E (E E )                                                                                                                                                             (26) 

where EETR is the effective tax rate (%); EEPT is the extra property tax (£).   

In this study, the NPV is adopted to assess a single investment whether is acceptable or not. The NPV is obtained by subtracting 

the present values of cash outflows (including initial investment) from the present values of cash inflows over the PV/T-HP life 

time. The higher the NPV, the higher the benefit. Thereby, the NPV is expressed as: 

N '
N

IC N
N 1

E
NPV E

(1 k)

  
                                                                                                                                                           (27) 

where EN is the net cash inflow during the N period year (£); N is the number of time periods; k is the discount rate (%). 

The PBP is given as: 

y
PBP x

z
 

                                                                                                                                                                                (28) 

where x is the number of years before full recovery; y is the unrecovered cost at the start of the year (£); z is the cash flow during 

the year (£). The PBP is utilized to calculate the period to recoup an investment, and it provides a more accurate indication by 

discounting each cash flow and considering the time value of money. What is more, the investment is considered financially 

viable if the payback time is lower than the expected lifetime of the investment. 

3. Methodology 

3.1 Domestic building 

The selected domestic building, as shown in Fig. 3, is a detached house in Nottingham, UK, which is situated at 52.97° N and 

1.10° W. It has four bedrooms with a total floor area of 134.64 m2 and its roof area on the south side is 38.86 m2. The building 
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is designated for a family with 4 persons. Its main thermal energy is used for space heating and hot water whereas the electrical 

energy is used for fridge, washing machine, TV, computer, boiler, shower, lighting, cooker, microwave, dishwasher, etc. 

 

Fig. 3. Location and photo of the detached house in Nottingham 

3.2 Weather condition and energy demands 

Meteorological data are essential for the accurate energy output of the hybrid PV/T-HP system and building energy load. The 

local mean ambient air temperature and solar radiation are presented in Fig. 4 [46]. The local highest mean temperature reaches 

18.41 °C in August, while the lowest is 5.28 °C in January. Meanwhile, the monthly average solar radiation of Nottingham 

ranges from 14.79 kWh/m2/month in December to 144.62 kWh/m2/month in June [46]. The monthly average wind speed is in 

the range of 3.07 m/s to 4.49 m/s. The monthly building energy demands (thermal and electrical) are displayed in Fig. 5, which 

are obtained from the British Gas supplier. Specifically, the maximum and minimum thermal energy demands are 2673 kWh in 

January and 910 kWh in August, respectively. The largest electricity demand is 540.36 kWh in December whereas the smallest 

is 92.11 kWh in June. Furthermore, the building annual thermal and electrical energy demands reach 22087 kWh and 3874.71 

kWh, respectively.   

 

Fig. 4. Weather condition: (a) global irradiation; (b) wind velocity and ambient air temperature in Nottingham 
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Fig. 5. Monthly building heat and electricity demands  

3.3 System parameters 

The design of the hybrid PV/T-HP system, specifically the determination of the component size in each application, is 

challenging because of a large number of factors involved, such as fluctuations in energy demand, uncertainties existing in 

renewable resources, precarious energy prices and complex interaction among components. Moreover, the PV/T performance 

depends on the location weather condition, and this must be accurately modelled for the optimal configuration to be achieved. 

Furthermore, the initial investment from the homeowner is a significant factor that requires to be considered during the whole 

design process. Therefore, 18 (250Wp) CS6P-250P photovoltaic solar arrays from Canadian solar company are utilized in the 

PV/T module based on the building electricity consumption, and installed at a 30° tilt angle oriented to the south. The arrays 

have anti-reflex coatings to increase the light absorption. The solar cell is polycrystalline silicon with the efficiency of 15.54% 

[47], and its operational temperature ranges from -40 °C to 85 °C. A 4.5 kW Afore HNS4500TL inverter is adopted to transform 

direct current (DC) into alternating current (AC). The PHE tube has the interior and exterior diameters of 0.0029 m and 0.0045 

m, respectively. The water flow rate within the PHE is in the range of 2 L/min (0.12 m3/hour) to 6 L/min (0.36 m3/hour). 

Furthermore, the PHE is linked to a 5.5 kW IVT Greenline heat pump [45] that provides hot water at a temperature range from 

35 °C to 65 °C. The technical details of the PV/T-HP system are shown in Table 1.  

Table 1 Technical parameters of the PV/T-HP system [45, 47] 

Component Description Value 

 

 

CS6P-250P PV module 

Module dimensions 1638 × 982 × 40 mm 

NO. of PV panels 18 

Cell type Polycrystalline 

Packing factor 0.92 

Conversion efficiency 15.54% 

Nominal max. power  250 W 

Maximum current 8.30 A 

Maximum voltage 30.10 V 

Short circuit current 8.87 A 
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Open circuit voltage  37.20 V 

Active total area 26.6 m2 

 Title angle 30° 

 Manufacturer warranty 25 years 

 

 

 

 

PHE module 

The internal diameter of pipe 0.0029 m 

The external diameter of pipe 0.0045 m 

Spacing between PHE tubes 0.1 m 

Max temperature allowed in PHE 60 °C 

Max pressure allowed in PHE 1 MPa 

Mean mass flow rate 4.8 L/min 

Length 8 m 

Width 1 m 

 

 

Heat pump 

Emitted /Supplied output at 0/35°C  5.5/1.3 kW 

Refrigerant R407C mass flow rate  0.02 kg/s 

Operation temperature heat transfer system  -5 to 20 °C  

Nominal flow heating medium 0.30 l/s 

Minimum flow heating medium 0.20 l/s 

 

3.4 Cost breakdown  

The IC of the entire system is £12015 with 10% deposit, the rest of the IC is paid in a period of 25 years at an interest rate of 7%. 

The ME is assumed to be paid annually with an inflation rate of 4.5% [32]. The property tax is 2% of the initial investment 

whereas the ME for the PV/T-HP system is £120/year. The mean effective income tax rate (ITR) is estimated to be 20% during 

the LCC period. The ME and main installation expenses for the PV array, inverter, PHE, piping line and heat pump, are presented 

in Table 2, and the FIT, ET and RHI are considered as well in this study. According to the energy prices regulated by Office of 

gas and electricity markets [48] in the UK, the electricity price at FIT for homes is £0.1097/kWh whereas the electricity price at 

ET for supplying electricity into the grid is £0.052/kWh [48], the RHI for domestic building is £0.0895/kWh [49]. The detail 

component prices and economic parameters are displayed in Table 3. 

Table 2 PV/T-HP system cost breakdown  

Item Value 

PV/T  

PV arrays £2273 

Inverter £670 

PHE (×2) £500 

Pipe £300 

Pump (×1) £45 

Estimated PV/T unit cost £3488 

Heat pump  

Heat pump & commissioning £5600 

Refrigerant expense £174 

Estimated heat pump system expense £5744 

Other costs  

Header circuit insulation £186 

Brass fittings £747 

Estimated other equipment expense £933 

Labour costs £1550 

Total initial expense £12015 

Estimated maintenance expense £120 
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Table 3 Parameters utilized for financial assessment  

Item Value 

Electrical price  Feed-in tariff (building usage): £0.1097/kWh 

 Export tariff (to the grid): £0.052/kWh 

RHI for heat pump  £0.0895/kWh 

Deposit payment  10% 

Inflation rate of electricity price 6% 

Interest rate of principal 7% 

Inflation rate of maintenance  4.5% 

Inflation rate of inverter price 3% 

Council tax for property tax  2% 

Inflation rate of extra property tax  4% 

Income tax rate 20% 

UK discount rate 8.75% 

 

3.5 Program algorithm 

The differential and integral equations of the hybrid PV/T-HP system energy performance are developed based on finite 

difference method, which are solved by the Engineering Equation Solver (EES) commercial software package [50]. The flow 

chart of the solution procedure is given in Fig. 6 (a), and the subprogram of the computational process of the PV/T model is 

displayed in Fig. 6 (b).  

The economic model is set up based on the Monte Carlo simulation by using the @RISK software [51]. Probability density 

function (PDF) is a statistical expression that defines a probability distribution (the likelihood of an outcome) for a discrete 

random variable as opposed to a continuous random variable. In order to establish the Monte Carlo model, an appropriate data 

range and a triangular distribution of each variable are defined as illustrated in Table 4. To be more specific, the ranges of the 

initial cost, electrical energy output, electricity price and thermal energy production are £9000 to £18000, 4500 kWh to 9000 

kWh, £0.075/kWh to £0.22/kWh and 14500 kWh to 25000 kWh, respectively. Moreover, the values of A, B and C in Table 4 

represent different inputs for the triangular distribution, A is the low end of the distribution, B is the peak value, and C is the 

high end of the distribution. In terms of constant inputs, the range represents the value used. The whole assessment is divided 

into six sections and the flow chart of LCC evaluation is depicted in Fig. 7. For all analyses presented in this work, a 2000 

iteration Monte Carlo simulation is operated using the above equations, data ranges and distributions.  

Table 4 Economic analysis input data of the PV/T-HP system 

Items Distribution Range A B C 

Initial cost (£) Triangular  9000-18000 9000 12015 18000 

Electrical energy output (kWh) Triangular 4500-9000 4500 7430 9000 

Thermal energy output (kWh) Triangular 14500-25000 14500 23833 25000 

Annual interest rate (%) Constant 7 - - - 

Operating period (years) Constant  25 - - - 

System maintenance cost (£)  Triangular 140-180 140 160 180 

Income tax rate (%) Constant 20 - - - 
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Annual mortgage payment (£) Constant 927.91 - - - 

Electrical price (£/kWh) Triangular 0.075-0.22 0.075 0.20 0.22 

FIT (£/kWh) Constant 0.1097 - - - 

RHI (£/kWh) Constant 0.0895 - - - 

Heat rate (£/kWh) - - - - - 

Discounted rate (%) Triangular 6.75-9.75 6.75 8.75 9.75 

Deposit payment (%) Triangular 8-15 8 10 15 

 

 

(a) 



16 

 

 

 

(b) 

Fig. 6. Flowchart of the computing procedure: (a) whole system; (b) PV/T subsystem 
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Fig. 7. The flowchart of economic evaluation for PV/T-HP system 
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4. Results and discussion 

4.1 Energy performance 

The investigated period of the PV/T-HP system is from 01st/May/2017 to 30th/April/2018, which is categorized into two stages 

based on the local weather condition. The first stage is from May to September with 8-hour daily operating time, another one is 

from October to April with 6-hour daily operating time. The PV array monthly average electricity generation and efficiency are 

shown in Fig. 8, the PV/T module thermal output and efficiency are presented in Fig. 9. According to Fig. 8, the maximum 

monthly electricity output is 981.57 kWh in June whereas the minimum is 298.42 kWh in December, with the corresponding 

electricity efficiencies of 15.52% and 10.95%, respectively. The annual electricity production is 7430.21 kWh with the mean 

electricity efficiency of 13.07%. It is found from Fig. 9 that the maximum monthly thermal energy output of the PV/T module 

is 1691.99 kWh in June while the minimum reaches 1220.44 kWh in December, with the corresponding thermal efficiencies of 

30.10% and 8.80%, respectively. The total heat from the PV/T module is 17096.46 kWh per annum. 

 

Fig. 8. Monthly PV electricity production and electricity efficiency 

 

Fig. 9. Monthly PV/T thermal output and thermal efficiency 
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The building thermal energy demand, PV/T-HP thermal energy output and additional heat supplied are indicated in Fig. 10. The 

system highest monthly thermal energy output of 2486.35 kWh is achieved in June whereas the lowest is 1616.47 kWh in 

December. Moreover, the system thermal energy output is able to cover the building heat demand from April to October. 

Nevertheless, for November to March, the system thermal energy output cannot fulfil the heating requirements, so the additional 

heat is required for this period. The annual thermal energy output from the PV/T-HP is 23832.56 kWh whereas the building 

annual heating load is 22087 kWh, thereby, additional heat of 3497.49 kWh is required in this case.  

 

Fig. 10. Thermal energy demand, PV/T-HP output and additional heat supplied  

The monthly average heat pump power consumption and COP are presented in Fig. 11. The maximum and minimum monthly 

electrical consumption are 794.36 kWh in June and 389.51 kWh in December, with the corresponding COPs of 3.13 and 4.15, 

respectively. The total electricity consumption of the heat pump is 6736.37 kWh per annum with a mean COP of 3.62. 

 

Fig. 11. Monthly heat pump power consumption and COP 

As demonstrated in Fig. 12, the building electricity load including the household usage, circulation pump and heat pump 

consumption, is 10611.08 kWh per annum. In the meantime, the total electricity output of the PV arrays reaches 7430.21 kWh 

per annum. Specifically, for two periods from January to April and from September to December, the electricity output of 
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3770.30 kWh (1988.48 kWh + 1781.82 kWh) is not capable of meeting the building electricity demand of 7186.64 kWh (3729.35 

kWh + 3457.29 kWh). This indicates that the additional power of 3416.34 kWh is needed to meet the building electricity 

requirement. By comparison, from May to August, the PV array electricity output of 3659.91 kWh exceeds the building need of 

3430.44 kWh. This means that 229.47 kWh electricity is fed into the national grid at export tariff rate.  

 

Fig. 12. Electricity demands, PV system electricity generation and surplus electricity supplied 

4.2 Economic evaluation 

4.2.1 Net present value and payback period 

The annual progressions of the system energy and maintenance expenses for the 25-year lifetime service are illustrated in 

Appendix. It can be found that the PV/T-HP savings become positive reaching £2260 after the first year and reach £10329 until 

the 25th year. What is more, the system NPV is £38990 for the 25 years’ running period. According to Fig. 13, the cash flow 

curve fluctuates at the 6th, 11st, 16th and 21st years because of the inverter replacement. Notably, the cash flow value becomes 

positive by the end of the 1st year as well as sustains positive consistently through the whole period of LCC assessment. The 

reason is that the system total energy output is high and the IC is relatively low, in the meantime, the system ME is low as well 

in this case.  

 

Fig. 13. The annual cash flow variation over the LCC analysis period 
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Fig. 14. Variation of remaining principle, cumulative PV/T-HP savings and cumulative SEC savings 

It is found from Fig.14 that the cumulative SEC savings (£12639) surpass the IC (£12015) at the end of the 4th year. In the 

meantime, the cumulative PV/T-HP savings become positive after the 1st year owing to the relatively low IC and ME. The 

cumulative PV/T-HP savings (£11758) are in excess of the remaining principal balance (£9830) at the end of the 5th year. 

Furthermore, the PBP is 4.15 years as illustrated in Fig.14, this is regarded as an accredited PBP which is less than 10 years in 

terms of an engineering project in the UK context. 

4.2.2 Sensitivity analyses  

The sensitivity analyses are implemented in terms of the NPV and PBP to evaluate the sensitivities of the input variables by 

using the @Risk software. As shown in Figs. 15 and 16, the distribution bar charts demonstrate the probabilities against NPV 

and PBP for the PV/T-HP system during the entire life cycle period, respectively, the minimum, maximum, mean, standard 

deviations and number of iterations of the NPV and PBP are also indicated. 

 

Fig. 15. Frequency prediction illustration of NPV 
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Fig. 16. Frequency prediction illustration of PBP 

The vertical lines in Fig. 15 represent the NPV of present case (£38990) and average value (£48282). One row of percentages 

on the top of the diagram displays the probabilities relative to the NPV. Specifically, the top row depicts the probability regarding 

the LCC of the PV/T-HP system which is classified into three categories, it accounts for 31.2% when the NPV is less than the 

present case value; it makes up 22.5% when the NPV is located between the NPV of the present case value and average value; 

it accounts for a proportion of 46.4% when the NPV is greater than the average value. By contrast, the vertical lines in Fig. 16 

denote the minimum (1.77 years) and average values (3.96 years) in the PBP. The top row of the graph, there is a probability of 

45.8 % that the system PBP is more than 3.96 years, and 54.2 % of the payback time is between 1.77 and 3.96 years, while 0% 

of the payback period is less than 1.77 years.  

The PV/T-HP system has the average NPV of £48282 after the 25-year running period, and there is nearly 22.5% possibility for 

this system to attain positive NPV (appreciated capital investment) between £38900 and £48282. By comparison, about 31.2% 

probability is lower than £38990 and 46.4% probability is higher than £48282. Based on the NPV decision-making regulation, 

the positive NPV illustrates that the capital investment on the presented system will be extremely cost-effective as the projected 

earning surpasses the expected expense. The average PBP is 3.97 years when the cash flow turns positive, as shown in Fig. 16. 

Similarly, there is 61.6% likelihood for the PV/T-HP system to attain a PBP less than 4.15 years, about 38.3% probability for 

the PBP is in the range of 4.15 to 8 years.  
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Fig. 17. NPV variation with PBP 

The PBP has a probability of 46.40 % to be less than a mean value of 3.97 years as the NPV is superior to a mean value of 

£48282, as shown in Fig. 17. There is only 1.60 % probability that the PBP can be over 3.97 years when the NPV is above the 

mean value. This indicates that the long PBP is unfavourable to the NPV. If the NPV is less than £48282, there is likelihood of 

41.20 % that the PBP is higher than the average value, while only an opportunity of 10.80 % is for the low PBP value. This 

demonstrates that the higher NPV can be obtained when the shorter PBP is achieved in the study. The Monte Carlo simulation 

is able to define the average annuity and the stochastic fluctuation risk more precise, and show the system's economic stability. 

The methodology is in accordance with the previous studies in terms of NPV and PBP [36, 37, 52, 53].  

4.4.3 Comparison between FiT and SEG schemes 

The Feed-In Tariff (FiT) scheme is a UK government programme designed to promote the uptake of renewable and low-carbon 

electricity production technologies. It was introduced on 1st April 2010 and closed for the new entry on 31st March 2019 [54]. 

Though the FiT has come to an end, the extra electricity produced by solar panels will inevitably goes back to the grid and as 

under current legislation it would be illegal not to be paid. Therefore, the UK government (Department for Business, Energy & 

Industrial Strategy) launched a new replacement scheme, named the Smart Export Guarantee (SEG), and ensures that eligible 

small-scale, clean electricity generators will, under law, receive payments from electricity suppliers such as SSE, EDF Energy, 

British Gas, npower, Octopus Energy and Scottish Power (those with more than 250,000 electricity customers) for each unit of 

electricity they export to the grid [55, 56]. The new scheme was set on 9th June 2019 and mainly comes into force on 1st October 

2019, which commences on 1st January 2020 [57]. 

Under the SEG, customers are only paid for the metered electricity they export back to their electricity suppliers. There is no 

longer a “generation tariff”, so it is likely to take much longer before the capital investments are recovered by the SEG payments 

and energy savings [55, 56]. In comparison to the FiT scheme, the export price is not set by the UK government and there will 
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be no long-term contracts. Based on this policy change, one of UK electricity suppliers like Octopus Energy has put forward two 

options with regard to the payments. One is a flat tariff called Fixed Outgoing Octopus that is a simple fixed payment for all 

surplus power exported to the grid at a fair market rate of 5.5p/kWh [58]. Another one is the flexible price called as Agile 

Outgoing Octopus that customers will get paid in the range from 4p/kWh to 9p/kWh at off peak time and from 10p/kWh to 

15p/kWh at peak time [58]. This indicates that price changes at different time allow house owners generating renewable energy 

at home to taken into account the highly variable wholesale expense of energy throughout the day, and export at the most valuable 

times [58].  

Based on new SEG policy, it can be observed from Fig. 18 that the annual electrical energy savings and income, under FiT, SEG 

with fixed export tariff and SEG with flexible export tariff schemes, can attain £2455, £616 and £1526, respectively. The FiT 

scheme could save approximately one time and twice as much costs in comparison to SEG with fixed export tariff and with 

flexible export tariff respectively. Similarly, the yearly energy savings and income under the FiT scheme is £10329 which is 

more than SEG with fixed export tariff of £8491 and SEG with flexible export tariff of £9400. Furthermore, the PBP under the 

FiT scheme is 4.15 years which is far less than SEG with fixed export tariff of 12.75 years and SEG with flexible export tariff 

of 9.33 years.  

 

Fig. 18. Comparison of annual electrical energy savings and income, total energy savings and income and PBP between FiT and 

SEG schemes 

The fact that there is no minimum to the export rate that energy companies must pay means that the government is envisaging a 

competitive market, but it will be difficult to make this happen artificially. That indicates that customers will likely experience 

very low export tariffs, much lower than with the FiT. That said, it is worth saying that this is a big step up from the previous 
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government stance, no further subsidies of this nature would be thought until 2025. The SEG represents hope that the solar 

industry will not collapse entirely after the FiT has stopped taking new applications. 

5. Conclusions 

The energy performance and economic assessments of a hybrid PV/T-HP system are performed in this study. 18 CS6P-250P PV 

arrays with PHE are used in the PV/T module, and a 5.5 kW IVT Greenline heat pump is linked to the PHE to form the PV/T-

HP system. The energy model of the PV/T-HP system is presented and used to evaluate its monthly electricity and heat generation, 

electricity consumption and COP via the EES software, the system economic model is set up through the Monte Carlo simulation 

which is solved using the @RISK software. A complete economic assessment is conducted considering the IC, ME, MP, SEC, 

EPT, ITS, PV/T-HP savings, NPV and cumulative savings, the sensitivity analyses of the NPV and PBP are also implemented. 

The key findings are concluded as follows: 

 The PV/T-HP system could fulfil the building thermal and electrical demands from April to October and from May to August, 

respectively, and the extra electricity of 229.47 kWh is fed into the grid under the FiT scheme. 

 The cumulative SEC savings (£12639) are in excess of the IC (£12015) at the end of the 4th year, the cumulative PV/T-HP 

savings (£11758) exceed the remaining of principal balance (£9830) at the end of the 5th year, and 4.15 years of the PBP is 

achieved. 

 The PV/T-HP system with high NPV and short PBP has low initial investment. 

 The Monte Carlo simulation is able to define the average annuity and the stochastic fluctuation risk more precise and thus 

enable a characterisation of the system's economic stability.  

 The economic sensitive analyses reveal that the high discount rate reduces the system NPV whereas the high investment 

cost causes a long PBP to realize the positive NPV.  

 Compared with the new SEG, the FiT is the most cost-effective scheme for renewable electricity generation and has the 

shortest PBP. 
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Appendix  LCC of the PV/T-HP system for the domestic building in Nottingham throughout a 25-year operation period 

Year 

Energy 

generation 

(kWh/year) 

SEC (£) MP (£) IP (£) PP (£) 

Principal 

balance 

(£) 

Inverter 

replacement 

(£) 

ME (£) EPT (£) ITS (£) 

PV/T-HP 

savings 

(£) 

Present 

worth of 

PV/T-HP 

savings 

(£) 

Cum. 

PV/T-HP 

savings (£) 

Cum. SEC 

savings (£) 

0      10813.50     (1201.50) (1201.50) (1201.50)  

1 26338 2889.28 (927.91) 756.95 170.97 10642.53 − (160) (240.30) 699.01 2260.07 2078.23 1058.57 2889.28 

2 26338 3062.64 (927.91) 744.98 182.93 10459.60 − (167.20) (249.91) 698.53 2416.15 2042.98 4315.95 5951.91 

3 26338 3246.39 (927.91) 732.17 195.74 10263.86 − (174.72) (259.91) 697.97 2581.82 2007.42 6056.543 9198.31 

4 26338 3441.18 (927.91) 718.47 209.44 10054.42 − (182.59) (270.30) 697.31 2757.69 1971.64 8814.23 12639.48 

5 26338 3647.65 (927.91) 703.81 224.10 9830.32 − (190.80) (281.12) 696.54 2944.36 1935.73 11758.59 16287.13 

6 26338 3866.51 (927.91) 688.12 239.79 9590.54 776.71 (199.39) (292.36) 695.65 2365.79 1430.21 14124.38 20153.64 

7 26338 4098.49 (927.91) 671.34 256.57 9333.96 − (208.36) (304.06) 694.64 3352.80 1863.82 17477.18 24252.14 

8 26338 4344.41 (927.91) 653.38 274.53 9059.43 − (217.74) (316.22) 693.48 3576.02 1827.95 21053.2 28596.54 

9 26338 4605.07 (927.91) 634.16 293.75 8765.68 − (227.54) (328.87) 692.16 3812.92 1792.23 24866.12 33201.61 

10 26338 4881.38 (927.91) 613.59 314.31 8451.37 − (237.78) (342.02) 690.68 4064.35 1756.70 28930.46 38082.99 

11 26338 5174.26 (927.91) 591.59 336.31 8115.05 900.42 (248.48) (355.70) 689.02 3430.76 1363.54 32361.23 43257.25 

12 26338 5484.71 (927.91) 568.05 359.86 7755.19 − (259.66) (369.93) 687.15 4614.37 1686.40 36975.60 48741.96 

13 26338 5813.79 (927.91) 542.86 385.05 7370.15 − (271.34) (384.73) 685.07 4914.89 1651.71 41890.49 54555.76 

14 26338 6162.62 (927.91) 515.91 411.99 6958.15 − (283.55) (400.12) 682.76 5233.81 1617.37 47124.30 60718.38 

15 26338 6532.38 (927.91) 487.07 440.84 6517.31 − (296.31) (416.12) 680.19 5572.23 1583.39 52696.53 67250.76 

16 26338 6924.32 (927.91) 456.21 471.69 6045.61 1043.84 (309.65) (432.77) 677.35 4887.52 1277.09 57584.05 74175.09 

17 26338 7339.78 (927.91) 423.19 504.72 5540.89 − (323.58) (450.08) 674.21 6312.43 1516.69 63896.47 81514.87 

18 26338 7780.17 (927.91) 387.86 540.05 5000.85 − (338.14) (468.08) 670.75 6716.79 1484.00 70613.26 89295.04 

19 26338 8246.98 (927.91) 350.06 577.85 4422.99 − (353.36) (486.80) 666.93 7145.84 1451.77 77759.10 97542.02 

20 26338 8741.80 (927.91) 309.61 618.30 3804.69 − (369.26) (506.28) 662.73 7601.09 1420.01 85360.19 106283.80 

21 26338 9266.31 (927.91) 266.33 661.58 3143.12 1210.09 (385.87) (526.53) 658.13 6874.03 1180.86 92234.22 115550.10 

22 26338 9822.29 (927.91) 220.01 707.89 2435.23 − (403.24) (547.59) 653.08 8596.63 1357.95 100830.80 125372.40 

23 26338 10411.62 (927.91) 170.47 757.44 1677.78 − (421.38) (569.49) 647.55 9140.39 1327.67 109971.20 135784 

24 26338 11036.32 (927.91) 117.44 810.47 867.32 − (440.35) (592.27) 641.49 9717.29 1297.91 119688.50 146820.40 

25 26338 11698.50 (927.91) 60.71 867.19 0.12 − (460.16) (615.96) 634.89 10329.36 1268.65 130017.90 158518.90 

Total            38990.43   
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Nomenclature 

A            Area (m2) 

Cv               Clearance factor 

DH          Hydraulic dimeter (m) 

d             Interest rate (%) 

E             Expense (£) 

f              Friction factor 

Gr           Grashoff number 

h             Heat transfer coefficient [W/(m·K)] 

I              Incident solar radiation (W/m2) 

k             Discount rate (%) 

L             PV panel length (m) 

m            Mass flow rate (kg/s) 

N            Number of time periods 

Nu          Nusselt number 

n             Polytropic compression coefficient 

P             Pressure (k·Pa) 

Q            Energy (kW) 

T            Temperature (°C) 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/807393/smart-export-guarantee-government-response.pdf
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t              Time (s) 

V            Wind speed (m/s) 

Vc           Compressor swept volume (m3) 

W           Electricity consumption (kW) 

x             Number of years before full recovery 

Y            Number of mortgage payment years 

y             Unrecovered cost at the start of the year (£) 

Z            Principal payment (£) 

z             Cash flow during the year (£) 

Subscripts 

absorber        Absorber  

actual           Actual 

air                 Air 

ave               Average 

c                  Glass cover 

comp           Compressor 

electricity      Electricity  

fluid             Fluid 

loss              Loss 

pump           Circulation pump 

r                   Refrigerant 

ref               PV module efficiency at reference temperature 

s                  Sky  

thermal        Thermal 

useful          Useful 
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Greek Letters 

α             Absorptivity 

β             Title-angle of PV panels 

γ              PV cell temperature coefficient (°C-1) 

ω             Compressor rotating speed (rev/s) 

λ              Thermal conductivity of air (W/m·K) 

ρ              Density (kg/m3) 

σ              Stefan-Boltzmann constant (5.67 × 10-8 W/m2·K4) 

ղ              Efficiency (%) 

τ               Transmittance 

ε               Emissivity 

ξ               Specific enthalpy (kJ/kg) 

Δξ            Specific enthalpy change (kJ/kg) 

Abbreviations 

AC            Alternating current 

COP          Coefficient of performance 

DC            Direct current 

EES          Engineering equation solver 

EP             Emissive power 

ET            Export tariff 

EVA         Ethylene vinyl acetate 

FIT            Feed-in tariff 

GHG         Greenhouse gas 

IC              Initial cost 

ITS            Income tax savings 
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LCC          Life cycle cost 

LCOE        Levelized cost of energy 

LCOH        Levelized cost of heat 

ME             Maintenance expense 

MP              Mortgage payment 

NPV            Net present value 

PBP             Payback period 

PC               Periodic cost 

PHE             Polyethylene heat exchanger 

PP                Principle payment 

PV                Photovoltaic 

PV-HP         Photovoltaic with heat pump 

PV/T-HP      Photovoltaic/thermal assisted heat pump 

RHI              Renewable heat incentive 

SEC              System energy cost 

SEG             Smart Export Guarantee 

SHP             Solar thermal with heat pump 

 


