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ABSTRACT 13 

Bagasse agave tequilana fibres (ATF), an abundant by-product of Mexican tequila 14 

production, were characterised, treated and investigated as a reinforcement and filler 15 

material for polylactic acid (PLA) green composites.  16 

Two fibre pre-treatments were investigated: alkali (8% NaOH solution) and enzymatic (0.4% 17 

Pectate lyase solution). Composites pellets of 20, 40 and 60 % (w/v) of ATF in PLA were 18 

manufactured using extrusion moulding. Press moulding was used to fabricate samples 19 

composite plates. Tensile, flexural, impact and water absorption properties were investigated 20 

on machined samples.  21 
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Assessment of the mechanical properties showed tensile strength of up to 57.1 MPa for 20 22 

% (w/v) of ATF untreated samples. Flexural strength up to 98.8 MPa and impact strength of 23 

6.8 kJ/m2 for 40% (w/v) of ATF alkali treated samples. These values compare well with those 24 

of other new bio-composites. The values of the Young’s and flexural moduli are in proximity, 25 

if not superior, to those of widely used polymers PLA and GPPS.  26 

The optimal ATF loading was found to be ~ 40 %. Alkali treatment of fibres provided 27 

marginally improved mechanical properties; while significantly increasing the samples’ water 28 

absorption. Microscopy observations confirmed the two pre-treatments enhanced the 29 

fibre/matrix adhesion when compared with untreated fibres.  30 

Keywords 31 

Natural fibres-based composites, agave bagasse, PLA, compression moulding. 32 

1 Introduction 33 

Polymers derived from natural sources such as polylactic acid (PLA) exhibit potential as 34 

biodegradable replacements for their hydrocarbon counterparts (Stevens, 2002). PLA is also 35 

widely acknowledged as one of the most successful degradable polymers to be 36 

commercialized on a large-scale. The main advantages of PLA includes similar 37 

manufacturing processes to those of thermoplastics as well as the use of renewable 38 

fermented agricultural feedstocks, such as maize or sugar beets (Hartmann, 1998; Sawyer, 39 

2003). High strength and low elongation to fracture has also been reported (Garlotta, 2001). 40 

Properties of relatively poor impact resistance, slow crystallization rate and low heat 41 

deflection temperatures have prevented the adoption of PLA in more demanding 42 

applications (e.g. high load bearing components); however, it has been widely used in 43 

packaging as well as other commodities (Nagarajan et al., 2015). Moves to adopt more 44 

“green” constituents in composite materials have benefitted from the use of PLA. 45 
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Environmental concerns as well as reduction of raw material costs have resulted in a 46 

considerable growth in the use of natural fibres in composites. These include both purposely 47 

grown and harvested fibres, as well as those recovered from agricultural waste. Figure 1  48 

summarises some of the most widely known natural fibres recently investigated (Faruk et al., 49 

2014; Mohanty et al., 2002; Saheb and Jog, 1999). 50 

Natural fibres are often pre-treated before composite fabrication to overcome aggregate 51 

forming and moisture resistance, amongst other issues (Bledzki et al., 1996). Their pre-52 

treatment has been shown to enhance natural fibre composites’ properties (e.g. tensile 53 

strength and biodegradability) (George et al., 2001; John and Anandjiwala, 2008; Li et al., 54 

2007). 55 

PLA green composite fabrication has been demonstrated using a variety of natural fibres 56 

such as kenaf (Serizawa et al., 2006), jute (Plackett et al., 2003), hemp (Song et al., 2013) 57 

and flax (Shanks et al., 2006). Previous studies have also shown that compounding of 58 

natural fibre-based composites can be successfully achieved in a single step using twin-59 

screw extrusion (Gamon et al., 2013; Hietala et al., 2014; Teixeira et al., 2011). 60 

Figure 1  61 

The fibres investigated are a waste by-product of Mexican tequila production, originating 62 

from the Agave tequilana plant, see Figure 2 . Agave tequilana is a succulent plant 63 

belonging to the Agavaceae family.  This plants typically range from 1.2 to 1.8 m in height 64 

(Cruz and Alvarez-Jacobs, 1999). Agave tequilana thrives in semi-arid land, requiring low 65 

field labour, little watering and little (or no) agrochemicals.  66 

Figure 2  67 

The heart of the Agave plant is harvested for tequila production. Following the removal of 68 

leaves, the heart is steam cooked and then milled to extract its juice. From the milling 69 
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process, a fibrous by-product known as bagasse is produced. The physical characteristics of 70 

the bagasse fibres suggest they can be readily used in composites, without any additional 71 

extraction costs (Iñiguez-Covarrubias et al., 2001). Further, the main constituents of ATF 72 

(cellulose, hemicellulose and lignin), are reported to be comparable to those of other high 73 

cellulose natural fibres used in composites (Iñiguez-Covarrubias et al., 2001). 74 

Annual tequila output has grown steadily despite production methods still employing 75 

traditional processes. For example, over 248 million litres of tequila were produced in 2015. 76 

As a result, annual estimates of bagasse production have regularly exceeded 300,000 t 77 

(CRT, 2016). Although the use of tequila by-products has been explored by a growing 78 

number of researchers, it is known that clandestine and landfill disposal still occurs (Crespo 79 

González et al., 2013).  80 

Utilisation of the abundant tequila by-products, bagasse and leaf fibres has been 81 

investigated. Different degrees of economic adoption and success in reducing environmental 82 

impact has also been achieved. For example, Gonzalo Idarraga et al., (1999) explored paper 83 

pulping of ATF by chemical and biomechanical processes. They reported that the strength of 84 

pulps from the agave fibre was poorer than wood and other agro-based pulps. Iñiguez-85 

Covarrubias et al., (2001) used ATF to substitute corn stubble in livestock feed; whereas 86 

Crespo González et al., (2013) studied composting the fibres. ATF has also been used to 87 

fabricate carrier bags and containers (Hernandez, 2017). These are reported to be made 88 

using 50 % blends of polyethylene/ATF and polypropylene/ATF, respectively. Fabrication 89 

costs, which are currently higher than those of polyethylene bags, remains one of the main 90 

challenges. Whilst the use of ATF in these products reduces use of both forms of plastic, 91 

their disposal requires further consideration (Hernandez, 2017). 92 

Perhaps one the most successful applications of waste ATF so far reported, has been their 93 

use as biofuel in the form of pellets and briquettes (Garcia Fuentes, 2012). However, there is 94 
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still potential to add value to this by-product by extending the range of applications and 95 

societal benefits. For example, Langhorst et al., (2018) recently assessed ATFs as a 96 

reinforcement in polypropylene automotive composites. Other previous polymer studies 97 

include that of Tronc et al., (2007) who studied ATF as thermoplastic composite 98 

reinforcement. The properties of ATF/linear medium density polyethylene composites 99 

manufactured by roto-moulding were investigated by López-Bañuelos et al., (2012). Perez-100 

Fonseca et al., (2014) combined agave and pine fibres to produce high density polyethylene 101 

composites. Moscoso-Sánchez et al., (2013) studied the morphology, tensile and impact 102 

properties of foamed and un-foamed polypropylene/agave composites. In addition, Cisneros-103 

López et al., (2017) investigated the treatment and properties of compression moulded 104 

polyethylene/agave composites. 105 

Evaluation of PLA/agave composites has been explored by only a limited number of 106 

contemporary authors; with composites fabricated using rotational moulding (Cisneros-107 

López et al., 2017b) and twin extrusion/injection moulding (Pérez-Fonseca et al., 2016). 108 

The motivation for the work reported in this paper was to explore further alternatives to oil-109 

based polymers, while adding value to an abundant by-product of Mexico’s tequila industry 110 

and thus reduce the need for landfill disposal. This paper reports the use of agave bagasse 111 

fibres, as reinforcement/filler material in a PLA matrix-based composite. ATF were treated 112 

and test samples were manufactured using both twin extrusion and compression moulding at 113 

three fibre loading contents (20, 40 and 60%). The effect of surface treatment and fibre 114 

loading content on composites manufactured has been studied. An assessment of their 115 

tensile, impact, flexural and water absorption properties is presented. Morphology and 116 

fractography studies were carried out using optical and environmental scanning electron 117 

microscopy (ESEM). 118 
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2 Materials and methods 119 

2.1 Raw materials 120 

Raw, unprocessed tequila bagasse (100 % agave) ATF were supplied by the distillery “La 121 

Fortaleza” located in Jalisco, Mexico. Additional materials used for preparation of the 122 

ATF/PLA composites included: analytical grade NaOH from Acros Organics; Pectate lyase 123 

enzyme (Scourzyme®) was provided by Novozymes; and, PLA extrusion grade (Ingeo 124 

Biopolymer 2003D) in pellet form was purchased from Natureworks™.125 

2.2 Characterisation of raw ATF 126 

Raw bagasse fibres were received directly from the distillery. Prior characterisation, fibres 127 

were thoroughly pre-washed and oven-dried at 60° C for 24 hrs. to ensure the removal of 128 

residual matter present from the tequila production process. Their morphology was 129 

investigated using optical and environmental scanning electron microscopy (ESEM). Energy 130 

dispersive X-ray (EDX) was used to investigate the constituents of the fibres and their 131 

impurities. 132 

The cross-sectional area (CSA) of fibres was measured on vertically epoxy-potted fibre 133 

samples (Thomason and Carruthers, 2012). After polishing, the samples were photographed 134 

at 50X magnification and then analysed using the open source ImageJ software. A total of 135 

350 measurements were taken. Fibre length was measured using the same image 136 

processing software on 200 randomly selected fibres. The density of ATF was calculated by 137 

measuring the mass of dried specimens and then dividing by their volume. An analytical 138 

balance with a 0.00001 g resolution was used with twenty measurements taken. Full details 139 

of the fibres characterisation conducted can be found in a separate publication (Huerta-140 

Cardoso, 2018). Table1 shows a summary of the measured properties of ATF prior to 141 

treatment. 142 
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2.3 Fibre treatments 143 

Following an in-depth review and assessment of treatments (Huerta-Cardoso, 2018), ATF 144 

with an average length of 10 mm were pre-washed and then oven-dried at 60° C for 24 h. 145 

The dried fibres were immersed in two different treatment solutions: NaOH and the enzyme 146 

solution. The alkali-treated fibres were produced by immersing them in 8 % weight per 147 

volume (w/v) NaOH solution at 21° C, while the enzyme treated samples were produced by 148 

immersion, then in 0.4 % (w/v) of pectate lyase at 55° C. In both cases the exposure time 149 

was 180 minutes. The procedure for both treatments ensured the pre-dried fibres were first 150 

immersed in the correspondent aqueous solution and continuously stirred. Treated fibres 151 

were then drained, and subsequently rinsed with distilled water until acid-free, and to allow 152 

the removal of loosely bonded physisorbed compounds joined to the fibre surface. Untreated 153 

ATF samples were kept as control. The fibres were oven-dried after treatment (at 60° C for 154 

24 h) and then kept in desiccators to control relative humidity (RH) due to the hygroscopic 155 

nature of the fibres.   156 

2.4 Composite processing: extrusion and press moulding 157 

A two-step process was used to manufacture the composite samples (i.e. extrusion and 158 

press moulding).  Extrusion was carried out using a 21 mm LAB Rondol twin-screw extruder 159 

with a 2 mm hole diameter die. In a first step, ATF with a mean length of 10 mm and PLA 160 

pellets were separately premixed by continuous shaking before extrusion to assure the 161 

uniformity during the material feeding. Residence time was estimated at 3 min for all runs. 162 

This kept the melt flowing and prevented degradation. In between processing of the different 163 

grades, a purge flow was used to clear residual materials. The screw speed was fixed at 50 164 

rpm for the melt mixing and drive torque at 60 %. The extrusion temperature profile is shown 165 

in Figure 3 .  166 
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The extrudates were prepared and pelletized by adding the premixed fibres and PLA directly 167 

into the hopper. Pristine PLA was also pelletized and press moulded as a control. Pellets 168 

were oven-dried at 60° C for 24 h and kept in desiccators at 47 ± 3 % RH before press 169 

moulding. 170 

Figure 3  171 

In a second step ATF/PLA composite plates were prepared using preferred ATF 172 

combinations of 20, 40 and 60 % (w/v); using alkali (AKF), enzyme (ENF) and untreated 173 

(UNF) fibre treatments. Composite plates were prepared in a 40 T hot press by press 174 

moulding the pellets in a steel frame, of 298 x 298 mm, at 160° C and 55 MPa for 8 minutes.  175 

After pressing, the frame was allowed to cool at ambient temperature and the composite 176 

plates demoulded. 177 

2.5 Sample preparation 178 

Samples for tensile, flexural, impact and water uptake tests were cut out from fabricated 179 

composite plates to standard dimensions by dynamic water jet cutting (Figure 4 ). All 180 

samples had a nominal thickness of 3.8 mm. Before testing, samples were oven-dried at 50° 181 

C for 24 h and kept in desiccators.  182 

Figure 4  183 

2.6 Testing and microscopy procedures 184 

Tensile testing was performed using flat “dog bone” samples in accordance to ASTM D638-185 

10 using a calibrated Instron 5500R EM fitted with a 100 kN load cell. The samples had a 186 

gage length of 57 mm and an overall length of 165 mm. The tests were conducted at room 187 

temperature, fluctuating between 22 to 23° C. The crosshead displacement was set to 2 188 

mm/min in line to followed standard procedure.  189 
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The three-point bend flexural test was conducted in accordance to ASTM D790 using a 190 

calibrated Instron 5500R EM fitted with a 5 kN load cell.  Rectangular samples of 100 x 12.7 191 

mm were used. The crosshead displacement speed was of 1 mm/min and the support spam 192 

was 63.7 mm wide. 193 

Impact testing was carried out in accordance to ASTM D4812. It used un-notched Charpy 194 

samples of 64 mm in length and width of 10 mm. A Zwick pendulum impact test machine 195 

fitted with a 1 J pendulum was used. 196 

The morphology and failure mode of composites were analysed by optical microscopy using 197 

a Nikon Eclipse E600 at 5x and 10x magnification. The fractured specimens were observed 198 

using a FEI XL30 environmental scanning electron microscope (ESEM). 199 

Water uptake properties were measured following ASTM D570. The dimensions of the 200 

samples used were 57 x 7.2 mm. The percentage increase was calculated using: 201 

�� =
�� − ���� × ���202 

w0 is the mass of dry sample and w1 is the mass after exposure. 203 

Fifteen samples for each mechanical test type, combination of ATF content and treatment 204 

were used; for a total of 135 test results. Similarly, three samples were used for water uptake 205 

tests for each ATF content % and treatment combination; for a total of 27 test results. 206 

2.7 Materials test analysis 207 

The mechanical properties of natural fibre composites are known to be influenced by a 208 

number of factors including fibre length, the volume fraction of fibres, fibre aspect ratio, their 209 

orientation and interfacial adhesion between the fibre-matrix (Saba et al., 2015). Tensile 210 

properties are amongst the most widely reported properties of natural fibre reinforced 211 

composites and are a crucial factor for the selection of materials. 212 
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Tensile tests reflect the average property through the thickness of the sample (Faruk et al., 213 

2012). The Ultimate Tensile Strength (UTS) measures a material’s tensile strength at its 214 

breaking point (Guidelines, 2010). UTS can be calculated using:  215 

��� =
�����216 

P is the maximum load recorded during the test, and A is the specimen cross-sectional area.  217 

The specimens’ elongation during the tensile test can be calculated using:  218 

� =
� − ����219 

δ is the change in gauge length, �� is the initial gauge length, and � is the final length.  220 

Young’s modulus (E) is defined as the ratio of stress (σ) to strain (ε) at any point along the 221 

elastic portion of a stress/strain (load/deformation) curve.  222 

The flexural properties of fibre reinforced composites are influenced by the surface 223 

characteristics of the specimens (Faruk et al., 2012). Calculation of flexural stress at the 224 

outer surface in three-point bending can be calculated using (Hodgkinson, 2000):  225 

� =
�������226 

P is the applied load, S is the support span, with b and d corresponding to the width and 227 

thickness of the tested sample, respectively. The Flexural modulus was calculated using 228 

(Hodgkinson, 2000):  229 

�� =  
�������230 

231 

Ef is the flexural modulus, S is the support span length, m is the slope of the load/deflection 232 

curve, with b and d being the width and thickness of the sample, respectively. 233 

The impact strength (I) is the maximum force necessary to rupture a composite sample 234 

caused by impact (Hodgkinson, 2000). For a rectangular un-notched sample, this can be 235 

calculated as follows: 236 



11 

� =
���� × ���237 

where Ec is the corrected energy absorbed by the specimen; ℎ and � are the thickness and 238 

width of the specimen respectively.  239 

3 Results  240 

Over 20 ATF/PLA composites plates were successfully produced, using the target ATF 241 

content combinations of 20, 40 and 60 % w/v; and using either fibre enzymatic or NaOH pre-242 

treatments. Additionally, composites with untreated ATF as well as pristine PLA plates were 243 

also manufactured. Over 180 test specimens were machined and prepared from the 244 

ATF/PLA plates.  Density of composite plates used to manufacture test specimens is given 245 

in Figure 5. 246 

Figure 5247 

Analysis of micrographs taken showed large-scale variations in the fibres’ aspect ratios and 248 

morphologies in all of the pre-treatment variants and also the fibre loading combinations. An 249 

example of this is shown in Figure 6 for AKF treated ATF with 40 % w/v. The composite 250 

surface has a rough aspect. Some breakage due to kneading during the extrusion process 251 

can be observed. There was no clear evidence of columnar crystalline layer formations at 252 

the interface (i.e. transcrystallinity),(Quan et al., 2005) on the examined samples. 253 

Figure 6  254 

3.1 Mechanical properties assessment  255 

Tensile, flexural and impact tests results are summarised in Table 2. The UTS of pre-treated 256 

ATF/PLA composites ranged from 46 to 57 MPa, see Figure 7. The test results also showed 257 

that the UTS of pre-treated ATF samples increased with an increase of fibre content from 20 258 

to 40 % w/v, for both the AKF and the ENF treatments. The improvement was of 259 

approximately 6 and 9 %, respectively. The higher UTS was attributed to effective fibre 260 
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reinforcement. However, a further increase in the ATF content, up to 60 % resulted in a 261 

pronounced drop in the UTS, independently of the fibre treatment.  262 

At the lower fibre 20 % content, the UTS of untreated ATF/PLA composite samples was 57 263 

MPa. This was higher than that of the pre-treated samples at the same fibre loading.  264 

However, similar UTS values for both ENF and AKF pre-treatment samples were observed 265 

(57 and 54 MPa) when the fibre content was of 40 %. The ENF samples had an even higher 266 

UTS than that of UNF samples at 20 % ATF. Otherwise, the UTS of untreated ATF/PLA 267 

composite samples dropped linearly with an increasing ATF loading.  268 

The mean value of the Young’s modulus of all samples is shown in Figure 8, together with 269 

the samples measured elongation. The nominal values of PLA and GPPS (General Purpose 270 

Polystyrene) are also plotted for comparison.  271 

Figure 7  272 

The Young’s modulus values of the ATF/PLA composite samples ranged from 2.70 to 3.03 273 

GPa. Increasing the ATF loading resulted in an increase in the Young’s modulus measured. 274 

In contrast, elongation generally decreased with increased ATF content, ranging from 2.68 to275 

1.87, reflecting an increase in brittleness. 276 

When compared to nominal GPPS, the Young’s modulus of the ATF/PLA composite was 277 

always lower by approximately 2.25-12.90 %. However when compared with pure PLA 278 

samples (2.79 GPa), all of the ATF/PLA composites, regardless of fibre loading and pre-279 

treatment, produced comparable if not superior Young’s modulus values. 280 

Figure 8  281 

Figure 9  282 
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Regardless of the ATF content and treatment, all tensile samples fractured after yielding 283 

without necking, in characteristic brittle failure mode. This behaviour is illustrated in Figure 9 284 

for the 40% ATF loading, for all treatments.  285 

Figure 10  286 

Flexural strength ranged from 86 to 99 MPa, while the flexural modulus ranged from 3.51 to 287 

3.81GPa, (Figure 10). Generally, the flexural strength of pre-treated ATF samples increased 288 

with an increase of fibre content from 20 to 40 % w/v, for the two pre-treatments: AKF and 289 

ENF. This improvement was of approximately 12 % for both pre-treatment samples. Again, 290 

further increasing of the ATF loading, up to 60 %, resulted in a drop in the flexural properties, 291 

independently of the fibre treatment used. The flexural strength of pristine PLA samples was 292 

111 MPa and was approximately 11 % higher than that of ATF/PLA. However, ATF/PLA 293 

samples observed flexural strength values above 50 % greater, when compared to the 294 

nominal flexural strength of GPPS. 295 

The flexural modulus increased when the ATF loading increased from 20 to 40 % w/v and 296 

appears to not be significantly affected when the solids loading reached 60 % for all 297 

treatment conditions. 298 

The impact strength of the ATF/PLA composites ranged from 5.51 to 8.40, (Figure 11). 299 

Measured and nominal reference values have been added for PLA and GPPS, respectively. 300 

Figure 11  301 

As with the UTS and flexural strength results, the impact strength of the ATF/PLA 302 

composites improves when the fibre loading is increased from 20 to 40 %, regardless of the 303 

pre-treatment used. On the other hand, the lowest impact strength was observed when the 304 

fibre loading increased from 40 to 60 %. Irrespective of the ATF/PLA composites loading and 305 

pre-treatment, the impact strength of PLA and GPPS exceeded that of ATF/PLA samples.  306 
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3.2 Microscopy analysis 307 

Optical and scanning electron microscopy was used to examine both the composites typical 308 

fibre/PLA adherence and the fracture surfaces of the tensile, flexural and impact test 309 

specimens. Generally, it was observed that there was a good distribution of fibres within the 310 

PLA matrix.  311 

Detailed examinations of cross-section untreated fibres samples showed fewer traces of the 312 

PLA matrix, which indicated low fibre wetting and more extensive breakdown. Figure 12 313 

presents typical fracture surfaces of tensile test samples with ATF loading of 40% w/v. Weak 314 

adhesion in the UNF/PLA sample was confirmed by the presence of voids left by ATF in the 315 

matrix, as opposed to cracks extending into it. Conversely, the analysis of AKF/PLA 316 

composites presented fewer or no matrix voids, suggesting stronger ATF/PLA adhesion and 317 

fibre wetting. AKF treated fibres appear more robustly adhered to the matrix. Propagating 318 

cracks were observed as opposed to ATF pulling. The ENF/PLA samples showed 319 

moderated adhesion with residual PLA on the fibres surface (Figure 13). Some fibre pull-out 320 

was observed, suggesting slightly less adhesion than that observed in the AKF treated 321 

specimens. 322 

Figure 12 323 

Figure 13 324 

3.3 Water absorption properties  325 

All samples from all ATF loading and treatment combinations registered an initial rapid 326 

increase in weigth after exposure. Figure 14 shows the results of the 40% w/v loading 327 

samples.  328 

Figure 14  329 
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The highest absortion was registered by composites with AKF treated fibres. These samples 330 

experienced an initial rapid absorption rate for the first 12 days. After this, the samples 331 

absorption continued to grow at a very slow rate. The samples stabilised around a saturation 332 

of 3.47 % after 40 days of exposure until the end of the experiment. Other ATF/PLA samples 333 

with different fibre treatment did not exceed 2 % saturation. The lowest absorption was by 334 

the PLA control samples at 0.75 %. 335 

4 Discussion 336 

4.1 Effect of fibre loading 337 

The effect of ATF volume was investigated using 3 different target loading settings; 20, 40 338 

and 60 w/v %. Both, the tensile and flexural strength were observed to increase when the 339 

ATF loading increased from 20 to 40 % by at least 6 and 12 % respectively as shown in 340 

Figure 7. Further loading, up to 60 % resulted in considerably poorer properties. The results 341 

observed are comparable with other PLA-based composite materials using harvested fibres 342 

from kenaf (Ibrahim et al., 2010), hemp (Masirek et al., 2007) and flax (Oksman et al., 2003). 343 

Impact strength was also observed to exhibit a similar trend; with 40% w/v loading showing 344 

enhanced strength values, then dropping at 60% ATF w/v. Other authors have observed 345 

similar results (Langhorst et al., 2018). This effect has been attributed to the stiffening of 346 

polymer chains due to bonding between the fibres and the matrix (Karmarkar et al., 2007). 347 

Suggestion for enhancement of impact strength include surface functionalization of agave 348 

fibres, the use of coupling agents and the addition of impact modifiers (Langhorst et al., 349 

2018). 350 

When directly compared to pristine PLA, the addition of agave fibres to PLA matrices did not 351 

result in enhanced mechanical properties. The decline of the mechanical properties 352 

observed with fibre additions can be attributed to the brittle nature of the added agave fibres. 353 

Other strongly influencing factors include damage or shearing of the fibres, caused by the 354 
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manufacturing process during the kneading phase of the extrusion moulding (evidence of 355 

this is shown in Figure 6 ). Detailed studies confirming this phenomenon have been 356 

conducted before (Beaugrand and Berzin, 2013).  Other authors have found that higher fibre 357 

aspect ratios or larger fibre surface availability correlate well with improved mechanical 358 

properties of flax/polypropylene composites (El-Sabbagh et al., 2014). Analysis of fracture 359 

micrographs indicated debonding mechanisms were present (Mehan and Schadler, 2000); 360 

which suggests stronger ATF/PLA bonding would further enhance the composites 361 

mechanical properties. 362 

The Young’s and flexural moduli of the ATF/PLA composites were less affected by 363 

increasing the ATF loading from 40 to 60 % w/v, regardless of the treatment (see Figure 8 364 

and Figure 10). The results of these moduli were comparable, if not superior, with those of 365 

the PLA control samples. The addition of ATF led to greater stiffness of the matrix. Improved 366 

Young’s modulus with the addition of natural fibres has been observed by other researchers 367 

too (Graupner et al., 2009).  368 

Water absorption increased with the fibre loading. This was in agreement with other fibre 369 

publications (Karaduman and Onal, 2011). Increased voids and cellulose content have been 370 

reported as the main causes of this behaviour (Dhakal et al., 2007). Our results are also in 371 

agreement with a recent study reporting that water absorption in agave composites is a 372 

function of the solids loading (Langhorst et al., 2018). 373 

4.2 Effect of fibre treatment  374 

In general, the differences in the measured mechanical properties of the two treatments 375 

studied were only marginal; with the AKF samples typically observing marginal superior 376 

results over the ENF samples. This was attributed to improved fibre wetting behaviour 377 

inferred from microscopy observations such as those shown in Figure 12 and Figure 13, 378 

which show stress transfer cracking. 379 
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Untreated UNF fibres at the lowest loading of 20 % w/v yielded improved mechanical 380 

properties compared to those of the treated ATF samples at the same loading. It appears 381 

that at this lower fibre loading level and absence of treatment, the PLA matrix dominates the 382 

overall tensile, flexural and impact behaviour of the composite, with the ATF additions having 383 

a much smaller effect. 384 

The water absorption results showed the most obvious effect of the fibre pre-treatments. For 385 

example, at 40 % w/v fibre loading, AKF composites registered the highest water uptake at 386 

3.47 %, followed by the ENF at 1.95 % and UNF treated samples at 1.5 %. The difference in 387 

water uptake between samples is attributed to fibre delignification after treatment, which 388 

made the fibres more hydrophilic. Greater water/moisture absorption in alkali-treated natural 389 

fibres has been observed when compared to other treatments. This includes areca fibres 390 

using alkali and acetylation treatments (Sampathkumar et al., 2012); and banana fibres 391 

using acrylic acid and alkali treatments (Jannah et al., 2009). 392 

4.3 Comparison with contemporary ATF composites research 393 

Due to environmental concerns, the use of waste agave fibres as composites filler and 394 

reinforcement material has become more relevant. A number of contemporary attempts have 395 

been reported. Table 3 summarises the most recent results by other authors in terms of 396 

tensile and flexural properties; and compares them to the present research. PLA properties 397 

are presented as baseline for comparison. 398 

As seen in Table 3, the results from recent research that used both a PLA matrix and agave 399 

fibres composites (Cisneros-López et al., 2017b; Pérez-Fonseca et al., 2016) are in 400 

proximity to the results presented here. When comparing with both rotational and 401 

compression processes (Cisneros-López et al., 2017b), our results generally show better 402 

performances in terms of the tensile strength, Young’s modulus, and flexural strength. There 403 

might be a number of factors that account for these differences. For example, although the 404 



18 

biopolymers used have very similar properties and come from the same supplier, Ingeo™ 405 

Biopolymer 3251D and Biopolymer 2003D (current work), there are slight variation in their 406 

properties. There were also differences in the preparation of the agave fibres too. Cisneros-407 

López et al., 2017b ground and sieved the fibres; while they also pulverised the PLA pellets. 408 

The sieving controlled the distribution size of the agave fibres and possibly accounted for the 409 

differences in the effect of fibre loading too, when compared with our work. Their optimal 410 

fibre loading was found at 10 % w/v as opposed to 40 % of the present work. A similar work 411 

(Pérez-Fonseca et al., 2016) appears to confirm this; as they did not sieve the fibres and 412 

pulverise the PLA either. However, they found an optimal fibre loading of between 20 and 30 413 

%. They used and annealing treatment to enhance the impact and flexural properties.  414 

Langhorst et al., 2018 used a polypropylene (PP) matrix with varying amounts of agave 415 

fibres. Generally, their tensile and flexural results were inferior compared with those of the 416 

PLA matrix composites. However, the agave fibre/PP composites yielded up to 300 % higher 417 

elongation. These results can be attributed to the polymer matrix used. The comparison is 418 

consistent with the observed results of Graupner and Müssig (2017). They reported 419 

significantly higher tensile strength, Young’s modulus and hardness of PLA and PP 420 

composites reinforced with lyocell fibres. The superior performance is attributed to enhanced 421 

adhesion of the lyocell fibres onto the PLA. Lyocell/PP showed a more ductile behaviour, 422 

which is consistent with the higher elongation of the ATF/PP composites (Langhorst et al., 423 

2018).  424 

Our research demonstrates how an abundant by-product can be included in composites to 425 

form usable materials. Potential applications for these materials include non-structural 426 

components, such as internal panels used in the automotive industry (Ahmad et al., 2015), 427 

(Lee and Flanigan, 2002), and (Koronis et at., 2013), due to the reduced mass resulting from 428 

these low-cost fibre additions. Consequently, increased energy efficiency and reduced fuel 429 
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consumption would be expected. Such new composite materials may offer more sustainable 430 

alternatives to conventional oil-based thermoplastic materials as it has been .already pointed 431 

out that the use of natural fibres allows obtaining several environmental advantages in 432 

comparison to mineral-inorganic counterparts (Joshi et al., 2004) and (Netravali and Chabba 433 

2003). Furthermore, if polymers coming from renewable resources such as PLA are used, 434 

problems related to the everyday production of solid, plastic-derived waste may be reduced 435 

(Nampoothiri 2010). However, these aspects have to be investigated through a complete life 436 

cycle assessment (LCA) to provide enough evidence (Joshi et al., 2004). 437 

The test results and microscopy analysis suggest an optimal ATF loading can be found 438 

around 40 %; although no further refinement was pursued. Both fibre pre-treatments were 439 

effective. Microscopy analyses also show that it is likely that the AKF fibre treatment leads to 440 

enhanced fibre adhesion, although this treatment resulted in higher water absorption. 441 

Further investigations are required to understand its effect on the composites properties. In 442 

contrast, enzymatic pre-treatment is considered more energy efficient, less chemical 443 

intensive with more environmental friendly effluents (Sharma et al., 1999).   444 

445 

5 Conclusions 483 

Tequila distillery bagasse waste has been successfully used to produce usable agave 484 

fibre/PLA composites by extrusion/press moulding. The agave fibre/PLA composites 485 

produce consistent and repeatable tensile, flexural, impact and water absorption properties. 486 

These lightweight, low-cost composites might find applications such as non-structural 487 

automotive components and consumer goods; leading to energy efficient transportation and 488 

reduced fuel consumption.  However, a complete life cycle assessment (LCA) is required to 489 

fully assess the sustainability of the agave fibre/PLA composite.  490 
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The additions of agave fibres did not directly enhance the mechanical properties of the PLA 491 

matrix. We attribute this to the final aspect ratio of the fibres after compounding and the 492 

inherent flaws of the bagasse fibres. The observed tensile, flexural and impact strength of 493 

the ATF/PLA composites were up to 57.1 MPa, 98.8 MPa and 6.8 kJ/m2, respectively. These 494 

are comparable, if not superior to those reported in the literature for new composites 495 

produced using similar materials and conditions and, in some instances superior to GPPS. 496 

The brittle nature of the agave fibres contributed to a higher Young’s and flexural moduli, 497 

which were observed to be slightly superior to those of PLA. 498 

For tensile, flexural and impact properties the optimal fibre loading was of 40 % w/v. At 60 % 499 

the mechanical properties of the composites degraded significantly. It was also observed 500 

that increasing the fibre content, resulted in higher water absorption.  501 

Both alkali and enzymatic fibre pre-treatments have shown to substantially enhance the 502 

fibres/matrix adhesion when compared with untreated fibre composites; resulting from 503 

improved fibre wettability and surface morphology. The observed higher water absorption of 504 

the alkali treated fibre samples, up to 170 % higher, was related to fibre delignification 505 

making the fibres more hydrophilic. Microscopy showed improved fibre/matrix interfaces 506 

when using the alkali treatment.  507 

The use of high aspect ratio fibres and prevention of fibre shearing processes could enable 508 

ATF/PLA composites to be produced with enhanced mechanical properties, suitable for 509 

more demanding applications. 510 
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Figure 1 Natural fibres classification summary. Adapted from (Faruk et al., 2014; Mohanty et 709 

al., 2002; Saheb and Jog, 1999). 710 

Figure 2 Left: Agave plant. Right: Dry bagasse from tequila production showing natural fibres 711 

Figure 3 Extrusion profile temperature settings. 712 

Figure 4 Left: ATF/PLA composite plate. Right: ATF/PLA machined composite tests 713 

specimens. From top to bottom: tensile, flexural and impact. 714 

Figure 5 Density of composite boards according to fibre loading and treatment. 715 

Figure 6 Micrographs of 40 % w/v ATF/PLA based composites after press moulding.  The ATF 716 

pre-treatment used was AKF, showing rough aspect (left) and some breakage (right). 717 

Figure 7 Ultimate tensile strength of ATF/PLA composites Vs fibre content. 718 

Figure 8 Young modulus and elongation of ATF/PLA composites with varying fibre loading 719 

and pre-treatment. 720 

Figure 9 Mean stress-strain curve for 40 % w/v ATF with different fibre pre-treatments. 721 

Standard error <0.65 for all cases. 722 

Figure 10 Flexural strength and modulus of ATF/PLA composites. Error bars represent 723 

standard error. 724 

Figure 11 Impact strength of ATF/PLA composites, PLA and GPPS 725 

Figure 12 Optical micrographs of cross sections of ATF/PLA samples with 40 % (w/v) loading 726 

after tensile failure. Left:  Untreated ATF. Right AKF Treated ATF. 727 

Figure 13 ESEM micrograph of ENF treated composite. ATF loading 40% w/v. 728 



28 

Figure 14 Water absorption at saturation for 40% (w/v) ATF/PLA composites. In all cases, the 729 

standard error <0.13. 730 

*Cylindrical approximation 731 
Table 1 Summary of the measured properties of ATF 732 

733 

734 

735 

736 

737 

738 

739 

740 

741 

742 

743 

744 

Parameter No. of 
measurements

Mean Median Mode Standard 
deviation 

Skewness Max Min

CSA 

 (µm2) 

350 75 66.54 30.38 41.41 0.89 214.60 16.62 

Length 
(mm) 

200 77 77.41 66.65 18.27 -0.13 125.94 27.02 

Density 
(g/cm3)

20 1.2 1.15 - 0.11 0.70 1.47 1.01 

Aspect 
ratio* (mm) 

100 249.19  - - 15.25 
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Treatment ATF 

loading 

(%) 

UTS Flexural Modulus Impact strength 

Mean  

(MPa) 

SD Mean  

(GPa) 

SD Mean  

(kJ/m2) 

SD 

Neat PLA 0 62.55 2.92 3.78 0.13 10.11 1.12 

UNF 20

40

60 

57.16 0.54 3.70 0.02 8.40 0.20 

49.67 2.46 3.77 0.01 7.88 0.29 

47.25 1.15 3.78 0.01 7.46 0.53 

AKF 20

40

60

50.79 2.33 3.60 0.01 6.38 0.25 

53.97 1.07 3.81 0.02 6.76 0.32 

46.68 2.46 3.73 0.01 6.0 0.51 

ENF 20

40

60

52.32 1.04 3.51 0.01 5.95 0.19 

57.19 0.90 3.82 0.01 6.55 0.27 

46.91 1.07 3.80 0.02 5.50 0.06 

UTS = Ultimate tensile strength  745 
Table 2 Overview of ATF/PLA composites: tensile, flexural and impact test results 746 

747 

748 

749 

750 

751 
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Composite 

preparation

Tensile properties Flexural properties Source

ASTM D638-10 ASTM D790

Polymer 
matrix

Treatment Fabrication Fibre 
loading % 
(w/v)

UTS (MPa) E (GPa) Elongation 
(%)

Flexural 
Strength 
(MPa)

Flexural 
Modulus(GPa)

Pristine 
PLA

N/A Extrusion-
compression

0 62.6 2.8 2.9 110.9 3.8 Present  work

PLA NaOH Extrusion-
compression 

20 50.8 2.9 2.3 88.4 3.6 Present work 

40 54.0 2.8 2.5 98.8 3.81

60 46.7 3.0 1.9 86.3 3.7

PLA pectate lyase Extrusion-
compression

20 52.3 2.7 2.4 87.7 3.5 Present work

40 57.2 2.9 2.1 98.5 3.8

60 46.9 2.9 2.0 85.8 3.8

PP compatibilizer 
(PPgMA)

Injection 
moulding

0 

10

29. 

27.1

1.6 

1.8

11.1 

8.3

35.2 

37.2

1.2. 

1.3

(Langhorst et 
al., 2018)

20 25.1 2.0 5.6 39.7 1.6

30 23.2 2.2 4.2 39.2 1.8

PLA N/A Rotational 
moulding

0 

10

59 

45.0

1.9 

2.0

3.5 

2.9

93 

67

3.5 

3.6

(Cisneros-López 
et al., 2017b)

20 26.0 1.4 2.7 36 2.5

40 6.0 0.4 2.6 5 0.4

PLA N/A Compression 
moulding

0 

10

60 

47.0

2.0 

2.2

3.5 

2.3

92 

72

3.7 

3.8

(Cisneros-López 
et al., 2017b)

20 42.0 2.3 2.3 56 3.7

40 29.0 1.8 1.8 35 3.0

PLA N/A Injection 
moulding + 
annealing

0 

10

60 

53

1.2 

1.5

- 

2.3

95 

71.5

2.3 

2.9

(Pérez-Fonseca 
et al., 2016)

20 55 1.5 2.3 70.2 3.1

30 47 1.6 1.8 70.2 3.2

Table 3 summary of recent composites research using agave fibre. Abbreviations: polylactic 752 

acid (PLA), polypropylene (PP), ultimate tensile strength (UTS) and Young’s modulus (E). 753 


