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Abstract

The volatility and associated uncertainties of a rapid evolving power sector,

along with the digitalisation of the sector, have triggered the necessity of an-

swering questions faster while dealing with more granularity in data. The pri-

mary hypothesis underlying this research is that evolutionary meta-heuristics

methods could be used to provide planners exploration capabilities of trade-

off in system when conflicting objectives appear. The aim of this research is

to apply a set of novel evolutionary techniques to make better informed de-

cisions that are capable of a) develop detailed quantitative representation of

real-world power systems suitable for being optimised, b) fit existing meta-

heuristics evolutionary techniques to real-world size problems, c) evaluating

non-traditional system flexibility services, d) validate, visualise, and evaluate

performance metrics for power systems optimisation.

Dynamic optimisation encompasses the important challenge in real-world

applications of capturing evolving behaviours of complex systems. The liter-

ature review identifies key problems in the sector for evolving pathways to a

low-carbon 2050. Issues on power networks relate to the reactive nature of in-

tervention planning, which leads to horizoning and locally optimal solutions. In

that context, and as interventions are triggered by network failures, locational

case studies are presented in this research. Applying a bespoke Graph search

algorithm (A*) and Multi-Objective Evolutionary Algorithms (MOEAs) can

ix



x

be say that where the first evaluates just one solution at a time, MOEAs are

a better approach for global optimisation due to its capability of developing

multiple alternative solutions to a problem simultaneously.

Historically, electricity distribution networks have been designed to pro-

vide reliable connections to the customers by virtue of asset ratings sufficient

to cope with peak demand. With the proliferation of low carbon technologies

such as electric vehicles, heat pumps and distributed generation, the network

is starting to experience congestion both, load and generation driven. The con-

gestion restricts further deployment of distributed energy generation, making

it more difficult to meet the emission reduction targets.

This motivated three case studies contained in this thesis: a large power

system case study modelling the Independent System Operator of New Eng-

land in the US with high wind penetration and storage; A 11kV distribution

network for investment planning in the UK evaluating smart grid interven-

tions, and finally, a non-traditional flexibility service propositions evaluation

using Real Options for Multi-Utility dynamic investments.
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Chapter 1

Introduction

This chapter addresses the following:

• To introduce the research of the thesis

• To provide motivation for the research

• To highlight the novelties of the work

• To describe the structure and publications resulted from this thesis

1.1 Background and motivation

In the past, electricity industry has delivery a secure reliable supply. The

sector now is going to a massive fast-pathed digital and data transition. It

has to both, decarbonise, as well as, deliver low affordable reliable electricity

prices. The sector has committed large investments on the transmission and

distribution sector upon 2050 in order to ensure grid resilience. 10 trillion

of dollars are required world-wide in electricity sector’ investments to make

this low carbon transition a reality over the next 25 years (World Economic

Forum, 2015). The volatility and uncertainty linked to the digital transition

1
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have an effect on investability, causing policy makers, regulators, businesses

and investors to look harder at the lessons learnt from the recent past in which

at European level, countries have not picked the best technology for its natural

resources producing a sub optimal energy mix.

Future strategic investments need a holistic approach to ensure that the

energy trilemma - energy security, energy equity, and environmental sustain-

ability, is accomplished (World Energy Council, 2013) (World Energy Council,

2013). These three objectives, define the complexity of the relationships among

actors in the energy sector: public and private sector, governments,regulators,

economic and social factors, national resources, environmental limitations, and

customers behaviours.

The share of renewables within the world-wide energy mix, their intermit-

tency, and their required flexibility of a system designed to operate coal and

gas is leading to a century ageing grid operating far from optimal (Milligan

et al., 2010). That makes power supply networks sector a key player in the

planning to come for achieving these low-carbon targets while reducing system

volatility (Strbac et al., 2016) (Ketterer, 2014).

The rising number of stakeholders in the energy planning sector increases

the complexity of the problems to solve. The planning horizon for this fast

evolving sector is not providing quick enough answers to all questions that

are being raised. Beside the number of decision makers, the power planning

sector is facing a data revolution. These new data are now available to pre-

dict and improve how these commercial and technical innovation investments

decisions can be made. The UK has a novel regulatory framework, RIIO (Rev-

enue=Incentives+ Innovation+Outputs) (Ofgem, 2014), which incentivise in-

vestment on smart techniques at electricity transmission and distribution level,

as well as in the gas sector, and being therefore a great opportunity for the case
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studies presented in this thesis to test how much non-traditional approaches

are encouraged.

How model-driven engineering systems are designed have been divided into

two main pathways to be discerned. Whether, models have to be, aggregated

(top-down), disaggregated (bottom-up) or a combination of both has being

discussed since late 1970s (Van Horn and Van Meter, 1977) (Sabatier and

Mazmanian, 1979). Most of the studies within the energy sector, have fo-

cused on CO2 emissions (Wing, 2006), whole-system modelling (Neij, 2008)

(McFarland et al., 2004) or energy economics (Koopmans and te Velde , 2001)

(Rivers and Jaccard, 2005). As for the power network sector, in the UK, (UK

Power Networks, 2013) proposed for their RIIO-ED1 (2015-2023) business plan

a mixed approach as (Sabatier, 1986) did.

Multi-objective Evolutionary Algorithms (MOEA), and specifically, Non

Sorted Genetic Algorithms (NSGA) have been used in the past for testing

power systems such as the IEEE 30 bus (Oliver, 2014) or for economic-environmental

dispatch (Gjorgiev et al., 2013), as well as being proved in other sectors such

as aerospace, manufacturing, defence or design (Subbu et al., 2006). Real-

world systems addressed in this thesis combine non-linearity, non-convexity

and highly constrained issues on a multidimensional solution space with a no

unique optimal solution and, therefore, customised visualisation techniques

like parallel coordinates will be addressed (Inselberg, 1997).

This thesis will provide insights for looking after disaggregated, i.e. bottom-

up, optimising multiple objectives (MO) at the same time, at a planning res-

olution, where some conflicting interest might appear among them and in

most of the cases cannot be handled using conventional single optimization

approaches, while MO methods fit naturally (Oliver, 2014). Evolutionary

methods capable of MO optimisation are becoming more necessary as the
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complexity of optimisation problems in power networks increases. Smart and

traditional interventions will reinforce the network, optimising its performance,

using techno-economic evolutionary scenarios. A working definition of opti-

mised scenario is the configuration of the power system model obtained once

the planning techniques have obtained an optimised solution. The combina-

tion of new availability of digital data and their combination with evolutionary

planning approaches motivates the research behind this thesis.

1.2 Thesis structure and layout

For this thesis, there are four case studies presented within three chapters of the

thesis, two at a transmission level in chapter 4, and two at distribution level,

chapters 5 and 6. As chapter 3, a methodology, where applied evolutionary

planning using heuristics is presented and a brief literature review in chapter

2. Chapter 7, summarises final conclusions and recommendations for future

work resulting from this thesis.

Chapter 3, discusses the implementation of dynamic modelling for evolu-

tionary planning, where trade-off methodologies are required for planning and

operating evolutionary power systems. Meta-heuristics, and particularly the

implementation of Graph search algorithms and Multi-Objective Evolutionary

Algorithms (MOEAs) are discussed.

The Independent System Operator of New England (ISO-NE) in the US

have been modelled using PLEXOS as energy market plus operation modeller

tool. The purpose of the two case studies within Chapter 4 is to evaluate the

impact of different wind power topologies in the first one, and Massachusetts’

Storage Target impact on ISO-NE using MOEAs. The model, analysed at

nodal level, has integrated 770 wind farms candidate locations with a total of
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30GW of installed capacity. For the stylised case study has been decided to

install 10GW of wind capacity due to the projections of wind commitments

in New England’s energy mix up to 2030. The hourly standard deviation of

prices and total generation costs will be the system performance indicators to

optimize in order to measures how different wind topologies might impact on

planning strategies. In the optimisation section of the chapter, the variabil-

ity of prices, wind curtailed, and ramping events are reduced modelling the

Massachusetts’ Storage Mandate, producing a Pareto-set of feasible locations

while evaluating its impact on ISO-NE.

The aim of Chapter 5 is to assess the suitability and cost-effectiveness of

smart distribution techniques along with traditional reinforcements for elec-

tricity distribution networks, in order to analyse expected investments up to

2047 under different DECC scenarios. These novel techniques are evaluated

under different demand scenarios to assist decision makers in future power net-

works planning. The evaluation of assets planning is based on the FALCON

project network. The area of study is Milton Keynes (East Midlands), being

composed of six 11kV primaries. To undertake this analysis is used a novel tool

for electricity distribution network planning, called Scenario Investment Model

(SIM). In this context, this study summarises the benefit of novel techniques

versus traditional reinforcements, comparing short-term versus long-term plan-

ning, highlighting, triggering new research questions as the impact that high

penetration of electrical vehicles will have on the test network and compar-

ing that load with Industrial and Commercial loads from the FALCON trials,

recommending finally an investment planning strategy.

Finally, Chapter 6, goes a step beyond Chapter 5 as one of the learnings was

that smart techniques do provide flexibility to the grid but do not create extra

firm capacity in the system. This chapter will provide Real Options valuation
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for contracting the required flexibility from a range of service propositions

where final decision maker will evaluate the granularity of how much and for

how long they are willing to pay for their flexibility portfolio.

1.3 Thesis aim

The primary hypothesis underlying this thesis is to apply a set of evolutionary

techniques to address decision making in a big digital data industry such as

the electrical utilities sector. This thesis aids decision makers to make better

informed decisions in an adequate planning time horizon. Having a more robust

understanding of how off-line selection of optimal scenarios among various

alternatives will impact on long-term planning decisions leading to evaluate

the emergence impact of new non-traditional business propositions.

1.4 Research objectives

In order to achieve the aim of the thesis, a set of specific objectives are estab-

lished as followed:

1. To develop problem detailed quantitative representation of real-world

power systems suitable for being optimised.

2. To fit existing algorithms and heuristics evolutionary techniques to real-

world size problems.

3. To visualise performance criteria for case studies decision making.

4. To propose non-traditional flexibility services for creating capacity within

distribution networks.
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5. To validate and evaluate performance metrics for power systems optimi-

sation and customise optimisation frameworks for measuring their per-

formance.

1.5 Contribution to knowledge

• Chapter 3 details how a set of Meta-heuristics can be customised to

different types of evolutionary power systems design depending on the

dynamics of the optimisation problem.

• Chapters 4 proposes a detailed real-world modelled power systems, fo-

cused on large integration of wind, and how Genetic Algorithms aid in

decision location planning to accomplish a storage mandate.

• Chapter 5 presents an evaluation using a customised bottom-up Graph

search algorithm with memory, the SIM A* algorithm, for short-term

and long-term investment planning on an 11 kV smart grid.

• Chapter 6 details a non-traditional methodology, MURRA, for creating

capacity in the 11kV network with a Real Options valuation of flexibility

business propositions comparing it with Chapter 5 SIM’ outcomes.
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1.6 Publications
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Networks, [accepted]

2. Butans, E., Nieto-Martin, J. and Orlovs, I. (2017), ”SIM: Scenario Invest-
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Energy Grid and Networks, [accepted]
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13. Zafred, K., Nieto-Martin, J., Butans, E., ”Electric Vehicles-effects on

domestic low voltage networks”, in IEEE ENERGYCON 2016, 4-8 April
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15. Nieto-Martin, J., Kipouros, T., Savill, M., ”Smart Grids Modelling and

Simulation for Distributed Power Supply Networks”, in 5th Hubnet Smart
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1.7 Software and Models produced

The following items were produced in the course of this PhD as contribution

from the author (code and models are upon request to the author and depend-

ing of ownership of data), these being:

1. The set of plugins necessary for self-adaptive multi-objective evolutionary

algorithm case studies. Bespoke optimisation problem definition and

plugins for vectors optimisation using GANESH environment.

2. PLEXOS ISO-NE 770 wind turbines (30% generation mix) model

3. SIM 2015-2023-2047 DECC2 and DECC4 demand scenarios planning for

Milton Keynes

4. SIM patch framework for including Real Options Valuation of Multi-

Utility flexibility services (MURRA)
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The pathway towards a

Low-Carbon 2050

2.1 Motivation

Managing the transition to a low carbon economy, while continuing to ensure

energy supply and affordability, is one of the greatest challenges of our age.

Moving to a secure, sustainable energy system will require the deployment of

new technologies, many of which are still at the development stage (Nieto-

Martin, 2015).

The UK is mandated by the 2008 Climate Change Act to achieve a 34% re-

duction in its Greenhouse Gas (GHG) emissions by 2020 and an 80% reduction

by 2050, compared to 1990 levels (Xenias et al., 2015), (Li and Trutnevyte,

2017).The UK energy sector has become an important focus as part of this

drive to deliver this transition to a low-carbon economy, given the significant

proportion of GHG emissions that can be attributed to energy generation

and consumption in the UK. For instance, in 2011, the energy supply sector

11
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accounted for approximately 35% of the UK’s GHG emissions in 2011 (EA

Technology, 2012), (Hannon et al., 2013).

Additionally, the residential and business sectors accounted for a further

29% of GHG emissions, with the vast majority of this attributable to fossil

fuel combustion for heat and electricity (Strbac et al., 2016).

Innovation, starting with Research & Development (R&D) initiatives, in

energy technologies will be a critical factor when considering the transition

of the energy system over the coming decades. However, it is a complex,

non-linear process with multiple inputs and feedbacks (MacKay and Winser,

2010).When this is overlaid with the complexity of scenario modelling and

forecasting, the uncertainties of the future become even greater. Figure 2.1

shows the innovation steps diagram for new technologies deployment.

Figure 2.1: Energy Research Partnership innovation diagram
(Hannon et al., 2013)
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In the last decade, R&D initiatives have developed the concept of a ’smart

grid’. It has emerged in as a core element of a more sustainable electricity

system. There is no single agreed definition of a smart grid, but the basic

principle is the application of information and communication technologies

(ICTs) to electricity networks to allow: greater observation of the state of wires

and other assets; control of power flows; automation of management of power

fluctuations of outages, and integration of new low carbon generation and

demand side technologies, such as solar PV, heat pumps and electric vehicles.

On a cold winter’s day the electricity network will deliver around 1.1 TWh,

while the gas network can deliver five times that amount of energy (Bolton

and Foxon, 2015). The two networks have quite different characteristics, with

electricity able to travel the length of Britain almost instantaneously while gas

takes many hours. The way that energy networks operate will be different as

many more coal-fired power stations have to shut down.

This literature seeks to uncover and examine the complex set of governance

challenges associated with transforming energy networks, which play a key en-

abling role in a low carbon energy transition. Appendix A serves for uncovering

the different sectors that are currently playing a role in this transition towards

2050, while Appendix C positions this thesis and its impacts. The importance

of such infrastructure networks to sustainability and low carbon transitions

in the energy is clear; there is relatively little understanding of the social and

institutional dimension of these systems and appropriate governance strategies

for their transformation.
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2.2 From Electricity Regulation to Low-Carbon

Technologies

2.2.1 Electricity Regulation

The two network-infrastructure-based natural monopolies, as well as, the whole-

sale and retail markets are regulated in the UK through the Office of Gas and

Electricity Markets Authority (Ofgem).

Transmission assets, due to its large nature, can be evaluated disaggregated,

whereas distribution facilities need to be aggregated for evaluation by areas,

or set of assets (Skea et al., 2012).

Smart grids present major potential benefits in terms of economic, environ-

mental, and social considerations. The deployment of instrumentalised smart

grids however requires not only technological advancement but also the ability

to overcome many regulatory barriers. Potentially will allow to gain better

insights on how to operate and invest at disaggregated distribution level.

Regulatory challenges are particularly significant for the development of

those smart grids. The design and operation are fundamentally different from

traditional power grids. Traditional systems are predominantly centralised,

however the existence of a more decentralised power system requires a flexible

management of the grid. Smart meters play here a vital role, enabling to gen-

erators real time data to help industry to balance energy demand. Ofgem and

the Department of Energy and Climate Change (DECC) 1 have created several

frameworks for control and supervise the correct operation of these devices,

such as, Data and Communications Company (DCC), Smart Energy Code

(SEC) and Smarter Markets Programme (Connor et al., 2014). A summary,

1In July 2016, DECC became part of the Department of Business, Energy & Industrial
Strategy (BEIS). For consistency across the thesis just DECC will be named.
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in the form of a time-line, regarding ongoing regulation and actors involved

within the UK electricity sector is presented in Appendix A.

The approach to regulation of electricity networks aims to enhance outputs

rather than simply cost. Former RPI-X@20 regulatory framework led to a

new regulatory model for networks, called ”RIIO”, namely ”Regulation =

Incentives + Innovation + Outputs” (Ruester et al., 2014).RIIO applies across

both gas and electricity, and to transmission and distribution. The new price

control started being effective in April 2015 and it is known as RIIO-ED1 (for

distribution) and RIIO-TD1 (for transmission) and will run for eight years,

from 2015 to 2023. Subsequent RIIO periods will run up to 2047. Those will

be assessed in Chapter 5 of this thesis.

The smart grid agenda involves not only technological innovation, but also

innovation in business models, network operation and social practices. It is

widely recognised that it will also need major changes in policy and regu-

latory frameworks, particularly because the entities currently responsible for

distribution network operation and investment in the UK are vertically inte-

grated monopolies (Great Britain, 1989) (Beesley and Littlechild, 1989), whose

actions are largely determined by those regulatory frameworks. In February

2017, OFGEM opened up an innovation sandbox to promote engagement with

innovators that are willing to challenge current regulatory paradigms.

2.2.2 Wholesale market design

Renewable sources are planned to provide up to 15% of the UK’s total energy

needs by 2020. In February’s 2015 auction, CfDs (Contract for Differences)

were divided in two sections, one for established technologies, such as solar and
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onshore wind, and one for emerging technologies, which is primarily offshore

wind.

Figure 2.2: CfD Projects awarded by technology and award date
(Porter and Roberts, 2015)

Competition during the auction will delivered savings to consumers, as

future allocation rounds to will continue to do so. But how much money

can be expected to be made available to renewable projects through future

allocation rounds up to 2020?

The initial allocation of over 300m from the Levy Control Framework (LCF)

in 2020/21 is a cautious start. In this section is important to consider: first,

how the LCF in 2020/21 will be allocated, and what this implies for the gap

in renewable generation to meet the 2020 Renewables Target; second, what

this might mean for future CfD allocation rounds (Porter and Roberts, 2015).

Ensuring a regulation framework that solves those questions will provide as an

accurate projection of renewable penetration of the GB generation mix.

Figure 2.2 projects GB renewable generation as a proportion of total gen-

eration out to 2020/21, using the following assumptions:
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1. Maintaining the current levels of renewable generation for committed RO

(Renewable Obligations), FiT (Feed in Tariff) and unsupported genera-

tion.

2. Projecting future levels of renewable generation from new RO and FiT

plant based on published spend projections, and assuming the current

spend to renewable generation ratios are maintained.

3. Projecting future levels of renewable generation from FIDeR (Final In-

vestment Decision Enabling for Renewables) and allocated CfD plant,

based on the load factors assumed in the CfD allocation framework bud-

get calculation. Total generation based on DECC’s central forecast.

Figure 2.3: Share of UK generation from renewable sources
(Porter and Roberts, 2015)

Due to the more advanced development of lower carbon options in the

electricity sector and once that wholesale market and T&D improvements have

been settled, as has been mentioned in Figure 2.1, technologies to enable 2050

pathway have to be defined.

2.2.3 Electricity Generation

The demonstration of carbon capture and storage technologies (CCS) on coal

and gas fired power stations are critical in determining what generation tech-
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nologies will be deployed for electricity generation out to 2050, as is shown in

Figure . CCS have proven to be too expensive or unable to deliver on the scale

required but, both wind and nuclear power will face challenges that are not

all technical and which might restrict the scale and rate of their deployment.

This could lead to an increase in gas fired power stations being built in the

short term to meet the electricity demand, emphasising how gas CCS could be

an important technology (MacKay and Winser, 2010).

Once the real capability of CCS to reduce emissions is established, an as-

sessment can be made about progress towards decarbonisation of electricity

generation on which other parts of the energy system are dependent - in par-

ticular, heat and transport. By 2020, a clearer picture will be available of

the scale of deployment of other technologies and what impact they will have

on the development of the generation system, including grid reinforcement,

demand reduction, and decentralised generating technologies.

For a CCS Commercialisation Programme there is up to 1bn in capital

support available for CCS projects. It is hard to estimate the level of support,

given that this will be the outcome of the procurement process currently under-

way. However, it is not unreasonable to expect a figure in the region of 400m

in 2020/21 based on DECC’s published cost estimates for CCS (Department

of Energy, 2014).

About the consensus on the need for rapid decarbonisation of power gen-

eration, new generation of nuclear plans will potentially help to decarbonised

the power mix (Parkinson, 2014).
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2.2.4 Road transport

A range of road transport technologies is likely to be used in the transition

to 2050. Digitalisation and bundling of private and public electric vehicle

services appear to offer promising technology adoption and development for a

decarbonised electricity mix.

An evolution from the current range of hybrids to full hybrids reaching

the mass market, transition to plug-in hybrids and eventually electric vehicles

can be expected during the 2020s. However, a failure to improve battery

technology, offset by breakthroughs in low-carbon hydrogen production and

storage, may make fuel-cells a viable low-carbon option.

The role of biomass and biofuels in the energy system is very sensitive to

competing demands from energy and other sectors and sustainable alternatives

to current biofuels have yet to be fully demonstrated. Given the uncertainties,

a period over this decade should be used to assess technology development of

electric (including plug-in) and fuel-cell vehicles.

There has been demo studies around the UK (Nieto-Martin, 2015) (Zafred

et al., 2016) to scale and demonstrate what outcomes and impact could be

achieved with wider uptake. With some projects already underway, there

should be strategic coordination both nationally and internationally (Forrest

et al., 2016). This will also give time to further our understanding of the issues

around the sustainability of sustainable transportation (Porter and Roberts,

2015), (Crispim et al., 2014).

2.2.5 Built environment

For heating technologies, heat pumps are favoured by scenarios and other

analysis into how to meet the heat demand of domestic buildings. However,
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the performance of heat pumps in the UK’s climate and housing stock, and by

real consumers, has not been fully tested so far. Promoting moving heat from

gas to electrical devices is the challenge to come in the next years to come

(Wade et al., 2010).

Similarly, the performance of domestic Combined Heat and Power (CHP)

for single households has yet to be proven on a large scale, and new CHP

models are expected to be marketed widely in coming years. Digitalisation

of assets at consumer premiss will allow to characterise disaggregated variable

and fixed loads, aiding to respond to price signals or automated through an

aggregator providing extra flexibility capacity to the network (Zeifman, 2012)

(Berges et al., 2010).

2.2.6 Demand Side Management

An area where energy systems will be important for a low carbon transition is

in integrating with the demand side and promoting demand side management

(DSM). In the electricity sector, the traditional role of a distribution network

has been to reliably deliver power to the customer in a one way direction.

However, as we move away from this ”predict and provide” paradigm, the

demand side, along with increased storage capacity and interconnection will

become a more active component in the electricity system in order to deal with

the issue of intermittency.

The UK government plan to roll out smart metres, as mention before, will

become an increasingly important part of developing a more interactive engage-

ment between consumers and electricity providers. Such issues have become

central to debates surrounding smart grids. The changes required to develop

a supporting energy infrastructure to accomplish a the low carbon transition
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go wider than just technical issues which were highlighted in (MacKay and

Winser, 2010), (Crispim et al., 2014) and (Wade et al., 2010).

2.2.7 Energy storage

Energy storage technologies will play a relevant role in the forthcoming decades.

This technology will help to increase the amount of renewables to be integrated

in the grid (Xenias et al., 2015), (Jamasb el al., 2012) but also in the market

as recently proposed by the US Energy regulator (Federal Energy Regulatory

Commission , 2017). Beside renewable integration, broader value propositions

are being discussed in Figure 2.4.

Figure 2.4: Grid-Scale Energy Storage Use Cases and Value Propositions
(Massachusetts Department of Energy, 2016)

Benefits can be summarised as (Denholm et al., 2013):

• Voltage control: Support a heavily loaded feeder, provide power factor

correction, reduce the need to constrain DG, mitigate flicker, sags and

swells.
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• Power flow management: Redirect power flows, delay network reinforce-

ment, reduce reverse power flows, minimise losses.

• Restoration: Assist voltage control and power flow management in a post

fault reconfigured network.

• Energy market: Arbitrage, balancing market, reduce DG variability, in-

crease DG yield from non-firm connections, replace spinning reserve.

• Commercial/regulatory: Assist in compliance with energy security stan-

dard, reduce Customer Minutes Lost (a GB regulatory incentive designed

to improve quality of service that will be used in this thesis), reduce gen-

erator curtailment.

• Network management: Assist islanded networks, support black starts,

switch ES between alternative feeders at a normally open point.

2.3 Transmission and Distribution

The future of energy distribution in the context of the 2050 low carbon transi-

tion is of course highly complex and uncertain and likely to be shaped also by

a range of innovations in other areas of the energy chain (generation, trans-

mission, end consumers). With this in mind, in this section, is identified the

regulation framework for Transmission and Distribution (T&D), challenges

and learning from other countries where distribution systems are likely to act

as important enablers for a low carbon transition across alternative low carbon

pathways (Ruester et al., 2014).

In the UK, there is one System Operator, National Grid, and currently

14 DNOs, each of which distributes electricity to all consumers in their geo-

graphical area. While generation and supply (retail) of electricity have been
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liberalised, networks remain regulated as natural monopolies. In Europe, the

United Kingdom pioneered unbundling and privatising the electricity industry

(Great Britain, 1989) into different sub-sectors aforementioned not being able

of holding more than one operation license for enhancing competition.

Focusing now at distribution level, RIIO regulatory framework is a mech-

anism to prevent overestimation by DNOs when declaring future investment

plans.

Gómez (2013, p.199) illustrates the investment planning at DNO level with

the three consecutive steps:

1. Each DNO sends OFGEM an ex-ante expenditure forecast in line with

what it expects to spend ex-post.

2. Once the expenditure forecasts have been established by the DNOs,

OFGEM sets the target or baseline for each company and a DNO power

ratio is calculated for each.

3. Every DNO has an incentive to spend as little as possible through effi-

cient operation. Rewards increase as actual DNO expenditures decrease

(Gomez, 2013).

The smart grid agenda applies largely to the low voltage distribution net-

works, as the high voltage transmission system is already ’smart’ to some

degree. Existing electricity distribution infrastructure has been developed to

serve predictable and regular patterns of demand and generation.

Until now, power networks historically have been conceived as a problem

with multiple objectives, but have been treated individually. Among the per-

formance targets that have been under consideration in the evaluation of such

distribution networks are the reduction of customers without service, voltage
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Figure 2.5: Efficient system utilisation with storage implementation

deviations, losses, imbalance in power feeders, and reliability indexes (Gan

et al., 2009), (Stoft, 2002). The performance indicators used are intended to

answering questions such as which are the relevant indexes to prioritize in a

future power network or how might a new infrastructure be composed (UK

Power Networks, 2013), (Zheng and Cai, 2010).

Restoration of operation services is nowadays a difficult optimization prob-

lem to solve. Therefore, it has generally been implemented using combinatorial

non-linear optimization tools. For designing proper solutions it is necessary

to consider the constraints of the network operation (Bernal-Agustin et al.,

2011), (Dolan et al., 2009).

Deferral on grid operations to shift demand from peak to off-peak with

storage is an example on how future T&D networks will operate (Chang et al.,

2015). The assets on those networks can use the storage as smart technique

to decrease the thermal and voltage stressing, extending thus the life time of

the network assets. Figure 2.5 represents how storage enhance a more efficient

utilisation of the network by shifting loads.

Figure 2.6 represents the ability of energy storage in New England, US

(ISO-NE, 2016) to generate peak shaving when coupled with solar, compared

with the same power system where solar was used alone. The Storage device
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gets charged over night and non-peak peak periods of the day, shifting system

load curve, red line, and is being discharged during peak time providing both

advantages, providing lower prices and reducing ramping events on the system

operation.

Figure 2.6: Storage contributes to peak shaving and time-shifting of solar
resource

California Public Utilities Commission (2014, p.24) published the Cali-

fornia’s Energy Storage Mandate, aiming to install 1.325 GW of storage at

transmission, distribution and consumer level by 2024 (California Public Util-

ities Commission, 2014). Oregon and Massachusetts are the next US states

committing resiliency through storage or promoting storage combined with

microgrids (Massachusetts Department of Energy, 2016). The impact and lo-

cational optimisation of installing 600MW Storage in Massachusetts across the

ISO-NE will be debug in chapter 4 of this thesis.
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Figure 2.7: Transmission demand profiles according to (National Grid, 2016)

Back to the UK, the system operator presented in 2016 their System Op-

erability Framework (National Grid, 2016) where some their Future Energy

Demand Scenarios evaluated, present ”duck curve” shapes (Figure 2.7) lead-

ing to high ramping events on system operations.

The task to reconfigure networks is not a simple task. A set of switches can

be settling to open and close, for minimizing the power losses of the system

under constraints. A MO method has to be conducted through a modelling tool

with performance indicators. Distribution networks connect locations through

power lines. Where several lines converge or where a line meet sat a generator

or a load, it is called: bus. Node is the intersection of paths in any type of

network. Buses and nodes will be a way to measure the size of the future

network model domain (Kirschen and Strbac, 2004).

Current network reinforcement treatments do not evaluate long term con-

sequences of network changes, but act on a short-term horizon. Power distri-

bution network value will convert the cost factors associated through a costing

model to a financial factor. This indicator is then used for future optimisation

of the models displayed in this thesis (Western Power Distribution, 2015).

According to projections in Figure 2.8, from RIIO-ED2, a rapid ramp up

will incentivise the investments on Low Carbon projects. Those investments



Chapter 2. The pathway towards a Low-Carbon 2050 27

will be driven by changes in demand (LRE- Load Related Expenditure) while

other network investment that is disassociated with load (NLRE) will be as

an example, asset replacement. RIIO framework will reduce the uncertainty

about future network needs and operation while promoting innovation (Jenk-

ins, 2011).

Figure 2.8: Gross GB network related investment for the next four RIIO peri-
ods

(EA Technology, 2012)

The power network can be improved technically and economically though

the inclusion of reinforcement interventions. Six Smart Grid intervention tech-

niques have been identified to be assessed in this thesis and detailed in following

subsection namely, Dynamic Asset Ratings (DAR), Automated Load Trans-

fer (ALT), Meshed Networks, Battery Storage, Distributed Generation and

Demand-Side Management (DSM) (Western Power Distribution, 2015).
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2.4 Smart Grid Techniques Characterisation

Distribution networks investment uncertainty is a complex problem, where

traditional deterministic models are in need to be revised overcome present

and future decision-making challenges. Proliferation of distributed renewable

generation and other low carbon technologies are creating new challenges for

Distribution Network Operators, increasing alternatives to conventional rein-

forcement in order to reduce network operation costs, increase security of sup-

ply and allows a more reliable renewable generation to be connected to the grid.

Selecting the most optimal combinations of interventions in regards to long-

term cost and performance of the network is something that the current tools

and approaches used by the industry cannot adequately do (Papaefthymiou

and Dragoon, 2016).

The cost and limited flexibility of traditional approaches to 11kV network

reinforcement threaten to constrain the uptake of low carbon technologies

(Nieto-Martin et al., 2017). Current 11kV network modification practices do

not evaluate long term consequences of network changes, acting on a short-

term horizon. Long term capacity planning is based on historical estimates

that assume gradual ramp-up of energy demand (Patti et al., 2015).

As part of the FALCON project four Engineering intervention techniques

were proposed as alternatives to traditional network reinforcements. The tech-

nical and commercial benefits of the intervention techniques will be quantified

during field trials. The technique description and trials data would be used

to create accurate technique models that will allow us to automate decision-

making for optimising network interventions.
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2.4.1 Automated Load Transfer

A large number of circuits at 11kV on WPD distribution networks are run

in an ’open ring’ configuration (McDonald, 2008). On these circuits, feeders

from the same or adjacent primary substations are electrically connected to-

gether at the feeder extremity, via a switching device that is normally in the

open position. These feeder inter-connection points are referred to as Normal

Open Points (NOPs). All loads on such circuits are ordinarily associated and

fed from a specified feeder/Primary Substation. It is possible to close these

normal open points and create an open point elsewhere on the network (main-

taining the open ring nature of the network), and change the feeder/primary

substation that a load (or number of loads) are fed from. Routinely this is done

under maintenance or fault circumstances. The positions of NOPs on a mature

portion of network have been established for a variety of reasons, including:

limiting load/number of customers on a single feeder; managing network volt-

age; and allowing immediate access for switching purposes. In many instances,

these NOPs have been in place for lengthy periods of time (years). As such,

their position may no longer be optimal with respect to losses, voltage, and

feeder capacity headroom, particularly where incremental growth in load on a

network (within authorised supply capacities) has occurred.

ALT (Western Power Distribution, 2015) Western Power Distribution (2015)

on the 11kV network is the process of changing the state of switching devices

on the network to shift the location of the normally open points (NOPs), and

cause an improvement in the network’s performance. Deliberately changing

the open point, and consequentially what loads are supplied from which pri-

mary substations, affects the key network parameters of losses, voltage, and

capacity headroom. This technique seeks to change the power flows on the
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network through alternative NOP locations. However, there are other poten-

tial benefits that may be gained when considering automatic load transfer as a

more flexible operational tool within an electricity distribution network. These

benefits include:

• Active management of network feeding arrangements to maximise utili-

sation of existing capacity

• Automated load transfer at peak times

• Voltage regulation

• Even load profile of circuits and feeders

• Even customer number profile to assist with Customer Interruptions (CI)

and Customer Minutes Lost (CML)

• Real-time transfer of load or generation across feeders and primary sub-

stations

• A positive impact on Carbon resulting from reduced losses due to more

even loading, better voltage regulation and reduced reinforcement.

The implementation of ALT depends on the network configuration and con-

nected load. Network reconfiguration is a highly complex, non-differentiable,

constrained, non-linear (due to the on-off nature of the circuit breakers) mixed

integer optimization problem, due to the high number of switching elements

in a distribution network. Thus, evaluation of all possible configurations is

time consuming. In addition, the process behind how benefits can be vali-

dated using measured network data on a practical scale taking into account

the issue of substation time varying loading uncertainty is complex. From
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a theoretical perspective, a network reconfiguration is an optimisation prob-

lem that may have different objective functions, such as minimum switching

operations, minimum power loss, balanced feeder load balancing, or their com-

bination (Narimani et al., 2014) (Tsai and Hsu, 2010) to comply with a set of

operational constraints such as bus bar voltage limits, line or cable capacity

ratings and fault levels. Generally these methods can be grouped into sev-

eral categories; classic optimisation techniques (Botea et al., 2012), (Mendes

et al., 2013), sensitivities analysis methods (Jabr el al., 2012), knowledge-

based heuristic methods (Gonzalez et al., 2012), (Ferdavani et al., 2013), and

Genetic Algorithms (Queiroz and Lyra, 2009). Sensitivities analysis methods

and knowledge-based heuristic methods can provide practical results with short

computing time but may not be global solutions. Heuristic techniques includ-

ing ”Sequential Switch Opening” (Merlin and Back, 1975) (Shimohammadi

and Hong, 1989), and ”Branch Exchange’ (Civanlar et al., 1988) (Baran and

Wu, 1989) deal with a branch at a time. Sequential switch opening is where

all the switches of the network are initially closed forming a meshed network,

then, to eliminate network loops, the switches are opened sequentially starting

with the switch that has the lowest current. The process is repeated until the

network reaches a radial structure. Branch exchange methods are different

from sequential switching, the method starts from the initial configuration of

the network and performs pairs of open/close switching actions to produce

new network topologies while maintaining the radial nature of the system.

2.4.2 Meshed Networks

Meshed networks (Western Power Distribution, 2015) is the process by which

circuit breakers on the network are switched in order to feed loads from a
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multiple of locations (Amanulla et al., 2012) (Asuhaimi et al., 2012). This

approach fundamentally allows the load on each feeder in a meshed circuit to

deviate according to the routine variations in the connected load, without the

need for pre-existing analysis and changes to switch states.

However, simply closing Normal Open Points (NOPs) exposes more con-

nected customers to supply interruption following a network fault. Therefore

any planned closure of open points for long term operation is routinely accom-

panied by the installation of along-the-feeder fault sensing and interruption

equipment (protection relays and circuit breakers). The installation of along-

the-feeder protection devices restores, and potentially improves (i.e. reduces),

the probability of customer interruption under fault conditions with mesh oper-

ations. Meshing is primarily done to improve the security of supply. However,

there are other potential benefits that may be expected when considering a

meshed network. These benefits could include:

• Improved capacity margins

• Voltage regulation

• Increased penetration of distributed generation

• Reduced losses

• Power quality improvements

There are however disadvantages to meshing and these include increased fault

levels, increased complexity of protection and automation, leading to addi-

tional cost.
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2.4.3 Energy Storage

Energy Storage was addressed in subsection 2.2.7. This subsection details

the demo trial (Western Power Distribution, 2015) and looked at understand-

ing the implementation and operational capability of installed battery energy

storage connected at existing substations on a single 11kV feeder from the Fox

Milne Primary substation. The potential benefits that may be expected when

considering energy storage within an electricity distribution network include:

• Improved capacity margins

• Increased penetration of distributed generation

• Deferring network reinforcement by reducing peak loads in branches of

the network (above the point of battery connection), where the unmod-

ified peak loads would ordinarily have approached or exceeded effective

circuit capacity

• Power quality and phase balance improvements through active filtering

that counters harmonic distortion, and prioritises output to more lightly

loaded phases

• Provision of frequency response and other ancillary services by utilising

the stored energy outside times of peak load (primary purpose)

• Improvements in control of voltage at the point of connection

However, batteries in particular have specific operational drawbacks and

limitations that include:

• Any reduction in the peak circuit loading is heavily dependent on the

prevailing shape and duration of load peaks (e.g. short sharp peaks vs.
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long relatively flat peaks), the power rating and capacity of the energy

storage system and the strategy used to trigger the start of energy output

• Worsening of network power quality due to the connection of power elec-

tronics

• An operational life that is dependent on the pattern of usage (e.g. re-

peated high depth of discharge operation)

• Provision of land, construction costs

• Operating noise

• Operating costs (maintenance, plus the net cost of electricity for com-

mercial services)

2.4.4 Dynamic Asset Rating

Traditionally overhead lines (OHL) (Western Power Distribution, 2015), trans-

formers and cables have been assigned capacity ratings intended to ensure op-

eration within safe operating limits, and allow assets to achieve nominal service

life. These ratings may be fixed for specific periods of time (e.g. summer and

winter ratings of OHLs), or may relate to a load that has a daily cyclic char-

acteristic (e.g. transformer and cables). However, these ratings essentially do

not take the current/present environmental conditions into account, nor do

they take into account the current/present thermal state of the asset. In this

respect, the ratings are regarded as ’static’− not responsive to the current

thermal or environmental conditions of the asset. These ’static’ ratings make

assumptions about prevailing environmental conditions (air temperature, wind

speed and direction etc.) and set a limit on electrical current passing through

the asset such that safety and service life of the assets are maintained.
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DAR seeks to allow operation of these assets beyond the static limits,

through dynamic assessment of the asset’s actual thermal state (derived from

preceding operating circumstances), and the present environmental factors.

Whilst seeking to increase capacity, this technique can also identify periods

where the dynamic rating is calculated as less than the static rating, thereby

potentially reducing the asset’s rating under some circumstances.

The dynamic rating is often referred to as ’ampacity’- the maximum current

that can pass through an asset before the temperature limits are reached.

The ampacity may be defined as either ’sustained’ or ’cyclic’ where sustained

refers to the asset seeing a steady load, whereas as cyclic refers to the asset

seeing an ever-changing load following a set pattern. This technique seeks to

properly increase the capacity of assets during peak usage periods to alleviate

constraints, whilst maintaining safety and managing impact on asset life. DAR

can also constrain use of assets (e.g. generation) when environmental/load

conditions are not favourable.

2.4.4.1 Transformer Dynamic Asset Rating

The practice of using transformer dynamic asset rating (Western Power Dis-

tribution, 2015) is to assess transformer oil and winding temperatures (the

prevailing thermal state of the asset) and to estimate the additional load that

the transformer could carry and still remain within a stated highest winding

temperature (known as hot-spot), for a given ambient air temperature.

For a given transformer, the temperature of the insulation (limiting factor

for operation) is governed by the heating effect of current flowing through

the windings, and the cooling of the transformer oil. The temperature of

the oil (and cooling effect on the insulation) is governed by the ambient air

temperature, the heating from load current, and cooling process due the cooling
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arrangement of the transformer. Sustained load and cyclic load ratings are

given by manufacturers, sometimes with different cooling mechanisms, to limit

operating insulation temperatures (typically to less than 98◦C or 110 ◦C for

a range of ambient temperatures e.g. 20◦C up to 30◦C) to guarantee that an

acceptable service life of at least 20 years can be achieved.

In reality, primary transformers are typically installed as multiple units,

where the loss of one unit from service does not interrupt supply, and many

transformers are located outdoors where the ambient temperature rarely reaches

30◦C. Therefore, the transformers tend not to be operating close to their tem-

perature limits resulting in a longer service life span. It is possible to take

advantage of the conditions to rate the transformer dynamically based on hot

spot temperature rather than on a static basis. It should be noted that the

hot-spot temperature exists somewhere around the windings but is difficult to

exactly locate. The hot-spot location and temperature is a function of trans-

former design and cooling functionality, ambient air temperature, oil temper-

ature, and winding losses amongst other parameters. This makes the hot-spot

temperature complex to assess with any degree of certainty. Although direct

measurement methods do exist, they can only be applied to newly built units,

for which the manufacturer can install bespoke technically advanced measuring

facilities (for instance sensors with fibre optic cables). Therefore, for existing

in-service applications, the hot-spot temperature may only be computed. To

establish a dynamic asset rating for a transformer, two elements are necessary:

• a thermal model of the transformer is required to assess prevailing trans-

former oil and winding temperature given previous load and ambient air

temperatures; and
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• a process is required that will iteratively increase modelled load cur-

rent and calculate consequential hot-spot temperature (using the ther-

mal model) until the limiting hotspot temperature is reached. The load

current that results in this limiting hot-spot temperature is the dynamic

asset rating, or ampacity of the transformer. This can be either sustained

or cyclic.

The potential benefits that may be expected when considering dynamic

asset rating of transformers within an electricity distribution network include:

• Deferring network reinforcement by allowing more current to pass through

the transformer when the weather conditions are favourable to cooling

without adversely affecting life

• Assisting with ratings when highly fluctuating loads are connected (i.e.

average rate of loss-of-life of the transformers are still within specified

limits even if temporarily the transformer is overloaded compared to

nameplate rating).

2.4.4.2 Cables Dynamic Asset Rating

The static calculated current ratings of underground cables (Western Power

Distribution, 2015) are based on the rise of temperature of the cable insulation

(90◦C for cross-linked polyethylene (XLPE) insulation and 65◦C for oil impreg-

nated paper or 75◦C for other paper insulation types (Narimani et al., 2014)).

The temperature is limited to avoid insulation breakdown leading to cable fail-

ure. The cable temperature increases by the passage of current through the

cable. This current is limited to a static summer and winter current rating

and a cyclic summer and winter rating as defined in UK Engineering recom-

mendation P17 (Bernardon et al., 2010). These values are reduced (the cable
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is de-rated) when the cable is ducted or in close proximity to other cables.

The ratings contained within P17 are typically calculated using representative

values for soil characteristics, taking the thermal resistivity of soil as a set

seasonal value. Although this is fine for a generalised answer that will fit the

large majority of cables on the UK distribution network, it does not allow the

full realisation of individual cables current carrying capability. The ratings

within P17 have been used over 30 years by the majority of UK DNO’s.

P17 consists of three documents relating to the rating of 11kV and 33kV

solid paper insulated cables and polymeric cables. The ’distribution rating’

is the most common rating basis applied throughout the distribution network

(the maximum current that can be carried for five days whilst keeping the

insulation below a maximum temperature). In addition a cable has two static

ratings throughout the year, ’summer’ and ’winter’. The ’winter’ rating takes

into account the ability of the cables to carry larger currents and therefore

power flows in winter months due to colder temperatures, and generally wet-

ter ground. This rating is broadly independent of the laying depth of an

underground cable, provided the burial depth is at least 600mm.

The DAR technique looks to maximise network capacity usage by mon-

itoring soil temperature and moisture. This data will be used to calculate

’real-time’ asset capacity, potentially allowing for higher ampacity for limited

periods rather than the current ’static rating’ current used by distribution

network operators. The DAR technique will allow the underground cable to

be temporarily run above its continuous current rating providing it remains

below the critical temperature set out by the manufacturer. A dynamically

rated cable would provide the option of running underground cables to in-

corporate short term increases in load that might defer capital expenditure on

network reinforcement. Research into the dynamic capabilities of underground
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cables undertaken worldwide, has led to the development of a number of mon-

itoring techniques and simulation software applicable to the transmission and

distribution network.

2.4.5 Learnings from Smart Grid trials

2.1 provides a high level summary of which techniques impact what network

metric, with the remainder of the section providing comparison of each tech-

nique with other trials, on a network-metric basis. It must be said that the

automation of the grid trials would have not be possible without WiMAX,

the based Telecommunications System to Support for the FALCON project

(Poidevin, 2008). ICT plays a core function when planning the automation

and increase of smartness of the network. Detailed learnings from the trials

can be found in (Nieto-Martin et al., 2017b).

Table 2.1: Cross-smart technique comparison of impacts

DAR-OHL DAR-Tx DAR-Cables ALT Mesh Energy Store
Thermal limits

/capacity headroom X X X X ∼ X
Voltage limits No impact No impact No impact X ∼ X

Faut levels No impact No impact No impact No impact × ×
PQ No impact No impact No impact ∼ ∼ X

Enablement of DG X X X X X X
Losses × × × X X ×

CI/CMLs No impact No impact No impact ∼ ∼ No impact
Grid

/Network services No impact No impact No impact No impact No impact X
Key: X Positive impact; × negative impact; ∼ network dependant, may have positive or negative impact
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2.4.5.1 Network capacity

• All techniques altered capacity on the network.

• DAR evaluates capacity more accurately than static ratings which may

suggest additional or in some cases less capacity. OHLs are predomi-

nately affected by wind speed/direction meaning significant variations

occur both across seasons and within short time scales (minutes). When

this variability of rating is combined with the low thermal capacities of

OHLs (i.e. the OHL temperatures respond rapidly to the environmental

changes), taking advantage of this technique is limited to particular cir-

cumstances. The dynamic ratings of both cables and transformers are

dependent on ambient temperatures, meaning diurnal (for transformers

only) and seasonal variations are clearly present, and the larger associ-

ated thermal capacities means short-time duration changes in ambient

conditions cause less short term variability in asset ampacity.

• ALT and mesh shift load from one part of a network to another, thereby

potentially relieving constraints. ALT offers a far more intuitive mecha-

nism, whilst mesh is continually dynamic by its very nature. The extent

to which benefits exist is highly dependent on the connectivity of any

candidate network, and loads/generation connected to the network, and

the extent to which the loads vary relative to each other.

• Energy storage shifts load in time, reducing load at a capacity con-

strained key point in time, only to increase the load at a less critical

point in time. The specified power and storage energy capacity clearly

need to be appropriately matched to the network load; and adaptive

triggering is required to deal with individually daily variations in load,
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to optimise the impact that the installed system can have on the net-

work. Energy Storage may complement DAR by providing a mechanism

to alter load patterns such that constrained assets might make the best

use of available ampacity.

2.4.5.2 Voltage

• Three of the techniques offer some potential for benefits (ALT, Mesh,

ES)

• ALT demonstrated the largest benefit (4%), on some of the rural circuits

that were trialled, but no significant benefit was found on urban circuits

• Mesh considered a small urban network and for this example there was

no significant impact on voltage

• Energy storage shifts load in time, reducing load at a capacity con-

strained key point in time, only to increase the load at a less critical

point in time. The specified power and storage energy capacity clearly

need to be appropriately matched to the network load; and adaptive

triggering is required to deal with individually daily variations in load,

to optimise the impact that the installed system can have on the net-

work. Energy Storage may complement DAR by providing a mechanism

to alter load patterns such that constrained assets might make the best

use of available ampacity.

• In general the voltage benefit of the ALT and mesh techniques networks

will depend on the voltage difference across pre-existing NOPs, and does

not directly address voltage issues at the end of branches
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• The installed energy storage systems achieved little impact. In general,

the reactive power capacity in relation to the magnitude and power factor

of the adjacent load is modest, and can be expected to be expensive to

deliver for this benefit alone

2.4.5.3 Fault levels

• As is clearly already recognised, introducing generation (including ES) to

a network will ordinarily increase fault level, in this instance the ES were

small compared to pre existing fault levels, and so had negligible impact.

Meshed networks will also increase fault level due to the reduced circuit

impedance. For the mesh technique trial, this was within the ratings of

all circuit equipment

2.4.5.4 Power Quality (PQ)

• Mesh trials showed no discernible impact on power quality. Super-

position theory and the feeding of harmonic loads via different sources

means that harmonics presently fed from one source could be fed from

two sources (depending on Network impedances), however, it is unlikely

that larger scale trials will show any marked appreciable benefits as the

majority of loads are within limits defined by standards and as such it

will be difficult to differentiate small changes

• The installed energy storage equipment did not specifically have func-

tionality aimed at improving PQ. At one site, improvement was noted,

however this was a beneficial coincidence arising from the nature of a lo-

cal (within standards) PQ disturbance and the inductance/capacitance

smoothing network in the Energy storage system
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• More targeted studies of a network that has a known PQ issue could be

identified to further examine the potential of mesh/ALT techniques to

beneficially impact this issue

2.4.5.5 Losses

• As discussed in the preceding technique-trial specific section, ALT and

Mesh offer some potential, though the magnitude is network specific

• The trialled ES systems increased losses, and DAR will tend to increase

losses if higher circuit loads are facilitated

2.4.5.6 CIs and CMLs

• ALT changes NOP positions and consequently affects numbers of con-

nected customers per feeder. The trial algorithms:

– Increased one feeder numbers by 15% (whilst optimising capacity

headroom) on a rural/OHL network

– Increased one feeder numbers by 50% (whilst optimising losses/voltage)

on an urban/cable network

• Meshing networks does not improve customer security as such; the im-

provement only occurs if additional automatic sectioning/unitising oc-

curs beyond that offered by the pre-existing NOP. Due to communication

system limitations, the implemented trials did not increase the number

of sections, essentially maintaining the pre-existing customer security

2.4.5.7 Network services

• Whilst these trials have demonstrated that frequency response is possible

with the ES technique, a marketable service is not fully delivered by the
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installed equipment. In addition, further work would be required to put

DNO owned energy storage on an appropriate commercial basis

We can use the learning from the dynamic asset rating work to understand the

impact of loads on the ageing of assets and use this to inform our assumptions

on asset health and our asset replacement policies. We are unlikely to monitor

11kV assets widely but dynamic asset rating systems may be cost effective for

higher value assets at higher voltages.

The learning from automatic load transfer suggested that a review of nor-

mal open points would be beneficial. We are considering the methods for this

optimization which may benefit from optimizing against a set of objectives

rather than for losses alone. e.g. losses, CML/CI impact, accessibility for

manual switching, etc. Meshed networks remain an option for sharing 11kV

network capacity and are supported by the existing modelling tools.

DNO owned storage at 11kV is unlikely to be adopted as business as usual

but work continues to investigate storage potential at higher voltages and to

create regulatory frameworks that allow for multiple revenue streams to be

combined.

Therefore, it is unlikely to implement the engineering techniques into busi-

ness as usual as alternatives to conventional reinforcement in the form un-

dertaken during the trial, because although they may be used in the future

as short to medium term remedies they do not currently appear to represent

value for money under the current regulatory framework.

In order for the technologies and techniques to be more viable we believe

that there needs to be more work done to establish other ways of using the

technology or finding ways to reduce the overall cost of the technique. As short
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term remedies they appear to work well, but on longer time horizons the case

is weakened.

In addition we recommend to undertake the following exploratory analysis:

• Open point review

• Primary transformer DAR- further based on results of FALCON

• Energy storage: Optimisation, regulatory rules and technologies
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2.5 Conclusions

An essential element in the future UK low-carbon energy system will be the

electricity infrastructure that can facilitate more flexible demand, the balanc-

ing of variable renewable generation, and the incorporation of local small-scale

technologies such as solar PV, and upcoming large deployment of technologies

such as electric vehicles or energy storage.

In Figure 2.9 are represented the major challenges for UK network regula-

tion until 2050 (beside ongoing TSO-DSO market roles). Electricity markets

need regulators to oversee the effective functioning of the electricity sector

through rule-setting, monitoring, and enforcement. Specifically, regulators

(OFGEM in the case of the UK) have important roles to play in two main

areas: market structure and innovation enhancement.

Figure 2.9: Regulation challenges for 2050

In terms of market structure, regulators can determine ownership, access

to the market, and contractual relationships, market planning as well as the

mechanisms of allocations. In terms of conduct, regulators are concerned about

the production of electricity and the security of supply. Regulation may in-
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fluence the fuel mix, production technologies, the environmental impacts of

electricity and tariffs.

Proposed learnings can be summarised as:

Implementation of the 2050 Pathway for the deployment of Smart Grids in

the UK. It is mandatory to create a collaborative information environment for

the following Ofgem current programs: Data and Communications Company

(DCC), Smart Energy Code (SEC) and Smarter Markets Programme

Such ’smart grid’ infrastructure will need to incorporate greater observa-

tion, control, and automation, through incorporation of information and com-

munication technologies, that ICTs need to have a framework for the utilities

being able to measure their performances and the security of the data they are

DECC renewable scenario projects to have at least 30% in the generation mix.

Maximising the renewable penetration when available despite its intermittency

will mean a curtailment of fossil fuels. A program to close non-environmental

friendly generators can be implemented moving to Non-traditional business

models.

Energy storage is the only ’green technology’ without subsides. For making

it competitive on the medium term, has been proved scalable, this technology

not only will play a role itself, also will help other low-carbon interventions to

be more reliable, i.e., wind or solar.

The prevalent model of infrastructure governance in the energy and other

sectors has prioritised short term time horizons and static efficiencies. Tech-

nologies that currently are at R&D or on a pilot scale, as CHP (at utility scale)

or CCS, will contribute with 2050, are receiving large investments. Regulation

for the time horizon scalability of these projects is needed.

The electrification of both heating and transport. In a low carbon future,

the Government anticipates that a significant proportion of heating will come
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from low carbon electricity using heat pump technologies. At the same time,

internal combustion engines are likely to be replaced by batteries in electric

vehicles.

Transmission & Distribution networks have moved in April 2015 from RPI-

X to RIIO price control. The RIIO model is an incentive-based regulatory

framework, providing innovation stimulus to the long-term regulated operators.

Network operators will want to be able to observe how much power is

flowing where, in real-time. They will want to be able to manage and optimise

demand as far as possible, effectively evolving from network operators to local

electricity system operators. This vision contrasts with the grid that the UK

has at present. Parts of the distribution network date back to the early part

of the last century.

Building a smart grid is therefore a major undertaking for promoting De-

mand Side Management. Currently, there is not tariff may not offer a clear

platform or guidance for smaller disaggregated distributed energy resources

(DER) to participate effectively in the market. Unlike traditional supply re-

sources, individual DER may be too small to meet this minimum size require-

ment - for example, at the residential level a rooftop photovoltaic solar system

may have a maximum generation capacity of 5 kilowatts and a battery storage

system may have a maximum discharge capacity of 2-3 kilowatts. The rela-

tionships between those DER, energy companies and regulatory authorities

need to have a framework that allows further development of self-generation

(CAISO, 2015), (Greentechgrid, 2015).

Advancements in technologies and services are changing the way energy

is generated, transmitted, transacted and stored, and how consumers make

decisions about their energy uses and sources and even becoming producers

for some periods of the day. These advancements will provide opportunities to
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make the electric system more secure and sustainable, however, the complexity

of the power system also increases, therefore, dynamic modelling approaches,

to answer uncertainties that Internet of Things (IoT) and digitalisation will

bring along are required.





Chapter 3

Meta-heuristics for

Evolutionary Power Systems

This chapter provides the characterisation of the methodologies implemented

in this research, namely evolutionary optimisation, heuristics, and visualisation

techniques. In doing so, the application of those methodologies to specific

optimisation domains, namely distribution and transmission power systems

are detailed.

3.1 Unravelling bottom-up power systems

modelling

The smart grid agenda applies largely to the low voltage distribution net-

works, as the high voltage transmission system is already ’smart’ to some

degree. Existing electricity distribution infrastructure has been developed to

serve predictable and regular patterns of demand and generation.

Until now, power networks historically have been conceived as a problem

with multiple objectives, but have been treated individually. Among the per-

51
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formance targets that have been under consideration in the evaluation of such

distribution networks are the reduction of customers without service, voltage

deviations, losses, imbalance in power feeders, and reliability indexes (Gan

et al., 2009), (Stoft, 2002). The performance indicators used are intended to

answering questions such as which are the relevant indexes to prioritize in a

future power network or how might a new infrastructure be composed (UK

Power Networks, 2013), (Zheng and Cai, 2010).

Restoration of operation services is nowadays a difficult optimization prob-

lem to solve Mendoza et al. (2006). Therefore, it has generally been im-

plemented using combinatorial non-linear optimization tools. For designing

proper solutions it is necessary to consider the constraints of the network op-

eration (Bernal-Agustin et al., 2011), (Dolan et al., 2009).

Deferral on grid operations to shift demand from peak to off-peak with

storage is an example on how future T&D networks will operate. The assets

on those networks can use the storage as smart technique to decrease the

thermal and voltage stressing, extending thus the life time of the network

assets. Figure 3.1 represents how storage enhance a more efficient utilisation

of the network by shifting loads.

A decentralised system like the one needed for integrating the technologies

mentioned in chapter 2 is complex and need to be adaptive. It will consist on

large number of adaptive agents (in our current case lines, cables, transformers,

substations...) acting at local level. These local distributed interactions analy-

sis will provide macro-decision making, in our case, investment of distribution

and transmission grids (Burstedde, 2012). This intricate both-way information

feed between bottom and top decision makers has been discussed in economics

for a long time leading to application in several fields such as manufacturing,
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operations, water distribution, environmental policy and lately, IoT (Tesfat-

sion, 2002); (Gurung et al., 2014); (Reaidy et al., 2015).

Model-Driven Engineering (MDE) uses analysis, construction, and devel-

opment of frameworks to formulate meta-models. Those models are usually

characterised using domain-specific modelling approaches (Sánchez-Cuadrado

et al., 2012), containing appropriate detail abstraction of particular domain

through an specific meta-model. The use of meta-models require therefore

inputs from domain experts which can be used to generate aggregated or dis-

aggregated models. Top-down and bottom-up are the conceptual definition

of aggregated and disaggregated models (Kim et al., 2014). These two mod-

elling paradigms are frequently used to epitomise domain interactions among

the operation of the energy system, the econometrics related and the technical

performance indicators (Bohringer, 1998).

From a bottom-up modelling approach (Bower, 1974); (Mintzberg and Wa-

ters, 1985), the top-down perspective is a simplistic characterisation of how

electrical power networks combine locational events and individual assets per-

formance with high level objectives like improving the CML of a certain con-

gested area (Carragher et al., 2012). From an engineering point of view, both

are still valid since outputs and strategic forecast are produced in both. How

those outcomes are calculated, validated and transformed to strategy is pre-

sented in Figure 3.1 (top-down) and Figure 3.2 (bottom-up).

The ability of bottom-up to capture discrete locational impacts of tech-

nologies on the system and their disaggregated costs is triggering the following

subsections. Trade− off methodologies are needed for planning evolutionary

power systems where observing disaggregated results strategic forecasts are to

be produced. These methodologies need to be interactive in the sense that

starting from an initial state and after a testing or learning phase, the network
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is able to accommodate techniques that have improved the system, providing

a exploratory set of solutions that can be expanded or discarded as the model

evolves through time.

Figure 3.1: Top-down conceptualisation of evolutionary power networks plan-
ning

Figure 3.2: Bottom-up conceptualisation of evolutionary power networks plan-
ning
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3.2 Optimisation

Most problems in nature have several, usually conflicting, objectives to be

satisfied. Many of theses problems are frequently treated as single-objective

optimisation problems by transforming all but one objective into constraints

(Coello, 2016).

As an informal definition of optimisation can be defined as the process to

minimise or maximise the proposed function, evaluating under certain condi-

tions the variables and objective functions under results are obtained. How-

ever, there are essential limitations imposed upon candidate solutions that may

otherwise be considered optimal; a solution must be both feasible and legal

(Gen and Cheng, 2000).

Figure 3.3: Solution space characterisation by nature of solution region

A legal solution is one that can successfully be translated from the internal

representation of the optimiser into the problem domain, whereas a feasible one

is legal and resides in the feasible solution region of the domain, as in Figure 3.3.

For example, a solution could represent a theoretically possible configuration
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of the grid and hence be legal, but not being able to solve network constraints

and therefore would not be a feasible for the real world.

When optimising a function, there is the possibility that OF has two or

more locally optimal solutions, in which case it is known as multi-modal (Deb

et al., 1993). An extreme example is given in Figure 3.4 which shows a surface

plot from the R language of Rastrigin’s function in its 3D form (Mühlenbein et

al., 1991), being a highly multi-modal function having many local minima and

maxima, and the global minimum. Multi-modal optimisation seeks to obtain

a set of good solutions, comprising the best of the local optima along with,

ideally, the global optimum if it can be found. When using methods which do

not guarantee to find the global optimum, then it is more important to have

a set to choose from since the global optimum may not be present and there

may be different advantages and disadvantages between one local optimum

and another.

Figure 3.4: Rastrigin’s function as a 3D surface plot, displaying its many local
minima and maxima, where the global maximum is at (2.5, 2.5) and equal to
80.
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In most of the real-world optimisation problems the optimiser has no in-

built ’knowledge’ about the subject domain of the problem upon which it

works, thus the optimiser acts as a black-box process (Schaefer and Nolle,

2006), transforming the input into an output (Figure 3.5). On these types

of applied optimisation, evolutionary computing is particularly relevant, espe-

cially when more than two objectives are being optimised at the same time.

That motivates the following subsection.

Figure 3.5: Black−box optimisation representation that finds the combination
of variables x to provide feasible outcomes for y.

A barrier when optimising many objectives, imposed by our three-dimensional

habitation and perceptual experience, is the visualisation of many dimensions.

The accurate visualization of multidimensional problems and multivariate data

unlocks insights into the role of dimensionality. The ‖-coords technique (In-

selberg, 2009) enables multidimensional results to be plotted uniquely and

without loss of information, together in one plot. The results shown in the

‖-coords plots and related scatter plots contain all of the results from all of

the feasible solutions, the dominated and the non-dominated ones (Figure 3.5).
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Figure 3.6: ‖-coordinates representation of many dimensions and ‖-2D scatter
plots of Pareto optimal

Case studies within chapters 4, 5, and 6, deal with three or more objec-

tives to be optimised and are modelled as a two-stage. The objectives are

effectively black − boxes, which depend on the iterative learnings from data

feeding the optimiser from either Plexos (chapter 4) or IPSA Power (chapters

5 and 6), commercial software that that performs market and operations anal-

ysis of power networks in the first case, and the second has been customised

for modelling smart grid performance techniques describes on Chapter 1. The

outcome of those experiments are fed to the meta-heuristic of each case study,

a Genetic Algorithm (GA) for Chapter 4, graph search algorithm for Chapter

5 and a combination the last one with Real Options valuation for Chapter 6.

Non of these algorithms have itself information, therefore cannot start with-

out some a priori knowledge of the problem. In the case of A* graph search

algorithm, it starts with a valid network state of the grid with no faults in

year one. As for the GA, the optimiser used, Ganesh, has been trained for
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supervised learning by genetic programming with the goal of making the GA

experiment runs shorter. Both meta-heuristics used in this thesis, despite one

is nature-inspired and the other is not, have in common their ability to deal

with multiple objectives, being the motivation of the next subsection.

3.2.1 Multi-objective optimisation

The work in this thesis is focussed on characterising the transformation of

power systems using more than one OF to be optimised at the same time.

This subsection therefore addresses the area of multi-objective optimisation.

The general Multi-objective Optimization Problem (MOP) can be formally

defined by Coello (2006, p. 28) as:

Find the vector:

~x∗ = [x∗1, x
∗
2, ..., x

∗
n]T (3.1)

which will satisfy the m inequality constraints:

gi(~x) ≤ 0, i = 1, 2, ...,m (3.2)

the p equality constraints:

hi(~x) = 0 i = 1, 2, ..., p (3.3)

and will optimize the vector function:

~f(~x) = [f1(~x), f2(~x), ..., fk(~x)]T (3.4)

It has been already discussed that optimisation constraints can also be

taken as hard objectives, needing to be satisfied prior to the optimisation of
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the further OFs. In the past that has led to problems having many objectives

have been transformed into single objective ones, with hard constraints, in

order to solve them (Fonseca and Fleming, 1998). However, the essence of

MOPs are that each of the conflicted OFs need to be optimised at the same

time.

Figure 3.7: The Pareto-optimal front of a bi-objective minimising optimisation
problem.

In MOPs that do have conflicting objectives, it naturally arises that there

are a set of optimal solutions rather than just one, because no one solution

can be better than all of the others with respect to all OFs, since to improve

one OF necessarily degrades the other OFs (Deb, 1999). The global optimal

set, in the feasible decision space) is known as the Pareto-front (Figure 3.7),

but other solution sets which approximate the global one, may be found and

would be termed the local Pareto set or front (Deb and Karthik, 2007).

In words, this definition says that ~x∗ is Pareto optimal if there exists no

feasible vector of decision variables ~x∗ ∈ F which would decrease some criterion

without causing a simultaneous increase in at least one other criterion. Unfor-

tunately, this concept almost always gives not a single solution, but rather a

set of solutions called the Pareto optimal set. The vectors ~x∗ correspoding to
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the solutions included in the Pareto optimal set are called nondominated. The

plot of the objective functions whose nondominated vectors are in the Pareto

optimal set is called the Pareto front.

We say that a vector of decision variables ~x ∈ F is Pareto optimal if there

does not exist another ~x ∈ F such that fi(~x) ≤ fi( ~x∗), for all i = 1, ..., k, and

fj(~x) < fj( ~x∗) for at least one j.

In objective space, the optimal set is known as the non-dominated set,

since each solution cannot be said to be dominated (be more optimal) by

any other. Hence MOO requires trade-offs to be made, by some higher-level

decision maker, in choosing a compromise solution to be the answer to the

problem, as Figure 3.8 illustrates.

Moreover, Coello (2006, p. 28) note, referencing Bäck (1995, p. 2) , that

for a general MOP for a global optimum is an NPcomplete problem (Garey

and Johnson, 1979) for any system that is of more than minimal complexity,

due to the exponential increase in the size of the search space, which depends

upon the cardinality of both the decision vector and its components(Coello,

2006), (Back, 1995).
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Figure 3.8: Multi-objective (3) optimisation Pareto front projections of OFs
f1 & f2

The Pareto dominance relation can then be defined as follows (assuming

minimisation as above): A given vector u = (u1, . . . , un) is said to dominate

another vector v = (v1, . . . , vn) if and only if u is at least partly less than

v(up < v);stated formally thus:

∀i ∈ {1, . . . , n} , ui ≤ vi ∧ ∃i ∈ {1, . . . , n}ui ≤ vi (3.5)

In practice, optimisation problems may be subject to restrictions on the

values that one or more of their decision variables may take, or on the values

held to be useful in the problem solution. Such constraints can usually take
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the form expressed as a function inequality: f(x) ≤ c, or f(x) < c, where c is

a constant value and f is real-value function of x.

Hu (2013, p. 1188) and Zitzler (2003, p. 117) broaden the definition of

dominance and recognising that in real-world size MOPs is very difficult to

obtain a true global Pareto front, whereas one or more local Pareto sets may

suffice to provide choices of good enough solutions (Hu et al., 2013) (Zitzler et

al., 2003).

3.3 Meta-heuristics for evolutionary planning

Dynamic optimisation encompasses the important challenge in real-world ap-

plications of capturing evolving behaviours of complex systems. It has been

previously discuss in this chapter that MOPs are often hard to solve as they

tend not to be amenable to analytical methods due to their usual non-linearity

and multidimensionality, within the decision and the objective space, and also

often or usually, having very large search spaces from which solutions must be

chosen (Abramson et al., 2011) (Rao, 1996). In dynamic optimisation prob-

lems, the OF is deterministic at a given time but varies over time:

fdynamic(x) = ft(x) (3.6)

where t represents the time at which OF is evaluated (Jin and Branke,

2005).

The inherent characteristics and sizes of real-world problems lead to the

adoption of other methods for exploring the solution space where solutions

found may not always a unique optimal, but returning solutions often ”good

enough”.
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Unlike exact methods, meta-heuristics allow to tackle large-size problem

instances by delivering satisfactory solutions in a reasonable time. There is no

guarantee to find global optimal solutions or even bounded solutions. They

have gained popularity in the past 30 years. Their use in many applications

shows their efficiency and effectiveness to solve large and complex problems.

Meta-heuristics then, are ”criteria, methods, or principles for deciding which

among several alternative courses of action promises to be the most effective

in order to achieve some goal.” (Pearl, 1984, p. 3). Heuristic methods require

knowledge about the problem domain, and may be of a stochastic nature,

but tend to have simple, incomplete or unreliable information about the exact

problem. The term meta-heuristic was introduced by Glover (1986, p. 533) in

his discussion of the Tabu search algorithm (Jaeggi et al., 2008), which uses

a heuristic, as above, but upon which is imposed a further strategy - that of

penalizing moves that take a path already taken, and an organised memory

mechanism (Glover, 1986).

It is frequently the case that in pursuing difficult problems, especially

real-world engineering ones, that the Pareto-front, is neither known, nor in-

deed knowable analytically (Van Veldhuizen and Lamont, 200), therefore until

proven otherwise, it is usually necessary to assume that a given set of solu-

tions obtained in the front are an approximation characterisation to the global

solution.
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Figure 3.9: Methauristics characterisation by domains
(Polymathian, 2017)

For classifying meta-heuristics (Figure 3.9) many criteria have been used

(Talbi, 2009) (Blum and Roli, 2003):

• Nature inspired versus non-nature inspired: Many meta-heuristics

are inspired by natural processes: evolutionary algorithms (Fraser, 1957)

and artificial immune systems from biology; ants (Dorigo et al., 1996),

bees colonies, and particle swarm optimization from swarm intelligence

into different species (social sciences); and simulated annealing from

physics.

• Memory usage versus memoryless methods: Some meta-heuristic

algorithms are memoryless; that is, no information extracted dynam-

ically is used during the search. Some representatives of this class are
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local search, GRASP, and simulated annealing (Pearl, 1984). While other

meta-heuristics use a memory that contains some information extracted

online during the search. For instance, short-term and long-term mem-

ories in tabu search.

• Deterministic versus stochastic: A deterministic meta-heuristic solves

an optimization problem by making deterministic decisions (e.g., local

search, tabu search). In stochastic meta-heuristics, some random rules

are applied during the search (e.g., simulated annealing, evolutionary al-

gorithms). In deterministic algorithms, using the same initial solution

will lead to the same final solution, whereas in stochastic meta-heuristics,

different final solutions may be obtained from the same initial solution.

This characteristic must be taken into account in the performance eval-

uation of meta-heuristic algorithms (Sorensen and Glover, 2013).

• Population-based search versus single-solution based search:

Single-solution based algorithms (e.g., local search, simulated anneal-

ing) manipulate and transform a single solution during the search while

in population-based algorithms (e.g., particle swarm, evolutionary al-

gorithms) a whole population of solutions is evolved. These two fam-

ilies have complementary characteristics: single-solution based meta-

heuristics are exploitation oriented; they have the power to intensify the

search in local regions. Population-based meta-heuristics are exploration

oriented; they allow a better diversification in the whole search space. In

the next chapters of this book, we have mainly used this classification.

In fact, the algorithms belonging to each family of meta-heuristics share

many search mechanisms.
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• Iterative versus greedy: In iterative algorithms, we start with a com-

plete solution (or population of solutions) and transform it at each it-

eration using some search operators. Greedy algorithms start from an

empty solution, and at each step a decision variable of the problem is as-

signed until a complete solution is obtained. Most of the meta-heuristics

are iterative algorithms.

Meta-heuristic based evolutionary case-studies have been broadly used within

the power sector for structural planning (Gupta et al., 2014), Network recon-

figuration (Tomoiaga et al., 2013), Power loss minimisation (Rao et al., 2013),

Reactive power operation (Lai and Ma, 1997) or Generation dispatch (2012).

That motivates the rest of this chapter where novelty of the two selected meta-

heuristics implemented in this thesis are detailed and their particularities high-

lighted: A bespoke (hybrid) Graph Search algorithm and a Genetic Algorithm.

3.4 Graph Search algorithm: SIM A* algo-

rithm

Distribution network planners usually alter the network topology or deploy

interventions in response to external events such as new customer connection,

thermal or voltage overloads, reliability issues, asset diversion or end-of-life

or condition related replacement. This reactive approach naturally lends itself

towards being represented as a time series sequence of network states with tran-

sitions between states corresponding to network configuration or load changes.

(Goldberg and Harrelson, 2005) proposed and implementation based on (Tar-

jan, 1972), (Imai and Asano, 1986) and (Goldberg and Holland, 1988) of a

path algorithm that use A* search to find a point-to-point shortest path in
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weighted, directed graph. The novelty of the A* implemented within this

thesis is that has moved out Graph Search Algorithms from the No memory

domain (Figure 3.9).

Alternative evolution pathways of the network over a period of time would

therefore arrange into a phylogenetic tree of network states with branching

points being alternative decisions of planning engineers. The root of the tree

corresponds to the network configuration and loading conditions at the start

of the modelling, while the leaf nodes represent boundaries of the search space

that are furthest in time from the origin.

The phylogenetic tree representation of the search space using graph search

algorithms closely mirrors existing processes within a DNO and can be easily

understood by planners, managers and other stakeholders. Assembling the tree

based on automated application of intervention techniques and finding least

cost path from the root to the leaf nodes constitutes an optimisation problem

of finding the best sequence of interventions to keep the network compliant

under changing loading conditions over time. In this context, ”least cost”

can be defined in terms of technical performance of the network, economic

expenditure to keep the network compliant, incentive costs or any combination

of the above.

3.4.1 SIM algorithm

The SIM algorithm is a scenario-dependent, optimal-seeking feed-forward heuris-

tic. For an exogenously defined scenario, each year is specified as a network

state. The exogenous variables that are going to be consider for Chapter 5

and 6 case studies defining network states are namely, Customer Minutes Lost
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(CML), Customer Interruptions (CI), Losses, Average Network Utilisation,

Average of Maximum Network Utilisation.

The SIM search always starts with an unevaluated network state in the

first year of the experiment (initial network state). Following a power flow

study, the search either moves on to the following year, or, if the network state

has failures, saves it into failed network states store. Evaluation then moves

to the next year, so that the failed network states store accumulates all failed

states contingent upon the scenario to its end date, before seeking to remedy

any of them.

To remedy the failed states, SIM selects each failed network state from

the failed network states store and applies a ”patch”. The set of patches is

exogenously defines and may include one of the smart intervention techniques,

storage or a conventional reinforcement to resolve failures. Depending on the

outcome of patching, the SIM saves a new failed network state or moves on to

the following year until the network state fails again.

To select the sequence of patching in the failed network states store, the

SIM uses one of three algorithms, depthfirst, widthfirst and A*. The depth

first algorithm always tries to reach the end year of experiment as fast as

possible by always selecting the last saved network state. The width first

algorithm performs an exhaustive exploration of the search space by always

selecting the first network state from the failed network states store . Both

depth first and width first algorithms do not take costs of interventions into

account when deciding which network state to expand next.

In contrast, A* algorithm aims to find the least-cost path through the

search space. As A* traverses the search space, it builds a tree of partial paths.

The leaf nodes of this tree (failed network states) are stored in a priority queue

that is ordered using a cost function, which combines a heuristic estimate of
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the path cost to reach the goal h(x) and the distance travelled from the initial

node g(x). In particular, the cost function is:

f(x) = g(x) + h(x) (3.7)

where g(x) is the TOTEX incurred so far and h(x) is a heuristic estimate

of TOTEX to reach the end of experiment. The algorithm removes the next

network state in the priority queue to apply intervention techniques. The

search stops when the queue is exhausted or a termination criterion, such as

the number of evaluated network states, is satisfied.

3.4.2 A* in SIM

Unlike path finding tasks in which A* search is typically used (Ababei and

Kavasseri, 2011), network evolution is a challenging problem, making calcula-

tion of g(x) and h(x) not straightforward.

g(xi) = (ci + oi) +
i−1∑
j=1

(cj + oj +mj) (3.8)

Equation 3.8 defines g(x), for a network state where ci is CAPEX in the

current year, oi is OPEX in the current year, and cj, oj and mj are CAPEX,

OPEX and metrics costs of ancestor network state in year j with no issues.

The heuristic estimate of cost to reach the end year is given.

h(xi) = (cREMi
+mi) +

n∑
k=i+1

(ck + ok +mk) (3.9)
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Equation 3 requires knowing average CAPEX, OPEX and metrics costs of

descendant network states, which might not be known in advance. This section

details how the SIM estimates these costs.

3.4.3 CAPEX estimation

The SIM ranks all network states according to the number of failing asset

groups. Thus, a fully compliant network state has a rank 0 and a network state

with 5 failing assets has a rank 5. For each year of the experiment, the SIM

has a vector cAV G of historical average CAPEX to increase a rank of a network

state by 1. For a year that has no network states in the database, the vector

has a single constant value of DEFAULT Y EARLY CAPEX = 2000.0, but

any suitably low value would work. In reality, fixing a noncompliant network

state in most cases costs well over DEFAULT Y EARLY CAPEX, making

the SIM to use a learning process to adjust the average estimated CAPEX

for years that have expanded network states in the database. For each year

with at least a single network state in the database, the SIM computes two

vectors cAV G and p. Vector cAV G is predicted average CAPEX to increase a

rank of a network state. Vector p is learning pressure, which increases with

the number of network states of each rank in the database. The learning

pressure exponentially increases with the number of network states of a given

rank, reaching its maximum after 7 network states are expanded. Referring to

Equation 4,

pi = min(0.8, 0.05 · l1.5i,k ) (3.10)

where li,k is the number of network states of rank i in year k. At the end

of each iteration, an updated historical average CAPEX vector is computed
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according to Equation 5

cAV G = cAV G + (c′AV G − cAV G) ◦ p (3.11)

In turn, the average CAPEX cost for entire year is obtained using Equation6

c = cTAV Gj (3.12)

where j is a column vector of ones.

At the end of each iteration, an updated historical average CAPEX vector

is computed.

3.4.4 OPEX estimation

Initially the SIM assumes no OPEX costs are incurred. As the expansion

progresses, some patches start to incur OPEX costs. Unlike CAPEX, OPEX

continues to be incurred in the following years after the patch has been applied.

An average OPEX value for a year can be obtained using Equation 7

o = jToc(j
T j)−1 (3.13)

where j is a column vector of ones, and oc is an OPEX vector of compliant

network states in that year.

3.4.5 Metrics cost estimation

Metric cost is estimated like the OPEX. Initially the SIM assumes no metric

costs in a year. Once compliant networks states appear in a year, the metric
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cost for that year is updated according to Equation8

m = jTmc(j
T j)−1 (3.14)

where j is a column vector of ones, and mc is a vector of metric costs of

compliant network states in that year.

The average remaining CAPEX in the year a network state is in is cal-

culated using the vector of historical average CAPEX cAV G and the network

state’s rank according to Equation 9

cREM =
r−1∑
i=0

cAV Gi
(3.15)

wherer is the rank of the network state.

3.4.6 Ranking of network states

Initially the SIM was using a single average CAPEX value for each year to

predict future expansion costs. During verification runs it was observed that

the costs to fix an asset group could change by a factor of 1000 depending on the

asset group type, which would make the estimation of remaining expenditure

in a year very coarse and, consequently, result in a slow expansion. To address

this issue it was decided to rank network states according to the number of

asset groups with failures remaining and maintain a set of averages for each

year and for each rank.

The SIM calculates metrics costs from metrics data obtained as a result of

analyseIntactNetwork function call. Consequently this cost can be directly

calculated only for network states with no constraint violations. This presents

a problem as the fixed network states and their descendants in following years
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are becoming more expensive because of metrics costs suddenly being added

to them once the network states are fixed. This prevents the A* search from

expanding descendants of fixed network states. The issue can be solved in two

ways, namely, by not including metrics costs in A* cost function or by making

sure the metrics costs are correctly propagated to the ancestor network states

once a fixed network state is found. The SIM adopted the latter approach by

initially assuming the metrics costs for all years to be 0 and updating them

with an actual average value once fixed network states appear in a year.

In the early versions A* was using the number of failures as an indicator of

progress within a year. Statistical analysis of SIM expansion trees has revealed

that the costs to fix a network state with constraints are not correlated with

the number of issues. Instead, the costs and number of applied patches were

strongly correlated with the number of asset groups with constraints. Latest

A* search versions use the number of asset groups with failures as an intra-year

progress indicator.

Solving the network optimisation problem represented as a tree with graph

search algorithms such the one above detailed A*, has its downsides, however.

The main problem stems from the fact that least cost path algorithms pro-

duce a single solution at a time, and obtaining alternative solutions is generally

difficult. In contrast, planners are interested in exploring trade-off between al-

ternative network development scenarios, e.g., balancing initial investment vs.

ongoing maintenance and operating costs. The remainder of the issues relate

to the reactive nature of intervention planning, which leads to horizoning and

locally optimal solutions. As interventions are triggered by network failures,

what is considered a failure plays a defining role in the way a solution is devel-

oped. For example, tightening voltage constraints applicable to a contingency

operation mode would likely to trigger different interventions earlier in the life-
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cycle. For that reason, this research considers the transition to Evolutionary

Algorithms as a step-forward for future research (Jiang and Yang, 2016).

3.5 Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) are a better approach for

global optimisation, that is capable of developing multiple alternative solu-

tions to a problem simultaneously. The network design optimisation can be

presented either as a static problem with performance functions capturing

whole-life performance and costs of the network or a dynamic receding hori-

zon problem, suitable for optimisation with model predictive control multi-

objective dynamic approaches. A caveat of the suggested approach is discrete

search space of network interventions, e.g., transformers and batteries come

only in certain sizes and can only be installed at substations, meshing and au-

tomatic load transfer can occur only at normally open points, etc. This may

require a hybrid approach between MOEAs and graph search combined with

Pareto ranking of leaf nodes instead of an A* priority queue.

3.5.1 Introduction

Within the work of this thesis, in Chapter 4, a meta-heuristic optimisation

framework and multi-objective evolutionary algorithm was implemented and

bespoke plug-ins were designed for Ganesh optimiser 1. The optimiser is a

novel approach for MDE that incorporates real-world size problems with al-

gorithms that capture external mechanisms that will inform the optimisation

formulation.

1The name Ganesh comes from borrowing some letters from ’GA with non-domination
ranking and elitism’ (Oliver et al., 2015)
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The MOEA part of Ganesh is a genetic algorithm (GA), a non-sorted ge-

netic algorithm second generation (NSGA-II) employing elitism and Pareto

non-dominance. This approach was originally suggested by (Holland, 1975)

and Goldberg (1989), first implemented by (Fonseca and Fleming, 1993), and

are active research lines for Coello (1994, p.331) and Deb (1989, p. 42)(Coello,

1994) (Deb and Goldberg, 1989). As an example, during the life of this the-

sis, Professor Deb and Haitham Seada unified and developed a NSGA-III for

single, multiple and many objectives (Seada and Deb, 2015) for aiding the

convergence of Pareto-dominance in optimisation problems of four or more

objectives (Mkaouer et al., 2014) (Mkaouer et al., 2015).

The GA with Ganesh uses a novel crossover mechanism in order to recom-

bine the mutation and crossover rates, as well as each of their perturbation

control parameters, and unlike other GAs, provides a novel tunable control for

the number of duplicate chromosomes in each generation (Oliver et al., 2013).

It also provides the choice of using not just 1 or 0 as values of the genes, but

up to 64-bit integers. That will be extremely valuable when feeding into the

optimiser values of real-world engineering problems like the case in chapter 4

of this thesis.

Because MOEAs contain a population of solutions, rather than just one,

they are inherently more suitable for optimising MDE providing multiple so-

lutions per run. In theory, according to Coello (2006, p.28), a single EA run

could find all of the feasible Pareto optimum solution, whereas non EA ap-

proaches would be able to find one only per run and have to be run n times

to find n further optimum (Coello, 2006).

MOEAs are able to manage discontinuousness, non-differentiated, noisiness

in optimisation problems, which make them able to be applied in a broad field

of real-world applications. Fonseca and Fleming (1995, p.1) highlighted that
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EAs are by their nature high likely to be parallelised due to being population-

based, that will be extremely important for the future scalability of case studies

presented in chapter 4(Fonseca and Fleming, 1995). MOEAs according to

Back (1997, p. 3) are ”especially well suited for solving difficult optimization

problems”, and all these attributes of MOEAs provide a solid foundation for

using them to tackle real world-engineering problems (Back et al., 1997).

3.5.2 Ganesh: Algorithm and Implementation

3.5.2.1 The GA Algorithm

The GA implemented in this research was designed by Oliver (2013, p.261)

and inspired by the NSGA-II algorithm (Deb et al., 2000) and its predecessors

including Fonseca and Fleming’s (1993) MOGA and that of Goldberg (1989),

with some modifications, to: initialisation of population and solution, the

non-domination sorting method, the construction of the new generation, the

addition of repairable Hard Constraints, the adoption of a plugin architecture,

and of course the self-adaptive aspect, as well as some practical considerations

given below.

An initial population of random solutions is created and through the eval-

uation of their fitnesses for selection for reproduction, and by the introduction

of variation through mutation and recombination (crossover), the solutions are

able to evolve towards the optima populating a Pareto front.

Usually, while discussing a GA mechanisms and structures the biological

terminology is brought in. The decision vector of the solution is termed the

chromosome which is composed of a set of genes, each of which is a variable

of the appropriate data type which may be primitive or a class and whose

value is an allele. The result of the evaluation of the OFs, which depends on



78 Chapter 3. Meta-heuristics for Evolutionary Power Systems

the chromosome, is then the fitness. The chromosomes may then be subject

to manipulation by certain functions, termed operators, the most common of

which are crossover and mutation. Crossover, also known as recombination in

the biological domain, occurs during the creation of new solutions, in which

two existing solutions (parents) are combined to create one or more new ones

(children) by mixing the chromosomes in certain defined but stochastic ways.

This is metaphorical sexual reproduction. Mutation is the process of altering

one or more genes in one solution’s chromosome. A variety of other similar

operators exist which in some specific way also alter the chromosome(s) or

gene(s) in order to explore the search space, and whose quality depends upon

the specific details of the problem concerned.

The non-domination sorting is amended from NSGA-II to ensure that each

solution is compared with every other one once in a simple and efficient manner

which is entirely for-loop based, with the number of comparisons being of the

same order as that of the continuously updated method (Deb, 2001), and

the method of updating dominated-by count and dominated-solutions lists are

modified accordingly. Figure X shows a high level view of the algorithm as a

flow-chart.

Following characterisation highlights Ganesh uniqueness and novelty (Oliver

et al., 2015):

• Self-adaptation Ganesh allows mutation and crossover rates to be spec-

ified for the initial population, or to be set to random values in a uniform

distribution, or to default to certain values. The default mutation rate

of each solution would be set to 1/n where n is the number of variables

of the objective functions (OFs).
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• Constraints Constraints, either soft or hard can be added to the prob-

lem by creating sub-classes of the appropriate type, such as Hard Con-

straint. A soft constraint is one that can be relaxed, by allowing it to be

exceeded but acquiring a penalty associated with it proportional to the

excess, which is reflected in the fitness of the solution when solutions are

ranked. A hard constraint is one which must be adhered to, so solutions

which break it must either be repaired or removed from the population.

• Chromosome and Population Initialisers Each chromosome type

has its own default initialiser, that defines how its genes are assigned

appropriate values when a solution is created, and the default is that

each gene is randomly given a value within its permitted range, assuming

a uniform distribution.

• Resume from previous run Real-world optimisation problems such

as those presented in chapters 4, 5 & 6, tend to have objective functions

that are computationally expensive to evaluate and which are therefore

time-consuming. In these cases, an optimisation problem can take days,

weeks or even months to run, which increases the chance that they may

be interrupted by some unexpected external event, risking the loss of

data, progress made and much time.

Ganesh obviates these problems by providing the ability to resume from

a previous run, in two ways, that differ by whether the default text log

or optional binary log is used. The text log by default contains, in text

form, the decision vector, objective function values and where applicable,

the self-adaptive control parameters, for each solution in the population,

for each entire generation produced and evaluated (with respect to the

objective function values and non-dominated sorting).
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Ganesh enables either the text log or the binary log or both to be used,

moreover it enables Ganesh to retain the last generation only, as a binary

log. The latter option enables Ganesh to execute optimisation problems

which have objective functions that are quick to evaluate but require

vary large numbers of generations to be run, which may otherwise create

undesirably large text log files.
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Figure 3.10: High level representation of the GA Ganesh algorithm (Oliver,
2015) expressed as a flow-chart, in which the production of the next generation
population is shown as a sub-process for clarification
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3.5.2.2 Multi-Objective Evolutionary Power Networks

In brief, the GA within Ganesh creates a random population of solutions at the

start, which is to say, each solution has by default a set of pseudo-randomly

chosen values for its decision vector. The resulting population is evaluated

and the solutions ranked by comparing the values obtained for their objective

functions, and the ”best” ones are selected for breeding to create the new

generation. The off-spring generation is then evaluated, and so on. This is

repeated until the termination criteria are satisfied (Oliver, 2015).

For defining the optimisation problem using Ganesh MOEA a Java plug-in

must be defined with its decision vector by choosing a Chromosome of the

desired type and a list of the desired number of Variables, and also defining

the OFs. Ganesh provides a default initialiser for the population and a default

initialiser for each Chromosome type, thus the problem is fully defined. The

problem class may then be compiled into an independent library named GA-

Plugins.jar, which may contain as many different optimisation problems as

desired.

In this way, the optimisation problem is created completely separately and

without needing to change any of the source code of Ganesh. In order to

execute a particular optimisation problem, Ganesh is simply called from the

command line with the name of the problem class as a parameter. The inde-

pendent file containing the plug-in may contain as many different optimisation

problems as is desired, enabling easy testing or switching between problems.

Ganesh takes a number of parameters at run-time to control its behaviour,

but these are all concerned with the general operation of the algorithm and

apply to any problem that Ganesh might run. Some optimisation problems will

have behaviours that the user might wish to parameterise, rather than hard-
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Figure 3.11: Domain characterisation of optimisation flow using Ganesh as
MOEA and PLEXOS as market-operations solver

coding them as part of the problem class, so the Experiment class provides a

default empty initialise method, supplying a parameter file when given, which

plug-ins may override, to read and initialise themselves with values from that

le. This is used, for example, to run the generations of PLEXOS scenarios

optimisation concurrently, to gather the results of the OFs for the analysis of

its performance, as detailed in Chapter 4.

3.6 Methods and materials

As described in the thesis introduction, having performed a literature review

and described the meta-heuristic frameworks, test cases of real-world problems

are due to implement aforementioned methodologies. In Chapter 4, Ganesh

is to be applied for integrating storage in a certain area of the US. SIM A*

search algorithm will be used in Chapter 5 for evaluating a 11 kV distribution

network, where in combination with Real Options Valuation, in Chapter 6 will

unlock flexibility services for distribution networks.
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Ganesh framework, algorithm, and the plugins encoding the optimisation

problems were developed in Java (Oracle, 2014). The software from which

Ganesh is built is dependent upon features which were new to an older version,

Java 2 Platform, Standard Edition 5.0 (J2SE 5.0), in particular Enumerations

and Generics, therefore Ganesh will not run on versions of Java older than

that (Oliver et al., 2015).

SIM A* search algorithm and the interface with Ipsa 2 software are man-

aged using Python 2.7. For debugging and clustering some results can be

directly queried by SQL. Python scripts were created to produce Excel, Word

and JSON result datasets. Real Option Valuation algorithm was coded in

Python for a future integration within SIM A* search algorithm.

All across the thesis, as a multi-dimensional visualisation technique, Par-

allAX (2009) and PACO Heinrich (2015) are implemented for the case studies

contained in chapters 4, 5 & 6.

The source of the thesis was created using LaTeX with TeXstudio as editor.

Matlab language (MathWorks, 2015) was used to post-process some result

data and to produce graph plots.

The use of PLEXOS as techno-economical solver made this work needed to

be carried out on a Windows machine. Most of the runs were produced on an

Intel Core i7 @2.20GHz 32GB machine, where validation runs were conducted

using an Intel Xeon 3.30GHz 255.93GB machine.



Chapter 4

Addressing Massachusetts’

Storage Target under High

Wind Penetration in the

ISO-New England using

Multi-Objective Evolutionary

Optimisation

4.1 Introduction

The case study presented in this chapter explores in two phases system config-

uration and evolutionary planning at transmission level and it is motivated by

the volatility and recent uncertainty of large deployments of renewables and

their impact on operations and prices. During the first phase, several high

penetration of wind topologies are explored. Total generation costs, as well

85
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as, impacts on nodal electricity prices are explored. For the second phase, a

solution from section 1 is explored further to include Massachusetts’ Storage

Mandate. Using PLEXOS (PLEXOS, 2016) production cost tool for modelling

the power system operated by the Independent System Operator New England

(ISO-NE, 2013), a multi-objective optimisation is conducted for evaluating the

impact of that mandate on electricity volatility, total generation cost (TGC)

and Dump/Unserved Energy. Production cost models are used extensively in

the electric power industry to simulate bulk power system operations, genera-

tions costs, and prices.

One of the challenges of integrating wind power generation into the power

sector is geographical and network locations. The best wind resources are gen-

erally located far from the load centre (Nieto-Martin et al., 2016) (Morales et

al., 2011). Suitable locations for distributed wind power turbines depend both

on topological and network conditions. In many cases, that provides an uncer-

tainty degree for transmission asset investments (Conejo et al., 2016) (Gautam

and Mithulananthan , 2007). In addition, the impact of wind power on bulk

power system operations, generation costs, and electricity prices (main focus of

this chapter) may vary significantly depending on its topological distribution

(Papaefthymiou and Dragoon, 2016).

PLEXOS, a commercial software, is used to represent the production cost

model of the ISO-NE power system by simulating the day-ahead (DA), four

hour-ahead (4HA) and real-time (RT) markets Figure 3.11. Yearly simula-

tions are run for six different wind power topologies. In order to populate a

Pareto front that co-optimise price variability, productions costs and system

performance, this chapter assess Massachusetts’ Storage Mandate to study the

impact of high penetration distributed wind power topologies on aforemen-

tioned objectives.
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4.2 ISO-NE PLEXOS model

This chapter presents a renewable integration study that aims to assess the

impact of wind on a real-world size power system with minimal or no upgrades

to the distribution or transmission electricity systems. Firstly, it is investigated

the impacts of integrating large amounts of utility-scale distributed wind power

on bulk system operations by performing a case study on the power system

of the ISO-NE (Brancucci et al., 2014). On a second stage, a multi-objective

optimisation is performed for locating most suitable location for accomplishing

the Massachusetts Storage Mandate.

The analysis is performed by modelling the ISO-NE power system for the

year 2010 using PLEXOS with an academic license. For the first part, the

model is run for six different deterministic scenarios with 10GW of wind power

penetrations, being that up to 33% of the generation mix. The six scenarios

represent different wind topologies using curtailment, DA, and 4HA forecasts.

In one approach, wind power generation is modelled allowing wind power cur-

tailment, and it includes simulated DA and 4HA operational wind power fore-

casts (Mart́ınez-Anido et al., 2016).

The modelling approaches are analysed and compared to each other to sim-

ulate a more realistic case in which a system operator has neither visibility nor

control over the turbines because of their distributed nature, and to simulate

a case in which a system operator could curtail power generation and use wind

power forecasts during the commitment of conventional power plants.

4.2.1 Transmission Network

The ISO-NE model includes a wide representation of the ISO-NE transmission

network: 3,314 nodes (or substations); 2,485 transmission lines; and 1,830
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transformers. Table 4.1 shows the number of nodes and lines for the different

voltage levels represented within this model. All the wind power due to the

large size of the wind farms (and computation convergence time efficiency)

will be connected at high voltage levels, 345kV and 230kV. The transmission

data set was slightly modified by eliminating 9 nodes and 7 transmission lines

in northern Maine that are connected to Canada and separated from the rest

of the transmission network, being 99.6% the similarity with the real ISO-NE

network (ISO-NE, 2013).

Table 4.1: Nodel and Lines of the ISO-NE Model

(Brancucci et al., 2014)
Voltage Level (kV) Number of Nodes Number of Lines

345 157 186
230 32 30

120-191.5 10 6
115 1412 1677
99 80 0
69 171 186

44-48 97 90
34.5 200 125

24-33 44 18
23 187 75

14-22.8 97 1
13.8 505 66
<13.8 322 25

4.2.2 Generation

The ISO-NE model includes 468 electricity generators with a total installed

capacity of 35,967 MW, excluding wind and solar generators. Wind farms for

this study are distributed all along the ISO-NE territory simulating different

topologies. Details about wind farms locations for each scenario are displayed
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in the results section. Table 4.2 shows the number of generators and installed

capacity for each electricity generation source.

Maintenance is only considered for nuclear generators by scheduling it dur-

ing the time periods with the lowest load. The maintenance schedule is planned

such that it is never conducted on two nuclear generators at the same time.

The maintenance schedule of the other generators is not considered, because

it has only a very small impact on the generators’ capacity factor. In addition,

maintenance does not impact the analysis of the results, and it is outside the

scope of this study. For the same reason, unplanned outages of generators and

transmission lines are not considered in the model.

In the DA and 4HA market runs, DA and 4HA load and wind forecasts

are considered. Nuclear, biomass and coal power plants are committed in the

DA run; CC and steam turbines (STs) are committed in the 4HA run. All of

these units may be redispatched within generator operating limits in the RT

run. Hydropower plants are committed and dispatched in the DA run. All

other power plants are committed and dispatched in the RT run.

Table 4.2: Generators and Installed Capacity in ISO-NE Model

(Brancucci et al., 2014)
Generator Type Number of Generators Installed Capacity (MW)

Nuclear 5 4,878
Coal 19 3,740
Gas 159 17,101
Oil 131 5,691

Hydro 111 1,675
Biomass 36 844
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4.2.3 Load

Hourly DA forecast and actual load time series used in the ISO-NE model were

provided by ISO-NE (ISO-NE, 2013). For 4HA load forecasts have been based

on (Brancucci et al., 2014).

For the analysis of different scenarios with high wind penetration levels,

1-hour DA, 1-hour 4HA, and 1-hour RT electricity demand time series are

used, RT can be as precise as 5-minutes resolution, but its computational

requirements was not worthy for this study. The total electricity system load

in New England in 2010 was 130,773 TWh, with a peak system load of 27,102

MW.

4.2.4 Wind Topologies Scenarios

This subchapter describes the windfarm sites used to design different dis-

tributed wind scenarios with a wind power penetration from 30% to 33% of

de scenario generation mix, see Table4.3. The six scenarios main difference is

the location of each windfarms and therefore the transmission node that are

connected to.

Suitable locations for distributed wind power turbines depend both on geo-

graphical and network constraints. For example, wind turbines are more likely

to be connected to the distribution network in rural areas because of the dif-

ficult permitting issues in urban areas. Moreover, wind resource and some

terrain features are important considerations when choosing a suitable site for

a utility-scale wind turbine. With regard to network conditions, the voltage

level and other feeder characteristics, such as rating and length, are important

considerations when selecting suitable sites for distributed wind turbines.
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The recent Wind Integration National Data Set (WIND) Toolkit (King et

al., 2014), (Draxl et al., 2015) funded by the U.S. Department of Energy Wind

Program, is the source of wind data for the distributed wind site selection

exercise as well as for the production-cost modelling. The WIND Toolkit was

created by 3TIER using a mesoscale numerical weather prediction model run

on a 2-km by 2-km grid with 5-minute resolution from 2007 to 2013. The

WIND toolkit provides data for more than 120,000 onshore and offshore wind

power production sites in the United States. For each suitable wind site,

the available data includes a 5-minute wind power production time series and

simulated operational forecasts for 1-hour-, 4-hour-, 6-hour-, and DA forecast

horizons for the entire 7-year period.

Table 4.3: Wind Topologies characterisation for ISO-NE PLEXOS Model

Scenario Lat-Long dispersion Wind pene-
tration (%)

Number
of
wind
sites

Installed
wind
capacity
(MW)

1 2.008 (approx. 2.8km) 32.96 341 10,000
2 1.912 (approx. 5.6km) 33.68 89 10,000
3 1.947 (approx. 8.3km) 32.99 188 10,000
4 0.825 (approx. 2.8km) 33.55 228 10,000
5 3.076 (approx. 5.6km) 30.43 212 10,000
6 2.057 (approx. 13.9km) 32.55 92 10,000

Table4.3 provides a summary of the onshore wind site locations present in

the WIND Toolkit database that are located in New England and from which

a smaller number of wind sites are selected for each of the scenarios based on

network constraints. Table 4.4 provides the number of sites and the total wind

power capacity (from 2007 to 2012) for New England as well as for each of

the six states that comprises it. In order to simplify the model and foreseen a

prospective optimisation, 2,738 wind sites seemed to be an enormous number
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for having that many decision variables some of them as small as 2MW. Due

to that, maintaining the Total Wind Capacity within the ISO of New-England

(35,770 MW of wind resource), an aggregation of the wind sites has been

proposed for simplification purposes.

New windfarm sizes (ISO-NE Model) are on a range from 26 to 208 MW,

instead of the 2 to 16 MW of the ISO-NE Model proposed by (Brancucci

and Hodge, 2014). The aggregation has been performed using the coordinates

(latitude and longitude) of each 2,738 Wind Toolkit Data, evaluating the node

and adjacent lines for avoiding creating any constrain to the network, the new

770 wind sites are calculated. Once the 770 new wind farms have been defined

and located, as the installed capacity is 35,77GW, for our study purposes,

six scenarios will be evaluated. Selecting wind sites among those 770, the

maximum capacity to be installed was designed to be 10GW, which seems

reasonable for the wind resource of New England and their 2030 renewable’s

commitment.

Table 4.4: WIND Toolkit Data Set for New England

State Number of Sites Total Wind Capacity (MW)
Connecticut 110 1,258

Maine 1,142 15,558
Massachusetts 512 5,810

New Hampshire 404 5,452
Rhode Island 126 1,492

Vermont 444 6,200
ISO-NE Data 2,738 35,770

ISO-NE Model 770 35,770

The mean distance value and number of sites for each scenario to the centre

of New England is presented in Table 4.3. Scenario 1 represents the aggregation

of smallest capacity installed on the sites, therefore 345 wind sites are needed

to accomplish the 10GW wind commitment. Scenario 2, on the contrary,
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comprises the largest wind sites by capacity installed (89 wind sites), while

Scenario 3 is a trade-off between scenarios one and two, seeking for the average

sizes of the 770 windfarms, minimising the distances to the centre of NE. In

terms of distances, two scenarios have been created, scenarios 4 and 5, represent

the less and the most dispersion possible among those 770 windfarms. Scenario

6 is the one that accomplish the 10GW threshold with the wind-sites with

largest capacity factors. Scenario 7 presents a visualisation of the six scenarios.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure 4.1: ISO-NE wind scenarios with high penetration of wind
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4.3 Results ISO-NE High Wind penetration

model

The integration of distributed wind in ISO-NE impacts the electricity gen-

eration mix in several ways. In absolute terms, the two largest changes are

observed for gas- and coal-fired generation. Both sources decrease their elec-

tricity output with large amounts of wind power compare to actual real data

available from the ISO-NE. Wind power forecasts reduce gas-fired electricity

generation to a larger extent. If wind power forecasts are not considered, the

over-commitment of gas power plants results in higher gas supply. In relative

terms, noticeable changes in the generation mix caused by high wind penetra-

tion correspond to a very large increase in the electricity output of oil-fired,

gas turbine, and gas internal combustion generators when simulated DA and

4HA operational wind forecasts are used. These power plants are used during

few hours in the year and are characterized by their fast start-up and ramping

capabilities. The uncertainty of wind increases their electricity output. The

shares of nuclear and hydro in the electricity generation mix are not affected

by wind power penetration.

They are both committed in the DA market; and in the case of hydro, the

ISO-NE model does not allow redispatching in the 4HA and RT simulations.

On the other hand, increasing wind power penetration might increase hydro

pumping and decreases biomass electricity generation, however hydro pumping

and imports and exports have not been model in this study for computational

reasons.

Within this study, the ISO-NE PLEXOS model has been designed to sim-

ulate the DA, 4HA, and real-time (RT) markets, however, must be said that

ISO-NE does not have a 4HA market in place (Woo et al., 2011). Due to
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early testing runs and high dispatch volatility, it has been useful introducing

an intra-day market as the 4HA to commit gas combined-cycle (CC) power

plants as well as gas and oil steam turbines, improving dramatically unserved

energy events and volatility on prices(Borggrefe and Neuhoff, 2011). The DA

and 4HA markets are modelled with 1-hour time steps; the RT market was

modelled with 5 minutes resolution. This section is structured as follows. The

next three subsections provide details about the different elements compound-

ing the results section: prices, total generation cost and energy mix and finally,

validation.

4.3.1 Electricity prices

Table 4.5 shows the pricing characterisation for ISO-NE in 2010, comparing

the ISO-NE published data and the six scenarios evaluated.

Table 4.5: Electricity prices in the ISO-NE in 2010 vs PLEXOS Model

ISO-NE Data 1 2 3 4 5 6
RT mean price ($/MWh) 49.56 51.99 51.67 54.37 47.06 47.94 50.97

Standard deviation RT price 24.78 36.82 36.30 38.95 32.32 28.16 34.97

As displayed on Table 4.5, ISO-NE 2010 mean RT price and the simulated

by the ISO-NE PLEXOS scenarios are in the same range with a difference gap

between 5% cheaper (Scenario 4) to 10% more expensive (Scenario 3) com-

pared to the published data. In addition, we can say that simulated scenarios

increases volatility of electricity prices between 13% (Scenario 5) and 57%

(Scenario 3) Volatility is measured as the hour to hour changes in electricity

prices. The increase on price volatility is due to the amount of wind in the

system. Among the different scenarios the volatility is noticeable being the

difference between Scenario 3 and Scenario 5 up to 28%.
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Figures 4.2 to 4.7 present descriptive statistics of the six scenarios and will

be the base to choose (along with Total Generation Costs in Figure 4.9) from

which high wind penetration scenario start the optimisation in section 4.4.

Descriptive Statistics
Number of bins 94
Mean 51.99
StDev 36.82
Miminum 2.20
5th percentile 10.38
25th percentile 31.40
Median 44.18
75th percentile 63.73
95th percentile 118.06
Maximum 536.22

Figure 4.2: Histogram and statistics characterisation for Scenario 1

Descriptive Statistics
Number of bins 94
Mean 51.67
StDev 36.30
Miminum 1.38
5th percentile 10.40
25th percentile 31.21
Median 44.13
75th percentile 62.57
95th percentile 122.74
Maximum 385.17

Figure 4.3: Histogram and statistics characterisation for Scenario 2



Descriptive Statistics
Number of bins 94
Mean 54.37
StDev 38.95
Miminum 2.23
5th percentile 10.41
25th percentile 31.54
Median 44.71
75th percentile 67.25
95th percentile 166.43
Maximum 423.62

Figure 4.4: Histogram and statistics characterisation for Scenario 3

Descriptive Statistics
Number of bins 94
Mean 47.06
StDev 32.32
Miminum 1.60
5th percentile 8.41
25th percentile 29.63
Median 41.13
75th percentile 57.41
95th percentile 91.41
Maximum 286.60

Figure 4.5: Histogram and statistics characterisation for Scenario 4



Descriptive Statistics
Number of bins 94
Mean 47,94
StDev 28,16
Miminum 9,06
5th percentile 9,36
25th percentile 33,54
Median 45,18
75th percentile 57,86
95th percentile 84,15
Maximum 320,50

Figure 4.6: Histogram and statistics characterisation for Scenario 5

Descriptive Statistics
Number of bins 94
Mean 50,97
StDev 34,67
Miminum 1,30
5th percentile 10,28
25th percentile 31,51
Median 44,38
75th percentile 62,20
95th percentile 103,24
Maximum 440,39

Figure 4.7: Histogram and statistics characterisation for Scenario 6
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4.3.2 Total Generation Costs and Generation Mix

Figure 4.8: ISO-NE PLEXOS Model Scenarios Generation Mix

Figure 4.8 shows the energy mixes of the ISO-NE PLEXOS scenarios are very

similar in relative terms to the one observed in ISO-NE in 2010. Beside wind,

noticeable differences arose in oil, coal-powered and gas. Largest difference

between scenario happens in Scenario 5.

Due to wind topology, and generation dispatch, that scenario presented the

largest amount of generation required leading to be the most expensive option

for the total generation cost (Figure 4.9).
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Scenario 6 computed almost four more times more oil generation consump-

tion compared with the ISO-NE 2010 (Table 4.6), while reducing up to 50%

the generation coming coal power plants, and 40% from gas.

Figure 4.9: ISO-NE PLEXOS Model Scenarios Total Generation Costs

That increase of oil, occurs on the RT market where it is used to balance

the wind, where the reduction of coal and gas consumption is it across all of

the scenarios, being the generation sources being pushed out of the mix when

10GW of wind are forced into the system.

The ISO-NE model calculates the total generation cost as the sum of all

the variable electricity generation costs of the electricity generators that are

connected to the ISO-NE power system. These costs include fuel costs, variable

operation and maintenance costs, and start-up and shut-down costs. Figure

4.9 shows the annual electricity generation cost for the six scenarios.

The ISO-NE model calculates the total generation cost as the sum of all

the variable electricity generation costs of the electricity generators that are

connected to the ISO-NE power system. These costs include fuel costs, variable
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operation and maintenance costs, and start-up and shut-down costs. Figure

4.9 shows the annual electricity generation cost for the six scenarios.

Having into consideration the different wind topologies presented in Figure

4.1, there are significant differences in the total generation costs depending on

locations described in Table 4.3. It has to be noticeable that this differences

in prices and total generations can be even greater because within these sce-

narios study it has been consider that we have perfect wind power forecasts.

However, these potential differences will be reduced if exchanges with neigh-

bouring regions of the ISO-NE are allowed. Therefore, the results of electricity

generation cost shown in Figure 4.9 should be considered to certify that even

installing the same amount of wind power (10GW), depending on how the

topology of wind is installed, it can have a difference up to 7%, 171 million

dollars between the cheapest and most expensive wind topology configuration,

Scenario 3 and Scenario 5 respectively.

The impact of high penetration of distributed wind on the annual electricity

generation mix in ISO-NE using a modelling approach that included simulated

DA and 4HA operational wind power forecasts allowing wind curtailment will

lead to being able to evaluate the amount of energy that is yearly curtailed in

each scenario. Table 4.6 displays how ”unrealistic” wind topology configura-

tions, such as scenarios 4 and 5, led to noticeable amount of wind curtailment

in the system. Curtailment events, while allowed for all of the generators,

are penalised in the scenarios with -30$/MWh, being wind curtailment of the

causes that made scenarios 4 and 5 the most expensive ones.

Table 4.6: Dump Energy by ISO-NE PLEXOS scenarios

ISO-NE Scenarios 1 2 3 4 5 6
Dump Energy (GWh) 1,146.13 1,708.03 1,202.52 3,241.36 8,461.13 1,966.42
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4.3.3 Model Validation and Summary

The high increase of wind power in the ISO-NE will lead to a decrease of

the conventional sources share as it is displayed in Figure 4.8. The two

largest changes are observed for gas- and coal-fired electricity generation; gas

is the energy source displaced the most. Differences among scenario’s results

and ISO-NE published data reflect how the impact wind high penetration on

transmission-level system operations affects the generation mix of the system.

The goal for developing the ISO-NE model is not to recreate a perfect rep-

resentation of the ISO-NE power system in 2010, but to have a model that

realistically represents the operational characteristics of the ISO-NE power sys-

tem. The six RT scenarios of the ISO-NE model have very similar outcomes,

demonstrating that the model is robust and will present valuable insights for

the study and further optimisation.

The ISO-NE PLEXOS Scenarios were validated against the 2010 data pub-

lished by ISO-NE (ISO-NE, 2014). The ISO-NE model is run as described in

the previous sections for the DA, 4HA, and RT markets with 1-hour time

steps. The difference by generation source, table 4.7, is notorious on the wind

generation, due to the relatively small installed wind capacity present in the

ISO-NE power system in 2010.

Table 4.7: ISO-NE Model vs ISO-NE, Energy Mix in 2010

ISO-
NE
Data

1 2 3 4 5 6

G
en

eration

Nuclear 38.364 38.820 33.818 34.829 33.804 33.147 34.432
Coal 14.131 9.262 7.653 6.706 7.536 7.408 6.593
Gas 57.584 36.735 36.548 34.576 35.775 37.733 34.137
Oil 0.57 0.54 1.71 1.818 1.94 1.66 2.32
Biomass 7.194 5.255 4.497 5.067 4.561 3.986 4.936
Hydro 7.227 6.738 6.841 7.083 6.899 6.601 7.188
Wind 0.491 42.367 43.206 43.473 43.706 44.963 44.453

Demand Load 130.773 130.772 130.772 130.772 130.772 130.772 130.772
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Some of the limitations and reason for having slightly higher RT prices and

noticeable Standard deviation of RT prices may come from discrepancies such

as scenarios assumptions, the absence of bilateral contracts, fuel prices, power

plant maintenance schedules, transmission interconnection capacities (Imports

and Exports), and hourly electricity prices in the neighbouring regions. The

displacement of coal and gas power plants from the generation mix due to the

integration of the 10GW of wind, led to an increase of oil commitments in

the RT market to cover wind intermittency motivates the next section: What

about placing storage for co-optimising variability in prices, total generation

costs and Unserved/Dump energy?

4.4 Multi-Objective Optimisation for address-

ing Massachusetts Storage Mandate

High penetration of distribution generation, integration of low carbon tech-

nologies, and ageing non-flexible power networks designed to operate coal and

gas plants, are starting to experience congestion and peaking prices. Transmis-

sion and distribution networks investment uncertainty is a complex problem,

where traditional deterministic models are in need to be revised to overcome

present and future decision-making challenges. Proliferation of large amount of

distributed renewable generation are creating new challenges for Transmission

and Distribution Network Operators, increasing alternatives to conventional

reinforcement in order to reduce network operation costs, increase security of

supply and allows a more reliable renewable generation to be connected to the

grid. Selecting the most optimal combination of generation mix portfolios in
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regards to long-term cost and performance of the system in a fast evolving

environment do require innovative modelling and decision-making approaches.

In 2013, CAISO published the ”duck chart”, which shows a significant

drop in mid-day net load on a spring day as solar photovoltaic are added to

the system. The chart raises concerns that the conventional power system will

be unable to accommodate the ramp rate and range needed to fully utilise

solar energy, particularly on days characterized by the duck shape (Figure

4.10). This could result in ”overgeneration” and curtailed renewable energy,

increasing its costs and reducing its environmental benefits (Denholm et al.,

2015). However, by allowing distributed resource, in our current case, wind

and storage to provide grid services, system flexibility could be greatly en-

hanced (WECC, 2015) (Malekpour et al., 2013). In CAISO has been proven

that storage plus renewable (solar in their case) could significantly reduce cur-

tailment and allow much greater penetration of variable generation resources

in achieving ambitious renewable targets. Fully integration of storage into

planning and operations will allow maximum use of the wind resource.

Figure 4.10: Downward and Upward Ramping violations in CAISO
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Table 4.8: Cumulative Energy Storage Capacity Procurement Targets (MW)
for California (California Public Utilities Commission, 2014)

Storage Grid Domain Point
of Interconnection

2014 2016 2018 2020 Total by 2024

Southern California Edison
Transmission 50 65 85 110 310
Distribution 30 40 50 65 185
Customer 10 15 25 35 85

Cumulative Subtotal SCE 90 120 160 210 580
Pacific Gas & Electric

Transmission 50 65 85 110 310
Distribution 30 40 50 65 185
Customer 10 15 25 35 85

Cumulative Subtotal PG&E 90 120 160 210 580
San Diego Gas & Electric

Transmission 10 15 22 33 80
Distribution 7 10 15 23 55
Customer 3 5 8 14 30

Cumulative Subtotal SDG&E 20 30 45 70 165
Total - all 3 utilities 200 270 365 490 1,325

Table 4.8 represents the CAISO Storage mandate and it is classified by util-

ities, years, domains namely, transmission, distribution, and customer. Mas-

sachusetts is aiming to have approved their own storage mandate by spring

2017 (Massachusetts Department of Energy, 2016). There is an ongoing de-

bate regarding how ambitious this should be or the benefit that will bring

across the value chain. Undoubtedly, it will enhance renewables integration

and, in combination with ambitious energy efficiency programs, will contribute

to manage a more flexible system with growing peak demand. Benefits of stor-

age has been addressed in chapter 2 and beside that, just worth mentioning

that T&D sector has been calculated in (Massachusetts Department of En-

ergy, 2016) to the largest one for future savings. Total system benefits of:

Energy Costs, Reduced Peak Capacity, Ancillary Services Costs, Wholesale

Market Costs, Integrating Renewables, and T&D, are calculated to be up to
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$2.28B. The motivation of this sub-chapter is not dispute but to demonstrate

how bottom-up nodal techno-economic modelling can contribute with loca-

tional insights to decision makers on where to accommodate the 600MW of

storage that this stylised case study assumes as Massachusetts Storage Man-

date. Starting from Scenario 6 of the previous section, the one that represent

the configuration of turbines with higher capacity factor, storage locations for

the optimisation problem will be selected among 512 locations of WIND (Ta-

ble 4.4). Among the 512 locations, Figure 4.11, 85 will be selected as solution

candidates depending on the distance to closest wind farm (0-1km2, 1-5km2,

more than 5km2).

Figure 4.11: Scenario 6 Massachusetts wind locations and 512 storage potential
locations

The goal of this section is to investigate how different storage topologies

within Massachusetts can aid to reduce volatility and uncertainty for high

wind penetration generation mixes. Optimising the standard deviation of RT

prices, total generation costs, and dump energy and the consequent impact on
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ISO-NE of the Massachusetts storage mandate is addressed within the next

subsections.

4.4.1 Characterising the Optimisation

The optimisation problem is defined at a high level as a process to characterise

the solution space for finding the set of potential storage locations, in which

node will be connected, enabling the ISO-NE to operate a more flexible port-

folio. The optimisation characterisation is non-linear and multi-dimensional,

in both its variables vector and its objective functions.

The idea of using utility-scale storage for frequency control or system sup-

port it is not a novel idea, with some large pilot projects been operated as

early as 1986 (Knisch et al., 1986). The operation of that project, despite

decommissioned in 1993 by newer network design provided valuable insights of

the roles that storage can have for enhancing grid operation (Wagner, 1997).

The storage units are defined as in Table 4.9 and for the optimisation

purpose, each unit can take 0 value, meaning that at that location in that

configuration the unit is not present, or 1, which means that its maximum

capacity is accounted for accomplishing the 600MW constraint. Each PLEXOS

simulation has an horizon of one calendar year (2010), as 365 steps of 1 day

increments with 5 minutes resolution.

Table 4.9: Regulation Storage Operation Characteristics

Generic Storage Unit Operating Characteristics
Max Power 10/15/20 MW
Charge Efficiency 100%
Discharge Efficiency 100%
Minimum State of Charge 30%
Maximum State of Charge 100%
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The number of active storage units amended in the PLEXOS Xml model file

which are sent to PLEXOS by Ganesh optimiser for each solution run, as de-

tailed in Figure 3.11. As there are 85 candidate locations at which the storage

units can be located, and 3 objective functions, the parameters vector of each

candidate solution therefore consists of 88 variables: v = (x1, x2, . . . , xn), n =

88. This configuration allows a solution to have from 0 storage units up to a

theoretical 88 installed units which is not possible in our case due to it will

violate our hard constraint of 600MW of storage installed.

The candidate solutions chosen by Ganesh, once having been informed

by PLEXOS results, are selected because they optimise the ISO-NE network

operating characteristics with a set of storage topologies among the possible

locations.

Ganesh evolutionary algorithm starts each new experiment with a random

initial population of candidate solutions within their defined ranges, in our

case [0,1] which accomplish the hard constraint, in this case, Total Storage

Installed Capacity = 600MW.

In following generations, there might solutions that will break the hard

constraint, due to the intrinsic mutation and recombination of parent solutions

selected for breeding. If that happens, Ganesh will repair it, meaning in this

context that will randomly choose one of the variables within the parameters

vector and changing its value until the total capacity installed falls within the

600MW constraint.
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Table 4.10: Run characterisations for each PLEXOS evaluation run

DA 4HA RT
Horizon 1 year 1 year 1 year

Time-step 1 hour 1 hour 5minutes
Optimitazion Windows 1 day 4 hours 5minutes

Look Ahead (Resolution) 1 day (6 hours) 5 intervals (4 hours) (1 hour)
Time elapsed in HPC 5 hours 8 hours 2 hours
Time elapsed in PC 11 hours 32 hours 7 hours

In this study, there is a fixed population of size 12, allowing 0 duplicate

solutions in any single generation, with initial crossover and mutation proba-

bilities of 0.9 and 0.01176 (1/(85)) respectively. Each evaluation of a solution

is an independent PLEXOS run (which is computational expensive) feeding

the data which Ganesh optimiser uses as objective functions. For this stylised

case study, Ganesh was allowed to run for 36 function evaluations (3 genera-

tions), with each evaluation taking approximately 50 hours elapsed time (on a

32GB RAM with quad-core), while took a third of that on a HPC, see Table

4.10. The population size needs to be a compromise between the minimum

size which the optimisation would be useful, based on (Grefenstette, 1986) and

the elapsed time per generation. Due to computational expensive PLEXOS

runs, the three generations in this case study took 10 weeks to perform.

4.4.2 Results

The storage units are defined by locations taking 10, 15 or 20MW as values.

The algorithm allows storage units just to be located at 230 or 345kV trans-

mission nodes within Massachusetts as plotted in Figure 4.12. The long-term

procurement plan (LTPP) modelled within PLEXOS has an horizon of one

calendar year, representing the DA, 4HA and RT markets with a hour resolu-

tion.
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Figure 4.12: In green, feasible 85 feasible locations for 10, 15 or 20MW stor-
age deployment. Yellow and Brown bubbles represent wind locations in the
evaluated scenario.

Table 4.11: Optimisation parameter variable, Storage capacity installed, Dis-
tance to wind and the connection node

Storage
installed
(MW)

Lat-Long
to wind

(m2)

Node
(kV)

Storage
installed
(MW)

Lat-Long
to wind

(m2)

Node
(kV)

Storage
installed
(MW)

Lat-Long
to wind

(m2)

Node
(kV)

v1 15 58 345 v31 20 1,230 345 v61 20 19,436 345
v2 20 568 345 v32 15 2903 345 v62 20 26,499 345
v3 10 534 345 v33 20 3,962 345 v63 15 15,551 345
v4 10 545 345 v34 10 3,444 345 v64 20 35646 345
v5 10 605 345 v35 10 2,964 345 v65 10 10,356 345
v6 20 22 345 v36 10 3,398 345 v66 10 41,507 345
v7 10 278 345 v37 15 1,762 345 v67 10 21,526 345
v8 10 50 345 v38 10 3,062 345 v68 10 32,988 345
v9 20 244 230 v39 20 4,286 345 v69 10 29,036 345
v10 15 305 345 v40 15 2,763 345 v70 15 33,645 345
v11 15 0 230 v41 10 4,686 345 v71 15 39,640 345
v12 20 486 345 v42 20 4,029 345 v72 20 6,350 345
v13 20 959 230 v43 10 2,565 345 v73 10 25,871 345
v14 15 459 345 v44 15 1,019 345 v74 20 11,468 345
v15 10 553 345 v45 15 3,796 345 v75 15 33,727 345
v16 10 764 230 v46 20 2,958 345 v76 15 39,363 345
v17 15 2 345 v47 15 4,224 345 v77 15 44,887 345
v18 20 921 345 v48 10 2,139 345 v78 15 42,140 345
v19 20 656 345 v49 20 3051 345 v79 10 23,415 345
v20 10 341 345 v50 15 2,875 345 v80 10 48,222 345
v21 15 50 345 v51 10 1,236 345 v81 15 37,948 345
v22 20 624 345 v52 15 3,211 345 v82 15 12,206 345
v23 10 883 345 v53 15 2,071 345 v83 10 47,190 345
v24 15 622 345 v54 20 2,323 345 v84 20 5,614 345
v25 20 580 345 v55 10 2,673 345 v85 20 6,014 345
v26 20 524 345 v56 15 1,549
v27 10 397 345 v57 20 1,963
v28 15 285 230 v58 15 2,107
v29 15 138 345 v59 20 2,499
v30 20 860 345 v60 20 4252
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Table 4.11 displays the 85 possible storage locations at which storage units

can be located, the design vector of each candidate solution therefore consists

of 85 variables: v = (x1, x2, . . . , xn), n = 85. The 3 objective functions defined

for this optimisation have been largely used since 1999 when MIT defined them

for evaluating the reliability of power systems (MIT, 1999). All of which are

to be minimised simultaneously and the values for all of which come from

PLEXOS, these being:

minF (TotalGenerationCost) = TGC (4.1)

minF (σRTPrice) = |σRTPrice| (4.2)

minF (UseDump) = |UseDump| (4.3)

in which the values represent respectively:

1. The Total Generation Cost ($000)

2. Hourly σRT Prices ($/MWh)

3. The Unserved Energy/DUMP energy (GWh)

UseDump is going to represent brown areas in Figure 4.10, which are de-

sired to be minimised for limiting ramping events during operations. Minimis-

ing the 5 minutes standard deviation of prices aims to minimise high volatility

in prices appreciated in previous sections of this chapter.

A hard constraint on the total number of storage capacity installed, CAP,

is applied in Equation (4.4), in order to accomplish the 600MW storage target

for the evaluation region.
85∑
i=1

CAPi = 600 (4.4)
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Result plots are given as 2D scatter plots and with a high dimensional plot

using parallel coordinates (‖-coords) as technique (Inselberg, 1997).

The ‖-coords technique enables multidimensional results to be plotted

uniquely and without loss of information, together in one plot. The results

shown in the ‖-coords plots and related scatter plots contain all of the results

from all of the generations, the dominated and the non-dominated ones.

In Figure 4.16 a query for visualising in a ‖-coords plot the non-dominated

solutions (in blue) has been made. They are the combinations of the 85 vari-

ables that after having been ran in PLEXOS, populated a Pareto front of

non-dominated solutions. For a clearer view and further insights three 2D

scatter plots were produced, Figures 4.13, 4.14, 4.15.

Figure 4.13 presents the three generations run for the optimisation, in light

green, at the top-right corner, it is plotted the first generation. In the centre

of the plot, in black, the second generation, which outperforms the previous, is

presented. As for the third one, in blue, they are differentiated between light

and dark blue, being the dark solutions those that in the third generation

populate the Pareto frontier.
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Figure 4.13: Scatter plot showing StDevPrice on x-axis against TGC on y-axis,
with the most convergent solutions in blue forming the front of non-dominated
solutions

Figure 4.14: Scatter plot showing StDevPrice on x-axis against Dump on y-
axis, with the non-dominated solutions from Figures 4.13 and 4.14 highlighted
in blue
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Figure 4.15: Scatter plot showing TGC on x-axis against Dump on y-axis,
with the non-dominated solutions from Figures 4.13 and 4.14 highlighted in
blue

The scatter plots of Figure 4.16 show the evolution from the random pop-

ulation on generation 1, situated on the top right corner of the plot, down to

the bottom-left corner where in generation 3, five non-dominated solutions are

highlighted in blue forming the Pareto front. Within the Pareto set in Figure

4.14 the second point from the left-side it is not dominated (but narrow to be)

for the TGC OF. The particularity of that solution is studied on Figures 4.14

and 4.15, since it is the same point highlighted in blue on the bottom right.

In future generations, despite being non-dominated for generation 3, this

solution might become dominated, eliminating off-spring solutions on the right

side of Figures 4.14 and 4.15. With a closer look to Figure 4.16, this commented

solution line (in blue) is the one that scores high on the OF3 (DumpE) axis.

Table 4.12 compares the non-dominated solutions contained in the Pareto front

for OF3 versus the ISO-NE PLEXOS Scenario 6 with no storage. The discussed
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solution point is named 1, and improves no-storage scenario but not as much

as its peers.

Table 4.12: Dump Energy comparing ISO-NE scenarios. No storage vs the
five Pareto optimal storage solutions

ISO-NE + Storage No Storage 1 2 3 4 5
Dump Energy (GWh) 1,966.42 1,722.13 1,250.11 1,224.53 1,258.32 1,213.59

4.5 Conclusions

It has been discussed the impact of high wind penetration topologies will have

on prices, generation costs and dispatch shortcomings for a simulated year

(2010) in ISO-NE and validated against the real 2010 ISO-NE data, (ISO-NE,

2014) (ISO-NE, 2014).

Combining PLEXOS modelled scenarios with evolutionary multi-objective

optimisation we have gained insights not only the amount of storage that will

aid system operators, but also their location and the impact that will have to

provide extra flexibility within the network.

As there are not any interconnections with neighbouring regions, would

be valuable for future work analysing how electricity prices in ISO-NE and

its neighbouring regions in detail and design a methodology to incorporate

electricity exchange revenues in the cost analysis of different wind power fore-

casts. (Brancucci and Hodge, 2014) study shows that at low penetration levels

distributed wind does not have major impacts on transmission-level system

operations, even if a system operator does not have any visibility or control of

the individual utility-scale wind power plants connected throughout the differ-

ent distribution networks in ISO-NE. Nonetheless, as distributed wind power

penetration increases, the impact on system operations increases as well.
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This meta-heuristic method can be used to aid in the planning design

and future reinforcement investments across different network voltage levels.

Further studies could assess lines capacity for enhancing flexibility in a localised

congested area or region.

In an ISO-NE power system with a 30% of wind, coal and gas are the

sources displaced for accommodating the 10GW of wind. The high integration

of wind leads to a noticeable increase of oil in the RT market commitment for

covering the intrinsic source intermittency.

Despite having modelled the power system with perfect wind forecast in

the DA and 4HA, due to the lack of interconnections or bilateral agreements,

the standard deviation and dump energy are higher and motivates a locational

optimisation using storage to diminish those model limitations.

Dump energy can be reduced up to 30% when addressing Massachusetts

storage target with high penetration of wind power in ISO-NE.

This reduction of curtailment leads to a reduction of price volatility which

has been optimised through the standard deviation of RT prices.

Within this chapter has been shown that combining MOEA with Plexos as

a market and operation solver, rapid solutions, as fast as Plexos model can be

solved, are achieved. Moreover, the combination of a MOEA as an optimiser

with Plexos, populated a Pareto-set of feasible solutions where further insights

on locations can be discussed with decision-makers determining connections of

high wind penetration and storage across a network topology.

Debugging the granularity of locations among the solutions contained in

the Pareto-set, it seems that most of the storage is connected to a node that is

close to wind. Continuing populating the Pareto-set will drive to more robust

results on storage deployment.



Chapter 5

Evolutionary Planning for 11kV

Distribution Smart Networks

The transition to a secure low-carbon system is raising a set of uncertainties

when planning the path to a reliable decarbonised supply. The electricity sec-

tor is committing large investments on the transmission and distribution sector

for 2050 in order to ensure grid resilience. The cost and limited flexibility of

traditional approaches to 11 kV network reinforcement threaten to constrain

the uptake of low carbon technologies. The aim of this paper is to assess the

suitability and cost-effectiveness of smart grid techniques along with tradi-

tional reinforcements for the 11 kV electricity distribution network, in order

to analyse expected investments up to 2050 under different DECC scenarios.

The evaluation of assets planning is based on the Low Carbon Network Fund

(LCNF) Tier 2 FALCON (Flexible Approaches for Low Carbon Optimised

Networks) project network. To undertake the analysis in this chapter is used

a revolutionary new model tool for electricity distribution network planning,

called Scenario Investment Model (SIM). Comprehensive comparisons of short

and long-term evolutionary investment planning strategies are presented.

119
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Currently electricity distribution networks have been planned with typically

linear load growths of up to 1% per annum. The expected increase in low

carbon technologies will have a significant effect on the electricity demands

on the network which may have significant rapid sporadic increases in the

electricity demand on the 11kV networks (UK Power Networks, 2014). In

addition, the daily electricity load shapes may also alter significantly. The

networks will need to be upgraded, and systems being able to evolve and cope

with new demand profiles.

The rising number of stakeholders in the electricity value chain increases

the complexity for assets planning. Beside the number of decision makers, the

energy sector is facing a data revolution and therefore, Utilities of the future

must include in their planning capabilities the implementation of Information

and Communication Technologies (ICTs). Most Network Modelling Tools,

such as IPSA, GROND or DINIS perform power flow analysis and look after

overloads and stress points of the network. Their approach can be consider

static, in the sense that they evaluate an instantaneous view of the network

at certain given time. However, dynamic modelling like the ones implemented

within the SIM (Western Power Distribution, 2015) extends those static ap-

proaches making a series of evaluation runs, adjusting future network states

(configuration of the network) to previous fixed states where the grid needed

an intervention across its topology.

This chapter uses data from the FALCON project, using a section of West-

ern Power Distribution (WPD), the DNO who operates the Midlands and

Wales, in the Milton Keynes area. In contrast with the parametric top-down

representation embedded in TRANSFORM model (EA Technology, 2016) the

SIM aims to create long-term strategic investment plans. This study will de-
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liver insights and scalability of these novel interventions for asset planning of

the UK distribution power networks.

The research objective was settled to proof of the suitability of the six

novel smart intervention trials presented in Chapter 1, and along with the

traditional reinforcements, provide an evolutionary planning insight for future

power networks. To undertake this study, specific experiments were selected for

a certain power trial network under different demand scenarios and evaluation

periods, assessing smart techniques along with traditional reinforcements. The

approach, involved running a set of experiments using the SIM for the six 11kV

primaries in the FALCON trial area.

5.1 Introduction

Sustainable energy production from renewable sources not only will increase

energy security, but also deliver the 80-95% reductions of greenhouse gas emis-

sions expected by the Energy Roadmap 2050, (European Commission, 2011)

. To meet such ambitious targets, the networks is going to change signifi-

cantly by 2050. Increased adoption of heat pumps, electric vehicles, deploy-

ment of renewable solar and wind generation alongside with combined heat

and power(CHP) units will place new demands on the distribution network.

To cope with these demands and achieve cost reduction in comparison with

conventional network reinforcement, the grid needs to adopt advanced elec-

tricity networks and storage (EN&S) technologies. In fact, some of the low

carbon technologies, e.g., wind and solar generation are critically dependant

on EN&S technologies to leverage their full potential (Low Carbon Innovation

Coordination Group, 2012).
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At the moment, the innovation in EN&S technologies is riddled with un-

certainty regarding which technologies to choose, which investment to support

and how the choices would evolve in the long term (Moselle et al., 2010).

With many alternatives to conventional network reinforcement available and

being developed, e.g., distributed generation, various forms of energy storage

(Kondoh et al., 2000), demand response (Poudineh and Jamasb, 2014), mesh

networks (Behnke et al., 2005), dynamic asset rating (Yang et al., 2015), etc.,

it becomes difficult for the distribution network operators (DNOs), regulators

and policy makers to find an optimal network investment roadmap, pick the

right mix of EN&S technologies to create local network development plans and

forecasts the costs of optimal electricity distribution.

There are a number of previous notable projects that address the uncer-

tainty around integration of low carbon and EN&S technologies into the dis-

tribution grid. The Smart Distribution Network Operation for Maximising the

Integration of Renewable Generation project performs optimisation of network

operation modes and reinforcement planning in the presence of renewable gen-

eration. Smart Grid Forum Work Stream 3, which later became EA Technol-

ogy Transform model (EA Technology, 2016), is a parametric representation of

the electricity distribution network that is aimed to create long-term strategic

investment plans.

It is important to note that there are certain limitations in Transform that

are characteristic to all parametric models. The operating characteristics of de-

vices and their relationship to other technologies require extensive calibration

to produce a qualified answer. To some extent the limitations of Transform

were addressed by Smart Grid Forum Work Stream 7 (Smart Grid Forum,

2015), which took four of Transform’s parametric representations of typical

distribution networks and converted them into nodal network models in order
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to understand how the Transform solutions function. Other examples include

Energy Technology Institute (ETI) EnergyPath model, which targets local en-

ergy systems (ETI, 2016), and Comillas University Reference Network Model

(RNM) (Domingo et al., 2011), (Comillas, 2009), which is a large scale distri-

bution network planning tools that can create optimal networks. The RNM

can be used by regulators and policy makers to estimate network development

and operation costs.

Despite the differences in their respective approaches, the aforementioned

models and software tools share some common limitations. They have limited

ability to capture emerging behaviour arising from simultaneous application of

multiple EN&S technologies to the electricity distribution network. Likewise,

it is difficult to add new EN&S technologies into the mix, either due to lack of

automatic application of smart techniques or, as is the case with Transform, the

parametric approach needs information about the way different technologies

compete with each other, which is difficult to obtain. And finally, no decision

support for a particular piece of distribution network can be provided either

because of lack of automation or the parametric nature of the model. The

following sections introduce and describe a novel techno-economic modelling

tool for the distribution network that performs dynamic network modelling

and analysis in the presence of multiple EN&S technologies. It uses nodal

network modelling to capture the emerging behaviour and create localised

network development plans.
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5.2 Overview of Techniques

5.2.1 Technique 1 - Dynamic Asset Rating

Figure 5.1: DAR trial schematic

The heating effect of current passing through a metal restricts the capacity

of all transformers, overhead conductors and cables on a distribution network.

This restriction is based on the maximum temperature on a critical compo-

nent within the asset. Therefore each asset will have a finite current carrying

capacity rating based on assumed values of external conditions which affect

thermal build up - i.e. wind speed, ambient temperature, soil humidity etc.

As the assets in general do not have temperature monitoring, the assumed

values of the external conditions used in these calculations have as a basis a

statistically low level of risk of the asset exceeding its critical temperature.

By more accurately monitoring metrological conditions and modelling asset

ratings in real-time, capacity of the asset can be increased whilst keeping the

risk of exceeding the critical temperature to a minimum. Further models and

algorithms will be developed as part of this second implementation to cater

for the increased information available.
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In addition in many assets have a thermal capacity, such that it takes time

for the asset to raise its temperature (i.e. an increase in the current passing

through the asset will not cause a step change in the temperature of the asset).

Such assets typically have short term current ratings which are significantly

greater than their continuous current rating. These short term ratings are

based on specific current carrying curves. By being able to forecast the actual

current carrying curves the asset ratings can be further refined such that an

even greater short term current can be supported. Transformers and under-

ground cables have significant thermal capacity that can utilise this method

whereas Overhead Line circuits do not have significant thermal capacity.

5.2.2 Technique 2 - Automated Load Transfer

As described on trial summary section in Chapter 2, (Western Power Distri-

bution, 2015), consumers of electricity on the network use energy at different

rates at different times of the day and by actively managing the network con-

nectivity, the loads across connected feeders can be evenly balanced. Rather

than the position of normal switching open points being determined for av-

erage network conditions, the positions can be changed automatically by the

Network Management System to a more optimum location based on a number

of factors such as security, voltage drop, capacity utilisation and load forecasts.
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5.2.3 Technique 3 - Meshed Networks

Figure 5.2: ALT trial schematic

This technique involves increasing the level of protection employed on the

network in order to close all switches on a circuit, paralleling them together

and feeding down from both ends. Similar to the way 11kV automatic load

transfer changes where the normal open point separating two radial feeders

is placed, meshing a network will allow the effective zero current point to

move depending on the load around the circuit. Customer security is not

reduced due to an increased level of protection and fault breaking capability.

Customer security can also be increased with each additional circuit breaker

and protection device installed.
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5.2.4 Technique 4 - Storage

Figure 5.3: Storage trial representation

Energy demand in an 11kV feeder tends to occur in peaks and troughs through-

out a 24 hour cycle. The current supplying capacity of a feeder is limited to the

current carrying capability of the smallest cable or conductor in the circuit and

these usually decrease in cross-sectional area size the further away from the

Primary they are located. This is acceptable when the load is spread evenly

across a circuit, but when the load occurs unevenly then the utilisation factor

of the assets will also be uneven. By introducing energy storage devices on

the network, they can feed out onto the system at peak demands and recharge

during times of low demand, thus deferring the need to replace existing assets.
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5.2.5 Technique 5 - Distributed Generation

Figure 5.4: Commercial trials representation: DG/DSM

A number of industrial and commercial customers have their own, on-site gen-

eration and this number is likely to increase with the transition to a low car-

bon economy. In some cases, this may be uncontrollable renewable generation

(wind or solar) but the majority is in the form of either standby generators

or controllable plants such as biomass, refuse incinerators or combined heat

and power (CHP) plants. If customers with controllable distributed generation

can be incentivised to accept instruction from a DNO to increase or decrease

generation, this can be used to reduce or increase site demand and/or pro-

vide/remove supply from the grid as a means of rectifying network problems.

5.2.6 Technique 6 - Demand Side Management

Similar to distributed generation, DSM involves putting in place commercial

agreements between the DNO and industrial and commercial customers who
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have the ability to control appreciable amounts of load in relatively short

periods of time. We expect demand side response to be in two forms

• To reduce the impact of predicted peak loads

• In response to an unplanned event, such as a fault

Demand side response can be used to enable the connection of low carbon

technologies without carrying out the full extent of reinforcement work that

would be required without demand side response.

5.3 Scenario Investment Model

The graph search algorithm embedded in the SIM was described in Chapter

3 and conceived as a new generation network planning tool to address the

uncertainty around integration of low carbon and EN&S technologies into the

distribution grid. Like the conventional network modelling tools, e.g., PSS

SINCAL (Siemens, 2016) or Ipsa 2 (Tnei, 2016),the SIM uses nodal network

models of actual networks. The nodal network model works in tandem with

a state-of-the-art load prediction engine, which can produce substation load

profiles showing annual changes in demand and distributed generation that

comprise daily load curves for a number of characteristic days in a year. Plug-

gable models of novel EN&S technologies along with models of various modes

of conventional reinforcement allow the SIM to perform automatic resolution

of network issues and consequently create dynamic network evolution and in-

vestment plans.

The SIM initially supports six different EN&S technologies (Dynamic rat-

ing of underground Cables and Transformers, Automatic Load Transfer, Bat-

tery storage, Meshed Networks, Distributed Generation and Demand Side
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Management) alongside six types of conventional reinforcement (Transformer,

Cable, Busbar and Overhead line upgrade and replacement, creating new

feeder, transferring load to adjacent feeder) trailed by Western Power Distribu-

tion during the FALCON project, where each of the techniques implemented

within the SIM are fully detailed in (Western Power Distribution, 2015).

There had been identified two main streams of work to consider the use

of the innovative techniques, namely: Strategic and Tactical Planning, and

Design, Build and Operation. The Strategic and tactical Planning stream will

consider the Network Planning roles whilst the Design and Operation stream

will consider Design, Build and Operation roles. Figure 5.5, the Smart Gird

Planning Framework Diagram presents key elements of each stream is displayed

with their main interactions.

In order to leverage the capability of existing network analysis tools which

are already extensively used by electricity network operators, the SIM is sep-

arated into two main packages a Network Modelling Tool which primarily

performs the technical assessment of the application of the techniques and the

SIM Harness which manages the overall process and perform the economic

assessment and reporting functions.
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Figure 5.5: Commercial trials representation: DG/DSM

Figure 5.6: Smart Grid Planning Framework Diagram

Referring to Figure 5.7, the SIM includes use cases for three primary actors,

namely, strategic planner, local planner and policy user. The local planner

has three primary uses of the system, to plan asset replacement or diversion,

connect new load or new local generation or to explore the dynamic network

model. The strategic planner has just a single use of the software to prepare a

long term investment plan for a larger segment of the network. Meanwhile, the

policy user has access to the same use cases as both planners, but for a different

purpose to produce rules of thumb for planning manuals. All user-oriented use

cases map to three system use cases that allow to a) set up experiment, run

simulation and save results to results store, b) browse and compare individual

results and c) browse and compare aggregated results.
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Figure 5.7: SIM use cases

5.3.1 SIM Architecture

To support the use cases, the SIM implements a multi-tier architecture with

separate presentation, application processing and data management layers.

Referring to Figure 5.8, there are 12 main component subsystems, among which

components 1-4 are responsible for storage and management of load scenarios,

network patches, which represent planned changes to the grid, nodal network

model and costing models respectively. The experiment planner allows to set

up an experiment by selecting network area, demand scenario, cost model and

other run parameters such as start and end years of the evaluation period.

This creates a set of inputs, consisting of a nodal network model of the

selected network area, annual load profiles for every substation in the se-

lected network for each year of the experiment, network patches that represent

planned modifications of the network at specific time points, a set of allowed

intervention techniques with time series costs of applying them, and failure
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model that specifies what triggers an application of an intervention technique.

The nodal network model includes various asset parameters, such as connec-

tivity, electrical and fault ratings, location and auxiliary parameters such as

soil type and duct information for cables and heat convection data for indoor

transformers.

Annual load profiles include daily load data for 18 characteristic days, each

day comprising 48 half-hourly load values.

Components 6 and 7 perform the actual experiment processing by perform-

ing heuristic expansion of the initial network state.

Figure 5.8: SIM component subsystem structure.
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The experiment runner is an optimisation framework that performs heuris-

tic exploration of the search space in order to find the best sequences of rein-

forcements to keep the network compliant. The framework is built around a

network modelling tool (NMT) that performs power flow and reliability anal-

ysis of individual network states. The NMT is a commercial off the shelf soft-

ware Ipsa2, produced by TNEI (Tnei, 2016). Ipsa 2 was selected for having

an extensive application programming interface (API) for Python language,

performance of power flow analysis and network model change management

support.

The network modelling tool performs power flow analysis, reliability stud-

ies and also applies intervention technique models to resolve network issues,

while the optimal combinations of techniques are selected by the experiment

runner. Once the network development plans that keep the network compliant

throughout the evaluation period are found, they are saved to the results store.

The user can browse results either as individual solutions or aggregations using

the result browser and view them using the result visualisation or result set

visualisation tools, respectively. The result visualisation tool relies on the net-

work model visualisation tool to render the dynamic network diagram either

in single line or geographic layout.

5.3.2 SIM Search Algorithm

The essence of the SIM approach is its ability to take a network configuration

and corresponding load profiles in a particular year (termed as initial network

state), perform power flow and reliability analysis, and create derivative net-

work states in a process known as network state expansion. The expansion

happens either by transitioning to the following year for network states without
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any failures or by applying intervention techniques to resolve network issues.

With each new network state created, the SIM, therefore, is faced with a de-

cision as to which network state from the execution history to expand next.

The expansion can be guided by simple depth first or breadth first algorithms,

which are implemented in the SIM for verification purposes. The depth first al-

gorithm always selects the newest, i.e., the most recently created network state

that is not fully expanded for expansion, while the breadth first algorithm al-

ways selects the oldest network state. However, those simple heuristics are

inadequate for any practical use beyond simple test cases due to the size of the

search space obtained by permuting all possible interventions over a number

of years.

To perform intelligent exploration of the search space, the SIM uses a

heuristic approach that is based on a customised graph search A* algorithm

(Hart et al., 1968) presented in subsection 3.4 of this thesis. Baseline A*

algorithm aims to find the least-cost path through the search space. As A*

traverses the search space, it builds a tree of partial paths. The leaf nodes of

this tree (failed network states) are stored in a priority queue that is ordered

using a cost function (equation (5.1))

f(x) = g(x) + h(x) (5.1)

where h(x) is the heuristic estimate of the path cost to reach the goal h(x)

and g(x) is the distance travelled from the initial node.

Referring to Figure 5.9, the SIM selects network states from the priority

queue to apply intervention techniques, one application at a time. Deployment

of a technique produces a new network state, for which a power flow analysis

is performed in intact and all n − 1 (contingency) network operation modes.
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If all the failures are resolved, a reliability analysis comprising Costumer Min-

utes Lost (CML)/Costumer Interruptions (CI), losses and fault level studies

is performed. A new network state is subsequently created in the next year

of evaluation, or, if it is already the last year of evaluation, the costs of inter-

ventions are calculated and the network state together with all its expansion

history is saved to the results store as a new result. The evaluation termi-

nates when criteria such as the number of results, number of network state

evaluations or run time are reached.

As for the cost structure of the patches, they will be defined as: Initial costs

(the cost in the first year that reflect the installation); Running costs (the fixed

annual costs for all years); and Usage costs (representing the cost associated

with the usage of a patch in a year). For a detailed parametric breakdown of

CAPEX and OPEX among Direct Cost Labour, Direct Cost Pensions, Direct

Cost Material, Direct Cost Civil Works, Disturbance Factor, Safety Costs and

Other costs, do refer to the FALCON project technical note which may be

requested from Western Power Distribution.
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Figure 5.9: SIM search algorithm flowchart.

5.4 Setting an Experiment

5.4.1 Start of an Experiment

Figure 5.10 is an example expansion tree of the first year of an experiment. It is

evident that the SIM Harness generates and tests a large number of patches and

corresponding network states most of which are not expanded further thanks

to the heuristic selection process. In Figure 5.10, each ellipse represents a

network state. The numbers displayed within an ellipse are network state ID
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and total number of failures for each network state in the graph. For a detailed

description of what is captured in a network state, refer to section 3.3.

Figure 5.10: Initial expansion of the SIM scenario tree in the first year of an
experiment.

Knowing the network state ID allows to restore the order of tree expansion

as each network state gets its ID at the moment when it is saved to the SIM

database. The reconstructed order of the tree expansion is shown with arrows.

One of major findings for the partnering DNO was the lack of compliance of

the current network. This had never been discovered while using the manual

simulation tools as it is considered impractical for network planners to run

the complete power flow study that is required to check the network compli-
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ance. The planners usually run power flow studies with a single fixed load

pattern. In contrast, the SIM checks each network state for compliance under

18 characteristic day load scenarios each comprising of 48 half-hour settlement

periods. All studies are performed under intact and n-1 contingency network

operation modes. In the referred example this results in the SIM harness per-

forming 864*12 evaluations for each network state, with 12 being the number

of protection zones in the network.

The network state ID 1908 is a special case of the first network state in

experiment. It does not have any assigned load profiles and so is always being

displayed as a compliant network state. The next network state ID 1909 is

the first one which has load profiles and having a full set of power flow studies

performed. The large number of identified failures (8894) is normal due to

the comprehensive nature of the compliancy check. As an example, a single

asset with a thermal constraint may be overloaded during multiple half-hour

settlement periods a day several characteristic days per year, thus showing as

multiple failures.

In fact, the network state ID 1909 has 44 distinct assets experiencing ther-

mal constraints with maximum p/u overload reaching 2.14 on a ring main

unit under n-1 contingency. To resolve these issues, the SIM has to apply 46

patches with an associated total cost.

The metrics cost refers to incentive payments associated with reliability

metrics comprising CML, customer interruptions CI, fault levels (FL) and

losses. Negative OPEX is the result of undergrounding of some overhead lines

with the resulting cables not requiring periodic inspection. Additional correc-

tive maintenance savings are accounted for indirectly through reduced fault

level costs.
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5.4.2 End of an Experiment

Figure 5.11 shows an example of the expansion tree from a different experi-

ment reaching the final year (2050) of an experiment. Different edge colours

represent the type of the EN&S technology that was applied to the network to

create a new network state. Yellow corresponds to traditional reinforcement

while purple to dynamic asset rating. In main SIM results visualisation, the

results, which are sequences of network state from the first to the last year

of evaluation period are ranked and arranged by cost and performance crite-

ria. This example, however, illustrates the different paths an expansion of the

network state could take. Consider the network state ID 1862 in year 2047,

which corresponds to a network with 3 assets having thermal issues. The left

branch on the diagrams shows a traditional reinforcement option that keeps

the network compliant for the following 3 years until the end of the evaluation

period.

Meanwhile, the right branch shows an alternative route of resolving the

issues with three successive applications of dynamic asset rating, which result

in a network state which is going to have an additional issue in year 2049 (ID

1872).
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Figure 5.11: Last years of a SIM experiment.

The accumulated costs of corresponding network state in last year of eval-

uation are shown in Table 5.1.

Table 5.1: Network state costs

Net. state ID CAPEX OPEX Metrics
1866 1124026.92 96180.10 4319641.98
1874 1118500.84 98549.95 4318533.51
1878 1123214.89 98230.39 4313531.82
1880 1122783.20 98230.39 4315346.95

Despite the lower overall number of interventions, for network state ID 1862

the traditional reinforcement is actually a more expensive reinforcement option

compared to dynamic asset rating. Also it is interesting to see the spread of
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different costs in the total network-related expenditure. For the given network,

the incentive costs of losses, CMLs, Cis and fault levels over 35 years from 2015

to 2050 constitute approximately 3.8 times the capital investment costs. In

comparison, the operating expenditure is relatively minor 100k, despite the

applied smart EN&S techniques.

5.4.3 Network State details

Figure 5.12 displays on the left in yellow and red, the number of issues faced

on that network before the SIM implementation. On the right, 2050 scenario

after the SIM having applied patches techniques to solve them.

Figure 5.12: Visual representation of number of issues per representative day.
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Figure 5.13: Network State Details

Figure 5.13 details an individual network state which are available in the

ancillary visualisation of an experiment expansion tree. This includes network
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state ID, expansion year, ID of the parent network state, state status (e.g.,

failed repairable patches exhausted), information about the last applied patch

(traditional reinforcement cable replacement), including the application details

that correspond to the modification of a network diagram and patch costs,

number of assets that remain failed in the network state and a summary of

remaining failures-average, total and maximum values for thermal and voltage

failures.

At the bottom of the list is the detailed list of failures by asset. It was

identified by planners as an indispensable tool to help validate the system and

correlate the expansion trees to the actual assets on the network diagram. The

failure details table contains asset id and description alongside information

about the number of failures in intact and n-1 operating modes as well as

absolute and per unit thermal and voltage failure magnitude.

The SIM calculates patch costs using cost drivers returned by the network

modelling tool. The cost driver describes a network intervention and consists

of two parts, namely, patch key and the scaling. The patch key identifies the

nature of the modification of the network performed (removal or addition of

an asset and the type of the asset). Scaling data is relevant only to patches

that can be installed in multiples of one, such as cable upgrades and additional

transformer installation. Scaling data structure provides a list of multipliers

to the base cost data available in the SIM database. In case of cable upgrade

or replacement, it enables the SIM to correctly estimate full installation costs

from per unit of length values. For each network state the SIM works out

the total cost comprised of CAPEX or one time installation cost, OPEX or

recurring operating cost and Metrics cost which is equal to the sum of incentive

payments. The interface, as depicted in Figure 5.13, provides two sets of

costing data: the cost incurred in the current year and the overall costs that
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is spent to reach the current state of the network. All reinforcement costs are

subject to net present value normalisation.

5.5 2015-2023 & 2015-2047 Experiments un-

der DECC2 and DECC4

Two set of experiments were performed for this study, one for comparing short-

term evaluation period for RIIO-ED1 (2015-2023) where the RIIO-ED1 invest-

ment planning has been stylised, and a longer planning period for RIIO-ED1

to RIIO-ED4, from 2015 up to 2047. The other set aimed to evaluate different

DECC demand scenarios.

Demand data modelling has been based on a bottom-up approach. The

methods used provide an estimate of demand for each half-hour at each sec-

ondary substation for 18 different season-day types (Western Power Distribu-

tion, 2015).

Table 5.2: Demand scenarios

Demand Fuel Low Wall
scenarios efficiency Carbon

heat
insulation

DECC 1 Medium High High
DECC 2 High Medium High
DECC 3 High High Low
DECC 4 Low Low Medium

Experiments evaluated two demand scenarios: DECC2 and DECC4. DECC4

represents, as displayed in Table 5.2, the slow-progression scenario and DECC2

is with DECC3 the most challenging scenario in terms of electrification and

low carbon technologies integration.
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The procedure to run the experiments in the SIM is shown in Figure 5.9

and the data flow throughout an experiment can be seen in Appendix B on

this thesis. The inputs to be send to the SIM are detailed in Figure 5.5,

the selected network, techniques, evaluation period, demand scenario and cost

model. Whereas as outputs of the SIM we obtain, techniques used, failures

solved, assets fixed and electrical performance indicators.

The SIM address mentioned outputs for long-term planning reinforcements,

to optimise investment assets planning resolving network constraints. The per-

formance criteria evaluated were Capital Expenditures (CAPEX), Operating

Expenditures (OPEX), Utilisation of assets, CMLs, CIs and Losses. These

parameter values are delivered by the SIM after each simulation. In order to

look for the set of feasible solutions among the expansion tree pathways, the

SIM allows a granularity study of each network state.

5.6 Results

This section presents the assessment of the six smart grid interventions along

with traditional reinforcements in the FALCON trial area, compounded by six

11kV primary in Milton Keynes, for two different evaluation periods, DECC2

and DECC4. Subsection 5.6.1 introduces the results for 2015-2023 period as

short-term planning, and 5.6.2 presents the results for a long-term evaluation

period, 2015-2047.
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Table 5.3: Number of interventions and CAPEX involved, DECC4 & DECC2,
2015-2023

DECC4 DECC2
Technique Proportion of CAPEX Proportion of CAPEX

interventions % % interventions % %
DAR - Cable 15% 2% 14% 2%

DAR - Transformer 7% 1% 5% 1%
ALT 0% 0% 0% 0%
Mesh 3% 1% 4% 1%

Batteries 0% 0% 0% 0%
DSM 0% 0% 0% 0%
DG 0% 0% 0% 0%

TRAD - Transformer 8% 3% 7% 2%
TRAD - Cable 60% 89% 65% 91%

TRAD - Transfer Load 6% 2% 4% 1%
TRAD - New feeder 1% 2% 1% 2%

This section presents the assessment of the six smart grid interventions

along with traditional reinforcements in the FALCON trial area, compounded

by six 11kV primary in Milton Keynes, for two different evaluation periods,

DECC2 and DECC4. Subsection 3.1 introduces the results for 2015-2023 pe-

riod as short-term planning, and 3.2 presents the results for a long-term eval-

uation period, 2015-2047.

5.6.1 Short-term planning

In this subsection are introduced the results for the evaluation period 2015-

2023 (RIIO-ED1). For each load demand scenario considered (DECC2 and

DECC4) are presented the expected investments disaggregating CAPEX and

OPEX, the number of techniques applied with the corresponding CAPEX and

the relationship between techniques applied, failures solved, and assets fixed by

type. This section concludes with a comparison between the solutions obtained

for each demand scenario and a brief summary of the findings.



148 Chapter 5. Evolutionary Planning for Smart Distribution Networks

5.6.1.0.1 DECC4, 2015-2023 Figure 5.14 shows the trends of CAPEX

and OPEX. Note that in the year 2015, there is a CAPEX’s peak due to the

application of more techniques. OPEX increments over time from 2017 to

2023.

Figure 5.14: CAPEX & OPEX, DECC4, 2015-2023

Despite investment increase is compensated by a benefit in the electricity

distribution network, with a reduction in CML, CI as shown in Figure 5.15.

Figure 5.15: CML & CI, DECC4, 2015-2023
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The summary of the proportion of installations required during this evalu-

ation period and by capital expenditures per technique are presented in Table

5.4 for both DECC scenarios.

The average yearly price of each technique implemented to fix a network

state is key for future decision-making considerations. Figure 5.16 displays the

average price of each technique disaggregated by CAPEX and OPEX.

Figure 5.16: Average cost disaggregation per technique, DECC4, 2015-2023

Performance indicators are key parameters for future decision making within

electricity distribution planning as quantifiers due to their influence on quality

of service.

Therefore, as shown in Figure 5.17, the only technique that is able to

improve CML and CI is Meshed networks.
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Figure 5.17: Average CML & CI improvement per technique, DECC4, 2015-
2023

5.6.1.0.2 DECC2, 2015-2023 Figure 5.18 plots the trend of CAPEX

and OPEX over the evaluation period. It is important to highlight that there

is a CAPEX peak in 2015, due to an increase of techniques applied in this

period. This CAPEX increment produces a benefit in terms of CML and CI,

as observed in Figure 5.19. The distribution of techniques applied and capital

expenditures per technique are shown in Table 5.3. The average price of each

technique implementation in this demand scenario for this evaluation period,

is shown in Figure 5.20.

As displayed in Figure 5.17 for DECC4’s simulation, the only smart grid

technique that improve power quality is Meshed network. In Figure 5.21, it

is captured the average improvement of CML and CI for DECC2 scenario

evaluation.
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Figure 5.18: CAPEX & OPEX, DECC2, 2015-2023

Figure 5.19: CML & CI, DECC2, 2015-2023

Figure 5.20: Average cost disaggregation per technique, DECC2, 2015-2023
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Figure 5.21: Average CML & CI improvement per technique, DECC2, 2015-
2023

5.6.1.0.3 Comparison between DECC2 and DECC4 for 2015-2023

The results presented may facilitate improvements in electricity distribution

networks operations and planning resulting on better informed decision making

when upgrading current electricity distribution networks. The assessment of

the six smart grid techniques discovered that only three of them were selected

as part of optimal solutions for DECC4 and two in DECC2, as described in Ta-

ble 5.3. These three techniques applied, are DAR for cables and transformers,

and Meshed networks.

For DECC 4 are applied the three mentioned techniques along with tra-

ditional cable and transformer replacement (Table 5.3), whereas for DECC2

are applied two of them, DAR for cables and Meshed networks (Table 5.3).

Comparing the cost trends of the two assessed scenarios, it is notable that in

DECC4 the CAPEX peak occurs in 2015 (Figure 5.18), whereas in DECC2,

beside the 2015s peak, there is also one in 2019 (Figure 5.18), reflecting the

more difficult nature of network states to be fixed in a demanding scenario.

Whereas, DECC2 shows a higher improvement of electrical performance indi-

cators as can be seen in Figure 5.19.
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The techniques applied are the key consideration to be assessed. It is nec-

essary to analyse the number of interventions applied by type, the effect of

these techniques in the electric grid solving failures and fixing assets. Figures

5.16 and 5.20 show average prices of techniques used in each demand scenario.

Smart techniques have a lower TOTEX than analogous traditional reinforce-

ments, however these novel techniques are not frequently able to fix failures

and therefore produce feasible network states.

The only technique able to reduce CML and CI values is meshed networks

as showed in Figures 5.17 and 5.21. Results attribute the majority of fixes

to traditional reinforcements with a comparatively smaller number of failures

being solved by smart techniques. In addition, traditional cable replacement,

DAR for cables and meshed networks are able to fix cable, whereas traditional

transformer replacement and DAR for transformers are able to fix transformer

issues. The results obtained in terms of traditional reinforcements share for

2015-2023, show a 60% for DECC4 and a 65% for DECC2, which is close to

the 59% forecasted by the Transform model for this evaluation period.

5.6.1.1 Long-term planning

This section evaluates two experiments namely characterising the DECC2 and

DECC4 scenarios for 2015-2047 evaluation period. For each demand scenario

are presented, expected investments disaggregating CAPEX and OPEX, the

evolution of electrical performance indicators and the number of techniques

applied.

5.6.1.1.1 DECC4, 2015-2047 In this experiment, are presented the most

significant results to analyse the suitability of each technique. Figure 5.24

shows the trend of CAPEX and OPEX from 2015 to 2047. There are CAPEX
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peaks in year 2018 and during the beginning of RIIO-ED2 in years 2025 to

2026, due to the application of more techniques to fulfil low carbon targets.

Figure 5.23 indicates that upgrades on the network are directly related to

technical performance indicators, CML and CI.

Figure 5.22: CAPEX & OPEX, DECC4, 2015-2047

In Table 5.4 are shown the techniques applied and its contribution to

CAPEX during the evaluation period 2015 to 2047 by demand scenario.

Figure 5.23: CML & CI, DECC4, 2015-2047

5.6.1.1.2 DECC2, 2015-2047 Within this experiment are presented the

most relevant results to analyse the evolutionary network states. In figure

17 is shown the trend of CAPEX and OPEX from 2015 to 2023. There is
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Table 5.4: Number of interventions and CAPEX involved, DECC4 & DECC2,
2015-2047

DECC4 DECC2
Technique Proportion of CAPEX Proportion of CAPEX

interventions % % interventions % %
DAR - Cable 18% 5% 31% 6%

DAR - Transformer 32% 16% 32% 6%
ALT 0% 0% 0% 0%
Mesh 8% 3% 6% 3%

Batteries 0% 0% 0% 0%
DSM 0% 0% 0% 0%
DG 0% 0% 0% 0%

TRAD - Transformer 25% 44% 9% 16%
TRAD - Cable 15% 29% 20% 66%

TRAD - Transfer Load 1% 1% 1% 1%
TRAD - New feeder 1% 2% 1% 2%

a significant increase of CAPEX in years 2024 to 2026 at the beginning of

RIIO-ED2, due to the necessary implementation of new techniques to reach

low carbon targets. Evolution of CML and CI are presented in Figure 5.25,

linking larger investment years when mayor reductions are found.

Contribution of each solution technique is presented in Table 5.4.

Figure 5.24: CAPEX & OPEX, DECC2, 2015-2047
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Figure 5.25: CML & CI, DECC2, 2015-2047

5.6.1.1.3 Comparison between DECC2 and DECC4 for 2015-2047

Figure 5.26 presents a multi-dimensional parallel coordinates representation of

the feasible network state’s combinations that produced a 2015-2047 invest-

ment pathway for the evaluated area.

Table 5.5: Summary of Network States and Results for demand scenario
DECC4 & DECC2

Primary 11kV substation Feeders Year Techniques Results NS Results NS
DECC4 DECC4 DECC2 DECC2

Fox Milne 13 2047 Smart and Traditional 54 276 47 259
Newport Pagnell 9 2047 Smart and Traditional 48 317 31 318

Secklow Gate 9 2047 Smart and Traditional 27 29 15 16
Bletchley 19 2047 Smart and Traditional 32 40 21 48

Marlborough Street 11 2047 Smart and Traditional 31 52 19 37
Childs Way 17 2047 Smart and Traditional 67 398 54 181

It bundles economic indicators, i.e. CAPEX and OPEX, with technical

performance indicators providing valuable insights on the amount of traditional

reinforcements utilised to heal falling network states. Results are also clustered

by the two demand scenario assessed during the experiments.

Solutions of DECC 2 (represented in red and green) and DECC4’ solutions

(in black and blue) are clustered by the percentage of traditional reinforce-

ments utilised as well as the utilisation factor. Solutions in green and in black

represents those where smart grids were more used. Whereas orange and blue
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represent the cheapest (CAPEX and OPEX), less utilised, worst responding

to decrease of CML, CI and losses, and the ones using more traditional rein-

forcement to fix network states.

Beside of the facts that DECC2 smart solutions are between a 16% and 38%

more expensive than DECC4 traditional reinforcement solutions, and DECC2

traditional solutions are in the range of costs of smart solutions of DECC4, can

it also be concluded that investment pathways using more smart techniques,

are better suited to respond to technical performance evaluators such as assets

utilisation, CML, CI and losses.

5.6.2 Summary

Experiment evaluation runs from period 2015-2047 show lower investment rates

for the period 2015-2023 than if the evaluation is just performed with a 2015-

2023 time-frame. This occurs as a result of the challenging low carbon targets

up to 2047 and a myopic planning when planning with short-term lookahead.

For a four times larger evaluation period, the CAPEX and TOTEX increased

just 18% compared to 2015-2023, concluding that between £5.2M and £6.8M is

required on the evaluation area regardless the time horizon for the investment

or the demand scenario considered.

Furthermore, it can be inferred comparing Tables 5.3 and 5.4 that for the

shorter term planning less smart interventions are used compared to the long-

term horizon planning. DAR-Cable and Transformer replacement experienced

a significant implementation variation between DECC4 and DECC2, as well as,

CAPEX allocated in Cable upgrades. Both technical performance evaluators,

CML and CI, respond to their respective CAPEX curve shape. Due to more

incentivised smart grids technique during RIIO-ED2 and ED3, percentage of



Chapter 5. Evolutionary Planning for Smart Distribution Networks 159

smart techniques implemented varied notably. For DECC4 in 2023’s outlook

the share of techniques is 25% for smart grid interventions whereas for 2050’s

outlook the share is increased up to 58%. In the same way for DECC2 in 2023’s

outlook the share of smart interventions is 23% whereas in 2050’s outlook the

share increases up to 69%.

Feasible solutions characterising the solution space (Figure 5.26) differ in

the degree of investment required and technical performance evaluators. Dis-

aggregating results by network states the six 11kV primaries, and by feeder if

necessary for further granular debugging, can be discern locational capacity.

Under both demand scenarios, Secklow Gate was seen the one with greater

capacity, being necessary to apply less techniques over the evaluation period,

2015-2047. On the other hand, Newport Pagnell exceed capacity as soon as

2015, requiring a high number of network states evaluation to be fixed and that

happens for each subsequent year, hence the large number of NS presented in

Table 5.5.

5.7 Conclusions

Power flow analysis using a nodal network model is essential when determin-

ing the benefits of trailed smart interventions because these are highly specific

to a particular location and scenario. This suggests that while the bottom-up

approach is onerous in terms of data handling and manipulation, this is worth-

while for strategic planning and policy evaluation. Comparing both investment

strategies, investment strategy adjustments will be necessary in future regula-

tion periods if an over-invested network behaves as displayed in the short-term

section of this study.



160 Chapter 5. Evolutionary Planning for Smart Distribution Networks

The model has demonstrated that using currently available hardware and

off the shelf power flow analysis module it is possible to perform computa-

tionally and data intensive simulation comprising hundreds of thousands of

power flows in a reasonable amount of time. The rigour of automated network

analysis performed by the SIM provides the needed rationale for investment

decisions for a DNO in the challenging regulated market. The network devel-

opment plans consider long-term asset performance and costs and its effect on

the entire network in deciding which interventions are the most optimal. This

contrasts with the current practice of choosing the option that is cheapest in

the short term.

The architecture of the model provides an interface for pluggable EN&S

technology models. This means that new intervention techniques can be added

later to the SIM, once the respective technology becomes available. Because

the technologies are applied automatically, existing studies can be readily up-

dated to include the latest EN&S technologies. The tree-based based expan-

sion approach allows the SIM with no prior knowledge to dynamically learn the

costs pertaining to keeping a particular piece of the network compliant. This

expansion architecture also allows the SIM to backtrack on the decisions it had

taken earlier should the recently expanded branch turn out to be suboptimal.

While traditional reinforcement will continue to be the main method by

which network issues are mostly resolved, followed by dynamic asset rating

and meshed networks. Batteries only tend to be selected once other options

are exhausted and the relative scarcity of demand side management options

limits its use.

The assessment of the six novel smart interventions in the FALCON 11kV

primary test area in Milton Keynes, have proved the suitability of three tech-

niques able to fix failures, improving the quality of service and ready to be



Chapter 5. Evolutionary Planning for Smart Distribution Networks 161

deployed in the near future. These techniques are DAR for cables, DAR trans-

formers, and Meshed networks. Meshed networks have been repeatedly se-

lected as a feasible because using it will reduce CML, CI and power losses,

improving the quality of service, the efficiency, while being a cost-effective

solution.

The initial capacity at primary substations differed significantly and this

affected the number and complexity of interventions required by the SIM. Due

to the load scenarios showing significant peak load increases, DAR was often

a temporary measure that would delay but not remove the eventual need for

traditional reinforcement.

Implementing DAR for cables and transformers the monitoring of assets

when their peak capacity is increased was analysed. In addition, it was found

that smart techniques are applied in more onerous conditions, such as when

failures are caused in winter peak days and within peak hours. On the other

hand, it was observed that traditional reinforcements still play a key role in

keeping the electricity distribution networks free of constraints. TRAD tech-

niques such as transformer and cable replacements are able to fix majority of

failures and will be essential also in the future.

The comparison between traditional reinforcements and novel smart tech-

niques, have provided a new knowledge about the suitability of each technique

to be applied, in terms of costs, electrical performance, failures fixed and asset

replaced. Cables replacement is the most costly technique; however its use

is unavoidable in a number of cases. Furthermore, the applicability of each

technique regarding to costs involved, improvements on power quality and ef-

ficiency, and failures solved lead to new questions to be analysed, such as the

lack of these techniques to provide flexible capacity within the trailed area.
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Figure 5.27: Disaggregation of results visualised by distribution feeder

DG and DSM, were a success and prove that they can be made to work

and lead to a change of the current industry structural paradigm, moving

towards a end-customer-centric market design to support DSM type of services.

Locational implementations can be disaggregated down to substation level as

presented in figure 5.27 and proposed for further analysis as future work.

The main contribution of the SIM towards the network process is due to

the tree-based approach to the network reinforcement process. This makes this

approach the main target of future research and development. The modified A*

algorithm that is used in the model had been chosen for its relative simplicity.

However, our experiments demonstrated that a form of learning feedback loop

is required due to inconsistent number of patches and costs that are required to

resolve all failures in a particular network state. This defines the main area of

future research aimed toward enhanced heuristic search algorithms which may

be based on approaches other than graph search, for example Evolutionary

Algorithms as stated in Chapter 3.
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To sum up, this research has performed a comparative analysis of novel

smart intervention techniques, providing insights for future investments in

electricity distribution planning. Further work can focus on scaling up the

analysis to include a larger section of the network, or a constrained area to

evaluate national applicability of current findings.





Chapter 6

Dynamic Investments in

Flexibility Services for

Electricity Distribution with

Multi-Utility Synergies

Low Carbon technologies implementation are challenging current paradigms

and requiring a significant shift on how distribution planning of power systems

is conceived. Benefits for an adequate transitioning to a more flexible energy

system is an ongoing debate where three options are proposed by innovators -

interconnections, energy storage and demand side management. Selecting the

optimal combination of those options and the pathway for electricity network

upgrading, together with investments in flexible and resilient services to cope

with local intermittent energy production, would urge to prompt changes on

distribution utilities business models and their economic value in the supply

chain (Bahramirad et al., 2015) (De Moraes and Carpio, 2006) (Conejo et al.,

2016).

165
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DNOs are seeking more active alternatives to conventional reinforcement in

order to reduce network operation costs while increasing security of supply in

the face of greater uncertainty in patterns of future load flows. The transition

to Distribution System Operators (DSOs) would be accompanied by a change

in system operations, moving from a centralised system to a detailed local

bottom-up approach Ruester et al. (2013). This research develops a bottom-

up methodology to evaluate the contribution of four flexibility services, namely

smart contracts, aggregation, demand response and peer-to-peer trading. The

application is to large scale British distribution area using a detailed network

topology, national scenarios for power system demand, and a computationally-

intensive, multi-stage optimisation methodology. This chapter highlights the

potential of Multi-Utility options to create flexibility business models that may

compete with traditional reinforcement and smart grid techniques to optimise

where and when flexible capacity in the grid will be required.

6.1 Introduction

Distribution networks investment uncertainty is a complex problem, where

traditional deterministic models are in need to be revised to overcome present

and future decision-making challenges. Proliferation of distributed renewable

generation and other low carbon technologies are creating new challenges for

DNOs, increasing alternatives to conventional reinforcement in order to reduce

network operation costs, increase security of supply and allows a more reliable

renewable generation to be connected to the grid (Teng et al., 2016). Selecting

the optimal combination of interventions in regards to long-term cost and

performance of the network is something that the current tools and approaches

used by the industry cannot adequately do. This study tackles these challenges
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in order to aid quantifying the value of a resilient and flexible robust power

network.

Historically, electricity distribution networks have been designed to pro-

vide reliable connections to the customers by virtue of asset ratings sufficient

to cope with peak demand. With the proliferation of low carbon technologies

such as electric vehicles, heat pumps and distributed generation, the network is

starting to experience congestion both, load and generation driven . The con-

gestion restricts further deployment of distributed energy generation, making

it more difficult to meet the emission reduction targets (Aguero et al., 2016).

Around two-thirds of current coal, nuclear and gas power stations are ex-

pected to be decommissioned by 2030 as they are reaching the end of their lives.

The near term where new capacity has to be built, and the consideration of

alternative more flexible sources lead to a paradigm change on how networks

are operated. For 20 years since early 80s electricity distribution networks in

the United Kingdom were experiencing steady and slow load growth of around

2 percent per year (Lakervi and Holmes, 1995). The growth was quantitative

rather than qualitative, it did not change the demand structure and power flow

direction within the network. Therefore, planning of changes in the network to

accommodate the load growth was a relatively straightforward process (Koch,

2015).

Energy storage (ES) as well as interconnections and demand side response

will provide an alternative approach to relieve network congestion by balancing

periods of low and peak demand. ES is charged during periods of low demand

and high generation and discharge during periods of high demand and low

generation, therefore solving both types of congestion. Flexibility is defined

here as the ability of a system to deploy its resources to respond to changes

in net load, where net load is defined as the remaining system load not served
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by variable generation. Hence, an isolated power system containing mostly

generation units with long start up times and low ramp rates will find it more

difficult to successfully integrate variable generation than a well interconnected

power system, containing many generation units which can start up and ramp

quickly (Lannoye et al., 2012). One of the emerging challenges in whole systems

planning is to quantify the resilience of a system to successfully respond to

ramping events, and thus to include that flexibility reserve in their business

portfolios (Sioshansi, 2015) (Schachter et al., 2016).

Electricity is distributed around the UK by DNOs, licensed by the reg-

ulator, Ofgem. They own and run the distribution network of pylons and

cables that carry electricity from the national transmission network (owned

and managed by National Grid) to homes and businesses (Bolton and Foxon,

2015), (Buchholz and Styczynski, 2014). DNOs do not sell electricity, they

only distribute it. DNOs are regional monopolies, so Ofgem set price controls

to manage the cost of electricity distribution to customers. Ofgem have re-

cently introduced a new performance based price control model for DNOs. The

RIIO model is designed to drive the innovation needed to tackle the challenges

above. This incentive-based regulatory framework will run from 2015 to 2047,

with 8 years evaluation period is still to be finalised (Ofgem, 2014). At the

moment, each DNO has its own cost structure and it is expected the charges

will vary with each RIIO period.

Connecting more small-scale renewable generation projects located through-

out the UK to the network, including solar photovoltaic (PV) panels, wind

turbines, hydroelectricity, anaerobic digester and micro combined heat and

power (CHP), matching the electricity demand for new technologies, including

electric cars, lead to an integration of multiple agents across the energy value

chain beyond electricity (e.g., water, thermal and transport) requiring a shift
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of market designs (Bichler et al., 2010). The raising need for more flexible

systems could lead to a re-emergence of multi-utility companies to contribute

proposing new flexibility business propositions as demand response or acting

as aggregators (Varga et al., 2015).

6.1.1 Evolutionary planning for addressing uncertain-

ties

At the moment, the innovation in Electricity Networks and Storage (EN&S)

technologies is riddled with uncertainty regarding which technologies to choose,

which investment to support and how the choices would evolve in the long term

(Moslehi and Kumar, 2010). With many alternatives to conventional network

reinforcement available and being developed, e.g., distributed generation, vari-

ous forms of energy storage (Kondoh et al., 2000), demand response (Poudineh

and Jamasb, 2014), mesh networks (Behnke et al., 2005), dynamic asset rating

(Yang et al., 2015), it becomes difficult for DNOs, regulators and policy makers

to find an optimal network investment roadmap, pick the right mix of EN&S

technologies to create local network development plans and forecasts the costs

of optimal electricity distribution.

Despite the differences in their respective approaches, current models and

software tools share some common limitations. They have limited ability to

capture emerging behaviour arising from simultaneous application of multi-

ple EN&S technologies to the electricity distribution network. Likewise, it is

difficult to add new EN&S technologies into the mix, either due to lack of

automatic application of smart techniques or, as is the case with TRANS-

FORM model (EA Technology, 2016), the parametric approach needs infor-

mation about the way different technologies compete with each other, which
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is difficult to obtain. And finally, no decision support for a particular piece of

distribution network can be provided either because of lack of automation or

the parametric nature of the model.

The SIM represents a step change in the modelling, optimisation, and de-

cision support of distribution planning and investment modelling of electricity

distribution networks. Unlike conventional network modelling tools, that are

designed for network state assessment in static load conditions, the SIM per-

forms network state assessment under variable load conditions. More impor-

tantly, it performs network state expansion using models of EN&S technologies

and optimisation of resulting dynamic network development scenarios.

Evolutionary networks will require a change of how flexibility business

propositions are conceived nowadays. The following section presents four flex-

ibility options with different levels of uncertainty from a DNO perspective as

stated in Figure 6.1. Those uncertainties will be quantified in an evolutionary

manner for each year Real Option Valuation (ROV) to quantify the risk that

each business proposition have attached (Housel and Mun , 2006).

6.1.2 Business models for Flexibility Services

Traditional business models cannot cope with an increasingly demanding EN&S

request to have a more active management role of local distribution networks.

Increasing penetration of distributed energy resources (DERs) such as renew-

ables, electrical transportation, smart appliances, or electrification of heat

pumps, are augmenting the necessity of new business options for providing

regulated and non-regulated energy agents new revenue streams.
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Figure 6.1: Business Options proposition and description

There have been selected a range of business models propositions to rep-

resent coming disruptive options and the impact that will have on regulation,

planning and operations. The four chosen business propositions comprises

from a DSO with total operational control and no third party involved, to a

Peer-to-peer incentive proposition where customers react to DUoS (Distribu-

tion Use of System) reduction incentives but has no commercial relationship

with the DNO. In the middle, there are agreements or contracts between the

DNO and a Third-party to provide a service as displayed in Figure 6.1.

Relationships among different domains, agents, transactions and contracts

are presented in an schematic way in Figure 6.2.
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Figure 6.2: Business Domain interactions visualisation

6.1.2.1 Distribution System Operator

In this first Option, DSO proposition, despite it conflicts with current regu-

lation, represents a business model where the DNO will take full ownership,

operation and maintenance of the storage portfolio as part of their assumed role

managing its licensed distribution area. It challenges the unbundling principle

followed by many countries where DSO business splits off from DNO leading

to the emergence of DSO as a potential new business entity in the value chin.

This might allow the DSO to manage the risk and uncertainties of the value

and operation of their assets. With this proposition the DSO will take some

of the current roles from the TSO, adding some new ones such as owning and

operating storage, which currently does not happen in the GB system (Mc-

Granaghan et al., 2016), however the Council of European Energy Regulators
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has recently characterised mechanisms to promote this transition, opening a

consultation in 2017 (CEER, 2017).

This business model allow a futuristic DSO to manage a portfolio of storage,

variable distributed generation and demand response services providing the

capability to build, own and operate a more flexible grid where loads could be

controlled.

6.1.2.2 DNO contracting

This Option involves a third-party for managing the capacity of storage assets

portfolio when are not required by the DNO. As the previous Option, the

DNO will build, maintain, and operate the storage, and when agreed with a

third-party dispatch these assets for ancillary services.

The third-party will sign long term capacity contract, in our planning sce-

nario, 8 years, a complete RIIO period but ideally these agreements in which

an availability payment will be paid to the DNO, would be until the end of

the operational life of the asset.

The DNO can compare investment decisions by comparing the Real Net

Present Option for the availability payments for a long term capacity agree-

ments with traditional reinforcements and other Smart Grid techniques imple-

mented by the SIM.

6.1.2.3 Third-party servicing

If there is an Option where location planning matters for the DNO, since

the DNO locate where the Third-party builds, owns and operates a storage

portfolio for mitigating constraints on the network. In this business model,

the DNO and the Third-party through an agreement establish the capacity

security and storage requirements that have to be met.
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The agreement to be signed will assure both parties a revenue stream.

First, the Aggregator or Third-party, will be assured in that way a return over

the lifetime of the asset from the DNO, but also, as they retain full commercial

control can create additional revenues streams during periods where assets are

not committed with the DNO.

6.1.2.4 Peer-to-peer incentives

A growing interest in Peer-to-peer energy trading raises questions over whether

storage could help consumers gain extra benefit from distributed power gener-

ation and challenge current regulatory frameworks to provide non-traditional

business options allowing, securing and promoting this type of decentralised

competence. Under this business model, when planning at medium and long-

term the DNO offers the right incentives for Peers for reducing their demand

or even creating extra capacity within the network where required (Hall and

Foxon, 2014) (Helms et al., 2016).

The DNO cannot rely when planning how much capacity is available when

needed for operation and security purposes. In this case, the DNO would not

hold operational control of the storage, since it is built, owned, maintained

and operated by the Peer-to-peer third-party. This is an extra uncertain and

have to be measured when DNO is planning a guaranteed security capacity.

6.2 Extending SIM for Flexible Real Options

Valuation

The SIM software is a scenario-dependent, optimal-seeking feed-forward heuris-

tic. For an exogenously defined scenario, each year is specified as a network
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state. The SIM search always starts with an unevaluated network state in the

first year of the experiment (initial network state). Following a power flow

study, the search either moves on to the following year, or, if the network

state has failures, saves it into failed network states store. Evaluation then

moves to the next year, so that the failed network states store accumulates all

failed states contingent upon the scenario to its end date, before seeking to

remedy any of them. Smart techniques implemented within the SIM (Nieto-

Martin et al., 2017) are combined with traditional reinforcements (cables and

substations upgrade, feeders upgrade or new installation) to overcome failed

network states, defined by (Butans et al., 2017) and named as: Automated

Load Transfer, Dynamic Asset Rating, Meshed Networks, Batteries, Demand

Side Management and Distributed Generation. The SIM also evaluates tra-

ditional reinforcement techniques to solve network states namely, transformer

and cable upgrades, new feeder installation or feeder upgrade.

Electricity bill contains an element of charge to cover electricity distribution

costs (Rosado and Alba, 2014). Typically this distribution charge accounts

for about 15% of the overall 29% of the electricity bill (Ofgem, 2016). The

distribution charge covers the cost of operating and maintaining a safe and

reliable electricity infrastructure between the transmission system and end

users such as homes and businesses (Kind, 2013).

Distribution Network Operators are set an allowed revenue to cover a price

control period. The allowed revenue is set at a level to cover most aspects

of the DNOs on-going business including maintaining, repairing and replacing

network assets (Du and Lu, 2014).

It also includes the costs of reinforcing some network assets (Hansen et al.,

2009). The allowed revenue is mainly recovered from the electricity suppliers

who use the electricity networks to distribute energy to their customers. A
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change on how allowed revenues are collected and its impact on DUoS tariffs

will opening new revenue streams (Ochoa et al., 2016) (Connor et al., 2014). A

patch for the SIM for integrating a customised ROV presented in Section 6.3,

MURRA, has been produced to integrate business options discussed in subsec-

tion 6.1.2 within the SIM architecture, broadening SIM original methodology

scope as displayed in Figure 6.3, increasing system resilience with a portfolio

of flexibility value propositions.

Figure 6.3: Integration of Real Options Valuation methodology within the SIM
architecture

6.3 MURRA: Multi-Utility Resilience Rating

Assessment

MURRA framework is proposed to be a customised Real Options Valuation

(Bunn and Oliveira, 2007) (Chronopoulos et al., 2014) to compare short and

long-term planning strategies that will complement the SIM software with the
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set of business propositions presented in subsection 6.1.2. As described in the

metacode, Algorithm 1 (Figure 6.4), MURRA compares locational flexibility

required at substation level with locational nodal prices from the SIM.

Figure 6.4: MURRA metacode

6.3.1 Indices

i distribution nodes.

EA existing assets in the evaluation network.

MB multi-business Options propositions to be implemented.

t discrete time periods considered for business Options.

The first period (the decision period) and the last period in the analysis

will be represented, respectively, as D and T .

The time elapsed between two periods will be referred to as Ett1,t2 .

mt multi-business propositions (Options). Each Option has different values

and length of duration.
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6.3.2 Parameters

SIMt,i SIM software value proposition for investment in node i in time t [£].

Ht horizon planning considered [y].

V pim value proposition for a particular multi-business Option [£/MWh].

Ct,i capacity required in each node [kW].

Dft2,t1 discount factor to evaluate future Option value corresponding to

date t2 in value terms of a closer date t1. It is calculated as:

Dft1,t2 = e−ρEt1,t2 .

ρ discount rate [p.u.].

6.3.3 Variables

bOptmt
t,i cumulative value of a candidate business Option m, proposition node

i at time t. For clarification purposes, business Options m, will be represented

within the solution visualisation as: SIM, DSO, Outs, Agg, P2P.

6.3.4 Objective function

The objective function evaluates locational business propositions against SIM

traditional reinforcements and smart grid interventions:

min(
t∑

t=H

∑
i

Dft,H(flexOptmt
t )−

t∑
t=H

∑
i

SIMt,i) (6.1)

6.3.5 Constraints

Value proposition constraints:

flexOptmt
∑

im∈MB

V pim(bOptmt
t,i − bOpt

mt−1

(t−1),i) (6.2)
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bOptmt
t,i ≥ bOpt

mt−1

(t−1),i (6.3)

6.3.6 Calculation of Option values

D is the decision period. The decision to request a business service. The

decision will be based on potential optimal business decision making (option

value).

A is time duration when the contract agreement is granted (assumed to be

up to 8 years, depending on the Option). Once the contract proposition has

been made, the decision to pursue this agreement is not automatic. Service

Options with an Option Value greater than SIMt,i will be pursued at that

location.

S the period when businesses is already providing a service. This is assumed

to happen 1 year after the service proposition is taken and services portfolio

agreed between parts.

H final Horizon planning period in the analysis.

Figure 6.5: Visualisation of the planning Horizon, Agreement, Service and
Decision time lines
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Figure 6.5 visualise different planning and options periods while equation

(6.4), present the scenarios where choosing the SIM option represents a po-

tential loss, and therefore a quantifiable regret of not signing for alternative

flexibility service.

OV (bOptD,i) = R

[
H∑
t=S

∑
m

Dft,DflexOpt

mt
bOpt

mt
t,i

=0

t −

−
H∑
t=B

∑
m

Dft,DflexOpt

mt
bOpt

mt
t,i

=1

t −

−
H∑
t=B

∑
m

V pimDft,D −
H∑
t=B

∑
m

SIMt,i

]−
(6.4)

It should be noted that our definition of option value is consistent with

a European option, which implicitly assumes that the planner can decide to

pursue the Option or not once the permit has been granted at the end of

time D, as displayed in figure 6.5, but not later. The planner will normally

have further opportunities to start requesting the service before the agreement

expires.

However, due to locational network constraints agreement expiration dates

are case dependent, so we assume that the permit can be used at the beginning

of each RIIO period or abandoned, with no further actions taken. It is impor-

tant to note that, given the investment is discrete, the differences in operation

costs are based on increments rather than marginal information. If an invest-

ment plan has already been agreed, a service proposition can be cancelled if it

is not considered profitable once the agreement has been granted and before

service period starts. Following Option value reflects the possibility of can-
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celling or deferring the project. This case inverts the calculation of expected

savings:

OV (bOptD,i) = R

[
H∑
t=S

∑
m

Dft,DflexOpt

mt
bOpt

mt
t,i

=1

t −

H∑
t=B

∑
m

Dft,DflexOpt

mt
bOpt

mt
t,i

=0

t −

−
H∑
t=B

∑
m

V pimDft,D −
H∑
t=S

∑
m

SIMt,i

]−
(6.5)

this expression will guide the rest of this section.

6.3.7 Description of the uncertainties

For a given scenario, the value of uncertain parameters at the time when S

is assumed to follow a normal distribution centred on its forecast m̂0
yt, where

the expected cost for m̂0
yt is ̂flexOptt

mt

= flexOptt
mt( m̂0

yt). Its standard

deviation σy must be adjusted for time:

σ∗y = σy
√
Rtt,D (6.6)

Fitting a normal distribution to the uncertainties is arguably good for sources

of uncertainty such as fuel prices, peak demand growth or generation capaci-

ties where increments can be very small (i.e., as wind or solar) (Shimko, 1994),

(Lumbreras et al., 2016). In many cases, these uncertainties are usually rep-

resented by means of log normal distributions, so that the difference between

the actual realization and the forecast can be reasonably approximated with
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a normal distribution (Hull, 2006).

m0
yt − m̂0

yt ≈ N (0, σ∗y) (6.7)

In a real-sized system, there will be many uncertain factors involved, so the cen-

tral limit theorem supports the approximation of normality. This assumption

allows calculating closed-form solutions for option value, which would other-

wise be intractable for real-sized systems. Substituting in the option value

expression, we obtain:

OV (bOptD,i) ≈ R

[
H∑
t=S

∑
mt

Dft,D

(
̂flexOpt

mt
bOpt

mt
t,i

=0

t − ̂flexOpt
mt

bOpt
mt
t,i

=1

t

)
+

+
H∑
t=S

∑
mt

Dft,D

(∑
y

(
δmt,bOpt

mt
t,i =0 − δmt,bOpt

mt
t,i =1

)
N (0, σ∗y)

)
−

−V piDfA,D −
H∑
t=S

∑
mt

SIMt,i

]
= R [N (µTotal, σTotal)]

+ (6.8)

Once the parameters for the total normal distribution have been calculated,

the option value can be derived as:

OV (bOptD,ijc) = R [NµTotal, σTotal]
+ =

[
µTotal + σTotal

φ−µTotal

σTotal

1− Φ−µTotal

σTotal

]
(6.9)

where φ and Φ denote the standard normal probability density function and the

standard cumulative distribution, respectively. This result is used to approxi-

mate option value in a closed form and is applied in the case study described

in Section 6.4. Another useful result is the probability that a given investment

will be carried out at a future date. This is referred to as the in-the-moneyness
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or in-the-money probability (ITMP) of the option, and can be calculated as:

ITMP (bOptD,im) = R [NµTotal, σTotal ≥ 0] = 1− Φ

(
−µTotal
σTotal

)
(6.10)

6.4 Locational flexibility case study

A bespoke case study is presented based on the integration proposed of the

MURRA methodology, presented in Section 6.3, with the SIM software. The

case, illustrated in Figure 6.6, receive as inputs: the trial area, which is the

core 11kV FALCON area around Milton Keynes, East Midlands, in the UK,

technique costs and the load data. It compromises 6 primaries and 1,155

secondary substations located on adjacent boundaries feeders of the FALCON

trial area.

Figure 6.6: Domain representation of the Planning Flexibility Investment ap-
proach

The design of the SIM envisioned different types of users, from 11 kV

Planners, Strategic Planners, to Policy users who would be interested on a

variety of approaches such as planning specific localised network improvements,
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evaluating large parts of the grid over a period of time or providing insights of

the underlined implications of business models regulation.

This multi-stage approach was designed to combine the planning of tradi-

tional reinforcements, smart grid interventions and combine them with inno-

vative business propositions.

6.4.1 Scenario description

The MURRA implementation considers a deterministic demand scenario, named

by the Department of Energy and Climate Change as ”Gone Green Scenario”,

or DECC 2 (Department of Energy, 2011) and characterised in Table 5.2. Mod-

elled scenario assumes that fuel efficiency and wall insulation will have a high

impact on the electricity demand, where low carbon heat will have a medium

impact. Matching against nodal points in the network are customer loads,

these are implemented as Load Profiles, being arrays of load values arranged

on a daily basis at 30 minute intervals (so that 48 load points make up a diur-

nal load profile for a given site and day type). The SIM evaluates the network

against the loads on an annual basis, moving through the years specified in

the evaluation interval and carrying out each new analysis using these evolv-

ing loads. A SIM year consists of just eighteen ”characteristic days” which

provide a pragmatic way to handle modelling of the intra-year time dimension

as these cover the main types and extremes of load that would be expected

to be encountered in a given year. Essentially, each day in a real year can be

assigned to one of the 18 characteristic days and by using the number of each

representative days in a real year annual metrics can be calculated for items

such as losses or network utilisation. The SIM thus performs load flow analysis
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for the network for the 48 half-hourly periods during the day for different days

of the week and different seasons of the year.

When power flow analysis within the SIM detects a voltage or thermal is-

sue, the SIM will select from the supported remedial techniques that could help

resolve the problem and determine how they could be applied to the network.

The best solution can be selected using a weighted metric that combines ele-

ments such as installation, per use and operating costs, network performance,

losses and disruption to customers. While some aspects of the various solu-

tions can be assessed at the time an issue is reported, the longer term value

for money of the options is determined by how they contribute to the overall

performance of the network over a number of years. So for example a solution

that is initially expensive may be value for money if this results in many years

of issue-free operation. Therefore the SIM does not use a merit order approach

to resolving network issues i.e. applying the technique which is expected to

provide best value for money based on initial costs, but rather the SIM al-

lows for the long term value to become apparent by allowing the simulation to

branch. This creates a large number of potential options for the evolution of

the network which requires a search mechanism to guide the search through

the solution space.

The guided search mechanism for the SIM is the learning algorithm detailed

in Chapter 3, providing feedback from the analysis carried out to refine the

view of expected costs in a particular year.

The SIM exports results to the report outcome file (.CSV file) which is

received by the MURRA algorithm and extract how much capacity is needed

to be allocated at locational feeder and 11 KV primary level.

The Real Option Valuation analysis considers deterministic uncertainty in

load profiles, lines capacity, and service price proposition. Business options
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are discounted as described in Table 6.1 depending on the duration A of each

service business contract proposition. It might be said that the model is biased

towards the SIM, as bOpt1 SIM is discounted on a yearly basis, and the rest

of the options every 2, 4 or 8 years. However, as DNOs have to get approved

their business plans for a whole regulatory period, 8 years, these yearly dis-

counts are known beforehand and therefore, multi-utility companies willing to

become marginal, can customise their service prices within a regulatory period.

To quantify the uncertainty in Figure 6.1, from a DNO perspective, business

options ITMP are calculated and displayed as in Table 6.1.

Table 6.1: Flexibility contract proposition duration (A) and ITMP options
value

bOpt2 DSO bOpt3 Out bOpt4 Agg bOpt5 P2P
A 8 years 4 years 8 years 2 years

ITMP 1 0.9 0.8 0.75

OV , µ, σ are not disclosed due to data privacy. Historical data were anal-

ysed in order to extract values for the uncertainty. For the discount factor,

and pricing the business options, data are obtained from one UK DNO, ag-

gregators and the future value of storage presented by McKinsey (McKinsey,

2016). A data series was created for each of the business option displayed in

Table 6.1 and for further evaluation against SIM results.

6.4.2 SIM results

The model described in Section 6.4.1 was coded in Python for the SIM and

solved using IPSA Power on 4 core 4 GB RAM virtual machines. A single SIM

experiment used for calculations from 18-24 hours. Each experiment solution

presented several tree branches (Butans et al., 2017) that can serve as an op-

timised investment pathway. Figure 6.7, presents using Parallel Coordinates



Chapter 6. Dynamic Investments in Flexibility Services 187

(Kipouros et al., 2013), the 27 solutions of non-failed network states clustered

by the percentage of smart solutions implemented to solve hurdles within the

2015-2023 evaluation period. It can be noted that solutions that implements

more smart techniques (represented in orange) are more expensive in CAPEX

and OPEX required, although outperformed its peers that used higher percent-

age of traditional reinforcements in utilisation of assets, and higher reduction

of Costumer Minutes Lost (CML), Customer Interruptions (CI) and Losses (in

annual kWh).

Figure 6.7: ‖ -coord solutions plot for DECC2 scenario. 2015-2023 planning
horizon
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Long-term look ahead results predominately follow short-term trends when

clustered solutions by the percentage of traditional reinforcements implemented

to solve a failed network state. In figure 8, fewer solutions are completed as fea-

sible solutions, 15 instead of the 27 that we had in the short-term evaluation.

Comparing indicators and having in mind that long-term scenario includes 24

more years after 2023, it can be concluded that OPEX, and the reduction of

CML, CI and Losses perform better with a long-term look. Also percentage

of smart grid techniques implemented is higher for the 2015-2047 solutions.

SIM results are not likely to be in a situation where large capital spend is

demanded, but extra flexible capacity will be necessary.

Figure 6.8: ‖ -coord solutions plot for DECC2 scenario. 2015-2047 planning
horizon
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6.4.3 MURRA results

From a DNO perspective, one of the major benefits for a service based method

of managing a constraint issue through commercial techniques means that it

will typically only incur costs to the business when it is being used. In that

sense, the Commercial Trials of the FALCON project allocated 10 MW of

flexible capacity (Western Power Distribution, 2015).

Once identified potential feeders and substations in need for flexible peak

loads at certain periods, the DNO may look for alternatives to traditional

reinforcements or smart grids techniques. The four business options proposed

have an option service value attached. Those flexibility propositions described

in subsection 6.1.2 and 6.4 are computed and coded in Python on a PC 2.20

GHz with 16-GB RAM running on Microsoft 7 Enterprise. The CPU time

used for the longest set of calculations (Figure 6.11) was of 983 s (16 min).

A short-term evaluation using MURRA (2015-2023) is performed for the

whole trial area. Results are presented normalised in Figure 6.9. SIM business

proposition are selected in 6 years, whereas Aggregator (Agg) is the optimal

option for 2021 and 2022. That is related that from 2015-2020, the DNO has

been building capacity with traditional reinforcements and allows a compet-

itive contract proposed by Agg to become competitive and thus, the option

selected. As for the other options, Outs and P2P are close in value proposition

to Agg and the DNO option becoming DSO and owning and operation assets,

proposed services between (18% and 34%) more expensive than the optimal

service option.
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Figure 6.9: Investment Strategy comparing Real Option for the trial area for
RIIO ED-1: 2015-2023

Two long-term scenarios from 2015 to 2047 are presented in Figure 6.10 and

Figure 6.11. First one is the optimal investment solution path for contracting

the 10 MW capacity requested. RIIO-ED1 period is radically different from

the one presented for short-term (Figure 6.9). For a long-term optimising

investment look-ahead, Agg options are the chosen ones, and extra capacity is

just built (SIM option) when needed during the evaluation period. That extra

capacity built at the beginning of RIIO-ED2, RIIO-ED3 and at the end of

RIIO-ED3, allows to options with limited capital expenditure (Agg and P2P)

to become the service solution provider.
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Optimal Path All SIM All DSO All Outs All Agg All P2P
1 1.17 1.92 1.47 1.38 1.52

Figure 6.10: Investment Strategy for RIIO ED-1: 2015-2047

A normalised solution is calculated to compare the optimal path aforemen-

tioned described and a case where every year is used the same option, e.g., all

of the years, DSO option is selected. The table in Figure 6.10 is displayed how

much extra will it cost if that is the selected approach. From an extra 17% if

only the SIM solutions are contracted, to a 92% if the batteries operated by

the DSO are contracted as flexibility provider.

This last simulation of the MURRA ROV aims to quantify the value of

regret (Bunn and Oliveira , 2001) if just planning for one RIIO-ED. Adopting

the short-term investment pathway from Figure 6.9 for the RIIO-ED1 period

in the Figure 6.11, the solution space completely varied when compared with

the un-constrained option in Figure 6.10.
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Over-investing in the network during the first RIIO period (24% more than

the optimal solution) leads to have spare capacity in the system and therefore

SIM option is only required at the beginning of RIIO-ED3. That leads op-

tions such as P2P double the number of years selected as the chosen solution,

Aggs solutions are delayed on time from RIIO-ED1 to RIIO-ED2 and Outs

are present for the first time as feasible solutions. Adopting this sub-optimal

investment path will lead to a value of regret of an over-investment of 19%.

Normalised values for the table in Figure 6.11 have been calculated with the

optimal path from Figure 6.10. Comparing values in Figure 6.11 with the ones

in Figure 6.10, leads to conclude that despite having chosen a sub-optimal,

more expensive path, that makes all of the business propositions more attrac-

tive but for the SIM options.

Sub-Optimal Path All SIM All DSO All Outs All Agg All P2P
1.19 1.33 1.81 1.39 1.36 1.41

Figure 6.11: Investment Strategy for RIIO ED-1: 2015-2047
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6.5 Conclusions and policy implications

In this chapter is presented a two-stage service valuation methodology that can

be used for assessing a portfolio of flexibility services for distribution power

networks. A network state selector is presented in the form of the algorithms

embedded within the SIM software, selecting those network states which out-

perform their peers and therefore advancing with a long-term investment strat-

egy using traditional reinforcements and smart grid techniques.

The Real Options valuation of Flexibility services proposed within the

MURRA methodology, parallelised and compared SIM flexibility requirements

with those multi-utility service propositions, solve in an acceptable time frame

the aforementioned model.

6.5.1 Locational planning

The key distinguishing factor for this stylised case study was to the way in

which solutions were evaluated, with techniques being applied and simulated

with reference to a nodal model of a real network, rather than assessing net-

works in terms of percentage headroom for representative network types. Being

able to use the SIM, as a detailed bottom up model based on microscopic level

analysis while other existing models can be characterised as top down macro-

scopic simulations based on summary views of the network. These two very

different views ought to be complementary and there may even be expected to

be some overlap in the middle ground when applied to the same network. How-

ever it can be hard to find representative networks to check this aspect, and

using average networks could potentially miscalculate the levels of investment

required.
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Trial area used in this study only covers Milton Keynes which accounts

for only 1.5% of East Midlands customers. Therefore scaling investment plans

for the studied 11kV network from Milton Keynes to DNO or nation level

for comparison is likely to provide only a very general test that the results

are in the right order. Given the differences between flexibility models, the

comparisons will be quite general. However, some areas of comparison can be

considered for future studies:

• Load Profiles

• Proportions of investment type (Smart techniques vs Traditional rein-

forcements, Opex, Capex, losses)

• Impact on losses and interruptions

• Investment Triggers (Voltage vs Thermal issues)

• Locational Multi-Utility flexibility service propositions

There are various extensions of the present model that are intended in

future research, such as disaggregation of results at feeder level. In practice,

digitalisation of cyber-physical network assets will provide a more accurate

system forecast of flexibility required. The fact that some evaluated service

propositions here, such as storage, peer-to-peer or demand aggregation are not

mature in their learning curves, along with regulatory variations, can represent

a shift on optimal investment pathway using proposed methodology.
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6.5.2 Consequences of periodic incentive-based regula-

tion inducing short-termism

This chapter makes key contributions with a ROV applied to flexibility busi-

ness models for long-term investment planning in distribution networks. Moti-

vated by a real-world application a novel integration of the heuristics integrated

within the SIM nodal investment planning software to evaluate myopic empiri-

cal ROV strategies. Short-term myopic evaluation planning periods have been

proving more expensive in the long-term for the system. Forcing long-term

planning (2015-2047) to adopt during the first years (2015-2023) a sub-optimal

investment strategy will lead to:

• In the short term, an over-investment in flexibility will be of 24%, being

defined as the value of regret.

• Adopting this sub-optimal business as usual look-ahead investment strat-

egy, would lead to over-paying 19% for flexibility services compared to

unconstrained portfolio investment strategy for the 2015-2047 period.

• By comparing long-term investment strategies, short-term myopic and

unconstrained, it can be concluded that with an over-invested grid dur-

ing the first regulatory period, less capacity investment is required in

subsequent years.

• Competition among flexibility options is enhanced in the sub-optimal

path due to the excess of investment early years, always traditional re-

inforcements, which will permit that with promoting policies, flexibility

options such as peer-to-peer or demand aggregation will become marginal

more often and therefore, the option selected.
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In summary, this chapter concludes that resilience of power systems could

be also ensured by outsourcing flexibility services, although how much you pay

for that is sensible to the chosen investment path. It also suggests the poten-

tial scope for promote and develop multi-utility business models to enhance

competition in the power sector. In future research, the author looks forward

to quantify the implications of the simplified assumptions, and the integration

of MURRA within the SIM software for reducing computational effort. To in-

vestigate non-myopic investment strategies, Monte-carlo planning techniques

will be evaluated. Nonetheless, this study also suggests further research should

be pursued to assess nation wide potential for the flexibility business services

markets from a bottom-up modelling perspective.



Chapter 7

Discussion and conclusions

In the continuance of this work, after having completed the 3 years of the

Doctorate degree, conclusions of the thesis have to be settled. Having now a

broader view of how challenging this topic can be, findings and contributions,

limitations, future research, and concluding remarks are to be covered in this

chapter.

7.1 Findings & Contributions

The aim of this thesis was to characterise evolutionary planning techniques for

real-world size problems that are capable of:

• Quantifying performance system indicators.

• Identifying set of optimal solutions using meta-heuristics.

• Proposing novel methodology to evaluate non-traditional flexibility busi-

ness models for distribution supply networks.

• Validating and evaluating performance metrics for power systems opti-

misation.

197
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The literature review characterised the uncertainties that power systems

planning are facing towards the three decarbonisation of the electric sector

by 2050. Chapter 2 presents an state-of-the-art review of barriers that the

power value chain is facing while raising questions regarding modelling future

power networks. To analyse current regulatory framework implications during

case studies’ chapters, a brief review of RIIO regulation framework and US

Independent System Operators relevance for this research is discussed within

the literature, positioning this thesis on the planning-operations domain (Ap-

pendix C).

Many controversies have been identified on the technology that will prevail

or inaccurate price forecast for many of them (particularly solar) (U. S. Energy

Information Administration , EIA). This thesis provides a set of methodology

options that enables an efficient modelling of bottom-up power systems regard-

less on which technologies, incentives or regulation are chosen, leaving that to

future modellers.

The rapid integration of solar photovoltaic triggered the debate for defining

a more flexible power system. Storage mandates have been pursued in some

States of the US, as presented in Chapter 2, and combined with high penetra-

tion of intermittent renewable sources have motivated the impact evaluation

in Chapter 4. That stylised study models in a first stage the Independent

System Operator of New England in the presence of high wind penetration

(30% generation mix), evaluating on a second stage the impact contribution

of the Massachusetts’ Storage target on New England’s volatility of prices,

curtailment and total generation costs.

Within Chapter 5, a novel evolutionary approach is presented for evolving

network states over many evaluation periods. Smart techniques and traditional

reinforcements leveraged the optimal combination for planning new digital
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energy systems to provide resilient 11 kV networks. Experiments’ solutions

providing bespoke local network requirements under different demand and time

evaluation period scenarios are performed.

The performance of techno-economic indicators combined with bottom-up

meta-heuristic modelling on benchmarks problems were designed to identify

significant variations on cost and technical indicators. The data revolution is

leading to three transformative Ds for the energy sector: Decarbonise, Decen-

tralise and Deregulated. IoT technologies and advanced metering are key en-

ablers of this transformative revolution providing dynamic responses for costs,

charges, and services, and therefore resulting new business models. In that

sense, Chapter 6 proposed a Real Options valuation of flexible resilient service

propositions.

Following detailed contributions have been made with the work presented

in this thesis:

• Two-step optimisation approach to bottom-up power networks modelling.

Having looked for a source that provide both, evolutionary planning and

techno-economics modelling of power systems, the author concluded that

a two-step approach where first, the objective functions, decision vari-

ables and constraints are defined and then, a real-life size power system

in need to be evaluated, are required. The complexity associated with

power networks have required to focus on optimising multiple-objectives

at each evaluation, so meta-heuristic algorithms Ganesh (Genetic Algo-

rithm) and customised SIM A* (Graph Search algorithm) are selected

for the experiments within this thesis.
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• Customisation of a novel optimiser for real-life size studies. The capabil-

ities of Ganesh optimiser, as an improved Non-Sorted Genetic Algorithm-

II, have been extended to handle not just scalars as it used to do but also

now, can handle large lists of inputs (such as 5 minutes resolution yearly

time-series) coming from a .csv file and calculates, for example the hourly

standard deviation of electricity prices, using it as Objective Function in

an optimisation. For the near future, integration between Ganesh and

High Performance Computing is planned using, Nimrod toolkit (MeS-

sAGE, 2000). From there, will be easier to run real-life size parallelised

models reducing computational time.

• High penetration wind in New England & Massachusetts’ Storage stylised

case studies. Starting with the WIND tool-kit produced by the National

Renewable Energy Laboratory, a case study modelled in PLEXOS and

combined with Ganesh optimiser is presented in Chapter 4. It contains an

empirical evaluation of all of the onshore wind resource in New England,

US. 6 different topologies are produced and evaluated for further study

the total generation cost and standard deviation of prices for a year

with a 30% of wind installed. This generation mix is compared and

tested against the actual ISO-NE real-system. On the second half of

the chapter, a multi-objective optimisation is presented accomplishing

Massachusetts Storage target locating the most suitable locations for the

storage devices installation, aiming to optimise maximum operational in

New England as a whole-system.

• Distribution networks evolutionary optimisation. Chapter 5 presents be-

spoke scenarios of the FALCON 11 kV trial area. Aggregated at area

level and highlighted locational feeder insights, the study shows feasibil-
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ity of using meta-heuristics for evolutionary planning. Bottom-up evolv-

ing network states modelling has an applicability in real-world distribu-

tion networks design. The methodology and scenarios of this chapter

have motivated independent pieces of work across the energy value chain

and different impact domains (Appendix C), such as public and private

electrical transportation, (Peláez et al., 2015), (Zafred et al., 2016).

• Multi-Utility Flexibility Options. A learning from chapter 5 is the need

to create greater flexible capacity within the network. Chapter 6 tack-

les that need proposing a Real Options methodology, MURRA (Multi-

Utility Resilience Rating Assessment), and future integration within the

SIM provides extra capability for evaluating flexibility service portfolios.

The myopic consequence of short-term vs long-term service agreements

has been tested and used in the study to validate the methodology.

• Multi-dimensional visualisation technique. Case studies chapters 4, 5

and 6 have used parallel coordinates to debug multi-dimensional analysis

when optimising conflicting objectives. It is a feasible solution to link

both, parameters of the optimisation with objective functions, enabling a

better understanding of system dynamics and correlation among results.

7.2 Limitations

The limitations of this work are divided into two domains, namely, method-

ological, and validation.

A major limitation that falls under methodology is that there are no soft-

ware available to integrate studies in chapters 4 and 5 within it.
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Therefore, the lack of common case-independent metrics to evaluate end-

to-end future power networks and interdependencies and conflicting objectives

among transmission and distribution modelling. This issue is not specific to

evolutionary planning networks, but also to static problems and future research

might want to extend the knowledge of frontiers between Transmission System

Operator and Distribution Network Operator, their conflicting roles and mar-

ket interactions. The other methodology limitation is due to the selection of

chosen meta-heuristics and therefore being limited by their intrinsic features.

Graph search algorithms and Genetic algorithms helped to characterise the

solution space but were not able to find a global optimum.

Linking previous limitation with one on the validation domain is neces-

sary to highlight that non-other meta-heuristics were tested thoroughly. Con-

sequently, comparison with other evolutionary approaches would be recom-

mended. Only parallel coordinates and Pareto fronts were used to compare

many-dimensional decision spaces and, although correlations were discussed,

other feasible solutions might remain hidden.

As a final limitation and when addressing technical limitations (comput-

ing running resources, parallel computation, High Performance Computing...),

would be meaningful to study a modelling limitation such as in which decision

variables and objective functions change over time.

7.3 Future research

The merging of the energy sector with Information Technologies will enable a

new era of distributed, low-carbon, and digital energy. Within this in mind

I am seeking to evaluate different emergent fields (domains) in terms of their
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innovative directions, potential impact and pace of change in order to prioritise

achievable research themes resulted from this thesis for future study.

Key finding from chapters 4, 5, and 6 have built the first steps to setting

out the domains that can be the base ground to extend this current research

to a future digitalisation of the energy sector. These are: Cyber-physical asset

systems, Agent-centric modelling and design, Distributed Ledger Technolo-

gies, Real-time decision-making and visualization techniques, High-Frequency

trading and Data-centric engineering using Machine Learning Techniques. To-

gether these technologies have the potential for wide-ranging and transforma-

tional change in whole energy systems.

As a system of systems, these digital technologies represent the highly

adventurous integrated whole. Each of these areas are emerging research do-

mains. How these can work together to solve energy transitions is not all

clear. Bringing them together is highly speculative but has transformational

potential.

Intelligent integration of local low-carbon energy, the use of Internet of

Things to operate power networks, or the powering of electrical transporta-

tion, are challenges that the UK and many countries across the world are

facing in our digital 21st century, first steps have been settled in chapters

4 and 5, and proposed meta-heuristics can be adopted for pilot tests as has

been done within this thesis. Furthermore, proposed micro-Genatic Algorithms

(Coello and Pulido, 2001), as well as other meta-heuristics might be explored

for further consideration depending on case study application. Also, due to

their parallelisation feature, it is recommended to pursue the combination of

Ganesh with Nimrod, to explore the impact on computational time. As men-

tioned in the Limitations section, that should be done in a High Performance

Computing with multiple PLEXOS licenses.
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Planning energy sector is shifting over to create a step change in our under-

standing of how consumer-centric decision-making enabled by digital technolo-

gies will impact on the digital energy transition. The potential for digitalisation

of the UK’s energy operations, at all scales, aiding the integration of Smart

appliances with variable and fixed loads, Smart gas and electricity contracts,

or Electrical Vehicles, will raise uncertainties that need to be addressed with

architectural solutions. Traditional methods would not allow real-time propo-

sitions to emerge as these methods require data collection and computational

time for searching the problem-space. Distributed Ledger Technologies (i.e.,

Blockchain) as enabler technologies hand have the necessary information and

processing capability distributed locally and in parallel, overcoming some of

the computing limitations aforementioned.

Combining decentralised decision-making using Distributed Ledger Tech-

nologies and bottom-up analysis of interactions occurring among agents, i.e.,

lines, cables, substations, would allow us to create a step change in our un-

derstanding of how to unlock some of the value streams that digital energy

transition will bring, as well as identifying novel risks and uncertainties that

will emerge when moving quickly toward decentralised low-carbon systems.

This future research aims to improve the design of Complex Systems, by

reviewing stochastic agent-based modelling with Distributed Ledger Technolo-

gies. Optimising local solutions (e.g. households, districts and cities) may

lead to sub-optimal consequences for nation-wide objectives; therefore, a pro-

curement is needed where consumers can be aggregated as communities, in

a landscape of heterogeneous actors, in order to understand local and global

effects. Thus, future strategic data-driven planning needs a holistic approach

to ensure that the energy trilemma - security, equity, and sustainability - is
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resolved at local levels while contributing to a national increase of population

welfare.

Addressing the engineering-driven actions necessary to develop more defen-

sible and resilient systems - including services that depend on those systems,

are another domain where digitalisation of energy is having an impact. The

ultimate objective is to address security issues from a stakeholder requirements

and protection needs perspective and to use established engineering processes

to ensure that such requirements and needs are addressed with appropriate

fidelity and rigour, early and in a sustainable manner throughout the life cycle

of the assets increasing reliability of the system.

More transparent systems will cope with consumers need of more informa-

tion and knowledge in order to be able to engage in the market. Consumer

engagement should, however, be considered also in light of the potential costs.

Further, a strong focus should be given to demand-side flexibility in the retail

market. Developing further MURRA, presented in Chapter 6, may led to bet-

ter service flexibility propositions where self-generation and self-consumption

would be crucial in future energy systems. Regulators could analyse the regu-

latory framework proposing new and innovative offers should be enabling retail

market to propose choices to consumers.

The current energy market environment is characterised by high systemic

risk and not transparent transactions, leading end-consumer to be reluctant

to engage with the system. In these markets, regulated and non-regulated

any competitive advantage is highly sought after. Outlining how technologi-

cal, market and regulatory considerations will lead to the importance to the

evolution of High-Frequency Trading and the innovation it brings to digital

markets. The digital revolution allows combining distributed decision-making

with Generalised autoregressive conditional heteroscedasticity (GARCH) to
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price, measure, and explain how volatility of cyber-physical assets can largely

impact on prices. The move to digital decentralised planning and the real-

time decision making can lead to debug correlation between markets, assets,

or consumers, providing a more robust and transparent system.

7.4 Concluding remarks

This research concludes that evolutionary approaches can be used to address

real-life complexity in power networks planning problems. The proposed so-

lutions are able to aid decision-makers improving their current insights on

planning power networks. Meta-heuristics implemented are suitable to char-

acterise the solution space offering a range of trade-off to select from with

feasible solutions.

Using novel off-the-shelf software such as the SIM, Ganesh or MURRA, and

a combination of them, provide satisfactory results that validates early-project

assumptions of the necessity of responsive bespoke solutions depending on the

real-world problem tackling. To conclude this research, the research objectives

formulated in Chapter 1 are analysed against the findings and accomplishments

of this thesis:

1. To develop problem detailed quantitative representation of real-world power

systems suitable for being optimised. Chapters 4 and 5 characterises

two power systems, one at transmission and the other at distribution

level. Chapter 6 defines a methodology to be integrated as part of new

modelling options portfolio in Chapter 5 power system. Eventually, a

Common Information Model could link transmission and distribution

optimisation objectives.
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2. To fit existing algorithms and heuristics evolutionary techniques to real-

world size problems. Chapter 3 debugs dynamics and modifications

needed of state-of-the-art meta-heuristics for real-world size case stud-

ies. Bespoke optimisation frameworks are presented in that chapter and

implemented in Chapters 4 and 5.

3. To visualise performance criteria for case studies decision making. Each

of the case studies in chapters 4, 5, and 6 outline and define their

own evaluation performance metrics for many-dimension decision making

based on parallel coordinates.

4. To propose non-traditional flexibility services for creating capacity within

distribution networks. Characterisation, performance and associated volatil-

ity risks to increase network capacity resilience are addressed on Chap-

ter 6 by MURRA methodology providing Multi-Utility flexibility service

proposition valuation. It presents an opportunity for a proactive reform

where, like in RIIO, innovation is incentivised across the value chain.

5. To validate and evaluate performance metrics for power systems opti-

misation and customising optimisation frameworks for measuring their

performance. Proposed evolutionary meta-heuristics, its constraints and

evaluation metrics (objective functions) were analysed using chapters 4

and 5 transmission and distribution power systems and validated using

aforementioned chapters’ case studies.

The aim of this research is to gain a set of evolutionary techniques for

rapidly modelling evolving power network systems. The data revolution is

shifting on how power systems have been traditionally designed. Smart new

techniques, untested technologies, digitalisation or uncertain impact on sys-
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tems integration are some of the challenges the sector is facing. The impact on

power networks of restructured systems operators, their roles, and foreseeable

decentralised markets arrangements looking for transparent mechanisms, are

critical functions that will define future research. With this thesis the author

has contributed providing a portfolio of insights on how to model, analyse and

visualise those future impacts on power network systems.
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lating the Impact of Wind Production on Locational Marginal Prices.”, in

IEEE Transactions on Power Systems 26.2 pp. 820-8. (Cited page 86.)

Moselle, B., Padilla, J., & Schmalensee, R. (2010), Harnessing Renewable En-

ergy in Electric Power Systems: Theory, Practice, Policy. Routledge. (Cited

page 122.)

Moslehi, K., & Kumar, R. (2010). ”A reliability perspective of the smart grid”,

in IEEE Transactions on Smart Grid, 1,(1), 57-64. (Cited page 169.)

Mühlenbein, H., Schomisch, M., & Born, J. (1991). ”The parallel genetic algo-

rithm as function optimizer”, in Parallel computing, 17(6-7), 619-632. (Cited

page 56.)

Narimani, M. R., Vahed, A. A., Azizipanah-Abarghooee, R., & Javidsharifi,

M. (2014). ”Enhanced gravitational search algorithm for multi-objective dis-

tribution feeder reconfiguration considering reliability, loss and operational

cost”, in IET Generation, Transmission & Distribution, 8(1), 55-69. (Cited

pages 31 and 37.)

National Grid (2016). System Operability Framework 2016, available

at: http://www2.nationalgrid.com/UK/Industry-information/

http://web.mit.edu/energylab/www/pubs/el99-005wp.pdf
http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/System-Operability-Framework/
http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/System-Operability-Framework/


230 References

Future-of-Energy/System-Operability-Framework/ (Cited pages

xix and 26.)

Neij, L. (2008), ”Cost development of future technologies for power generation.

A study based on experience curves and complementary bottom-up assess-

ments”, in Energy Policy, vol. 36, no. 6, pp. 2200-2211. (Cited page 3.)

Nieto-Martin, J., ”The UK pathway towards a Low-Carbon 2050”, in Regu-

lation for the Power sector, Florence School of Regulation, 2015. (Cited

pages 11 and 19.)

Nieto-Martin, J., Brancucci Martinez-Anido, C., Florita, A., Kipouros, T.,

Hodge, B.M., Savill, M., (2016) ”Impact of Wind Topologies on the ISO

of New England Nodal Electricity Prices”, in EWEA WindEnergy Summit,

27-29 September 2016, Hamburg, Germany. (Cited page 86.)

Nieto-Martin, J., Butans, E., Woodruff, J.A., Kipouros, T., Savill, M., (2017),

”Smart Grid Techniques for Automated Low Voltage 11kV Networks”, Spe-

cial Issue on Technologies and methodologies in modern distribution grid

automation, Sustainable Energy, Grids and Networks. (Cited page 175.)

Nieto-Martin, J., Butans, E., Woodruff, J.A., Kipouros, T., Savill, M. (2017)

”Automation of Smart Grid Technologies for Low Voltage Evolutionary Net-

works”, Special Issue on Technologies and methodologies in modern distri-

bution grid automation, Sustainable Energy, Grids and Networks. (Cited

page 28.)

Ochoa, L. N., Pilo, F., Keane, A., Cuffe, P. and Pisano, G. (2016), ”Em-

bracing an Adaptable, Flexible Posture: Ensuring That Future European

Distribution Networks Are Ready for More Active Roles”, in IEEE Power

and Energy Magazine, vol. 14, no. 5, pp. 16-28. (Cited page 176.)

http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/System-Operability-Framework/
http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/System-Operability-Framework/


References 231

Ofgem (2014) ”Network regulation - the RIIO model”, available at: https://

www.ofgem.gov.uk/network-regulation-riio-model (Accessed: 15 De-

cember 2016). (Cited pages 2 and 168.)

Ofgem (2016) ”Breakdown of an electricity bill”, available at: https://www.

ofgem.gov.uk/chart/breakdown-electricity-bill (Accessed: 15 De-

cember 2016). (Cited page 175.)

Ofgem (2017) ”The Innovation Link”, available at: https://www.ofgem.gov.

uk/about-us/how-we-engage/innovation-link (Accessed: 10 February

2017). (No cited.)

Oliver, J. M. Multi-Objective Optimisation Methods Applied to Complex Engi-

neering Systems, Academic Year: 2013 - 2014. PhD, September 2014. Cran-

field University. (Cited page 3.)

Oliver, J. M., Kipouros, T., & Savill, A. M. (2013). ”A self-adaptive ge-

netic algorithm applied to multi-objective optimization of an airfoil”, in

EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evo-

lutionary Computation IV, pp. 261-276. Springer International Publishing.

(Cited page 76.)

Oliver, J., Kipouros, T., & Savill, M. (2015). ”Configuring an electrical

power network with distributed generation by multi-objective optimization

with evolutionary computing”, in Emergence: Complexity and Organization,

17(2), D1. (Cited pages 75, 78 and 84.)

Oracle. Java platform. Standard edition 7th documentation, 2014. Available

at: http://docs.oracle.com/javase/7/docs/. (Cited page 84.)

https://www.ofgem.gov.uk/network-regulation-riio-model
https://www.ofgem.gov.uk/network-regulation-riio-model
https://www.ofgem.gov.uk/chart/breakdown-electricity-bill
https://www.ofgem.gov.uk/chart/breakdown-electricity-bill
https://www.ofgem.gov.uk/about-us/how-we-engage/innovation-link
https://www.ofgem.gov.uk/about-us/how-we-engage/innovation-link
 http://docs.oracle.com/javase/7/docs/


232 References

Papaefthymiou, G., & Dragoon, K. (2016). ”Towards 100% renewable energy

systems: Uncapping power system flexibility”, in Energy Policy, 92, 69-82.

(Cited pages 28 and 86.)

Parkinson, G. (2014), ”Queensland Solar Creates Negative

Electricity Prices”, in: The Middle of the Day July 5,

2014, available at: http://cleantechnica.com/2014/07/05/

queensland-solar-negative-electricity-prices/ (Accessed: 15

December 2016). (Cited page 18.)

Patti, E., Pons, E., Martellacci, D., Castagnetti, F. B., Acquaviva, A., & Macii,

E. (2015, May). ”Multiflex: Flexible multi-utility, multi-service smart me-

tering architecture for energy vectors with active prosumers” in Smart Cities

and Green ICT Systems (SMARTGREENS), 2015 International Conference,

pp. 1-6. IEEE. (Cited page 28.)

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem

solving. United States: Addison-Wesley Pub. Co., Inc.,Reading, MA. (Cited

page 66.)
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