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Abstract

Industrial aerodynamic design applications require multiobjective optimization tools able

to provide design feedback to the engineers. This is true especially when optimization

studies are carried out during the conceptual design stage. The need for fast optimiza-

tion methods has led to the development of multifidelity methods in a surrogate based

optimization environment. Multifidelity tools have the potential to accelerate the design

process, primarily due to the lower cost associated with the low fidelity tool. In addition

to this, the design stage is shortened as mature and reliable high fidelity design informa-

tion is provided earlier in the design cycle. Despite this high potential of these methods,

there is no explicit comparison available in the literature between multifidelity surro-

gate based optimization tools for industrial aerodynamic problems. This paper aims at

providing a direct comparison between two multiobjective multifidelity surrogate based

optimization methods developed by our group. The first approach uses a trust region

formulation for efficient multiobjective that does not require gradients. The second is

using the concept of expected improvement to perform fast design space exploration

based on a novel Kriging modification for multifidelity data. The tools are applied in

two aerodynamic design problems: optimization of a high lift configuration in respect

to maximum lift maximization and an airfoil design for transonic cruising conditions.

These problems feature characteristics of industrial interest. They involve difficult phys-

ical analyses in the case of the high lift configuration and a more complex optimization

formulation due to the increased dimensionality in the case of the transonic airfoil. Our

presented methods are compared against a CFD-based optimization, a surrogate based

optimization using only high fidelity data and a multifidelity surrogate based optimiza-

tion based on Co-Kriging. Early results suggest that the trust region method can quickly
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provide improved designs leading to an efficient pareto front. The expected improvement

based method shows fast exploration attributes and a wide pareto front.

1. Introduction

I
ndustrial applications of aerodynamic design demand the use of tools capable of

generating efficient designs in a series of objectives. In the initial stages of the design,

perhaps the most critical attribute of an optimization tool would be the ability to provide

the maximum amount of information to the designer, thus acting as a very efficient trade5

study tool. Equally important, the tool should be able to provide reliable assessment

of the concepts considered, even at these early design stages. This can be critical for a

success of the new design concept as it shortens the design cycle.

To do so, such an optimization framework should be fast, minimizing any cost asso-

ciated with guiding the optimizer, as well as the cost of the analysis itself. In the center

of this lies the surrogate-based optimization (SBO) and the multifidelity (MF) methods.

However, to take full advantage of these techniques and to provide more information and10

physical insight according to the aforementioned, SBO and MF methods should be used

within a multiobjective (MO) formulation.

Although MO optimization methods have been used in the aerospace industry [1, 2],

tools based solely on gradient-free MO optimizers might lead to very high computational

expenses [3]. In response to that, there has been an effort to reduce the cost by us-

ing surrogate modelling and multifidelity [4] techniques, which have a profound effect

when the metamodels substitute expensive [5] or challenging analyses. Their use is not15

limited in decreasing the computational requirements associated with high fidelity (HF)

analysis but to guide the design [6] as well, as in SBO problems. Typical applications

of metamodeling-based methods involve airfoil or wing design [7, 8], aeronautical and

aerospace applications [9, 10, 11, 12]. Effort to develop more sophisticated metamod-

eling techniques focus on the accuracy and flexibility [13, 14] of the models. Another20

1School of Aerospace, Transport and Manufacturing, department of Power & Propulsion.
2Professor of Computational Aerodynamics Design, School of Aerospace, Transport and Manufactur-

ing, Propulsion Engineering Centre.
3Research Fellow, School of Aerospace, Transport and Manufacturing, Propulsion Engineering Centre.

Preprint submitted to Aerospace Science and Technology November 23, 2019



approach towards better exploitation of metamodeling for optimization is the use of mul-

tifidelity analysis, as industries use analyses of different fidelities depending on the design

stage [15]. Since optimization methods are not acting on the analysis but on a surrogate

generated by the analyses’ data, using data of variable fidelity tools is a sensible way to

accelerate a design problem associated with an expensive analysis as well as being used25

to steer to designs more insensitive to operating conditions [16]. Popular formulations

based on this have have been developed [17, 18, 19, 20] and applied [21, 22, 23, 24] in

the recent years.

Following the needs outlined in the beginning of the introduction, our group has

been involved in the development of two distinctive methodologies employing MF SBO

techniques in an MO formulation. The first one is a trust region (TR)-based frame-

work [25] that uses a metamodel to correct the low fidelity (LF) aerodynamic solver,30

steering the method to high fidelity optimality. The method does not require gradients

information [26, 27] nor an initial sampling. The second approach [28] is based on a

multifidelity variation of the Kriging metamodel, applied within the global surrogate-

based optimization strategy using the expected improvement (EI) [29] criterion. Both

methods can tackle multiobjective problems efficiently with the multiobjective optimiza-35

tion acting directly on very cheap function calls. The multiobjective optimizer used is

an inhouse implementation of the multiobjective particle swarm optimization (MOPSO)

algorithm [30].

This paper provides a direct and systematic comparison of the above methods, aiming

to display the appropriateness of each approach and their dependency on the problem

at hand. To validate and further assess these methods, our results are also compared

against a CFD-based gradient-free method, a high fidelity SBO method using EI cri-40

terion and a MF EI method using Co-Kriging to handle the MF data. Two typical

industrial aerodynamic design problems are used as test cases: The first design problem

involves the take-off performance maximization, translated as a clmax
and lift-over-drag

ratio maximizations, of the Garteur high lift three elements configuration [31, 32]. This

is a problem involving six design variables and a challenging aerodynamic analysis prob-45

lem. The second design scenario resembles a typical airfoil design for transonic cruising

conditions using RAE2822 airfoil [28]. Here, Cl and Cd are used as objectives.
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In section 2, the two methodologies are described in more detail. Section 3 provides

an overview of the formulation of each aerodynamic optimization case. The results of

each methodology at each test case are shown in Section 4. A summary outlining the

conclusions extracted by this work as well as the further future work is provided in

Section 5.

2. Methodology50

Let flow : R
n → R

l be the low-fidelity function and fhigh : R
n → R

l be the high-

fidelity function; where n ≥ 1 is the design space size and l ≥ 1 is the objective space size.

The goal is the minimization (or maximization) of the high-fidelity function as defined

in equation (1), where x is a vector of dimension n and D is a subset of Rn:

min
x∈D

fhigh(x). (1)

2.1. Trust-Region-Based55

With this method, the problem (1) is solved by a derivative-free trust region method

presented by Conn et al. [26]. Instead of directly solving the high-fidelity problem, an

approximation model is used, and at iteration k, the problem (2) is solved under a trust

region Tk:

min
x∈Tk

mk(x). (2)

The trust region is usually defined as a ball centered on the initial point of the sub-60

problem but in Ref. [33], a second definition based on the number of improvements of

the corrected model is used. This paper only uses the step-based trust region presented

in more details in section 2.1.3.

The model mk : Tk → R
l is defined by (3) at iteration k. It is formed by the sum

of a Kriging surrogate model ek representing the difference between the low- and the

high-fidelity functions (the error in other terms) and of the low-fidelity function.

mk(x) = flow(x) + ek(x) (3)

It was shown in reference [25] that using a RBF or Kriging model was not enough to

reach the same Pareto front extend than compared to the high-fidelity-only optimisation.65

4



Therefore, in this work, a co-Kriging model is used when a sufficient number of points is

available for its training. Hence, when more than 2(n+1) high-fidelity points are available

for training, the co-Kriging model is built and equation (3) is changed for equation (4):

mk(x) = ek(x) (4)

with ek(x) the co-Kriging model, implemented according to Forrester et al [34, 35]. A

co-Kriging model extends the original Kriging model to include multiple level of fidelity

of the simulation. Therefore in this case, the model is built with high- and low-fidelity70

points, and the co-Kriging model no longer predicts the error but predicts directly the

corrected function.

A summary of the method is presented in the flowchart 1.

2.1.1. Subproblem Optimizer

To solve the problem (2), the MultiObjective Tabu Search [36, 37] (MOTS) optimizer

is used. The local search is handled by a Hooke and Jeeves move, choosing the best75

direction to move by comparing improvements in each direction. To avoid being trapped

in local minima, MOTS records all the points that have been visited, forbids their reuse,

which in turn provides the ability to climb away from local minima to explore the design

space. Memories are also used to record design space portions that have been visited,

a characteristic which is eventually exploited when no more improvements are found to80

diversify. Hence MOTS starts by a local search but include globality search with the use

of memories and diversification moves.

2.1.2. Computation of the ratio of improvement

As for traditional trust-region algorithms, the ratio of improvements ρk = [ρ
(1)
k ,

ρ
(2)
k , . . . , ρ

(l)
k ] are calculated for each point from the suboptimizer and each objective as

follows:85

ρ
(i)
k =

f
(i)
high(xk)− f

(i)
high(xs)

m
(i)
k (xk)−m

(i)
k (xs)

, i ∈ [1, . . . , l]. (5)

2.1.3. Trust region management

Since each point from the current Pareto front is evaluated with the high-fidelity

function, the front is updated accordingly: some points that would be Pareto equivalent
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Figure 1: Multiobjective multifidelity optimization framework
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using fcorr won’t have the same status once compared with fhigh.

The ratio of improvement’s definition was extended according to equations (5) and (7)

in order to be used with multiple objectives as follows:

• for each candidate point pk = [f
(1)
high(xk), . . . , f

(l)
high(xk)] in the objective space,90

– if the number of objectives having their ratio of improvement greater than

ρbad is higher or equal to the trigger nf , the point pk is marked moderate;

– if the number of objectives having their ratio of improvement strictly greater

than ρgood is higher or equal to the trigger nf , the point pk is marked good ;

– otherwise, the point is marked bad.

• If the number of points pk marked:

– moderate is greater than the trigger np, the overall iteration is considered

moderate,95

– good is greater than the trigger np, the overall iteration is considered good,

– otherwise the iteration is considered bad.

The trust region is increased or shrank according to the status of the current iteration

as in equation (6):

∆k+1 =



















∆k − γs |{pmoderate}| < np (bad prediction)

∆k |{pmoderate}| ≥ np (moderate prediction)

∆k + γe |{pgood}| ≥ np (good prediction).

(6)

2.1.4. New point selection

The current Pareto front is then merged with the overall one and the number of100

points improving the Pareto front is counted. If at least one point improves the Pareto

front, a new point xs is randomly chosen from the overall Pareto front, otherwise the

sub-optimization is restarted from the same point, but this time, with a more accurate

corrected function:

xk+1 =































xs if |{pgood}| ≥ np

and ∃p ∈ {pgood} ,

∀p0 ∈ {pgood \ p} ∃i ∈ [1, . . . , l], f
(i)
high(xp) < f

(i)
high(xp0

)

xk else,

(7)
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with xp and xp0
being the coordinates in the design space of the respective points p and

p0.105

The random selection is biased towards low-density part of the Pareto front in order to

allow its entire exploration. To do so, the Euclidean distances di between each consecutive

point from the Pareto front Pfront = {p1, . . . ,pf}, containing f points, are computed

according to equation (8):

∀i ∈ [1, . . . , f − 1], di = ‖pi+1 − pi‖, (8)

and then used as weight for the random selection.

2.2. Expected Improvement Based110

To satisfy design space exploration and global optimality requirements of an early

design stage study, this methodology is based on an explorative surrogate-based opti-

mization plan [29]. It employs a novel metamodel approach to take advantage of the

availability of multifidelity data.

2.2.1. Multifidelity analyses

A significant number of the analyses called by the optimization scheme are performed115

using an LF tool, as we aim to reduce the required computational resources. The corre-

sponding results however are corrected since the LF tool is subject to error. LF results

are related to HF ones by superimposing an error prediction as follows [34],

fhigh(x) = flow(x) + e(x) (9)

2.2.2. Surrogate model

The optimization study aims in providing fast and extensive exploration in the con-120

ceptual stage, in which The functions of interest are approximated using a surrogate

model. Here, the decomposition of Eq.9 demands not only a model for the error correc-

tion e but also a model for the objective function y of the LF tool as well. For metamodel

predictions of the fhigh and flow functions, Eq.9 becomes,

yhigh(x) = ylow(x) + e(x) (10)

In the case of a reasonably accurate LF tool that can follow the trends of the HF
8



one, the resulting error is smooth enough to allow the use of a cheap Radial Basis125

Function (RBF) model. The objective function flow is associated with a more challenging

design space and as such a Kriging model is being used. For the required tuning of the

hyperparameters, ALPSO optimizer from Ref. [38] was used. Finally, based on Eq.10,

the HF objective function is estimated by,

ŷ(x) = µ̂+ψTΨ−1(y − 1) + e(x) (11)

Notice how the prediction is corrected by an estimation of the LF error. This provides a

mapping of the Kriging predictor from an approximation of the LF space to an approxi-

mation of the HF design space [28].130

2.2.3. Surrogate-Based Optimization

The use of the Kriging model not only improves the accuracy of the metamodeling

approximation, but most importantly, extends the possibilities of the surrogate-based

optimization method to be used. Despite the cost increase associated with its training,

the benefits for using Kriging in an optimization study that involves expensive analyses135

are higher. A Gaussian-based approximation allows us to estimate the uncertainty of the

model itself. Following this, a metric that includes both the estimated model results and

its uncertainty can be constructed. In this approach, the metric used is the Expected

Improvement (EI) [35] which is a prediction of how much the function of interest will be

improved in each design point examined.140

EI = (ymin − ŷ(x))Φ

(

ymin − ŷ(x)

ŝ(x)

)

+ ŝ(x)φ

(

ymin − ŷ(x)

ŝ(x)

)

(12)

Therefore, now the problem is reduced to maximizing this simple function during the

suboptimization process.

The advantage of creating a metamodel for the LF tool and using this surrogate-based

expression of EI instead of a LF analysis during suboptimization is twofold:

• For a reasonable number of training data in low/mid dimensionality problems, its

total cost (including the training process) is lower than using LF analysis during

the suboptimization. This decreases the total cost and allows more design space to

be explored during this phase.
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• The EI expression uses information from the whole design space, providing a fast

global exploration. A similarly extensive search based on Eq.10, using a LF analysis

for ylow would be inefficient within global SBO.145

2.2.4. Multiobjective Optimizer

Our implementation can tackle MO problems by formulating a pareto front of max-

imum EI points [28]. This constitutes a cheap MO suboptimization problem, since the

EI is defined simply by an algebraic expression, and as such exploring gradient-free op-

timizers can still be used efficiently.

In this case, a Multiobjective Particle Swarm Optimization (MOPSO) [30] scheme is

used to solve the MO suboptimization problem which in a two objective case becomes:150

x1
∗,x2

∗, · · · ,xn
∗ = arg

(

max
x∈D

(

EI1
)

vs max
x∈D

(

EI2
)

)

(13)

The additional advantage of this approach is that since multiple infill points are

identified by the solution of the suboptimization problem, they can be sampled in parallel

favouring proper load balancing. This more than compensates for any potential expenses

due to the MO search. Such an explicit MO suboptimization process and objective space

imrovement is not typical in MO SBO methods [34, 39], however it was observed that it

is this explicit formulation that guarantees a wider objective space exploration [40].

2.2.5. MF Infill Sampling approach155

Once the new design points are defined, the infill analyses take place. In this stage,

we take advantage of the error surrogate model information to avoid non-required com-

putational expenses. Configurations to which the LF tool is associated with low error4

are analysed only with the LF method. To introduce high fidelity information and im-

prove the design space estimation, we impose both HF and LF analyses in a predefined

iteration frequency.160

The described methodology is hereafter referred to as MF EI.

2.3. Hypervolume Indicator

The paper aims at comparing two methods for multifidelity optimization. The tra-

ditional Pareto front plots show quickly the method strength and weaknesses according

4Depending on the engineer’s needs.
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Figure 2: Multiobjective Multifidelity Expected Improvement methodology
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Figure 3: Hypervolume definition from a normalised Pareto Front {pi, i ∈ [0, . . . ,mp]} and a reference

point rp.

to the portion of the design space dominated by each method at a particular number of165

CFD calls. It does not show however, how the Pareto front evolved in the previous steps.

The hypervolume indicators [41] aim at answering this question, by computing at any

time of the optimisation, the objective space area dominated by a particular front, as

shown in figure 3. To bound the area, a reference point need to be chosen, and depending

on its location, the hypervolume indicators will reflect more the domination of the Pareto170

front (including the number of points making the front) or the extreme points location.

It is worth adding that the higher the indicator, the better the method.

In the method comparisons, in section 4.1 for the Garteur test case and section 4.2

for the RAE test case, the hypervolume indicators are used to study the Pareto front

convergence, at different stages of the optimisation counted as number of CFD calls. The

reference point is chosen close to the further Nadir point.

The hypervolume indicators also include the convergence of what is called the sur-

rogate Pareto front (labelled as Surrogate PF), that is the Pareto front composed of all

methods points. It is therefore the best Pareto front that is known to be theoretically175

achievable if we combine all the methods, without knowing the true function, but no
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method reaches it independently.

3. Test cases

3.1. Garteur test case

3.1.1. Problem Formulation and Geometry Parameterization

The test case presented in Ref. [33] is also used in this study. The geometry is a180

two-dimensional multielement airfoil composed of a single-slotted slat and a flap. The

design variables are shown in figure 4 (oriented in positive movement): the goal of the

optimization is to set the slat and flap positions and deflection angles in order to maximize

the two-dimensional performance at take-off. The flow conditions [31] are shown in table 1

and the optimization is performed at fixed angle of attack taken as the angle of attack

at maximum lift αclmax
.185

High-lift devices are used for take off and landing, when both lift and drag are crit-

ical [15]. In addition to considering the lift generated, drag must also be considered to

fulfil the climb index at take off or the proper slowing down of the aircraft when reaching

the ground. The optimisation is considering both objectives competing and a multiobjec-

tive formulation is used to obtain a Pareto front solution instead of a single compromise

optimum. In this way, the objectives are set in equation (14) [42].190

f (1) = −
cl

cldatum
, f (2) =

cd

cddatum

(14)
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Parameters Notation Value

Reynolds number Re 4.10 · 106

Mach number M 0.20

Fixed Angle Of Attack αclmax
24 [deg]

Trigger for bad prediction ρbad 0.0

Trigger for good prediction ρgood 0.0

Trust region shrink value γs 2

Trust region expansion value γe 2

Number of objectives required nf 1

Number of points required np 2

Initial trust region size τ0 6

Table 1: High-Lift optimization parameters

3.1.2. High Fidelity Analysis Tool

The commercial tool Fluent [43] is used as the most accurate tool for the study. The

mesh is generated with ICEM [44] and a mesh regeneration method is preferred due

to the large movement allowed for the slat and flap. Despite being two-dimensional,

the geometry is complex as it involves close elements and sharp edges. The mesh is195

unstructured with a fine density close to the wall and is generated automatically for

each new geometries. It uses a wall function to keep the number of cells around 300,000

elements so that the simulation time is compatible with an optimisation. The mesh size

was selected with a mesh convergence study in [45] and validated against wind tunnel

experiments in [33].

Reynolds Averaged Navier Stokes (RANS) simulations are the workhorse of the indus-

try [46] to obtain accurate but relatively fast aerodynamic performances. The Spalart-200

Allmaras turbulence model is used after comparing experimental and numerical results in

Ref. [33] where the authors have reached the same conclusion as in Ref. [47]. An Upwind

second-order scheme is used for all equations after iteration 500 to secure convergence

robustness in the start of the simulation. The flow is considered converged when residuals

14



fall below 10−5, or if the number of iterations is greater than 20005. Because conver-205

gence is not always achieved, the lift and drag coefficients are averaged over the last 100

iterations. A single point evaluation requires between 10 to 20 minutes to run, forming

the expensive function in our study. Validation against wind tunnel data is performed

in Ref. [33].

3.1.3. Low-Fidelity Analysis Tool

The MSES software from Professor Drela, MIT is used as the low-fidelity estimator.210

It is a coupled viscid/inviscid software: the inviscid Euler equations are coupled with a

multiequation integral formulation, the coupling being performed with a Newton solver.

This software handles wakes from each elements and can predict separation in the cove

regions. It allows a good prediction of the lift and drag even near maximum lift [48].

When used in challenging aerodynamic case, such as high-lift conditions, a single point

evaluation requires up to 2 minutes. An extensive separation region, that might appear

in a bad design generated during the optimization process, would lead to divergence in215

the coupling procedure. This phenomena is amplified by the quality of the discretization

used for the Euler solver. Despite the attention given to the selection of the mesh points

distribution on the profile, divergence occurs for bad designs resulting in a restricted

design space.

3.2. RAE2822 test case

3.2.1. Problem formulation220

The RAE 2822 airfoil provides a popular test case among researchers, as it resembles

a typical industrial transonic airfoil design study. The respective physical conditions,

which are shown in Table 2, correspond to actual aircraft operating conditions.

As in the Garteur case, this problem is also set up in an explicit MO formulation by

using Lift and Drag as the functions of interest. These are provided in a coefficient form

as follows:

f1 = −Cl, f2 = Cd (15)

5This may be not enough to have fully converged flow but is sufficient to capture most of the flow

physics
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Such a MO design problem formulation is an industrial standard for several reasons.

It provides more information than a corresponding SO one, in a cost-effective manner.225

Several optimum configurations are readily available in the engineer’s disposal and the

pareto front can act as a potential baseline for later-stage local and more detailed tradeoff

studies. The existence of such a tool is highly beneficial as it supports decision making

in a more reliable way.

3.2.2. Geometry parameterization

For the parameterization of this shape design problem, the method of Free Form230

Deformation (FFD) [49] was used with the displacements of the control points, defining

the shape deformation in the x and y direction. In a shape design problem, the bound

values are extracted by the design requirements and are unique for each case. As such, our

flexible implementation allows the explicit definition of bounds. To simulate an industrial

application with increased complexity, 8 active control points were used, creating a 16-D

design space.235

Table 2: Physical conditions for RAE2822 case

Condition Value Units

Angle of Attack 2.31 deg

Mach Number 0.729 -

Reynolds number 6.5 106

Pressure 108987 Pa

Temperature 255.55 K

Figure 5: FFD control points around the RAE 2822

Airfoil in this design problem.

3.2.3. High Fidelity Analysis Tool

The HF analyses are performed using the commercial solver ANSYS Fluent [43],

to provide the global aerodynamic coefficients. Since RANS equations are solved, a

16



structured C-type grid with a y+ ≈ 1 is used. A grid validation [50] study showed that

a grid of 38000 quad cells was sufficiently accurate. In this problem, grid renegeration240

was used instead of grid deformation, since the computational cost is low. We exercised

special care to ensure that grid regeneration would be robust to geometry changes that

arise throughout the optimization process. An implicit density-based Roe-FDS solver

with a 2nd order upwind discretization scheme was used and Sutherland’s model for

the dynamic viscosity was employed. In this test case, turbulence effects were modelled245

using k− ω SST [51], as to the authors’ experience it provides the most accurate results

for attached slender body transonic aerodynamic flows. It also forms a robust solution,

in contrast to when being used in cases like high-lift multi-element GARTEUR airfoil

which involve partially or extensively separated flow. The maximum number of iterations

for convergence was set to 3000. To ensure robustness, in cases where stable limited250

oscillations are present in the solution, the final result was averaged using values from

the last 50 iterations.

3.2.4. Low Fidelity Analysis Tool

The cost and accuracy of the LF tool is crucial for the success of any MF method.

In this work, we are using VGK [52], a viscosity corrected numerical tool based on the

method of Garabedian and Korn [53]. Although accurate around its calibration range,255

it is not considered robust when used within a wide design space. This is a direct result

of the physics, involving flow separation regions or strong shocks.

4. Results

The MF TR and EI methodologies examined in this paper are compared against a

single fidelity SBO HF EI approach (labelled as HF EI) and a gradient-free optimization

calling directly the HF tool without the use of a surrogate model (labelled as TS-only260

HF or MOPSO-only HF depending on the optimizer used —one for each test case6).

For the latter, the Tabu Search optimizer is used in the Garteur case and our inhouse

implementation of MOPSO is used in the RAE case. Therefore, apart from a comparison

6When the optimizer is used directly on the analysis —like the TS/MOPSO only HF Cases— the

hyperbolic indicator is not defined, so it is not included in the corresponding figures
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between two popular MF methods, we also intent a comparison against direct gradient-

free optimization and single fidelity global SBO technique.

4.1. Garteur265

Figure 6 shows the hypervolume indicators convergence, introduced in section 2.3, as

well as the Pareto front after about 125 HF CFD7 calls for each method.

The Tabu Search optimizer, acting directly on the HF analyses, finds good compro-

mise points in a few iterations. However, as it can be seen on Figure 6 the Pareto front

is narrow since TS first works locally and then extends its Pareto front. In the following

iterations the front becomes wider, as implied by the hypervolume indicator convergence.

This, however, requires many more HF calls.

Following a brief initial sampling (6 high-fidelity and 18 low-fidelity), MF EI is very

quick to discover the Pareto front thanks to the problem’s low dimensionality. In the270

initial iterations, EI being space relatively sparse, the explorative attribute of the method

leads to a high infill success rate, as it is easy to find even slight improvements throughout

the whole design space. However, after only 40 CFD calls the method seems to converge

and no further improvement occurs. In fact, the method becomes inferior to the ex-

ploitative TR-based approach after 100 HF calls —50% of the eventual total allocated275

computational budget. This is again a direct result of the method behavior: with Pareto

points already identified, the —now multimodal EI suboptimization problem— becomes

more challenging and the method keeps exploring the design space for new design trends

to find improvements. It is important to note that the low-fidelity tool, MSES, is robust

in specific design space location, but when used as part of an explorative optimizer, the280

lack of robustness complicate the task. The lack of pure exploitation and local search

near the current Pareto points, combined with the LF tool inability to converge in all of

the design space, leads to this early convergence. The former is an inherent attribute of

the methodology, but the latter is a problem already observed in other applications of

such methods [25], and it is briefly discussed below.

It is important to discuss the effect that a LF tool has on the exploration MF method-

ologies convergence, especially in the presence of a wide design space. The general effect285

7Depending on optimizer implementation
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of MSES is not beneficial for the widening of the Pareto front. This is mostly observed in

extreme operational regions like high Cl regions, that include high interactions between

wakes and large flow separation, complicating the coupling procedure between Euler in-

viscid and viscous boundary later solutions. Hence, the initial global sampling does not

provide information on an extensive design space region, and the MF EI method fails to290

exploit its exploration attributes. As such, the use of a tool which is a not robust in the

whole design space is not appropriate for design space exploration even in the conceptual

design stage, especially if the engineer is interested in finding novel design trends. In

such cases, using information from a more mature stage materialised by higher fidelity

tools is preferable and a HF SBO method is definitely superior. Nevertheless, in regions295

where MSES is robust and accurate, the MF optimization process is more efficient: it

provides a more optimal Pareto front. Following this, it is not a complete surprise that

MF TR provides, in a small extend, a denser (almost 3 times as dense compared to the

MF EI one) and wider Pareto front. The MF TR Pareto front convergence is initially

slower due to the lack of sampling which limits the source of information MSES. The300

LF tool provides useful design trends but a couple of iterations are required before these

are translated to dominant points. These uncorrected inaccuracies restricts the MR TR

to the same convergence behaviour as TS only on HF. Nevertheless, the convergence is

consistent and explores more of the design space, in a similar manner as TS only on HF,

but with a quicker Pareto front extension. MF TR is able to locate design points which305

are better than the ones discovered by HF EI, in the whole range of its Pareto front. Fur-

thermore, it exhibits a slightly wider Pareto front, especially in the low drag region. The

better MF TR hypervolume indicator, compared to the TS only on HF, is explained by

the extended objective space exploration. Despite this, the points predicted by TS only

on HF in the mid Cl regime are dominating the respective ones from all other methods.310

MF EI provides an improvement over the results from the rest of the methods in the

high Cl region, in the order of ≈ 7 - 12 %. In lower lift design points, its performance

is similar to MF TR, while it is being inferior in the lowest Cl objective space. Despite

this fact, the use of MF data in the EI method can be considered as beneficial, since only

one MF EI Pareto point is dominated by HF EI. The drawback of the former though is

the reduced number of Pareto front points to around 30% of the HF EI pareto points.315
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(a) Hypervolume indicators (b) Pareto front

Figure 6: Hypervolume indicator convergence and Pareto front after 125 CFD calls for the Garteur case.

The above conclusions are better supported by a parallel coordinate plot [54], shown

in Figure 7. It shows the difference in the design variable values and design trends behind

each methods’ Pareto points. As previously, the Pareto front points are displayed at the

same number of HF calls. The following information can be extracted:

• A qualitatively consistent slat movement is observed: all methods identify the

importance of moving the slat forwards and down to increase wake interaction

from slat to the main airfoil element.

• Discrepancies in slat angle: there is moderate movement from all methods but MF

EI tends to deflect the slat as much as possible for increasing the lift. These discrep-

ancies arise from the difference in exploration capabilities between the methods. It320

is no consequence that it is the explorative MF EI method that takes advantage

of the positive slat rotation trend, maximising its benefit by generating max slat

angle high-lift design. The There is also an agreement in the low-drag region, with

lower slat deflection due to lower flap deflection.

• Low-drag points have different arrangement compared to datum: they use a lower

flap position with a reduced deflection: less energy is extracted, with flap deflection

being less affected from the main element to keep flap boundary layer attached.
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Figure 7: Parallel-coordinate plot for the Garteur case Pareto points after 125 CFD calls.

• Only the MF methods extensively explores the optimal design space, thanks to the

quick identification and exploitation of the flap deflection. With this variable being325

the most dominant, MF EI uses the maximum allowed deflection to get maximum

lift.

• The HF and MF methods’ points tend to follow the same arrangement. Therefore,

the discrepancies from the MSES LF tool are well corrected. MF approaches are

quicker in finding promising regions. TS only on HF is the most efficient method

at exploiting that is to find the best solutions in the vicinity of datum point.

To conclude this comparison performed on the Garteur case, the TS only on HF is

efficient in exploiting locally near the datum, but requires more HF calls than the rest

of the methods to expand the Pareto front. The HF EI explores design space, but lacks330

exploitation and its points are dominated by the other methods. The MF TR has a

behaviour very similar to HF EI, but shows a quicker Pareto front advancement. The

MF EI approach has fewer Pareto points than all the other case, but exploits the high-lift

mechanisms better due to its initial full design space exploration. The design changes of

the SBO methods are consistent with the direct gradient-free optimization. In regards335

to the MF methods, the LF tool inaccuracies have only a minimum effect in the final

Pareto front values.
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4.2. RAE2822

In the initial HF infill calls, MF TR develops a Pareto front faster. However, fol-

lowing the end of the initial sampling, MF EI starts exploiting the surrogate creating

its respective Pareto front. Following this, the hypervolume indicators show that MF340

EI dominates MF TR. An investigation of the Pareto front reveals that this domination

originates from the high-Cl region.

By comparing the MF TR to the MF EI approach in terms of final Pareto front, it

is evident that both methods exhibit similar objective space exploration as they both

provide a wide Pareto front. The similarities continue in the objective function values

of the mid and low Cl regions. However, in the high Cl objective space MF EI shows

an improved performance that roughly translates to 27% drag decrease and 15% lift

increase.345

The use of variable fidelity tools within the EI method is also assessed by comparing

the HF EI method against the MF EI method. There is a definite correlation between

HF EI and MF EI Pareto front as the corresponding values are very close across the

whole Pareto front. This shows that the LF tool provides correct design trends in a wide

design space range. Therefore, the error correction is not only accurate, but also efficient

as the quick RBF correction is sufficient in steering towards HF optimality. However,350

the computational cost between the three SBO methods is similar, with only exploration

being slightly improved in the MF EI case. Hence, it can be concluded that the benefits

associated with using MF SBO methods for this design scenario are small.

The direct optimization that uses our MOPSO implementation, develops a dense but

narrow Pareto front. This is important to stress out since the purpose of a MO formula-

tion is to explore different design possibilities in a wide objective regime. Although not

shown here, no significant improvements are observed in the Pareto front width or domi-355

nation at later stages of the optimization: the swarm does not find new Pareto dominant

points. MOPSO HF results are almost completely dominated by the MF and HF EI

ones. However, the tradeoff region includes some designs developed by MOPSO which

are still superior to the ones identified by HF EI and MF EI. The MF TR configurations

however are mainly dominated by MOPSO in the high-lift anchor point region albeit MF360

TR Pareto front extends more in the high-lift region. Overall, it can be stated that SBO
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increases the design space exploration for a similar cost.

An example of the Pareto front airfoil shapes is given in Figure 9. Despite the

similar Pareto points between MF EI and HF EI showing proximity on the objective

space, the respective shapes are distinctively different, exploring different points in the

design space. However, MF TR and MOPSO approaches are more similar: the former

methods are global whereas the latter ones are more local. Therefore MF TR and HF365

MOPSO dominate in area close to datum (in design space) but HF EI and MF EI explore

configurations different from datum. By specifically examining the high Cl shapes, it is

evident that these are very different from the datum, requiring global exploration to find

them.

The MF EI method generates the high lift from its aft camber design as shown in 9.

Additionally, it is significantly thinner than the one designed by the MF TR approach

in order to compensate for the wave drag introduced due to the achieved lift. In the370

compromise region all geometries exhibit a significant thickness reductionl the exception

being the airfoil resulting from MOPSO, since it is only slightly thinner (mainly from

the upper surface) than the datum while maintaining the original RAE2822 shape. The

same is not valid for the configurations by the MF TR and MF EI approaches which

introduce a positive camber in the area before the mid chord. Evidently, the MF TR375

methodology retains the supercritical shape while producing the necessary lift through

an aft camber design. A corresponding configuration is also defined by MF EI with its

distinctive characteristic being the absence of an aft camber and an earlier thickening

than the one by MF TR. The low drag MF designs both feature an inverse aft camber,

with the MF TR being thinner and displaying a positive camber downstream of the LE380

area. It is evident that these designs are shaped as they are because of the positive

angle of attack used in this optimisation problem (they minimise drag by reducing their

thickness and creating zero lift). For an angle of attack of zero they would obviously

produce negative lift.

23



(a) Hypervolume indicators (b) Pareto front

Figure 8: Hypervolume indicator convergence and Pareto front after 125 CFD calls for the RAE case.

Figure 9: Three representative Pareto front shapes for the MF TR and MF EI methods.
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5. Conclusion

This paper outlines the comparative study between two Multifidelity Surrogate Based385

Optimization techniques. An exploitation-based Multifidelity Trust Region framework

is compared against a more explorative Multifidelity Expected Improvement methodol-

ogy. The methods are also assessed by comparing them against benchmark gradient-free

optimization tools such as Tabu Search and the Multi Objective Particle Swarm Opti-

mization. In this comparative study the hypervolume indicators and the Pareto front390

concept are used. Two test cases are considered: a high lift design case using the Gar-

teur three elements airfoil, and an airfoil shape design problem for cruise conditions,

involving the RAE 2822 aerofoil. The results indicate that the gradient-free methods,

despite being reasonably efficient in improving the datum, cannot provide a wide Pareto

front for the same computational cost as the other surrogate-based methods. Contrari-395

wise, the trust region method provides a wide Pareto front, dominating the expected

improvement-based method in the mid lift region, which is closer to the datum point.

In the high lift regime, for which more extensive exploration is required, the expected

improvement-based method provides dominant results. The latter takes advantage of the

initial sampling, by quickly finding global design point improvements and extending the400

Pareto front. However, its exploration attribute, combined with the robustness charac-

teristics of the low fidelity tool can lead to an early convergence plateau and to fewer

Pareto points than the other methods. The high fidelity expected improvement method

showed similar cost requirements to the multifidelity one, but proved to be more robust

in creating a dense and wide Pareto front. The trust region showed similar Pareto front405

characteristics but it was associated with faster Pareto front development. A parallel

coordinates analysis and a resulting shape comparison showed consistency between the

methods, with the multifidelity approaches identifying better the physical mechanism in

increasing the lift.
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