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1. INTRODUCTION 

Enabling flight safety of passenger aviation in presence of 

abnormal conditions, such as those caused by equipment 

failures and/or adverse environmental factors, is a vital 

problem. Analysis of accident and incidence reports revealed 

that the main contribution to the fatal accidents were due to 

aircraft Loss of Control In-Flight and Controlled Flight Into 

Terrain. The main reasons caused these accidents are pilot 

mistakes, technical malfunctions, or their combination. 

Recently, a great efforts have been undertaken to develop 

aircraft control design tools and techniques for enabling safe 

flight (Goman, Khramtsovsky and Kolesnikov, 2008; Smaili 

et al., 2009; Ignatyev et al., 2017; Ignatyev and Khrabrov, 

2018; Abramov et al., 2019). The idea that non-conventional 

control strategies can prevent possible accidents and recover 

aircraft from dangerous situations stimulates researches 

toward fault-tolerant and adaptive flight control (Chu et al., 

2009; Yucelen and Calise, 2012; Falconi, Marvakov and 

Holzapfel, 2016).  

Gain-scheduling of linear feedback controllers is widely 

applied in commercial applications to achieve stabilization 

and satisfactory tracking performance of aircraft over a wide 

range of flight conditions. In case of severe and unpredicted 

changing in aircraft behaviour such controllers cannot be 

used or can be used only with a restricted functionality.  

Nonlinear Dynamics Inversion (NDI) and Backstepping (BS) 

techniques have become popular control strategies for 

adaptation since they can be used for global linearization of 

the system dynamics and control decoupling (Slotine and Li, 

1991). The BS control has advantages in comparison with the 

NDI, namely, it is more flexible and it is based on Lyapunov 

stability theory. Later, to make the BKS control more robust 

and fault-tolerant it has been formulated in an incremental-

type sensor-based form (Sun et al., 2013). However, even in 

this formulation controller still requires accurate knowledge 

of the control effectiveness. Additional adaptation strategies 

augmenting the BKS to reduce dependency on an aircraft 

model by on-line estimations of the control derivatives were 

applied for a high-performance aircraft model in (van Gils et 

al., 2016).  

One of the main challenges of an on-line identification is that 

the identification is carried out while a control system is 

operating (Klein and Morelli, 2006). It is common for an 

automatic control system to move several control surfaces in 

a proportional manner, bringing about nearly exact linear 

correlation between control surfaces. In addition, modern 

passenger aircrafts have many control effectors for both 

longitudinal and lateral control, so the multiple-input problem 

appears. Dedicated manoeuvres that maximise the 

observability of the parameters to be estimated, for example, 

individual elevator or aileron steps, cannot be carried out.  

Reliable identification can be achieved via maximization of 

the information content in the data using proper excitations of 
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the system. On the other hand, excessive system excitation 

because of ongoing manoeuvres can cause several undesired 

consequences, such as decrease of a passenger comfort or 

tracking performance. Thus the identification routine should 

be a trade-off between identification precision and 

performance requirements.  

The present paper proposes a framework for the on-line 

identification of control derivatives augmenting IBKS control 

law, which was designed in (Cordeiro, Azinheira and 

Moutinho, 2019) for Boeing 747.  

2. Incremental Backstepping  

Sensor-based technique utilizing Incremental Dynamics (ID) 

is applied in (Cordeiro, Azinheira and Moutinho, 2019) to 

obtain an IBKS controller, which is less dependent on the 

system model. IBKS computes incremental commands 

employing acceleration feedback estimations to extract 

unmodeled dynamics information. In the present study we are 

using this controller as a baseline controller, which is 

augmented with the two-layer on-line parameter estimation 

routine. Below, we will just provide a brief description of the 

this controller. Details could be found in the original paper.  

2.1  Incremental dynamics model 

A model representing an aircraft flight dynamics can be 

represented in the following form: 

 ,f
x

x x u ,                                (1) 

where the state vector x is composed by the airspeed 
tV  and 

the angular rate vector ω . The inputs u  are the aircraft 

control surfaces and engines. Expanding (1) into the Taylor 

series around  0 0,x u  the dynamics (1) can be expressed in 

the following form  
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Assuming that the increment in state 
0  x x x  is much 

smaller than the increment in both state derivative 

0  x x x  and input 
0  u u u , the dynamics (2) can be 

simplified  
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u
 is a control effectiveness matrix.  

2.2  Cascaded Incremental Backstepping 

The ID idea was used to design an IBKS controller. To 

increase the control robustness and simplify its 

implementation, both angle and rate control using ID was 

formulated. A high-level structure of the IBKS control 

system is given in Fig. 1.  

 

Fig.1. IBKS structure (courtesy of Cordeiro, Azinheira and 

Moutinho) 

At the first stage, the knowledge of kinematics was preplaced 

by the measurements of the attitude state derivative 
0ξ  to 

design an angle controller. At the second stage, the dynamics 

equations were partially replaced by evaluations of angular 

rate derivatives to design the second IBKS controller for the 

rate control. The desired angular rates ν  were provided by 

the angle controller. The airspeed was introduced as a state to 

the second controller in order to design a rate controller 

which simultaneously tracks the airspeed and angular rates of 

the aircraft. 

The final control law was designed to ensure the asymptotic 

convergence of the dynamics state 
T

T

tV   y ω  towards 

its desired value 
T

T

d tdV    y ν . It has the following form:  

 1

0 0 0( )T T

c y y d dB aC T W  
      u u z y y y y . (6) 

Here a is a design factor,  3 3IyC   0  is a selection matrix 

such as yC ω y , 
yW  is a design weight matrix, 

d  z ξ ξ  

is a kinematics error vector, 
dξ  is a desired kinematics state 

vector. The matrix  

1 sin tan cos tan

0 cos sin

sin 0 cos

   
 

 

 
   
  

ξT  

relates the angular rate vector ω  with the attitude state 

vector. 

To attenuate the measurement noise and increase the control 

robustness, 
0B  is multiplied by a diagonal matrix 0   with 

elements [0,1]ii  .  

To avoid infeasible commands provided by the controller, a 

Command Filter is added to the controller output. For 

incremental controllers, the CF is used to constrain the input 

in order to respect the actuators dynamics and saturation.  

3. Two-layer identification routine 

Recently several researches reported that IBKS demonstrates 

robustness to uncertainties and tolerance to faults (van Gils et 

al., 2016; Jeon et al., 2018; Cordeiro, Azinheira and 

Moutinho, 2019). Nevertheless, the IBKS still requires 

accurate knowledge of the control effectiveness. This paper 

introduces a two-layer identification framework detecting, 

isolating anomalies and estimating the aircraft control 
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derivatives when uncertainties are in the control actuation. 

These estimates are used for adjustment of the control 

effectiveness matrix 
0B . A two-layer identification 

procedure is designed to find optimal solution between 

system excitation and performance. The general structure of 

the framework is given in Fig.2. 

 

Fig. 2. Two-layer identification structure 

3.1  On-line Identification Routine 

Since an Aircraft Flight Control System (AFCS) sends the 

same signals for all individual control surfaces, the individual 

signals are proportional to each other. These cause a high-

correlation between the individual signals. If all the input 

signal forms look the same, then any algorithm trying to 

assign values for the control effectiveness of each individual 

control will fail, because it is impossible to determine which 

of the multiple inputs, moved in the same manner, was 

responsible for the changes in the aerodynamic forces and 

moments. However, it is possible to estimate a combined 

control effectiveness, which essentially treats all of the 

correlated control surfaces as if they were a single control 

surface (Klein and Morelli, 2006).  

At the first layer, the system performs monitoring of a 

combined effectiveness and possible failures via generation 

of an innovation process. The innovation process is defined 

as the difference between the estimated combined 

effectiveness and the expected combined effectiveness based 

on the model and the previous output data (Mehra and 

Peschon, 1971). Under normal conditions, the error signal is 

“small” and corresponds to random fluctuations in the output 

since all the systematic trends are eliminated by the model. 

However, under faulty conditions, the error signal is “large” 

and contains systematic trends because the model no longer 

represents the physical system adequately. 

The combined effectiveness could be used quite effectively 

for monitoring of the system states and for detection of a 

failure and it is used in the first layer of identification. 

However, it is impossible to distinguish which of the 

correlated control surface has a failure. In a case of failure of 

a single control surface we need to know an effectiveness of 

each control surface separately in order to implement more 

robust control. Thus, the failure should be localized. To solve 

this problem, modelling is done by introducing a priori 

information, fixing the effectiveness of all but one of the 

correlated control surfaces to a priori values.  

3.2  Manoeuvres for Identification of Individual Control 

Surface Effectiveness 

To increase the observability of the parameters, the individual 

control signal forms should be distinguishable. For this 

purpose, the control signals produced by the baseline 

controller is reshaped. In our case, we used an amplification 

matrix that decreases AFCS signals sent to all the control 

surfaces but one that under study. In such a case, a control 

signal is split into two signals, the first one is for a control 

surface which effectiveness is treated, while the second signal 

is for all other surfaces from the pool. Thus, the first signal is 

responsible for generating the required information for 

identification and second one is used for guaranteeing the 

aircraft stability.  

4.  Least-Squares On-line Identification 

In the present section we would like to describe the approach 

for identification of the control effectiveness matrix B
0

. The 

system dynamics could be represented in the form of 

incremental dynamics equation. Similar to (van Gils et al., 

2016) we assume that there is a vector 
jθ  such that j-column 

of the B
0

could be represented as 

( , ) ,T

j j j j n b Φ x u θ                         (4) 

where n is the number of the control surfaces. ( , )T

jΦ x u  is 

the regressor function, 
jθ  is the unknown vector of 

parameters to be identified. 

The system dynamics can be rewritten as 
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At the time k the following measurement equation can be 

introduced by using the past N measurements 
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   θ θ θ θ  is the vector of unknown parameters. The 

unknown parameters θ  can be estimated on-line, for 

example, using the Recursive Linear Regression (RLS) 

algorithm with exponential forgetting.  
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4.1  First Layer of Identification 

The first layer of identification is responsible for detection of 

a degradation in control effectiveness. For this purpose a 

combined effectiveness is used since degradation in any of 

the redundant control surfaces leads to degradation of the 

combined effectiveness.  

In the present study the longitudinal motion of the Boeing 

747 is considered. In this case a combined effectiveness of 

four sections of elevator working simultaneously are treated 

as if they are a single control surface. The identification of 

the combined control effectiveness is performed using the 

equation (6), where  1...
T

t N t tq q q    y  is the response 

variable vector, 
1...t N t tq q q     is the pitch rate derivative 

record, 
1, 1, 1 1,... ,t N t t        M  is the predictor variable 

vector and mC


θ  is the combined effectiveness of four 

elevators, which should be identified.  

5.2  Second Layer of Identification 

If the system detects any deviation from the nominal 

operational regime, the system steps into the second layer of 

identification where the failure is localized and the individual 

effectiveness is evaluated. 

As it was mentioned before, identification of individual 

control effectiveness is complicated with a high-correlation 

between the individual signals. In order to tackle this 

problem, we use a priori information through fixing the 

effectiveness of all but one of the correlated control surfaces 

to a priori values.  

While identifying the effectiveness of a certain elevator, the 

aircraft is demanded to perform pitching manoeuvers with 

reduced coefficients in the allocation matrix 
s uW D  for all 

control effectors responsible for the pitch control, except the 

coefficient relating to the elevator under study. 

In this case the response variable vector is the following 

     1...
T

t N t tres res res
q q q      y , 

where     sup

0 0 0,t i t i s u t i
res

q q W D B      x u u , 0...i N , 

is the pure dynamics produced by a treated elevator section. 

The predictor variable vector is based on a signal for control 

surface under study 
1...e t N e t e tident ident ident

   
     M . 

The identified parameter m
ident

C


   θ  is the individual 

effectiveness of the control surface, sW  is the weight matrix 

required to produce the supporting control signal sup
u . 

Elements of 
sW  specify how supporting actuator signals 

differ from the base one. 0B  is the fixed effectiveness matrix 

defined prior to the identification. The terms 

  sup

0 0 0,s u t iW D B  x u u  are responsible for subtraction of 

contribution from the supporting signal to the flight dynamics 

in order to obtain a pure dynamics produced by the studied 

control surface. It should be noted that if 
sW  is too large the 

identification signal is not distinguishable from the 

supporting one. At the same time, if 
sW  is too small, the 

control authority is not enough to perform identification 

manoeuvres and guarantee the stability. Therefore, there is a 

trade-off between aggressiveness of identification 

manoeuvres, deduction of the all other control authorities 
sW  

and stability during identification. In present study, we 

selected 0.33sW  . This is motivated by the consideration 

that the effectiveness of all three supporting elevators should 

be not less than the studied elevator effectiveness. At the 

same time, for the values 0.33sW   the supporting signal is 

quite high and distorts the useful signal. Values of 
sW  that 

are less than 0.33 are not applicable from the stability point 

of view.  

6.  Fault Detection via Identification of an Innovation Process 

The actual error signal from the system is tested against this 

hypothesis at a certain level of significance. In our case, the 

null hypothesis consists of testing the innovation processes 

for zero mean (Mehra and Peschon, 1971). More particularly, 

we used the Student's t-test (Anderson, 2003). 

The t-statistics could be written in the following form 

   / ( ) /t X b n    ,                           (7) 

where X  is the sample mean from a sample X1, X2, …, Xn, 

of size n,   is the (estimate of the) standard deviation of the 

data, and   is the population mean. In our case Xi, is the 

estimated values of combined effectiveness. We also 

introduced a bias b in order to increase the tolerance of the 

detection procedure to “small” errors of the identification 

algorithm.  

7.  Simulation results 

In the current study a nonlinear model of the Boeing 747 

aircraft is used to validate the designed approach. The Boeing 

747 is a large transport aircraft with four wing-mounted 

engines. The actuation of it corresponds to four ailerons, four 

elevators, two rudders, and four engines. 

The nominal condition from which the simulation starts is a 

straight flight towards North with 340 knot of True Airspeed 

and at an altitude of 5000 ft.  

7.1  Single failure 

Example of the proposed system operating in a failure case is 

demonstrated in Fig. 3. The purpose of the current example is 

just to demonstrate the operation of the two-layer 

identification procedure augmenting the IBKS. The 



 Dmitry I. Ignatyev  et al. / IFAC PapersOnLine 52-12 (2019) 411–416 415

     

   

        


θ

           

          

   
     


   θ

   





      

, …, X




detection procedure to “small” errors of the identification 

 

considered simulation case deals with a failure (stuck in 

position) of the inner left elevator. The algorithm performs 

identification of a new value for the elevator effectiveness 

using RLS and update it in the control effectiveness matrix 

0B  used by the baseline controller. On the upper subplot one 

can see the results of the identification coplotted with the true 

effectiveness. On the second subplot one can see the steps 

performed by the system. On the third subplot the demanded 

control efforts are plotted. The bottom subplot demonstrates 

the innovation process generated by the system. 

 

Fig. 3. Performance of the algorithm for individual elevator 

effectiveness on-line identification. 

In the considered case the failure occurs at t=150 s. The 

failure is detected at 175t  s via violation of the significance 

level of the innovation process statistics. After the failure 

being detected, the second layer of the identification 

procedure is initiated. While the effectiveness of the failed 

elevator is being updated, the system is decreasing the 

demand control efforts of this elevator. 

7.2  Multiple failures and unmodelled dynamics 

In order to check the performance of the controllers under the 

multiple failures and presence of unmodelled actuator 

dynamics we considered the following case. At the 

beginning, two actuators become failed at the time t < 0, 

namely, stuck-in-position of each is modelled. After that, an 

unmodelled second order dynamics arises at t = 80 s in one of 

the two working actuators (outer right elevator): 

  1
2( ) 2 1F s s s


   . 

The simulation results are shown in Fig.4. At the current case 

we considered that the identification of the effectiveness of 

failed elevators was performed before t=0 s. In this section, 

we are focused more on the effect of presence of unmodelled 

dynamics on the controller performance under multiple 

failures rather than on the detection of the failures, so we do 

not provide innovation process dynamics and the detection 

process itself. On the top left subplot of Fig.4 one can see a 

tracking performance of the controllers. Demonstrated on the 

right subplots are the angle-of-attack and pitch rate responses. 

Shown on the bottom left subplot are the effectiveness of the 

of the operating elevator and elevator subjected to the 

unmodelled dynamics. The effectiveness of the operating 

elevator is reduced during identification procedure as 

described above.  

Starting from t=0 s, the adaptive IBKS uses updated values of 

effectiveness in 
0B  matrix, corresponding to the two failed 

elevators. The results demonstrate that similar to the single 

failure case, there is small difference between responses of 

the adaptive IBKS and IBKS closed-loop systems from t = 0 

s to t = 70 s, even in the case of double failure. This is 

because the IBKS reveals itself robustness to uncertainties 

due to incremental nature. However, after unmodelled 

dynamics arose, the IBKS closed-loop system reveals 

oscillatory behaviour in the response of the closed-loop 

system. On the contrary, the adaptive IBKS demonstrates 

stable behaviour, while achieving an expected level of 

performance. After detection of the uncertainty in the outer 

right elevator, adaptive IBKS starts the identification 

procedure. At the same time, the corresponding coefficient in 

 

Fig. 4. Performance of the Adaptive IBKS and IBKS controllers 
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0B  is updated according to the effectiveness evaluation. 

After the identification being finished, algorithm fixes the 

obtained value in 
0B  (see bottom left subplot).  

From the considered case one can conclude that IBKS tackles 

the piecewise-constant uncertainty in the control 

effectiveness quite efficiently, however in the case of 

unmodelled actuator dynamics, usage of the IBKS could be a 

tricky task.  

Thus, in a case of severe uncertainty, which could be caused 

by multiple failures and presence of unmodelled actuator 

dynamics, on-line evaluations of the control effectiveness 

becomes vital. 

6. CONCLUSIONS 

Incremental Backstepping is recently developed technique 

with a reduced dependency on the on-board aircraft model. 

This approach uses estimates of the state derivatives and the 

current actuator states to linearize the flight dynamics with 

respect to current state. However, controller still requires 

knowledge of the control effectiveness. In this research Two-

layer On-line Parameter Estimation for Adaptive Incremental 

Backstepping control, which is capable to detect possible 

problems, such as a failure or presence of unknown actuator 

dynamics, is proposed. At the first layer, the system performs 

monitoring of the combined control effectiveness and detects 

possible anomalies. If an anomaly is detected the algorithm 

initiates the second-layer identification determining the 

individual effectiveness of the each control surface involved 

in this control direction. Such structure requires less 

excitation of the system, thus, increasing comfort and 

tracking performance. In addition, fault isolation in the form 

of control effectiveness identification increases tolerance to 

faults since does not require information on a failure type and 

can be used for unforeseen failures. 

Analysis revealed a robustness of the IBKS to actuator 

failures. However, in severe conditions with a combination of 

multiple failures and presence of unmodelled actuator 

dynamics, the IBKS lose stability. Meanwhile, proposed 

control derivative estimation procedure augmenting the IBKS 

control significantly improves the system performance. 
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