
  

 
 

Abstract— Integrated Vehicle Health Management (IVHM) 

aims to support Condition-Based Maintenance (CBM) by 

monitoring, diagnosing, and prognosing the health of the host 

system. One of the technologies required by IVHM to carry out 

its objectives is the means to emulate the functioning of the host 

system, and the concept of a Digital Twin (DT) was introduced 

in aerospace IVHM to represent the functioning of such a 

complex system. This paper aims to discuss the role played by 

DT in the field of IVHM. A DT is the virtual representation of 

any physical product, that is used to project the functioning of 

the product at a given instance. The DT is used across the 

lifecycle of any product, and its output can be customized 

depending upon the area of application. The DT is currently 

popular in industry because of the technologies like sensors, 

cloud computing, Internet of Things, machine learning, and 

advanced software, which enabled its development. This paper 

discusses what encompasses a DT, the technologies that support 

the DT, its applications across industries, and its development in 

academia. This paper also talks about how a DT can combine 

with IVHM technology to assess the health of complex systems 

like an aircraft. Lastly, this paper presents various challenges 

faced by industry during the implementation of a DT and some 

of the possible opportunities for future growth. 

I. INTRODUCTION 

The recent trend of using the concept of a Digital Twin 
(DT) in any industry from aerospace to agriculture, from a 
product-oriented environment to a process or a service-
oriented environment, is due to its versatile nature and its 
ability to provide a solution for any given scenario. The term 
‘Digital Twin’ was initially coined by Dr. Michael Grieves 
from the University of Michigan in 2002 to represent the 
digital equivalent of a physical asset [1]. Later, in 2012, NASA 
adapted DT as an integrated multi-physics, multi-scale 
probabilistic simulation model of a vehicle or a system that 
integrates best available physical models, sensor data from 
onboard health monitoring systems, fleet maintenance history 
and other such information to mirror the life of its physical 
twin [2]. Bolstered by the parallel growth in sensors and 
communication technologies, cyber-physical systems, 
computational speed, and artificial intelligence (AI), the term 
DT has been subsequently used by industry for several 
applications. A Gartner survey in 2019 mentions that around 
75% of the industries that use Internet-of-Things (IoT) are 
either using DT already or plan to use it within the next year 
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[3]. With the given advanced technologies, the DT is currently 
the key to optimize the product design process, to enable smart 
manufacturing with Industry 4.0, to streamline the process of 
Maintenance Repair and Overhaul (MRO) and to reduce the 
overall cost involved in the product and the process life cycles.  

This paper focuses on how the DT can be combined with 
Integrated Vehicle Health Management (IVHM) to enable 
Condition-Based Maintenance (CBM) of vehicles like an 
aircraft. CBM is a program that provides maintenance plans 
based on the condition of the vehicle [4]. It is a real-time 
product performance measure, which has replaced the 
conventional time-based programs like scheduled inspections 
and preventive maintenance [5]. CBM enables customized 
maintenance planning of the targeted components and systems 
of a vehicle by monitoring their health condition. This results 
in saving time and cost involved due to unplanned downtime, 
and increases the availability of the vehicle. A fully functional 
IVHM system assists in acquiring and analyzing health data of 
a vehicle to optimize the suitable maintenance plans for CBM 
[6]. 

Integrated Vehicle Health Management (IVHM) is defined 
as the technology that uses the sensor data from a vehicle to 
carry out diagnosis and prognosis to assess and predict the 
health of its systems. IVHM technology was initially 
introduced by NASA to collect data, diagnose, predict and 
mitigate faults, support operational and post-maintenance 
activities in space vehicles. Later, it expanded to other vehicles 
like aircraft and ships and evolved as a paradigm-shift to 
support Condition-Based Maintenance (CBM) of the vehicles. 
IVHM aims to ensure that the host system functions as 
intended, without any unexpected failure [6]. With the help of 
IVHM systems, the maintenance cost can be brought down 
significantly by predicting the system health in advance and 
supporting CBM. 

Fig. 1 shows the general role of IVHM technology in a 
product’s (vehicle) lifecycle [7]. In this figure, the steps 
involved in IVHM are explained via the Sense-Acquire-
Transfer-Analyze-Act (SATAA) cycle as shown in the right-
hand side, and its role concerning the product’s lifecycle is 
shown in the left-hand side. To monitor the health of the 
system, IVHM uses state-of-the-art sensors to acquire health 
information from the system. It also gets input from various 
stages of the product’s lifecycle, like design-engineering 
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manufacturing and maintenance-logistics. Once the data is 
acquired, they are transferred using high-end communication 
technologies to analyze the health information collected from 
the data. The IVHM system needs high computational speed 
for processing all the data collected and depends upon 
advanced machine learning algorithms and AI for diagnosing 
faults and predicting the remaining useful life of the systems. 
This information on the system’s health is provided for 
maintenance of the vehicle (as shown in Fig. 1), under the 
CBM program.  

For the diagnostics and prognostics to produce effective 
results, the IVHM system requires a knowledge-rich 
representation of the host system, that could provide all 
possible outcomes of multiple health scenarios concerning the 
host system [5]. It is at this capacity that the Digital Twin (DT) 
comes into the picture of IVHM.  The DT is a high-fidelity 
simulation, that can provide the virtual representation of the 
physical asset at a particular instant and produce what-if 
simulations for a variety of scenarios depending upon the data 
acquired [8]. This feature of DT helps in forecasting the health 
of the systems that could be used by IVHM. In the last five 
years, many aerospace and automotive industries have started 
using DT at various stages of a product lifecycle.  

This paper explores the field of Digital Twin (DT), its 
design, and its different applications in IVHM. To that effect, 
this section introduced the fields of DT, CBM, and IVHM. 
Section II presents the core elements of a DT, its functions 
alongside the various stages of a product’s lifecycle, and its 
enabling technologies. Section III surveys some of the 
applications of DT in each stage of the product’s lifecycle to 
understand its capabilities. Section IV presents a basic IVHM 
system and the role of DT inscribed in it. It also talks on the 
developments of DT concerning the field of IVHM. It is to be 
noted that the majority of applications presented are from 
aerospace, and only a few are from of other vehicles. Section 
V discusses various challenges faced during the 

implementation of DT, along with gaps and opportunities in 
IVHM. Section VI presents the conclusion regarding the role 
of a DT within the field of IVHM.  

II. BUILDING BLOCKS OF A DIGITAL TWIN  

At its core, the DT is defined as a simulation model 
representing a physical asset, but unlike the usual simulation 
model, the DT evolves with the life of the physical asset, 
factoring in age-related performance and failure. It functions 
as a living virtual representation of the asset. It relates to the 
data captured from different stages of the asset’s life cycle to 
create the contextual environment under which the asset is 
operating, and its output varies based on the services expected 
from it. Across the literature, when a DT is referred to, it could 
either mean the virtual representation of a product at an instant 
or encompass its entire life cycle [1]. Sometimes, it also refers 
to the entire environment involving the physical, virtual 
models, data connections between them, and the nature of 
output [9]. Similarly, the number of building blocks of a DT 
also differs with the literature, ranging from three ([1], [10], 
[11]) to five [9], but they essentially have the same elements 
listed in a different order of importance.  

This paper refers to the DT as the living representation of 
a physical product and the Digital Twin Ecosystem [12] as the 
environment that includes the other elements that help in the 
functioning of the DT. A Digital Twin Ecosystem is thus built 
upon the following blocks (as shown in Fig. 2): i) the product 
life cycle (top layer of Fig.2), ii) a virtual model or the DT 
(bottom layer of Fig. 2), and iii) a connecting segment (the 
middle layer of Fig. 2). The connecting segment is   
characterized by data that relates the product as a physical 
asset to the DT as its corresponding virtual model. The transfer 
of data between the top and the bottom layer of Fig. 2 via its 
middle layer is made possible with the help of several 
technologies which are listed in the right-side middle layer of 
Fig. 2. The following subsections discuss these central 
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elements of a DT in detail. It is to be noted that the MRO 
section of Fig. 2 is highlighted, as this paper focuses on a DT 
that could be used mainly for IVHM.  

A. Product Lifecycle 

As shown in the top layer of Fig. 2, from a product’s 

Beginning of Life (BOL) to its End of Life (EOL), it goes 

through various stages during its life cycle. The product can 

be anything from a particular component of a system (e.g., 

compressor blade in an aircraft engine) or an entire system 

(e.g., an aircraft engine) itself. The product information 

passes from its BOL to the EOL, and the data generated 

during the lifecycle, from concept definition, design and 

development, and manufacturing are used as a source of the 

virtual model for the DT. They also serve to validate the 

virtual model, which can later be considered as the reference 

model, against which the performance and health of the 

product can be measured when it is in use.  

B. Virtual model 

The virtual representation/ DT of a product is a highly 
adapted simulation model (bottom layer of Fig. 2). The DT 
evolves alongside its physical asset based on the knowledge 
gained at each stage. It is the virtual representation of the 
physical asset at an instant and reflects on its operational 
behavior. It utilizes various sources ranging from geometric or 
3D models, thermal or CFD models, physics-based or 
functional models to represent the functioning of the product 
[13]. It also uses data like Bill of Materials (BOM) from ‘as-
planned’, ‘as-built’, and ‘as-maintained’ states of the product, 
historical information, fleet data, and maintenance records to 
update the contextual knowledge of the virtual model and its 
environment to represent the actual working condition of the 
product through its lifecycle (Fig. 2). 

C. The Connecting segment  

As mentioned earlier, the connecting segment (the middle 
layer of Fig. 2) is characterized by the data that connects 
physical and virtual models and by the output/ feedback from 
the DT. Data generated from the onboard sensors, inspections, 

fleet histories, and other sources during various stages of the 
lifecycle must be fused with the existing virtual models in 
order to update the DT at that stage of the product lifecycle. 
This data fusion within the DT ecosystem enables better model 
performance, adaptiveness, and robustness in the virtual 
models [12].  

In the middle layer of Fig. 2, the data with the yellow 
background are input to the DT from the product and the data 
with the green background are the output from the DT to the 
product at a certain stage of its lifecycle. The output and 
feedback from the DT are dependent on the application. In the 
case of IVHM, the DT is expected to provide some of the 
results required to detect anomalies, health degradation, faults, 
and calculate the remaining useful life of the product. These 
outputs also change with respect to the lifecycle of the product 
(Fig. 2). For example, at the design stage, the DT is more 
useful in validating and optimizing the design process, 
whereas, in the manufacturing stage, the DT is used for smart 
factories, to visualize and streamline the process, to increase 
efficiency and to resolve conflicts on the shop floor [14]. The 
information from all stages of the product’s lifecycle and the 
DT is sent as feedback (dotted lines in Fig. 2). This feedback 
information is used to generate knowledge that is required for 
the optimization of the product as well as the process. The 
connecting segment, i.e., the transfer of data between the 
physical and the virtual model is enabled by several advanced 
technologies, without which, it would be impossible to 
implement the DT.  

D. Enabling Technologies 

Some of the technologies that helped the successful 

implementation of DT (as shown in the right-side middle 

layer of Fig. 2) are as follows: 

Sensors: The advancement in the field of sensor 

technologies is one of the primary enablers of any DT. 

Currently, there is a wide range of sensors at a lower price 

than in the past, and they produce abundant data, giving rise 

to Big Data. This data, if processed correctly, could provide 
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information and the knowledge required to make the virtual 

model live. 

Connectivity: Internet-of-Things (IoT) and cloud 

computing are two disruptive technologies that changed the 

perspective of every industry. IoT enables connectivity 

between various systems with an IP address, which makes it 

possible for data collection, and processing; it is one of the 

critical factors required for real-time monitoring of any 

process. On the other hand, cloud computing allows large-

scale data processing and storage in the servers, making them 

accessible by the internet. It makes scalable computing 

available at any point, which is not possible through the local 

servers. Edge computing carries out computation at the end of 

the local network before updating to the cloud, thus reducing 

the burden on the server [15]. A Digital thread establishes the 

link between the product and the DT and is expected to create 

a value stream of data across its lifecycle [16].  

Computational Power: The improvement in 

computational power and processing speed are two of the 

main influential factors for Big Data processing and cloud 

computing. Powerful processors enable real-time updates 

required for the DT and reduce the time taken to solve the 

scenarios involving complex cases.  

Machine learning and Artificial Intelligence (AI): The 

advancement in sensors and the increased amount of data 

generated resulted in rekindling of machine learning 

techniques and AI from the past decades to complement the 

current technologies [6]. The input domain knowledge 

required by the DT, to be in line with the system’s 

performance, can be in the form of rules, ontologies, 

procedures, models or even sensor data [6], depending on the 

compatibility with the DT model. The output is generated by 

the DT model with the help of reasoning systems built around 

it and the advanced machine learning algorithms used. With 

the support of high processing speeds, machine learning 

algorithms can provide solutions in a shorter time, thus 

improving the efficiency of the entire problem-solving 

process. 

Software: The progression in the data analytics software 

helps to convert the results produced by the DT into user-

friendly visualizations, that encourage industry to opt for the 

DT approach for its products. Similarly, multiple platforms 

have made it easier for developing various models for DT, 

from designing the products to monitoring the manufacturing 

process and managing the maintenance activities.  

The abovementioned technologies have made it possible 

for the broad application of DT in the industry, especially for 

the high-value products. The synergy among these 

technologies has helped increase efficiency, and save cost and 

time in every stage of a product’s lifecycle. It is to be noted 

that these technologies also influence IVHM as described in 

Section I. This shows that the implementation of DT in IVHM 

would not require any drastic infrastructure change, rather a 

framework that provides state-of-the-art technologies that 

would benefit both the fields.  

III. APPLICATIONS OF A DIGITAL TWIN 

As stated before, the DT is a high-fidelity simulation 
model. It is capable of producing what-if scenarios for any 

given situation when provided with necessary data. In general, 
a DT serves as a virtual sensor that represents the product or 
the process at any instant and also as a feedback loop, 
providing data for further improvement. The DT is as powerful 
as the domain knowledge and specifications built into it, and 
as adaptive as the data it is supplied with. In general, the DT is 
adapted by the industries involved with high valued or highly 
customized products and processes due to the huge investment 
required to set up the infrastructure. With the help of enabling 
technologies mentioned in the previous section, industires 
have used DT for a variety of applications, adapted it to 
various scenarios. This section delivers some applications of 
DT developed in academia as well as by industry, based on the 
product’s lifecycle stages, to present the versatile nature of the 
DT.  

A.  Digital Twin in design & development 

In the design and development phase of a product, the DT 
is generally used for testing, verification and validation (V&V) 
purposes, as well as to structural/ thermal and other analysis 
on the design. For example, Rios et al. [13] along with Airbus, 
used Dassault Systems V6 solutions to propose a framework 
for developing a DT model for an aircraft during the industrial 
design. The framework consisted of datasets generated from 
product-process-resources-systems, linked with each other, to 
provide an avatar of a dummy aircraft DA08. Data from 'as-
defined', 'as-planned', 'as-prepared', 'as-built' and 'as-
maintained' were linked along with the resources like 3D and 
simulation models and technical publications to develop the 
Digital Mock-Up of an aircraft assembly. Another example of 
the DT used in the design and development phase is its 
application with the help of CAE models by Siemens. In this 
case, the DT was used for various functions: i) predicting 
aerodynamic performance, blade deflection, and cooling flow 
rates of gas turbine blades, ii) predicting acoustic and 
structural loading, optimizing noise and vibration in e-
powertrain, and optimizing range and performance of electric 
vehicles, iii) predict fuel consumption of excavators for soil 
loading, and iv) enable V&V of autonomous test driving [17]. 
Siemens has used the DT for Model-based system testing that 
connects the virtual testing model with bench testing and field-
testing data to enable attribute specific evaluation throughout 
the development cycle. Siemens also uses the DT to support 
the testing process through anomaly detection process 
monitoring, and fault diagnosis [17]. 

B. Digital Twin in Manufacturing 

The DT is used widely in manufacturing to monitor and 

optimize the production, to perform quality control on the 

products and predict defects in the assembly lines. Zheng et 

al. [18] developed a DT model of a welding production line 

with a 3D geometric, physical and kinematic model and 

connected it with the data from the production line to achieve 

interrelationship between the model and the real-time 

operation. This was used to monitor the welding production 

line to analyze the operation time and production cycle at each 

station and produce a real-time status warning. Similarly, Cai 

et al. [19] developed a DT of a vertical milling machine by 

data acquisition and information fusion techniques. They 

developed the DT with the characteristics of the machine 

using manufacturing data and sensory data from Hall-effect 

current and vibration sensors to monitor the operating 



  

conditions and to demonstrate the prediction capability for 

surface roughness model. 

An industry-implemented DT use case is the 'Meggitt 

Modular Modifiable Manufacturing' or M4 [20] that explores 

the technologies of digital manufacturing, cloud computing, 

and IoT to address Meggitt’s challenges of lack of flexibility 

and automation in the production lines that assemble 

aerospace products. The M4 framework combines the key 

components of the shop floor with sensors and connects them 

with data storage facilities, to carry out analysis required for 

the production line. The M4 framework was demonstrated by 

assembling the final stages of three critical safety-critical 

aerospace products, by carrying out what-if scenarios, 

optimizing the schedules, automating the part movements, 

and analyzing the factory performance at the end [20]. 

Likewise, Boeing uses Dassault Systems’ 3D EXPERIENCE 

platform in its 777X composite wing center [21]. This new 

digital factory would help in streamlining the entire supply 

chain process by providing the real-time status of the factory, 

to optimize the plan for parts movement to match with the key 

performance indicators, to produce ‘what-if’ scenarios and 

compare the different methods for optimization, and to 

communicate with all the stakeholders about the updated 

plans for the movement. This will also help in loading and 

capacity simulation, decision making, and scheduling for 

parts production, and factory’s performance management 

[21].  

C. Digital Twin in in-service monitoring 

The DT can be used to monitor the in-service performance 
of the product, that could give feedback to both maintenance 
as well as design stages. For example, Wang et al. [10] 
developed a DT for rotating machinery with a Finite Element 
Analysis model, along with a model updating strategy to 
accommodate for sensitivity between the physical and the 
digital model. They demonstrated fault diagnosis of the 
unbalanced condition of the rotor due to the varying operating 
conditions and environment. An industrial application of the 
DT in in-service monitoring is the Abrams tank track system. 
The DT was created by  Endurica, along with TARDEC  for 
the T-158LL  back-pad of the Abrams tank track system and 
implemented via Abaqus solver and Endurica TL solver [22]. 
This DT was used to demonstrate the virtual evaluation of 
complex in-service conditions like self-healing, fatigue fault 
modes, thermal runaway failure mode, and the operating 
temperature; the results were found to be close to the 
experimental results of the back-pad component testing [22]. 
On the other hand, GE has built DT of the powerplants with 
physics-based and data-driven models to detect faults to 
improve the asset failure mode management and reduce 
unplanned downtime [15]. It also has built thermal DTs to 
assess the thermal efficiency and predict emission, as well as 
lifing DT to optimize the mission versus maintenance 
reliability of the power plant. GE uses its Predix platform to 
run the DTs. Predix is the key platform that ingests large scale 
data generated, carries out data processing, uses analytical 
models, and provides services via DTs at high execution speed 
[15]. Similarly, Sandvik Coromat has used Microsoft solutions 
like Azure IoT suite, Corona Intelligence and Dynamic 365 to 
develop a scalable DT in its production flow to connect to 
optimize the field service provided for the customers [23].  

The examples described in this section show the versatile 
nature of the DT and that it is used by the high-value industries 
throughout a product’s life cycle, in a variety of applications, 
ranging from digital mock-up to digital factories, and from 
predicting failure life to evaluating performance efficiency. 
The applications cited in this section are mainly from design 
and development, manufacturing, and in-service monitoring 
stages of the product life cycle. The following section 
discusses the applications of DT in maintenance, focusing 
exclusively on IVHM.  

IV. DIGITAL TWIN AND IVHM 

 As mentioned earlier, IVHM is the paradigm shift to 

support CBM for vehicles. An IVHM system aims to assess 

the health of its host system, isolate faults, and predict useful 

life. The functioning of an IVHM system is influenced by the 

Open System Architecture - Condition Based Maintenance 

(OSA-CBM) framework. The OSA-CBM framework defines 

a series of steps (as shown in the middle layer of Fig. 3), that 

could be carried out to provide a maintenance solution which 

is adapted by the IVHM system [5]. Fig. 3 presents the basic 

process of an end-to-end IVHM system framework for an 

aircraft with the DT’s role inscribed. The middle layer of Fig. 

3 shows the steps followed by an IVHM system as defined by 

OSA-CBM. It starts with collecting data from the aircraft 

platform regarding a concerned subject which could either be 

a component (e.g., compressor blade), or a subsystem (e.g., 

gearbox assembly), or a system (e.g., engine). It then employs 

several data processing and manipulating techniques to 

extract information. This information is later used to assess 

health of the subject, detect the presence of any faults, 

diagnose and isolate faults, and predict the failure pattern and 

the subject’s remaining useful life. The outcome from these 

three stages, i.e., condition monitoring, diagnosis, and 

prognosis, are sent for generating advisories which are then 

used by CBM to schedule maintenance programs for the 

concerned subject accordingly (bottom layer of Fig. 3).  

To validate and ensure reliability of the results generated 

by the algorithms used for these three stages, the DT can be 

used as an alternate representation of the aircraft platform 

within the IVHM system (top layer of Fig. 3). To update the 

DT with the latest state of the aircraft’s concerned subject, the 

data from the aircraft platform would undergo the same 

process of data acquisition and manipulation, similar to the 

initial steps followed by the IVHM system. This processed 

data, along with the context, could help in verification and 

optimization of the condition monitoring logic. Another 

advantage of inscribing DT to the IVHM system is that the 

DT would ideally possess knowledge of the entire system  

since its design stage (as discussed in Section II). One of the 

existing gaps in the field of IVHM is that the IVHM system 

is currently treated as an add-on to a matured design process 

of the asset [24]. The IVHM system is pointed to be more 

beneficial, if it is included at the earliest stage of the asset 

design process, strengthening the links of requirements and 

knowledge between the asset and the IVHM system. Hence, 

implementing DT, which represents the functioning of the 

physical asset, along with its contextual knowledge, would 

improve the overall performance of the IVHM system. One 



  

more advantage is the ‘what-if’ simulations that can be run in 

the DT at that point will augment the diagnosis and prognosis 

process. The better the results from the IVHM system, the 

better maintenance plans generated in CBM.     

The DT, when first implemented by NASA, was planned 

to function with onboard IVHM systems to get health 

monitoring data to forecast the life of the systems and update 

maintenance schedules accordingly. Over the years, the role 

of DT evolved to supply chain streamlining, exterminating 

silos, and enabling visibility to stakeholders. However, the 

core of DT remains the same, i.e., to emulate the functioning 

of its physical counterpart, thus showcasing its health status. 

Even if a DT is used mostly in design and development or in 

the manufacturing stage of a product, it continually provides 

data in these stages that could be used for health monitoring 

eventually. Hence, the implementation of DT in the 

framework has become a natural step forward for the IVHM 

field. Some applications that use DT in IVHM are discussed 

in the rest of this section. 

NASA and the United States (US) Airforce have 

developed several DTs for vehicle health monitoring. Tuegel 

[25] proposed an Airframe digital twin that would be a cradle-

to-grave model for designing and maintaining airframes. The 

Airframe digital twin helped in finding the probability of non-

conformances during the design phase, which helped in 

keeping records of the individual aircraft through its 

dedicated computational model. This also helped in 

forecasting different scenarios of the airframe's performance 

and failure and predict the retirement schedule depending 

upon the individual aircraft's performance, rather than 

depending on the reliability statistics of the whole fleet. The 

uncertainty between the physical airframe and its DT was  

reduced by updating the service experience through Bayesian 

method. Another example is from Zakrajsek et al. [26], who 

developed a physics-based DT of an aircraft tire to monitor its 

health at the aircraft touchdown. In order to predict the tire 

wear during touchdown a physics-based equation involving 

slip wear rate was derived and combined with the empirical 

results to create a nonlinear touchdown response surface. The 

DT was used to predict the touchdown wear by varying the 

mean sink rate, yaw angle, and speed.   

The F-35 Joint Strike Fighter developed by the US 

Airforce and Lockheed Martin has a state-of-the-art IVHM 

system that provides real-time health data during the flight to 

ground-based Autonomic Logistics Information System 

(ALIS), to enable the maintainers to be prepared for their 

activities when the aircraft lands [16]. ALIS then updates  

health data to all the local systems at Lockheed Martin. This, 

however, requires an enormous V&V effort to ensure the 

integrity of data and also checks for hacking and other 

security-related issues, resulting in increased operations and 

maintenance costs. To save MRO cost, Lockheed Martin used 

ALIS to support operations and maintenance models and 

applied the Digital tapestry concept of data flow tightly 

woven to integrate the information from design and 

development into production (Digital thread), solving the 

early issues and leaning the production process like 

automated hole drilling. Lockheed Martin also applied this 

Digital tapestry concept to validate all the major component 

designs and enabled the conversion of SysML models to 

Simulink codes to reduce the gap between the systems and 

design perspectives [16].  

Among the aerospace OEM industries, Rolls Royce uses a 

DT for engine health monitoring, to enable an 

IntelligentEngine, which is highly connected and contextually 

aware. Currently, the DT is used to carry out analysis under 

various possible instances of blade-off events in Trent engines 

[27]. Rolls Royce has also combined with Microsoft to enable 

predictive maintenance in Trent XWB turbofan jet engines, 

by employing data from historical feeds and real-time 

monitoring [23]. Similarly, GE has developed  DT for aircraft 

landing gear by considering an instance as an initial model, 

followed by frequent updating of data [28]. The landing gear 

DT is made using asset data and time-series data. This DT is 

used to detect anomalies, forecast the next maintenance 

activities and predict remaining useful life of every subsystem 

of each landing gear, with the help of historical data collected 

and stored in the Predix platform and by performing 

predictive analytics [28].  

Apart from aerospace, the DT has been used widely in 

automotive and maritime industries, as well as in railways. 

Tesla Motors creates a DT for every car it makes and uses it 
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to provide fixes, software updates, and to schedule 

maintenance based on the car’s usage and performance [29]. 

Likewise, Magargle et al. [30] from Ansys Inc. and Modelon 

Inc., developed a physics-based DT of automotive braking 

systems by combining 0-D and 3-D models with controls. 

They demonstrated the ability of this DT to differentiate the 

wear rates with normal and abnormal conditions while 

disconnecting the ABS controller, which would help in 

suggesting suitable maintenance schedules in advance for the 

braking system. They also used the DT to obtain sensor 

signatures for some fault conditions, which were further used 

to develop diagnostics for the automotive braking system.  

The Danish Maritime Authority has adapted the DT for its 

maritime cluster, Blue Denmark, using 3D, simulation and 

analytical models, vessel documents and information models, 

operational data and sensor data, software-driven control 

algorithms and virtual communication networks [31]. The 

DTs are used to create value from individual elements like 

analysis for performance improvement, design verification 

and optimization, condition-based maintenance, decision 

support, safety assurance, testing and verification, and virtual 

operation. Currently, efforts are made to create a DT 

ecosystem that has the platform to integrate all these key 

elements to bring benefit to the stakeholders from the 

information contained in such an ecosystem [31]. GE has 

developed DT for railways, where, health index is calculated 

for network based on the defects found on the tracks and 

wayside [32]. Suitable maintenance plans are updated daily 

based on the health index. The DT is implemented for train 

also, for automatic control of throttle and dynamic brakes, 

optimization of speed and feedback on fuel consumption [32].  

V. CHALLENGES, GAPS & OPPORTUNITIES 

The applications presented in the previous sections show 
that the capabilities of DT have enabled it to contribute to high-
value industries in a number of sectors. The DT’s ability to 
represent any product or process that could help provide 
feedback on health or performance or even verification, 
together with the maturity in the enabling technologies have 
the following potentials: i) save cost involved in design, 
testing, inspection, certification and unplanned maintenance, 
ii) improve the efficiency of knowledge transfer in a product 
lifecycle, iii) enable transparency in data handling, controlled 
sharing of data, and iv) to eliminate the silos across the 
different stakeholders and integrate and streamline the entire 
supply chain. On the other hand, the implementation of DT has 
a few challenges to be mitigated. This section discusses some 
of the challenges met by DT and its prospects in IVHM. 

A. Challenges faced by Digital Twin (DT) in IVHM 

One of the significant decision-making factors for 
implementing DT is the level of fidelity [9]. A dedicated DT, 
which is a replica of a physical system, consumes a large 
amount of time for development, requires more data and 
increases the cost involved. However, a low fidelity DT cannot 
reap the benefits of investment if it is not complex enough. A 
trade-off must be made to achieve the required level of fidelity 
in developing and managing the DT. Secondly, implementing 
DT requires suitable decisions and investments to be made 
regarding the enabling technologies. As described in the 

earlier sections, the technologies influencing DT and IVHM 
are very similar. The number of sensors used must be 
optimized to acquire all the required data as well as to not 
increase the overall weight of the vehicle. Data storage 
capacity must be factored in to accommodate Big Data, along 
with the infrastructure required for data management. High 
speed computations are required to power sophisticated 
machine learning algorithms; cloud computing facilities 
including the internet must be accounted for. With the 
infrastructure established, considering all these key 
technologies, implementation of the DT would become 
feasible within the IVHM framework. Another challenge 
faced by DT is security. In general, due to a large amount of 
data sharing on the cloud, the DT ecosystem is vulnerable to 
cyber-attack like hacking and phishing. The credibility of data 
generated has to be secured, and any possibilities of cyber-
attack should be diagnosed early on and prevented. Industries 
have started using technologies like Blockchain to secure data 
and prevent cyber-attacks [33]. One more issue that challenges 
the implementation of DT within IVHM is data sharing. Since 
health information about the systems of any asset is 
confidential to the suppliers, sharing such data without 
violating their intellectual property rights is not simple [34], 
which prevents the DT to be a complete representation of its 
physical counterpart. Further readings on the challenges faced 
by the DT implementation can be found in these works [[11], 
[25], [31]]. 

B. Gaps & Opportunities 

Even though introduced to the field of IVHM as early as 
2012, it is only in the last four years that the industry has taken 
DT into serious consideration, partly due to technology gaps 
in the industry. However, as the enabling technologies are 
becoming more affordable, there are opportunities for further 
research in this area. From the literature point of view, it is to 
be noticed that, the DTs developed are mostly at the 
components and subsystems level like fuel pump assembly 
and some DTs are developed at the system level like the fuel 
system. Only a very few works [[17], [35]] consider the 
integration of multiple DT models representing systems like 
the fuel system, the engine or the electrical power system to 
emulate their interactions at the level of an aircraft or any other 
vehicle. The intellectual properties of the suppliers could pose 
a challenge [34], as the lack of data would prevent the 
implementation of a fully representative DT. However, a 1-D 
black box representation that could connect to other such 
system level DT models for emulating an overall behavior of 
the vehicle could be pursued. When DT models representing 
various components and subsystems are integrated, the 
seamless simulation of any complex vehicle like an aircraft 
can be made possible. This will help in optimizing the results 
produced by the IVHM systems and in turn optimize the 
maintenance plans for these vehicles through CBM.  

VI. CONCLUSION 

The DT has the potential to be the key to unlock many 

research areas related to IVHM. As one of the main objectives 

of IVHM is to integrate all available information to provide 

solutions to CBM, the DT can play a crucial role in being the 

platform that integrates all the information to project the 

health of the complex systems like an aircraft. A component 



  

or system level DT, integrated with other such DTs to emulate 

the functioning of a complex vehicle, combined with the 

technology that makes use of the data to assess health of its 

systems, thus becomes one of the latest enabling technologies 

of IVHM.  
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