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ABSTRACT 

The installed flow field for a Variable Pitch Fan (VPF) operating in reverse thrust for the complete aircraft landing 

run is described in this paper. To do this, a VPF design to generate reverse thrust by reversing airflow direction is 

developed for a representative 40000 lbf modern high bypass ratio engine. Thereafter, to represent the actual flow 

conditions that the VPF would face, an engine model that includes the nacelle, core inlet splitter, outlet guide vanes, 

bypass nozzle, core exhaust duct, aft-body plug and core nozzle is designed. The engine model with the VPF is 

attached to a representative airframe in landing configuration to include the effects of installation. A rolling ground 

plane that mimics the runway during the landing run is also included to complete the model definition. 3D RANS 

solutions are carried out for two different VPF stagger angle settings and rotational speeds to obtain the fan flow field. 

The dynamic installed VPF flow field is characterized by the interaction of the free stream and the reverse stream 

flows. The two streams meet in a shear layer in the fan passages and get deflected radially outwards before turning 

back onto themselves. The flow field changes with stagger setting, fan rotational speed and the aircraft landing speed 

because of the consequent changes in the momentum of the two streams. The description of the installed VPF flow 

field as generated in this study is necessary to: a) qualify VPF designs that are typically designed by considering only 

the uninstalled static flow field b) choose the VPF operating setting for different stages of the aircraft landing run. 
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INTRODUCTION 

In a VPF, the pitch setting or stagger angle of the fan blades can be varied by an actuator located in the fan bullet-

nose. Such control over the pitch setting can be used to optimize off-design fan operation without the need for a 

variable area bypass nozzle. Research studies comparing the VPF and variable area nozzle for modern high bypass 

ratio engine architectures have noted that the VPF can reduce aircraft mission fuel burn in the range of 3 to 7% [1-4]. 

VPF provides more fine control than the variable area nozzle in optimizing fan operation that makes it a better 

contender for future intelligent engines [4]. The mechanical design of pitch change actuator mechanisms that are 

housed within the fan bullet-nose have been demonstrated to be possible [5]. The lower mission fuel burn, adaptability 

to intelligent engine configurations and possibility to mechanically design the system has resulted in research interest 

in VPF. Additionally, if the VPF is used to generate reverse thrust, the bulky nacelle based cascade thrust reverser unit 

can be removed, paving the way for introducing ‘slim-line’ nacelle designs that can significantly reduce installation 

drag and weight. The combination of ‘slim-line’ nacelle and VPF for reverse thrust without the variable area nozzle 

and cascade thrust reverser unit can improve the aircraft mission fuel burn in the range of 10 to 15% [6]. The manner 

in which VPF can be used to generate reverse thrust by changing the direction of airflow is described in Appendix A.  

 The use of VPF to generate reverse thrust has been studied by NASA in the Quiet Clean Short-haul Experimental 

Engine (QCSEE) and the Advanced Ducted Propulsor (ADP) programs. In the QCSEE program, two VPF designs 

were developed and characterized in reverse flow using an experimental test rig that included a clean flow path of 

only the VPF and guide vanes [7, 8]. From these designs, one was chosen and tested in an outdoor test rig with the 

VPF shrouded in a nacelle and a modified outlet nozzle featuring flared petals to aid flow in reverse thrust operation. 

These tests verified the feasibility of the design to establish a reverse flow stream at different fan rotational speeds [9, 

10]. A few wind tunnel tests were also conducted in uninstalled conditions with the modified flared outlet nozzles to 

study the effect of crosswind and forward velocity. The wind-tunnel results were presented in terms of overall force 

parameters and no information on the general or fan flow field, even in the uninstalled tunnel conditions, could be 

obtained because of lack of instrumentation [11]. In the ADP program, a low noise low pressure ratio VPF design that 

is representative of modern high bypass ratio engines was developed. A 22 inch model of the ADP design was tested 

in a rig that included the nacelle, unmodified nozzle, guide vanes and core engine splitter [12, 13]. The rig results 

quantified the fan flow characteristics only in static conditions for different stagger angle settings. The flow field in 

the rig was analyzed computationally by using 3D RANS simulations and the uninstalled fan flow field was described 
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only in two nominal VPF operating conditions and not in reverse flow conditions [14]. Further in a recent study, the 

uninstalled flow field for the ADP in reverse flow regime at static conditions was computed using 3D RANS 

simulations [15]. 

 Computational or rig studies have not been carried out to describe the installed VPF fan flow field in reverse flow 

for different aircraft landing speeds. However, such information is required to assess the feasibility of using VPF for 

reverse thrust to replace conventional cascade based thrust reversers. Therefore, in this study, the installed fan flow 

field of a VPF in a modern high bypass ratio engine is computationally obtained for a range of free stream velocities 

that is representative of actual operating conditions. The installed dynamic fan flow field is different from the reported 

uninstalled static flow field that is conventionally considered when designing and testing VPF configurations.  

MODEL DEVELOPMENT 

The objective of the study is to obtain the fan flow field in the VPF of a modern high bypass ratio engine operating 

in reverse thrust mode as installed in an aircraft during its landing run. To meet the objective four models were 

developed: 1. Engine model with flow path 2. VPF, Outlet Guide Vane (OGV) design to meet engine specifications 3. 

Airframe in landing configuration 4. Pylon and Nacelle for installing engine to the airframe.  

Engine Model 

The engine thermodynamic cycle for the representative 40000 lbf modern high bypass ratio engine is defined in 

TURBOMATCH, an in-house engine gas dynamic model [16]. The engine architecture is a two-spool geared 

configuration with 110 inch fan inlet diameter and a bypass ratio of 14 at design point.  A multi-objective genetic 

algorithm optimizer with engine specific fuel consumption and weight as objective functions, and the mission 

requirements at different flight segments as constraints, was used to optimize the engine thermodynamic cycle [17]. 

The 1D engine hot and cold gas flow path is generated for the optimized cycle using ATLAS, an in-house mean-line 

and weight estimation code [18, 19]. In the present study to completely describe the installed fan flow field, it is 

considered sufficient to model the VPF flow path including the spinner, the splitter into the core engine, the bypass 

nozzle flow path with the OGV, and a portion of the core nozzle duct after the turbines with the aft-body plug as shown 

in Fig. 1. The spinner and splitter geometrical designs are scaled to the required engine dimensions from a design 

database. The lines of the bypass nozzle, core exhaust nozzle duct and aft-body plugs are obtained from the flow path 

definition tool.  
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Fig. 1 Engine internal flow path representation in model 

VPF and OGV 

The VPF design is developed using the ADP design as baseline. The ADP design is chosen as the baseline because 

of it being a modern high bypass ratio engine design that has been extensively validated and tested [13]. The ADP 

design is scaled from the original 22 inch to 110 inch fan diameter of the engine model. The ADP design has a hub-

to-tip radius ratio (rh/rt) of 0.42. This value is not suitable for the present engine model because it would lead to an 

unacceptably high value of fan flow coefficient and consequently to significant losses in performance. Therefore, rh/rt

of the scaled model is modified to a value of 0.3 to keep the flow coefficient in the acceptable range. A through-flow 

analysis of the 0.3 rh/rt fan is carried out using, SOCRATES, an in-house streamline curvature based through-flow 

code [20]. Based on the analysis, the stagger and flow angles of different span-wise airfoil profiles are modified to get 

the same non-dimensional work distribution as the baseline design. The analysis indicated that the profiles up to 10% 

of the span from the hub are choked at the nominal design point. Therefore, the location of maximum thickness and 

stagger angle of the airfoil profiles in the hub region are modified to relieve the choking. The updated VPF design is 

then numerically characterized in forward flow and the results are validated using experimentally generated 

characteristics of the ADP test program. A comparison of the baseline ADP fan and the VPF design for the present 

study is shown in Table 1.  

The stagger angle of the VPF design is rotated by 90˚ through feather pitch from the nominal forward flow setting 

to establish the reverse stream. The behavior of the VPF design in reverse thrust is characterized at two fan rotational 

speeds: N1 and N2 = 0.8N1, and three stagger angle settings: ζ1˚, ζ2˚ = ζ1˚ -6˚, and ζ3˚ = ζ1˚ -12˚. The values of the 

stagger angles are within ±10˚ from the rotated 90˚ position. The reverse flow characteristics are generated using 3D 

RANS by using a computational domain that includes only the VPF. The objective of the VPF only characterization 

is to verify the reverse flow handling ability of the design and to choose stagger angle settings to be explored further 

in the installed configuration. The non-dimensional characteristics of the VPF in reverse flow are shown in Fig. 2. The 
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OGV for the present study is scaled from the ADP OGV. The inlet angles of the scaled OGV are corrected to match 

the flow angles from the VPF. 

Table 1 – Comparison of ADP and VPF designs 

Parameter Baseline ADP VPF Design 

Outer diameter (in) 22 110 

Pressure Ratio 1.28 1.27 

Temperature Ratio 1.08 1.08 

RPM 8400 1680 

Tip speed (m/s) 245 245 

Hub to tip ratio 0.42 0.3 

Fig. 2 VPF reverse flow characteristics for three setting angles and rotational speeds 

Airframe in Landing Configuration 

The DLR F11 airframe is used as the baseline in the present study. DLR F11 is a derivative of NASA Common 

Research Model (CRM) with wing flaps and slats in fully deployed configuration that is representative of the landing 

aircraft [21, 22]. The baseline airframe is scaled to dimensions that are typical for an airframe that uses two 40000 lbf 

turbofans. The flow over the scaled airframe is validated by comparing numerical 3D RANS results with experimental 
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pressure distributions and non-dimensional force coefficients. Inboard and outboard spoilers with spoiler-wing ratio 

of 4.1 are added to the scaled airframe at a typical 50˚ deployment angle. The design of the spoiler is validated by 

comparing the increase in drag-coefficient with similar designs [23]. A rolling ground plane is added with a typical 

engine ground clearance to mimic the run-way during the landing run. 

Nacelle and Pylon 

The engine is wrapped in a short cowl axisymmetric nacelle generated using GEMINI, an in-house nacelle design 

tool [24]. The tool parametrizes the nacelle design into 10 geometric variables and modifies the nacelle aerodynamic 

lines to obtain minimum drag coefficient. The engine wrapped in the nacelle is attached to the airframe wing using a 

pylon. The location of the engine with reference to the airframe is fixed based on an engine installation aerodynamics 

study to minimize the installation drag [25]. The ground clearance after the engine is installed in the airframe is 0.6 

m. The pylon construction is based on symmetric NACA profiles, the chord length and thickness of which are 

determined from relative engine location and structural integrity requirements. The pylon strut located in the bypass 

nozzle results in a reduction of the nozzle exit flow area. The bypass nozzle flow path contours are modified to match 

the bypass exit area required from the engine thermodynamic model. 

Installed Research Model 

The installed research model is defined by attaching the engine wrapped in a nacelle to the airframe through the 

pylon. The engine internal flow path has full annular 360˚ representations of the bypass nozzle with the pylon strut, 

40 OGV airfoils, splitter duct and 18 fan blades to capture 3D non-axisymmetric flow features. A symmetric half of 

the installed research model is placed in a cuboidal far-field domain that is approximately two airframe fuselage 

lengths in longitudinal, lateral and vertical directions with the base bound by the ground plane as shown in Fig. 3. 

COMPUTATIONAL DOMAIN DISCRETIZATION 

A hybrid domain discretization strategy is followed for grid generation of the installed research model. The 

domain discretization is done by dividing the computational domain into two regions: 1. External to the engine and 2. 

Internal engine flow path components. 

External Region 

The external region consists of: a) airframe b) nacelle contour covering the engine c) external portion of the pylon 

d) the wing with flap, slats and spoilers deployed e) far-field f) ground plane. When the VPF operates in reverse thrust, 
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the engine sucks in mass flow through the bypass nozzle exit from the external region. Therefore, the external region 

flow field solution imposes the boundary conditions for the engine internal flow-path components. Unstructured grids 

using the robust Octree method are generated for the external region with finely resolved near wall elements with y+

less than one on the wing, spoiler, pylon and nacelle surfaces. The growth ratio of the unstructured elements are 

specified as a linear function away from the surfaces to avoid unnecessary resolution of far-field flow that will lead to 

large grid sizes, while restricting the element aspect ratio to be less than 100 in the entire region. Specially defined 

grid refinement density boxes are used in the nacelle-fan interface and the bypass nozzle exit interface to populate 

grid elements in the external volumetric regions that transfer the flow boundary conditions into the engine. The 

unstructured domain quality index that measures the scaled element aspect ratio is in the acceptable range of 0.4 to 

0.6, where 1 indicates a perfectly regular element and 0 a null volume element. The size of the grid is finalized using 

a Grid Convergence Index (GCI) study of the resultant force on the wetted surfaces obtained  from wall shear and 

pressure distributions as parameters.  The finalized grid has ~30 million elements in the asymptotic parameter value 

region with a maximum GCI of 0.006 obtained from Richardson extrapolation method. 

Fig. 3 Schematic showing development of installed research model

Internal Region 

The internal region consists of two types of components: a) Duct components – Bypass nozzle with pylon strut, 

core engine splitter and core nozzle b) Turbomachinery components – VPF and OGV. In the duct components, the 
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bypass nozzle with the pylon strut is discretized using unstructured elements with wall y+ less than 1. Unstructured 

grid is chosen for the bypass nozzle because the flow direction is not known a priori at the external interface to align 

the structured grid.  For the splitter and core nozzle, a structured grid with flow aligned elements is used. O-grid with 

y+ less than 1 is used to capture the near wall flow physics. A quarter O-grid topology is adopted at the sharp splitter 

edge to ensure smooth flow of grid elements around the corner. The skew angle of the structured grid elements of the 

duct components are in the acceptable range of 45˚ to 135˚ with aspect ratios less than 100 and a near wall expansion 

ratio less than 1.2.  

Multi-block structured discretization strategy is followed for the turbomachinery components. An H-J grid 

topology with O grid blocks near the walls is used for the VPF because of the high reverse flow stagger angle. A 

simple H-O grid topology is sufficient for the low stagger OGV airfoils. The leading edge and trailing edges are 

resolved using rounded flow aligned O-grid elements. The skew angle of the VPF and OGV grids are in the acceptable 

range of 30˚ to 150˚, with aspect ratios less than 80 and near wall expansion ratios less than 1.1. Extensive GCI study 

is carried out to optimize the grid size and to quantify numerical uncertainty. The parameters considered are the span-

wise distributions of Mach numbers and flow angles across different stations and global parameters like mass flow 

and pressure ratio. A gross GCI value, defined as the RMS of the averaged span-wise parameters and the global 

parameters, is used to compare the different grids. The finalized internal grid has ~43 million elements and a gross 

GCI of 0.004 obtained from Richardson extrapolation. The grid size is higher than the external region because of the 

full annular flow path representation. The surface grid on portions of the external region and the internal region is 

shown in Fig. 4. 

Fig. 4 Representative grids on portions of external region and engine internal flow-path 
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SOLUTION MATRIX 

From a study of the clean VPF only reverse flow characteristics shown in Fig. 2, it is decided to explore the 

installed flow field for two stagger angle settings, ζ1˚ and ζ2˚. The stagger angles are chosen because of the wide 

operating range of the speed lines. Two sets of VPF grids are generated to represent the change in the fan geometry 

because of the change in the stagger setting angle. For each stagger angle setting of the VPF, the solution is obtained 

for two fan rotational speeds, N1 and N2, to capture the bounds of behavior in the clean reverse flow characteristics. 

Each stagger angle-rotational speed combination is solved for a range of aircraft landing speeds from 140 to 20 knots 

in steps of 10 knots. Therefore, the two sets of integrated models, at each stagger angle setting that is run for two 

different fan speeds for the landing run, results in a total of 60 solutions as shown in Table 2. 

Table 2 – Matrix of solutions 

Fan Stagger 

degrees 

Fan RPM 

% 

Landing Speed 

knots 

ζ1 N1

140 to 20 in steps of 10 

ζ1 N2

ζ2 N1

ζ2 N2

BOUNDARY CONDITIONS AND SOLUTION 

The 3D RANS solution of the flow field is obtained using ANSYS-CFX, a coupled finite volume solver that uses 

element based interpolation shape functions. The RANS equations are solved in a fully implicit manner with second 

order resolution of conservation and turbulence equations to minimize discretization errors. The effects of turbulence 

are modelled using the two-equation k-ω Shear Stress Transport (SST) model. The near-wall flow physics is resolved 

without the requirement of imposing wall-functions because of explicit grid refinement at all wall surfaces that are 

specified as adiabatic no slip walls.  

The boundary conditions that are specified to obtain the flow field solution are: 1. Fluid velocity at far field inlet 

2. Fan rotational speed 3. Steady state thermodynamic parameters that represent the core engine: Axial velocity and 
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total temperature at core engine inlet after the splitter edge and core engine exhaust duct outlet 4. Far-field conditions 

specified at ambient atmospheric pressure and temperature with flow entrainment and zero gradient of turbulence 

parameters 5. Ground plane moving at the same velocity as the far field fluid velocity. The core engine thermodynamic 

parameters are obtained from the engine performance model to sustain fan operation at the specific rotational speed 

and stagger angle combination. The transition plane into the internal flow path at the fan inlet and the fan outlet-splitter 

inlet junction are specified as frozen rotor interfaces because of the change in frames of reference between stationary 

and rotating domains. The transition planes at the bypass and core nozzle exits into the external region, OGV outlet-

bypass nozzle inlet junction and splitter-OGV inlet are specified as fluid-fluid interfaces. The combination of the 

boundary conditions and the interfaces complete a well-posed problem definition for the present model to obtain 

numerical solution of the RANS equations. A schematic representation showing the boundary conditions and interface 

definitions are shown in Fig. 5. 

Fig. 5 Schematic representation of boundary conditions and interface definition 

Three different physical advection timescales for the flow to traverse the domains once are identified in different 

parts of the computational domain: 5s in the far-field domain, 0.04s in the engine internal flow path and 0.003s in the 

rotating VPF domain. Therefore adaptive time-scale factors are used in different parts of the domain to properly 

resolve the flow physics and to improve the rate of convergence. The solution is considered to be converged when the 
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RMS value of the standard deviation over 50 iteration steps of global and local parameters of interest such as the net 

force, fluxes and Mach numbers, are within 0.5% of the mean of standard deviations over 25 iteration steps and the 

current iteration value. This convergence strategy is adopted to ensure proper resolution of changes in the parameters 

arising because of local zones of recirculation. The solution is carried out in a High Performance Computing (HPC) 

facility ‘DELTA’ at Cranfield using a Platform Message Passing Interface (MPI) based parallelization scheme. DELTA 

has a peak processing speed of 60 Teraflops, and a total of 1888 cores with a shared memory of 15 TB. Typically, 4 

chunks of 16 CPUs each with 16 parallel MPI processes are used for the analyses. The run time for a single simulation 

with simultaneous statistical processing of the data to determine convergence is around 24 hours.  

RESULTS AND DISCUSSIONS 

To completely describe the installed fan flow field of the VPF in reverse thrust at different landing speeds, the 

results are presented in the following sequence: 

1. The installed configuration differs from the uninstalled configuration in terms of the flow conditions that the 

VPF will need to operate. Therefore, initially a description of the installed general flow field in the integrated 

airframe-engine model at a landing speed of 110 knots is provided.  

2. The fan flow field in the ζ1˚ stagger and N1 fan rotational speed setting, at 110 knots is described.  

3. The change in the fan flow field with change in stagger from ζ1˚ to ζ2˚ at the same N1 fan rotational speed 

and landing speed of 110 knots is described. 

4. The change in the fan flow field with change in fan rotational speed from N1 to N2 at ζ1˚ stagger and landing 

speed of 110 knots is described. 

5. The change in the fan flow field with change in the landing speed of the aircraft is described by considering 

the VPF at ζ1˚ stagger and N1 fan rotational speed.  

Installed General Flow Field 

The general flow field around the airframe and within the engine for the VPF at ζ1˚ stagger and N1 fan rotational 

speed at 110 knots landing speed is described here. When the VPF is operating in reverse thrust mode, the flow is 

injected from the bypass nozzle exit and ejected from the fan inlet. The general flow field can be described by 

considering the external flow and internal flow in the engine.  

External Flow Field 
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The flow streamlines external to the engine are shown in Fig. 6.  

Fig. 6 External flow – (a) 3D streamlines emanating from fan inlet plane to the external far-field domain (b) 

Streamlines on a 2D plane defined at mid-engine location into airframe 

There are three major flow features marked in Fig. 6: 

1 – The flow that exits the fan inlet plane comes swirling out at an angle. This flow when it reaches the nacelle 

lip is washed down by the free stream flow. The flow continues swirling down the nacelle till it reaches the bypass 

nozzle exit plane where it comes under the influence of fan suction.  

2 – The free stream flow penetrates into the nacelle and the reverse flow stream exists only in the radially outer 

annular regions of the nacelle. A part of the penetrating free stream flow is entrained by the reverse flow and is added 
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to the stream that is coming out into the nacelle lip. The swirl angle of the flow out towards the nacelle lip is fixed by 

the interaction of the reverse stream out of the fan inlet and the entrained free stream flow. The swirl angle of the flow 

that is washed down the nacelle lip towards the bypass nozzle exit is fixed by the interaction between the external free 

stream flow and the reverse stream flow. The remaining portion of the free stream flow that is not entrained enters the 

fan passages at the inlet in the conventional forward flow direction. 

3 – The fan suction is felt at the bypass nozzle exit plane. This causes a part of the flow over the nacelle to turn 

180˚ into the bypass nozzle exit to set up the reverse stream. The effect of fan suction sets up a shear layer near the 

engine exit region that divides the flow into that which turns back into the engine and that which escapes the suction. 

The flow that does not turn into the engine in the free stream is deflected towards the wing because of the effect of 

suction and the deployed wing pressure field. This can be observed clearly in the flow streamlines near the ground 

plane. 

The flow-field external to the engine has circumferential variations around the engine annulus. Fig. 7 shows vector 

plots at three planes, marked 1, 2 and 3, along the length of the aircraft. In the plane 1, the bottom portion of the 

reverse flow is influenced by the ground plane. The ground plane causes a circumferential variation in the free stream 

flow that spreads around the engine. The ground plane and the nacelle bottom surface squeezes the free stream and 

reverse stream flow at the bottom surface that causes a circumferentially varying flow field around the nacelle. This 

circumferential variation is then convected downstream that leads to differences in the swirl velocity around the 

annulus as can be seen in Plane 2. The swirling flow of varying strength along the circumference induces vorticity in 

the free stream flow in the immediate vicinity of the nacelle that further accentuates the circumferential variation of 

the external flow field. As the flow reaches Plane 3, it encounters the pylon that presents a physical separation between 

the flows in the inboard and outboard sides of the wing. The flow swirl is such that there is an accumulation of flow 

on the outboard pylon side of the wing. It is on such a flow field at the engine exit that has significant circumferential 

variations that the fan suction acts. This causes the location of the flow turn shear layer with reference to the bypass 

nozzle exit plane to vary around the annulus. This can be seen in the flow feature marked 3 in Fig.6 (b), where a larger 

amount of mass flow is entering the bottom portion of the engine compared to the top part because of flow migration 

and accumulation toward the outboard side of the wing.  
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Fig. 7 External flow – Vector plots on planes along the length of the aircraft showing circumferential variation 

Internal Flow Field

The flow streamlines within the engine are shown in Fig. 8.  

Fig. 8 Internal flow – Streamlines on a 2D plane defined at mid-engine location showing major flow features 

The reverse flow within the engine has seven major features as marked in Fig. 8:  

1 – The 180˚ turn into the engine from the external flow field causes a recirculation zone at the bypass nozzle lip. 
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2 – The reverse flow develops through the bypass nozzle duct and the OGV. As it reaches the splitter edge, one 

portion of the flow turns another 180˚ to feed the core engine. This turn results in separated flow at the at the sharp 

splitter edge. The amount of flow entering the core engine depends on the core engine operating point on the working 

line to sustain the fan rotational speed.  

3 – The remaining portion of the reverse flow enters into the fan passages at the outlet. Within the fan, the reverse 

flow meets the free stream flow in a shear layer marked by dotted lines. 

4 & 5 – Both the reverse stream and free stream flow are deflected radially outwards and are turned back on to 

themselves. The flow feature marked 4 is turned back towards the bypass nozzle through the radially outer span 

portions of the OGV. This flow eventually meets the reverse stream from the bypass exit and is rolled back to rejoin 

the reverse stream. In the flow feature marked 5, the free stream is turned back towards the nacelle inlet and joins the 

reverse stream that proceeds down to nacelle lip. 

6 – A portion of the reverse stream escapes near the radially outer spans of the fan at the inlet plane to set up the 

reverse stream. It is this reverse stream that entrains the free stream flow and flows out towards the nacelle lip. 

7 – This feature is marked to represent the circumferentially varying nature of the flow through the engine as can 

be observed from the differences between the top and bottom portions of the streamlines shown in Fig. 8. This 

difference is a consequence of the flow field external to the engine from which the reverse stream is established. The 

extent of circumferential variation across different stream-wise planes through the engine can be observed from the 

Mach number contours shown in Fig. 9. In the bypass duct, the circumferential variation of the recirculation zone ‘1’ 

can be observed in the slices marked, 1 and 2. The interaction of the pylon wake and the signature of the rolling flow 

‘4’ can be observed from slices 3 and 4. The bi-directional flow in the OGV passages, with the radially outer span 

portion towards the bypass nozzle exit and the radially inner span portion towards the fan is apparent in the wake 

signature at the OGV-splitter interface. The signature of the flow entering at the fan inlet and outlet plane can be 

observed in the radially inward portion of the splitter-fan interface and the fan inlet plane. The reverse stream flow ‘6’ 

that escapes the fan passages can be identified by the wake signature at the radially outward portion of fan span near 

the annulus tip. The zone of transition between the free stream flow and reverse flow is observed as an entrainment 

ring zone in the fan inlet plane. 
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Fig. 9 Internal flow – Mach number contours at different stream-wise locations within the engine 

The general flow field changes with the aircraft landing speed.  The internal and external flow features marked at 

110 knots are present at other landing speeds as well. As the landing speed reduces, the momentum of the free stream 

reduces, which reduces the extent of penetration of free stream into the nacelle. The mass flow of reverse stream 

sucked in at the bypass nozzle exit increases because of the presence of larger amount of slower free stream which 

can be captured by the fan suction at the exit. These changes lead to changes in the extent and strength of the flow 

features at 110 knots. Since the objective is to describe the fan flow field in the VPF, a detailed discussion of the 

change in the general flow field at other landing speeds is superfluous. However, the consequence of the change in the 

general flow field is the resulting change in the flow conditions at the fan inlet and outlet planes which are described 

in the following sections. 

ζ1˚ Stagger - N1 Speed VPF Fan Flow Field at 110 knots 

The fan flow field is defined by the interaction of the reverse stream and the free stream. The circumferentially 

averaged meridional vector plot of the absolute velocity and the span-wise variation of axial velocity are shown in 

Fig. 10.  
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Fig. 10 Fan flow field – (a) Meridional velocity vectors showing reverse stream and free stream (b) Span-wise 

variation of circumferentially averaged axial velocity 

It can be observed from the vector plot that the free stream and the reverse stream meet in the fan passages and 

are deflected radially outwards toward the fan casing. The deflected reverse stream branches into two streams: one 

escaping out at the fan inlet and another turning back out through the fan outlet plane. The free stream is turned back 

onto itself and joins the escaping reverse stream at the fan inlet. This results in a novel bi-directional flow at both the 

fan inlet and outlet planes that can be observed from the direction of the axial velocity in Fig. 10 (b). The nominal 

forward direction (inlet to outlet) is considered positive for the axial velocity. At the inlet plane: a) there is a reduction 

in the axial velocity from 20% to 75% of the span. This decrease is indicative of the free stream flow gradually turning 

onto itself. A small decrease is observed from 20% of the span to the hub because of boundary layer effects. b) After 

75% span, the direction of the flow changes towards the nacelle inlet and the absolute axial velocity shows an 

increasing trend towards the casing. At the outlet plane: a) the axial velocity of the reverse stream peaks at nearly 40% 



GTP-19-1333, Rajendran 18 

span and shows an decreasing trend till 80% span. This peaking is a consequence of a portion of the reverse stream 

turning into the core engine at the splitter edge before reaching the fan outlet plane. b) After 80% span, the direction 

changes towards the bypass nozzle and the absolute velocity increases till it reaches the casing. 

The absolute magnitude of the reverse flow out into the nacelle at the inlet plane (75% span to casing) is nearly 

twice the amount of reverse stream turned back into the engine at the outlet plane (80% span to casing). This is because 

of two reasons: 1. the momentum of the reverse stream flux is higher, as can be noted from higher axial velocity of 

reverse stream at outlet. This causes the reverse stream to dominate as both the streams are deflected radially outwards 

and establish an outward flowing reverse flow towards the nacelle at the inlet plane. The flow turned back into the 

engine is the remaining portion that did not manage to escape out towards the nacelle 2. The reverse flow at the inlet 

also contains the free stream flow that is entrained and turned back on to itself to contribute further to the escaping 

reverse stream. 

Even though the circumferentially averaged axial velocity is sufficient to describe the flow field in the VPF, 

circumferential variations exist in the axial velocity which can provide further insight into flow field. The 

circumferential variation in the axial velocity at the fan inlet and outlet plane is shown in Fig. 11. In the inlet plane: 

Wake signatures are noticeable only at 90% span. This is because only at this span the reverse stream escapes out into 

the fan inlet from within the fan blade passages. At 80% span, the reverse flow towards nacelle consists of the free 

stream that is turned back before entering the fan passages. The free stream flow in the forward direction before it is 

turned back is observed at 20% and 50% span. At the outlet plane: Wake signatures are noticeable in the 80% and 

90% span because all the reverse stream that turns back does so from within the fan blade passages. The 

circumferential variations at 20% and 50% span are because of the development of the reverse flow through the bypass 

nozzle and the OGV passages. 
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Fig. 11 Fan flow field – Circumferential variation of axial velocity at different span-wise locations 

This installed VPF fan flow field with both free stream and reverse stream is different from that of an uninstalled 

clean reverse flow because of two reasons: 1. the absence of free stream 2. Even if free stream is included in an 

uninstalled analysis, the boundary flow conditions and modeling is not sufficient to resolve the bi-directional flow at 

the fan inlet and outlet planes. Therefore, this kind of explicit installed modeling is necessary to quantify the installed 

behavior of VPF in reverse thrust. 

Effect of Stagger Setting on Fan Flow Field 

The change in the fan flow field when the VPF stagger angle setting is changed from ζ1˚ to ζ2˚ at N1 fan rotational 

speed and 110 knots landing speed is described in this section. The passages of the stagger setting ζ2˚ is 6˚ more open 

than ζ1˚. A comparison of span-wise variation of axial velocities for the different stagger angle settings are shown in 

Fig. 12.  

The VPF only clean reverse flow characteristics, in Fig. 2, suggests that the reverse stream mass flow of the ζ2˚

setting will be higher than the ζ1˚ setting. However, this is not the case. In the installed condition with both the streams, 

since the passages are more open in the ζ2˚ stagger setting, a higher amount of free stream flow penetrates into the fan 

passages. This can be observed in the higher magnitude of axial velocity at the inlet plane for the ζ2˚ stagger setting 

from hub to 75% span. The consequence of this higher free stream penetration is that the reverse stream is not able to 

enter into the fan passages as much as in the ζ1˚ stagger setting. This can be observed from the lower axial velocity of 
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the ζ2˚ setting at the fan outlet plane from hub to 10% of span. Therefore, a larger amount of the reverse stream of the 

ζ2˚ stagger setting is turned back on to itself as can be seen in the higher magnitude of velocity vectors near the casing 

(90% to 100%) at the fan outlet plane. Because a larger amount of the reverse stream is turned back, the reverse stream 

exiting near the fan inlet casing is lower than the ζ1˚ stagger setting. This is different from the case in which only the 

reverse stream exists because in that case the more open passages of the ζ2˚ stagger setting would have resulted in a 

higher amount of reverse flow at the fan inlet. 

The significant change in the flow field because of installation and interaction of the free stream and reverse 

stream demonstrates how the VPF only clean reverse flow characteristics can be misleading when choosing the setting 

of VPF in an actual installed engine during the aircraft landing run. 

Fig. 12 Effect of stagger change - Span-wise averaged axial velocity plot 

Effect of Rotational Speed on Fan Flow Field 

The change in the fan flow field when the rotational speed is changed from N1 to N2 for the ζ1˚ stagger setting at 

a landing speed of 110 knots is described in this section. The rotational speed, N1 is 20% higher than N2. A comparison 

of the circumferentially averaged meridional absolute velocity vector plots and span-wise variation of axial velocities 

for different speeds are shown in Fig. 13. As the rotational speed is decreased, the effect of fan suction is weaker and 

a lower amount of mass flow with lower momentum is sucked from the bypass nozzle exit. This can be observed from 

the lower absolute reverse stream axial velocity at the fan outlet plane for the N2 speed from hub to 80% span. The 

amount of reverse stream that escapes out at the fan inlet plane is also consequently lower than the higher rotational 
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speed case as evidenced by the flow feature ‘1’ and the lower axial velocity near the casing at fan inlet plane. In the 

lower speed case, the radial migration of both the streams within the passages proceeds to a higher radial extent before 

the reverse stream turns back onto itself in the fan outlet plane because of the lower momentum of the reverse stream. 

This is observed in the higher span wise extent at which reverse flow is turned back to the nozzle exit in the fan outlet 

plane for the N2 speed.  

The installed bi-directional flow field change with rotational speed is required to choose the fan rotational speed 

for operation in reverse thrust during the landing run. While the VPF only clean reverse flow characteristics may 

capture the reduction in the reverse flow stream momentum, the consequences of such reduced momentum on the 

interaction with the free stream and the flow direction change can only be captured using an installed model as in this 

study. 

Fig. 13 Effect of fan speed change – (a) Meridional velocity vectors (b) Span-wise averaged axial velocity plot 



GTP-19-1333, Rajendran 22 

Effect of Aircraft Landing Speed on Fan Flow Field 

The change in the fan flow field for the VPF at ζ1˚ stagger angle setting and N1 rotational speed with the change 

in the aircraft landing speed is described in this section by considering three representative landing speeds, 140, 80 

and 20 knots. These speeds represent the beginning, middle and end of a typical aircraft landing run. It is to be noted 

that in general reverse thrust systems are disengaged at a landing speed of around 50 knots to prevent foreign object 

ingestion. However, in this discussion the 20 knots case is considered to clearly elucidate the extent of change in the 

fan flow field. A comparison of the circumferentially averaged meridional absolute velocity vector plots and span-

wise variation of axial velocities for the different landing speeds are shown in Fig. 14. 

As the landing speed of the aircraft decreases, the following changes can be observed: 1. the amount of reverse 

flow entering the bypass nozzle exit increases because of the fan suction acting on slower moving air at the engine 

exit. This increase can be observed in the increase in absolute reverse stream axial velocity at the fan outlet plane from 

hub to 80% span. 2. The free stream momentum decreases as can be observed from the axial velocity at the fan inlet 

plane from hub to the span of reverse flow turnover 3. The increase in the reverse flow momentum and the reduction 

in the free stream momentum leads to an increase in the amount and momentum of the flow escaping near the casing 

at the fan inlet plane as seen in the larger regions bound between the reverse stream marker and the casing in the vector 

plots. This causes an increase of the span-wise portion which the reverse stream occupies at the fan inlet plane from 

20% of span at 140 knots to 40% of span at 20 knots as observed from the axial velocities in the fan inlet plane. 4. 

There is an increase in the chord-wise location with respect to the fan outlet plane from which the reverse flow at the 

fan outlet plane turns back. This is a consequence of the higher momentum of the reverse flow that changes the 

direction of the radial migration of both the streams. The signature of this deeper penetration before reversal can be 

seen as a kink in the axial velocity distribution at 20 knots in the fan inlet plane near the casing from 80% span to the 

casing.  

This change in the flow field with landing speed that cannot be obtained from an uninstalled reverse flow only 

model is essential to choose the appropriate VPF operational setting in terms of stagger angle and rotational speed to 

deliver the required reverse thrust during the entire landing run. 
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Fig. 14 Effect of aircraft landing speed change – (a) Meridional velocity vectors (b) Span-wise averaged axial 

velocity plot 
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CONCLUSIONS 

A newly developed integrated airframe-engine model is used to describe the installed fan flow field in two 

representative reverse thrust VPF stagger angle settings, ζ1˚ and ζ2˚, and two fan rotational speeds, N1 and N2. This 

study has resulted in:  

1. Complete description of flow features external and internal to the engine that determine the actual flow 

conditions that the VPF design will need to operate in installed conditions. This is different from the typical 

uninstalled reverse flow only analyses that are used in the VPF design process. 

2. Identification of a bi-directional flow at the fan inlet and outlet planes because of the interaction between the 

reverse flow and the free stream flow. Conventional design processes consider only the reverse stream. The 

fan behavior in terms of mass flow and pressure ratio for the installed bi-directional flow field is different 

from the uninstalled VPF only clean reverse flow characteristics. Therefore, only the installed flow field can 

provide realistic estimates of the actual amount and momentum of reverse flow that can contribute to reverse 

thrust. 

3. Description of the change in fan flow field with stagger angle setting, rotational speed and landing speed that 

is required to choose the operating setting of the VPF during the aircraft landing run to generate the required 

reverse thrust. 

4. The change in the installed fan flow field description with landing speed indicates the broad range of 

operating conditions that the VPF design needs to operate in. The bi-directional flow of the installed model 

changes the fan blade loading as compared to the traditional reverse flow only static solutions used in the 

VPF design process. Therefore, any blade profile modifications carried out in the design process need to be 

verified for its operability in an actual installed flow field. 

5. Availability of a vehicle research model that can form the apex of the VPF design process to verify and 

qualify different designs in actual installed conditions. The same model can be used to test design changes in 

different parts of the engine and aircraft geometry that can contribute to improving the levels of reverse thrust.  

It is realized from the study that the VPF flow field in reverse thrust may have temporal variations because of the 

interaction of the reverse stream and the free stream. An unsteady analysis is currently underway to provide further 

insights into the temporal installed fan flow field development. A methodology to characterize any installed VPF 

design in the novel bi-directional flow field to generate ready look-up tables to describe the fan operating point and 
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the corresponding levels of reverse thrust produced is planned. Finally, it is envisioned to validate the description of 

the installed flow field obtained from the 3D RANS solution by using an aerodynamic test rig in which a scaled 

installed reverse flow VPF design is operated at different free stream velocities. 
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NOMENCLATURE 

Abbreviations

ADP Advanced Ducted Propulsor 

CRM Common Research Model 

GCI Grid Convergence Index 

OGV Outlet Guide Vane 

QCSEE Quiet Clean Short-haul Experimental Engine 

RANS Reynolds-Averaged Navier Stokes 

VPF Variable Pitch Fan 

Symbols 

N Fan rotational speed 

rh Hub radius 

rt Tip radius 

ζ Stagger angle 
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APPENDIX A – ‘VPF TO GENERATE REVERSE THRUST’ 

 VPF can be used to generate reverse thrust by changing the direction of the fan airflow. This can be achieved by 

rotating the stagger angle of the fan blades by 90˚ in either the clockwise or anti-clockwise direction. The rotation in 

the clockwise direction, typically called ‘through-flat pitch’, may be constrained by the pitch-chord ratio of the fan 

blades. The anti-clockwise rotation is called ‘through-feather pitch’ because the rotation takes place through an axially 

feathered fan blade setting as in propellers. The ‘through-feather pitch’ is better suited because it does not place any 

restrictions on the nominal fan design pitch-chord ratio. When the fan blades are rotated through feather pitch, the 

capture throat area of the fan cascade shifts from leading edge (blackened) to the trailing edge of the cascade, causing 

airflow to be sucked in from behind the cascade as shown in Fig.A1 [7].  

Fig. A1 Schematic showing change in airflow direction with change in stagger angle 
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