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Abstract: The emerging grave consequences of conventional coolants on 
health, ecology and product quality, have pushed the scientific research to 
explore eco-friendly lubrication technique. Electrostatic minimum quantity 
lubrication (EMQL) has been underscored as a burgeoning technology to cut-
down bete noire impacts in machining. This research confers the adoption of a 
negatively charged cold mist of air-castor oil employed in turning of 
aluminium-6061T6 material by varying the cutting conditions, as per 
experimental designed through response surface methodology (RSM). For 
comprehensive sagacity, a range of cutting speed, feed, depth of cut and 
EMQL-flow rate were considered. Material removal rate, tool life, surface 
roughness and power consumption of machine tool were adopted as 
performance measures. To satisfy multi-criterion simultaneously, RSM-based 
grey relational analysis (GRA) was employed for multi-objective optimisation. 
Highest proportion of grey relational grade (GRG) as a single desideratum 
response function, provided a trade-off between performance measures with 
15.56% improvement in GRG. 

Keywords: tool life; surface roughness; energy consumption; sustainable 
manufacturing; RSM-based grey relational analysis; grey relational analysis; 
GRA. 
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1 Introduction 

The manufacturing industry is one of the dominant economy-developing sectors that 
renovate the raw material into valuable products. The sustainable manufacturing has been 
conceived as a dynamic relationship between technology, quality production, and 
economics (Schultheiss et al., 2013). The implication of input parameters on key aspects 
such as cost (Shehab and Abdalla, 2001) quality (Kiyak and Cakır, 2007) and 
productivity (Raja and Baskar, 2012) have previously been explored while ignoring the 
environmental impacts of energy consumed by the machine tools. 

Aluminium 6061-T6 is a hardening alloy having pertinence applications in aerospace 
and automotive industries due to excellent strength, weldability, and corrosion resistant. 
Some typical applications of AISI 6061-T6 include marine fitting, valves, couplings, 
brake components, and nuclear power radiators (Zhang et al., 2018; Lee and Tang, 2014). 

Mechanical machines such as turning and milling are the cardinal equipment in the 
manufacturing industry that consumes a considerable amount of electrical energy. 
According to the Energy Information Administration (EIA) statistics, mechanical 
machines consume above 50% of the total manufacturing electrical energy (Liu et al., 
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2018). The high-reaching prices of energy units and emerging sustainable manufacturing 
concepts have pushed the industries towards the trail of minimising the energy usage in 
perspective of cost and eco-friendly. The energy efficiency was conceived with a core 
determination is to save energy, resources, and ultimately production cost. Moreover, 
precise evaluation of energy consumed by the individual machine tool is also one of the 
critical decisions towards appropriate machine selection and preventive procurement 
decisions. Apropos, there is a dire need in developing economies to improve the machine 
tool performance and to restrain the industrial waste, energy and resource consumption. 

The consolidation of product quality and energy efficient resources is now the 
benchmarks for the assessment of manufacturing standard for any country. The primeval 
step of sustainable manufacturing is to cut-down the energy consumption by optimising 
the material removal rate (MRR), tool life and surface integrity. In this way, it is 
anticipated to perform machining under acceptable combination of energy consumption, 
tool life, surface roughness, and MRR. The multitude concepts have been practiced for 
booming energy efficiency in the industrial sector associated with the high-speed 
machining. Moreover, the avenue of modelling and experimental techniques (Liu et al., 
2018), friction and lubrication aspects for energy reduction have also got attention such 
as mineral oil lubrication. In some sever machining conditions, material hardness 
increases cutting forces and power consumption. 

The mineral oil-based conventional cooling has been conceived as a fountainhead in 
the arena of lubrication, commonly practiced in the manufacturing industry to get 
improved surface quality and longer tool life. However, the mineral oil-based issues such 
as toxicity (Debnath et al., 2014), dermatitis, respiratory disorder, continuous 
deterioration of mineral oil in storage, maintenance of cooling pumps, liquid cost 
increases the overall production cost, which limits their use (Kajaria et al., 2012). 
According to the sentiment of Occupational Safety and Health Administration (OSHA) 
and National Institute for Occupational Safety and Health (NIOSH), 5 mg/m3 
concentration of mineral oil is permissible. However, only the manufacturing industries 
in the USA use 20–90 mg/m3 concentration under conventional flood cooling (Boubekri 
and Shaikh, 2015). The ecological and shop-floor implication of cutting fluids have been 
summarised in the form of ramification provided in Figure 1. 

Figure 1 The impact of metal cutting fluids on our ecology and shop floor (see online version  
for colours) 

 

In a global competitive market, ultimate-consumer of the cutting fluid has the core 
attentions on pursue the cost control and advanced machining. Consequently, a closer 
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look at the cost of cutting fluids, dry machining has been identified as an alternative to 
flood machining where no lubrication and cooling pump are required during the 
machining operation, as a consequence, overall low energy utilisation in machining. 
Surprisingly, some complexities are also accompanied with dry machining, for instance, 
high-temperature elevation led to accelerated tool wear, especially in the machining of 
high-strength metals and alloys (Sharma and Sidhu, 2014). Genuinely speaking, high 
machinability and production quality priorities have significantly diminished the 
application of dry machining in the manufacturing industry. 

The near-to-dry machining techniques have reiterated as micro-lubrication and 
steadfast to cope up with the current necessities of sustainable manufacturing. The role of 
these techniques have been manifested in perspective of energy consumption (Astakhov, 
2010), tool life, surface integrity (Dhar et al., 2007) and MRR (Gaitonde et al., 2008) 
specifically for difficult-to-cut materials. Minimum quantity lubrication (MQL) is a 
promising technique that supplies an excellent mixture of an oil-air to dispense a minute 
quantity at the tool-workpiece interface. In comparison with dry machining, MQL 
technique cosmetically reduced the temperature and friction as well (Sharma and Sidhu, 
2014). Dhar et al. (2006) also explored the likely consequences of MQL during the 
turning of AISI-1040 steel, and justified as an alternative to dry machining. Khan et al., 
2009 mentioned MQL as an environmental-friendly technique with 10,000 times less 
lubricant in comparison with the conventional cooling during the machining of  
AISI-9310. 

However, there are some complexities also associated with this technology such as 
low material removal volume and confined cooling effectiveness (Nguyen et al., 2012). 

Considering the minimum environmental impact of machining, electrostatic 
minimum quantity lubrication (EMQL) has a synergistic impact due to negatively 
charged spray that penetrates into the machine zone effectively (Huang et al., 2015). 
Under consideration of all the concerns of machining, this novel technology has provided 
fine quantity of fluid, negative charged mist, employed with ease and within the 
minimum available time. Huang et al. (2017) have studied the tribological properties of 
EMQL on stainless steel under milling process. Results highlighted a significant 
reduction in tool wear and friction coefficient along with the minimum lubrication 
consumption. However, there is a need to evaluate the performance of EMQL for 
different machining processes. 

Several statistical techniques, such as, response surface methodology (RSM), Taguchi 
method, grey relational analysis (GRA) and artificial neural network (ANN) have been 
employed successfully by various researchers to design the experiments and to perform 
the analysis. Nevertheless, RSM has been underscored as a practical approach to 
construct a regression relation and to get an optimum cutting condition. 

This research work aims to cover the cutting conditions and lubrication effects of 
EMQL by establishing the fundamentals of this technique specifically for difficult to cut 
materials such as AISI-6061 T6, to reduce the power consumption; while at the same 
time, improving the MRR, surface finish, and tool life. This study also presents the  
multi-objective optimisation of cutting parameters to simultaneously minimise the 
responses using central composite design (CCD)-based GRA. The grey relational grade 
(GRG) was applied to determine a trade-off for all performance variables. Empirical 
models were developed to predict the simultaneous effects of input parameters on an 
individual output response. Additionally, analysis of variance (ANOVA) has been 
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performed to find the contribution of each input parameter and the reliability of the 
model. 

2 Experimental design and machining 

This section briefly enlightens the workpiece material, composition, experimental setup, 
lubrication technique, cutting conditions and responses measurement in the context of 
sustainable manufacturing to understand a complete apprehension of the process setup. 
The quality of the machining has been assured under controlled parameters. The 
characteristics of the machining are influenced by two types of parameters; the cutting 
conditions, and coolant/lubrication parameters. 

2.1 Machine tool and workpiece material 

Titanium-based aluminium alloy (AISI-6061 T6) workpiece material was selected to 
conduct this study. Before running experiments, samples of length 125 mm and 45 mm 
diameter have been prepared with desired hardness of ~95 HB (Brinell hardness). The 
chemical composition and physical properties of the workpiece material are enlisted 
below in Tables 1 and 2, respectively. 

Table 1 Chemical Composition of the work material 

Percentage weight 

Al Cr Cu Fe Mg Mn Si Ti Zn 

95.8 0.05 0.24 0.2 0.93 0.01 0.66 0.013 0.15 

Source: Lee and Tang (2014) 

Table 2 Mechanical properties of the workpiece material 

Test 
temperature 

Ultimate tensile 
strength (MPa) 

Yield strength 
(MPa) 

Modulus of 
elasticity (GPA) 

Fatigue 
strength (MPa) 

Hardness 
(HB) 

25°C 310 276 68.9 96.5 95 

The conventional lathe machine with a motor power of 10 hp and maximum cutting 
speed of 5,500 rpm was used to turn the samples. The carbide tools T304-AL H10 
Sandvik manufactured had a nose radius of 0.4 mm and clearance angle of 7° were used 
for the turning process. 

2.2 Cutting conditions and EMQL system 

The machining experiments were performed through technically adapted parameters such 
as; cutting speed, feed, depth of cut and EMQL flow rate (Debnath et al., 2016; Mia  
et al., 2018; Varghese et al., 2017). The higher and lower ranges of the parameters were 
selected based on trial runs and the cutting tool catalogues keeping in view the stiffness 
and compliance of the machine. Each parameter range was segregated into five levels 
provided in Table 3. The performance measures selection is grounded on the fact that the 
surface roughness defines the machined product quality whereas the efficient machining 
reflects the MRR, tool life and energy consumption. In turn, the environmentally 
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sustainable machining can be most dominantly attained by optimising influencing 
parametric effects. 

Table 3 Cutting parameters used for turning operation 

Factors Units 
Levels 

– –1 0 1 + 

A Cutting speed m/min 30 90 150 210 270 

B Feed mm/rev 0.1 0.15 0.2 0.25 0.3 

C Doc mm 0.3 0.4 0.5 0.6 0.70 

D EMQL flow rate ml/h 100 120 140 160 180 

EMQL provided wet-able and penetrating fine drops mixed with a biodegradable 
lubricant such as castor oil. The eclectic castor oil has higher viscosity, stable frictional 
film, thermal oxidation stability, superior lubrication, and economical among the 
vegetable oils of same carbon chain length (Prasenjit et al., 2008; Drown et al., 2001). 
Thus, castor oil was mixed with air through a nozzle having air pressure of 2 MPa and 
charge voltage of –4 kV, sprayed into the workpiece-tool interface. The compressed air 
was provided through a compressor using an air hose to atomise the lubricant. This 
lubrication system contains high negative charged micron size droplets and a precise 
lubricating nozzle. The needle of the nozzle operated as a cathode, while workpiece was 
anode (ground terminal). The orifice of the nozzle was 1 mm diameter and kept at least 
25 mm far from the cutting zone. In electrostatic MQL, the charged droplets impinged on 
the cutting zone due to their higher surface adhesive forces (Huang et al., 2015). A 
schematic diagram of the experimental setup is provided in Figure 2. 

Figure 2 Experimental setups for EMQL in the turning process (see online version for colours) 

 

2.3 Responses measurement 

For each experiment, the machining power was measured at the main supply of the 
machine tool, using the LabVIEW interface during the idle and the cutting state. Finally, 
the numeric program was started with the movement of the machining spindle and cutting 
tool. As all the commands were executed, the spindle returned to the original position; a 
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data acquisition system was stopped for an individual experimental run. Moreover, the 
tool flank wear (VB) of 0.2 mm was considered as tool life criterion using 
SteREODiscovery.V20 zooming microscope. Surface roughness was measured using a 
Mitutoyo SJ-410 roughness meter from three different locations to reduce the uncertainty. 

3 Results and discussions 

Based on control parameters and each having five levels, a class of RSM named central 
composite design (CCD) was employed to accomplish the design of experiments (DOE) 
under EMQL cutting environment. The CCD provided a random combination of 30 
experiments with four parameters and each having five levels. Experimental design 
including input parameters, parametric conditions, and measured response variables are 
provided in Table 4. 

3.1 3D response surface plots for parameters evaluation 

The current challenges of modern industry are mainly to achieve the higher 
machinability, tool life, and surface quality with lesser energy consumed by the machine 
tool to relate the machining with sustainable manufacturing. Four parameters were taken 
into consideration as input parameters: cutting speed, feed, depth of cut and EMQL flow 
rate to analyse the effect of cutting conditions and lubrication flow rate on experimental 
results. 

3.1.1 Material removal rate 

The removal of material volume per revolution is the product of cutting speed, feed and 
depth of cut in the turning process. The machinability in perspective of MRR in the 
machine tool has been enlisted in Table 4. 

Table 4 Central composite design with input parameters and measured response variables 

Run 
no. 

Input parameters  Response variables 

Speed 
(m/min) 

Feed 
(mm/rev) 

DOC 
(mm) 

Flow rate 
(ml/h) 

 
MRR 

(mm3/min) 
TL 

(min) 
SR 

(μm) 

Energy 
consumption 

(Wh) 

1 90 0.15 0.4 120  90 6.5 4.5 1,040 

2 210 0.15 0.4 120  210 5.7 3.97 1,470 

3 90 0.25 0.4 120  150 4.12 5.2 1,176 

4 210 0.25 0.4 120  350 2.61 4.6 1,626 

5 90 0.15 0.6 120  135 4.1 5.22 1,383 

6 210 0.15 0.6 120  315 1.73 4.68 1,787 

7 90 0.25 0.6 120  225 3.63 5.92 1,489 

8 210 0.25 0.6 120  525 1.32 5.25 2,017 

9 90 0.15 0.4 160  90 6.69 2.1 1,014 

10 210 0.15 0.4 160  210 5.54 1.31 1,406 

Note: MRR – material removal rate; SR – surface roughness; TL – tool life. 
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Table 4 Central composite design with input parameters and measured response variables 
(continued) 

Run 
no. 

Input parameters  Response variables 

Speed 
(m/min) 

Feed 
(mm/rev) 

DOC 
(mm) 

Flow rate 
(ml/h) 

 MRR 
(mm3/min) 

TL 
(min) 

SR 
(μm) 

Energy 
consumption 

(Wh) 

11 90 0.25 0.4 160  150 4.81 2.51 1,097 

12 210 0.25 0.4 160  350 3.31 1.96 1,580 

13 90 0.15 0.6 160  135 4.7 2.65 1,309 

14 210 0.15 0.6 160  315 2.64 1.8 1,740 

15 90 0.25 0.6 160  225 4.23 3.25 1,425 

16 210 0.25 0.6 160  525 2.23 2.58 1,886 

17 30 0.2 0.5 140  50 7.35 4.13 1,053 

18 270 0.2 0.5 140  450 3.63 3.24 1,827 

19 150 0.1 0.5 140  125 4.31 3.21 1,325 

20 150 0.3 0.5 140  375 1.91 4.26 1,584 

21 150 0.2 0.3 140  150 2.4 3.1 1,187 

22 150 0.2 0.7 140  350 1.2 4.3 1,735 

23 150 0.2 0.5 100  250 4.38 5.73 1,528 

24 150 0.2 0.5 180  250 5.56 1.35 1,385 

25 150 0.2 0.5 140  250 4.2 3.38 1,466 

26 150 0.2 0.5 140  250 4.3 3.52 1,436 

Note: MRR – material removal rate; SR – surface roughness; TL – tool life. 

3.1.2 Tool life 

The influence of cutting conditions and lubrication on turning tool has been provided in 
Figure 3. Figure 3(a) depicts the decreasing tool life with the increasing depth of cut for 
all cutting speed (90–210 m/min). However, at higher depth of cut immediate decrease in 
tool life has been observed. On the other hand, increasing cutting speed also reduced the 
tool life. The similar results were mentioned in literature regarding the traditional 
machining (Elmunafi et al., 2015). Figure 3(b) demonstrated the effect of feed and flow 
rate on tool life. 3D surface plot shows the increasing tool life with the decrease of feed. 
However, with the decrease of flow rate, a gradual decrease in tool life has been 
observed. The better tool life with micro-lubrication has been related with the effective 
wettability of the surface, better lubricity and sustainability at the tool-workpiece 
interface (Tai et al., 2011; Heinemann et al., 2006). 
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Figure 3 3D response surface plot for effects of (a) depth of cut and cutting speed and (b) feed 
and flow rate on tool life (min) (see online version for colours) 

  

(a)     (b) 

3.1.3 Surface roughness 

The effect of machining parameters under EMQL has been investigated to verify the 
influence on the surface quality of the workpiece illustrated in Figure 4. Figure 4(a) 
indicates the effect of depth of cut and cutting speed on the surface roughness. The 
surface roughness decreased with the decrease in the depth of cut. On the other hand, 
surface roughness decreased with an increase in cutting speed. Vindication of this 
phenomenon is this that, the reduction of built-up-edges (BUE) possibility may lead to 
reduction of surface roughness. These results have been justified with the existing 
literature associated with the processes optimisation (Rajendra and Deepak, 2016).  
Figure 4(b) shows the interaction effect of feed and EMQL flow rate. The surface 
roughness decreased with the decreasing feed and increasing the flow rate. In fact, the 
Leidenfrost effect occurred between the hot surface and the coolant droplets that reduced 
the heat transfer rate. However, negatively charged EMQL particles were accelerated 
towards the positively charged tool-workpiece interface by rupturing this effect. Thus, 
deposition of EMQL particles on the tool-workpiece surface acted as fins that ultimately 
increased the heat transfer rate during machining. 

Furthermore, the presence of high positively charged rake face helps in the capillary 
suction of coolant sticking at the chip-tool interface. The coolant deeper penetration into 
the workpiece surface results in better cooling and less spreading of tiny particles in the 
air. Furthermore, one of the significant limitations of mineral oil-based MQL tiny 
particles in shop floor environment has been cut-down using this technique (Behera et al., 
2017; Suresh et al., 2012). 
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Figure 4 3D response surface plot for effects of (a) depth of cut and cutting speed and (b) feed 
and flow rate on surface roughness (μm) (see online version for colours) 

  

(a)     (b) 

3.1.4 Energy consumption 

Figure 5 presented the 3D response plots for energy consumption during the machining 
of AISI 6061 T6. Figure 5(a) showed the effect of depth of cut and cutting speed on 
energy consumption. The energy consumed increased with the increasing depth-of-cut 
and cutting speed. The fact is that; machine tool exerts comparatively higher force to cut 
the hard material at higher depth of cut. Moreover, the increasing cutting spindle also 
consumes a significant amount of energy to rotate the workpiece at a higher speed 
(Camposeco-Negrete, 2015). Figure 5(b) shows the effect of feed and flow rate on the 
energy consumption. The higher feed increased the energy consumption due to higher 
cutting forces associated with the tool movement. While on the other hand, lubrication 
reduced the frictional force that ultimately reduced the energy consumption (Zhang et al., 
2015). 

Figure 5 3D response surface plot for effects of (a) depth of cut and cutting speed and (b) feed 
and flow rate on energy consumption (Wh) (see online version for colours) 

  

(a)     (b) 



   

 

   

   
 

   

   

 

   

    Multi-response optimisation of machining aluminium-6061 469    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

3.2 Development of mathematical models 

RSM is an empirical modelling technique employed to evaluate the relationship between 
input parameters and individual output response in the form of multiple regression. 
Regression analysis has been performed to model the response variables (MRR, surface 
roughness, tool wear, power consumption) and to determine the optimum level of 
parameters. This statistical technique also offered the opportunity to check the validity of 
the model and to predict the pre-experimental output responses. Through the model 
analysis, a regression equation was derived based on independent process parameters and 
performance measure to observe the simultaneous effect of input parameters using 
Design Expert software (8.0.7.1). 

1
2

0
1 1 1 1

k k k k
i i ii ij i jii i i j i

Y X X X X


    
           (1) 

where Y –predicted response; 0 – a constant mean; i – linear coefficient; ii – squared 
coefficient and ij – the interaction coefficient. A higher order regression equation for 
MRR and tool life, while a linear equation was the best fit for surface roughness and 
energy consumption are provided in equations (2), (3), (4), (5). 

250 1.67 1,250 500 8.33

3.33 2,500

MRR speed feed doc speed feed

speed doc feed doc

         
     

 (2) 

4 2 2

2 4 2

23.10 0.027 41.25 23.75

0.224 0.039 97.75

0.05 1.132 10 75.08

51.52 6.93229 10

Tool life speed feed doc

flow rate speed doc feed doc

doc flow rate speed feed

doc flow rate





      
       

       

    

 (3) 

310.286 4.84722 10 5.95

3.167 0.0624

Surface roughness speed feed

doc flow rate

     
   

 (4) 

106.20 3.56 1,387.5

1,551.25 1.7

Power consumption speed feed

doc flow rate

    
   

 (5) 

3.3 Multiple response optimisation using GRA 

For the evaluation and the optimisation of cutting conditions, multi-response optimisation 
provided a trade-off between different responses. GRA is a measuring portion of the grey 
system theory that determines some uncertain relationships between one main factor 
(GRA) and included all the other factors (input and output parameters). It is the actual 
measurement of the absolute data differences that can be used to approximate the 
correlations (Huang et al., 2015). Data pre-processing is a common step, typically applied 
when the range, units, and the direction of targets are different. It is actually a process of 
altering the original sequence to a comparable single sequence to handle multiple 
responses shown in Figure 6. 
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Figure 6 A schematic diagram to clarify the vital purpose of GRA (see online version  
for colours) 

 

Several methods are commonly used for data sequence for the GRA. If the target 
response variables are infinite, then we can apply larger the better in get a normalised 
form equation (6). 

( ) min ( )
( )

max ( ) min ( )

o o
i i

i o o
i i

X n X n
X n

X n X n
 




 (6) 

If the original sequence has a target response variable lower the better characteristic in a 
normalised form equation (7): 

max ( ) ( )
( )

max ( ) min ( )

o o
i i

i o o
i i

X n X n
X n

X n X n
 




 (7) 

After achieving a definite target value, the original sequence can be normalised  
equation (8). 

( )
( ) 1

max ( )

o O
i

i o O
i

X n X
X n

X n X
 

 


 (8) 

where i = 1, …, z, where z is the experimental trial and n = 1, …, k. Here, k is the total 
involved parameters. ( ):o

iX n  original data sequence, ( ):iX n  pre-processing sequence, 

max ( ):o
iX n  highest value of ( ),o

iX n  min ( ):o
iX n  lowest value of ( )o

iX n  and XO is the 

desired target value. 
Moreover, relationship between experimental normalised values and predicted values 

were defined through grey relational coefficient (GRC) ( )iξ n  is assigned to individual 

response. After data pre-processing, the grey relational coefficient ( )iξ n  for the nth 

parameter and ith experiment can be expressed in equation (9). 

min max

max

Δ Δ
( )

Δ ( ) Δ
i

oi

ξ
ξ n

n ξ
  


 

 (9) 

where Δoi(n) is the deviation of sequence from the reference sequence. The value of 
identification coefficient ξ varies between 0 and 1 to lower the effect of Δmax = 1, that 
enlarged the grey relational coefficient. Generally, the value of ξ is taken the value as 0.5 
to fit into the GRC equation. However, grey relational grade (GRG) is a relationship 
between experimental values and normalised values. The higher GRG indicates process 
parameter closer to the optimal value can be defined in equation (10). 

1

1
( )

k
i i

n
γ ξ n

k 
   (10) 
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where γi represents the level of correlation between the original sequence and comparable 
sequence. If two sequences are the same, it depicts both have GRG equal to one (Huang 
et al., 2017). In the last step, GRC and GRG were calculated using equations (9) and (10) 
provided in Table 5. 

Table 5 Grey relational coefficient and grey relational grade values 

Sr. no. GRC-MRR GRC-SR GRC-TL GRC-Power GRG 

1 0.3532 0.4195 0.7834 0.9507 0.627 

2 0.4299 0.4642 0.6508 0.5238 0.517 

3 0.3878 0.3721 0.4877 0.7558 0.501 

4 0.5758 0.4120 0.3935 0.4504 0.458 

5 0.3785 0.3709 0.4862 0.5761 0.453 

6 0.5307 0.4062 0.3537 0.3935 0.421 

7 0.4419 0.3333 0.4525 0.5136 0.435 

8 1.0000 0.3691 0.3377 0.3333 0.510 

9 0.3532 0.7447 0.8233 1.0000 0.730 

10 0.4299 1.0000 0.6295 0.5613 0.655 

11 0.3878 0.6576 0.5476 0.8580 0.613 

12 0.5758 0.7800 0.4322 0.4698 0.564 

13 0.3785 0.6324 0.5371 0.6296 0.544 

14 0.5307 0.8247 0.3950 0.4086 0.540 

15 0.4419 0.5430 0.4964 0.5496 0.508 

16 1.0000 0.6448 0.3752 0.3651 0.596 

17 0.3333 0.4498 1.0000 0.9278 0.678 

18 0.7600 0.5443 0.4525 0.3815 0.535 

19 0.3725 0.5482 0.5029 0.6172 0.510 

20 0.6129 0.4386 0.3611 0.4680 0.470 

21 0.3878 0.5629 0.3832 0.7435 0.519 

22 0.5758 0.4353 0.3333 0.4102 0.439 

23 0.4634 0.3428 0.5087 0.4938 0.452 

24 0.4634 0.9829 0.6321 0.5748 0.663 

25 0.4634 0.5269 0.4940 0.5260 0.503 

3.4 Analysis of variance 

The relative importance among the input parameters (speed, feed, depth of cut, EMQL 
flow rate) for response variables (MRR, tool life, surface roughness, power consumption) 
needs to be investigated to get optimum level of the parameters. For results interpretation, 
ANOVA was applied to analyse the model validation by considering the individual and 
simultaneous effect of input parameters on the response variables. Table 6 shows 
ANOVA results for linear, quadratic and interaction effects of the parameters. The 
ANOVA analysis for each parameter affecting GRG pointed out that flow rate, depth of 
cut, cutting speed and feed are the significant parameters. Furthermore, the flow rate has 
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the most significant influence among all other input parameters. The probability value  
(p-value) was used to find out the significance at 95% confidence intervals. The p-value 
of less than 0.05 depicts that particular factor has a significant effect on the model. Some 
other model-coefficients such as R2 is 0.9544, ‘pred R-squared’ of 0.7401 is in reasonable 
agreement with the ‘adj R-squared’ of 0.9118. 

Table 6 ANOVA for multi-response variables 

Source 
Sum of 
squares df 

Mean 
square F value 

p-value 
Prob > F  

Model 0.167657 14 0.011976 22.4148 <0.0001 Significant 

 A speed 0.007903 1 0.007903 14.79231 0.0016  

 B feed 0.006085 1 0.006085 11.38892 0.0042  

 C doc 0.027962 1 0.027962 52.33748 <0.0001  

 D flow rate 0.065223 1 0.065223 122.0801 <0.0001  

 AB 0.005375 1 0.005375 10.06093 0.0063  

 AC 0.010134 1 0.010134 18.96723 0.0006  

 AD 0.000307 1 0.000307 0.575098 0.4600  

 BC 0.014681 1 0.014681 27.4791 <0.0001  

 BD 0.000349 1 0.000349 0.653557 0.4315  

 CD 0.00052 1 0.00052 0.973193 0.3395  

 A2 0.021857 1 0.021857 40.9108 <0.0001  

 B2 1.6E-05 1 1.6E-05 0.029934 0.8650  

 C2 0.000348 1 0.000348 0.651206 0.4323  

 D2 0.007131 1 0.007131 13.34752 0.0024  

Residual 0.008014 15 0.000534    

Pure error 0.000116 5 2.32E-05    

Cor total 0.175671 29     

R2 = 0.9544 Adj R2 =0.912 Pred. R2 = 0.7401 Adeq. PRESS = 19.74 

GRG values derived from grey relation coefficient (GRC), are always desired as a 
maximum the better. For multi-objective optimisation, GRA is applied to investigate the 
simultaneous effect of several variables (Khan et al., 2018). The optimum GRG value 
does not define individual response values, it represents the trade-off between all 
response variables. A GRG regression model was established based on a single response 
of GRG and process parameters using the output from all the responses in equation (11). 

3

3 3

3 6

3

2.12922 6.48526 10 3.48786 1.42696
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The response surface graphs (Figure 7) depict the effect of parameters on the GRG. The 
following figures consider the simultaneous effect of two parameters at the centre values 
of other parameters. Figure 7(a) combines the effect of feed and cutting speed on GRG. It 
shows that GRG gradually increased with the decreasing feed when speed is low  
(90 m/min). However, its effect on GRG is marginal when cutting speed is high  
(210 m/min). While, GRG decreased with the decreasing cutting speed from  
210–150 m/min. However, GRG increased on the further decrease in cutting speed. 

Figure 7(b) has shown the simultaneous effect of depth of cut and cutting speed on 
GRG. A continuous increase in GRG has been observed with the decrease in depth of cut 
up to the minimum level (0.4 mm). On the other hand, the behaviour of GRG for cutting 
speed was same as observed previously [Figure 7(a)]. The simultaneous effect of both 
parameters (maximum GRG) has been observed at the lowest level of both parameters. 

The three-dimensional behaviour of GRG observed, by varying the cutting speed and 
EMQL flow rate. When the cutting speed is low, GRG is highly sensitive to EMQL flow 
rate, as depicted in Figure 7(c) decreased in flow rate sharply reduced the GRG. 
However, this reduction of GRG becomes smaller and smaller with the decrease of 
cutting speed up to the middle level of cutting speed, and it increased further with the 
decrease of cutting speed. It was also observed that GRG variation is minimum at higher 
values of cutting speed. 

Figure 7(d) illustrated the interaction effect of depth of cut and feed on the GRG. 
From the illustration, it depicts that GRG increased in high rate with the decrease in depth 
of cut, at the minimum feed (0.15 mm/rev). However, there was a significant increase in 
GRG has been observed at the higher level of feed (0.25 mm/rev). On the other hand, 
GRG was increasing linearly with the decrease of feed at the lower level of depth of cut. 
While, at the higher level of depth of cut, it was vice versa. The highest GRG was 
achieved at the lower level of depth of cut and feed. For this condition, depth of cut has a 
significant effect on GRG as compared to feed. 

The next analysis is the interaction effects of flow rate and feeds on GRG provided in 
the 3D surface plot shown in Figure 7(e). As shown, an accelerated reduction in GRG has 
been observed with the decreasing flow rate. Conversely, GRG was increased with the 
decrease of feed. However, it can be observed from the plot that GRG is more sensitive to 
flow rate and less sensitive to feed. The overall highest GRG was achieved at the lower 
level of feed and a higher level of flow rate. 

Finally, the effect of the 3D relationship of flow rate and depth of cut on GRG has 
been presented in Figure 7(f). It can be observed that GRG value increased actively with 
the increase in flow rate at the low level of depth of cut. While in the conditions of the 
depth of cut, GRG was also increased, however, the rate of increase was slower as 
compared to flow rate. The overall maximum effect of both parameters can be observed 
in results of GRG, at the highest level of flow rate and a minimum level of depth of cut. 
EMQL flow rate has the highest percentage contribution on GRG. 

From the above discussion and plots provided in Figure 7, it follows that the effects 
of parameters on GRG are highly interactive and complex. The presented plots can 
provide a guideline to process the material with the desired GRG. The plots show that 
one should process the material with lower feed, low speed, low depth of cut and high 
flow rate to realise the maximum GRG. 
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Figure 7 Response surface plots for the effect of process parameters on grey relational grade,  
(a) feed vs. speed (b) the depth of cut vs. speed (c) fluid flow rate vs. speed (d) feed vs. 
depth of cut (e) feed vs. fluid flow rate (f) depth of cut vs. fluid flow rate (see online 
version for colours) 
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4 Prediction of GRG and optimum cutting conditions 

The equal weight grey relational grade was considered for all the sequence and taken as a 
single response to determining the optimum machining conditions and for the 
confirmation of the experiments. The GRG has always considered under larger the better 
characteristics that indicate the performance of that particular experiment. The GRG 
obtained under equation (10) was analysed for further analysis. ANOVA was performed 
to check the significance of influencing parameters, interaction effect, and the  
model-error. Experiments were conducted to confirm the validation of the models 
experimentally. Six confirmatory experiments were conducted with randomly chosen 
input variables (different from CCD employed for a model) within the parameters range. 

After evaluating the optimal cutting conditions by highest GRG, the final step is to 
predict the better GRG for the optimal cutting conditions. Therefore, the predicted GRG 
γpred at the optimal cutting conditions can be described: 

 
1

o
pred tm i tm

i
γ γ γ γ


    (12) 

where γpred: predicted grey relational grade, γtm: total mean of GRG, and γi: highest 
average GRG at the specific parameter level. i = 1, 2…, o, where ‘o’ is the number of 
parameters significantly affect the GRG. Table 6 indicates the comparison between 
predicted GRG (0.8933) calculated by equation (12) and experimental GRG (0.8434) at 
optimal combination from the experiment. Multi-responses optimisation results have 
shown the best combination values at cutting speed of 30 m/min, the feed of  
0.15 mm/rev, depth of cut of 0.4 mm, and EMQL flow rate of 180 ml/h for optimum 
trade-off responses. 

Table 7 Predicted grey relational grade for optimal combination and confirmation of results 

 
Initial machining 

combination 
Optimal machining combination 

Predicted Experimental 

Levels A2B2C2D4 A1B2C2D5 A1B2C2D5 

MRR 90  180 

Tool life 6.69  7.3 

Surface roughness 2.1  1.32 

Power consumption 1,014  1,015 

GRG 0.730 0.8931 0.8436 

Improvement in grey relational grade = 0.1136 

Percentage improvement in grey relational grade = 15.56% 

Note: A – cutting speed; B – feed; C – depth of cut; D – flow rate. 

It has been observed (Table 7) that the net improvement in GRG, from initial cutting 
condition (A2B2C2D4) to the optimal cutting condition (A1B2C2D5) was 0.1136, and has 
good agreement with the available published literature. Multi-objective optimisation was 
employed using an orthogonal array-based GRA in the high-speed turning of Inconel 718 
(Pradhan, 2013). Results showed an improvement of GRG from initial machining 
condition to final machining conditions was 11.53% (.08404  100/0.72865). The 
machining parameters were optimised in hot turning and achieved optimal parameters by 
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improving the grey relation from 0.708 to 0.9184 in experimentation (Ranganathan and 
Senthilvelan, 2011) 

5 Conclusions 

This research aimed to use the RSM-based GRA to find the trade-off between four 
matrices under EMQL. The tribological behaviour of cutting speed, feed, depth of cut, 
and EMQL flow rate on sustainable leading responses (MRR, tool life, surface 
roughness, and power consumption) were modelled and analysed for multi-objective 
optimisation. Following are the results derived from the current study. 

1 Multi-responses optimisation results have shown the best combination values, i.e., 
EMQL flow rate (180 ml/h), depth of cut (0.4 mm), cutting speed (30 m/min) and 
feed (0.15 mm/rev) respectively. For sustainable machining, EMQL flow rate has 
reduced significant environmental footprints of machining. 

2 Empirical regression equations were developed to check the simultaneous effect of 
input parameters on individual response values. The R2 of 0.9544 depicts that the 
regression model is reliable to predict the response before experimentation due to 
high. 

3 Another important aspect of this study is the use of biodegradable oil to reduce 
prevalent shop floor diseases such as respiratory, dermatological and genetic 
diseases. 

4 The improvement of GRG from an initial parametric combination, (A2B2C2D4) to the 
optimal parametric combination, (A1B2C2D5) is 0.1136 to optimise the input 
parameters for multiple responses. These are the recommended values of process 
parameters to minimise the responses concurrently to reduce the environmental 
impact. 

5 It was noticed that the percentage improvement in the grey relational grade is 
15.56%. This significant improvement is more supported by the literature. 

6 From the ANOVA results of GRG, the percentage contribution of each parameter is 
in descending order for input parameters is EMQL flow rate, depth of cut, cutting 
speed and feed respectively. EMQL flow rate is the most significant parameter 
affecting GRG, for the turning process under EMQL cooling by considering 
simultaneous reduction of responses. Therefore, it was proposed to substitute 
electrostatic MQL as a sustainable lubrication technique for the machining process. 

EMQL is a useful tool to find a trade-off between productivity and power consumption to 
make the machining process eco-friendly. However, in machining of Inconel and 
composite materials, EMQL is still uncertain. Future works may consider the nozzle 
dimensions, the negative voltage, distance and number of nozzles from the machining 
zone for different materials to increase the machinability. 

The current study encourages the green machining and follows the rule and regulation 
implemented by ISO500001. 
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