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Abstract  

A major issue in modern agriculture is water loss through stomata during photosynthetic 

carbon assimilation. In water-limited ecosystems, annual plants have strategies to 

synchronize their growth and reproduction to the availability of water. Some species or 

ecotypes flower early to ensure that their life cycles are completed before the onset of late 

season terminal drought (“drought escape”). This accelerated flowering correlates with low 

water use efficiency (WUE). The molecular players and physiological mechanisms involved 

in this coordination are not fully understood. We analyzed WUE using gravimetry, gas 

exchange and carbon isotope discrimination in florigen deficient (sft mutant), wild-type 

(Micro-Tom) and florigen over-expressing (SFT-ox) tomato lines. Increased florigen 

expression led to accelerated flowering time and reduced WUE. The low WUE of SFT-ox 

was driven by higher stomatal conductance and thinner leaf blades. This florigen-driven 

effect on WUE appears be independent of abscisic acid (ABA). Our results open a new 

avenue to increase WUE in crops in an ABA-independent manner. Manipulation of florigen 

levels could allow us to produce crops with a life cycle synchronized to water availability. 
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Introduction  

Agriculture is the largest consumer of fresh water in the world. Even though only 18% of the 

cultivated land is irrigated, the value of its output represents 45% of the total yearly 

agricultural output. Demand for irrigation water is expected to increase in the coming years 

in the face of population growth, shifts in diets and climate change, adding strain on the 

available water supplies (Vörösmarty, Green, Salisbury & Lammers 2000; Damerau, Waha 

& Herrero 2019). Thus, achieving an efficient use of irrigation water is fundamental for 

sustainable agricultural production (Fischer, Byerlee & Edmeades 2014). Given the 

correlation between water use and crop yield, an understanding of the physiological and 

developmental links between them could assist crop breeding (Sinclair 2018).  

Water-use efficiency (WUE) is the ratio of plant output to water input (Condon, Richards, 

Rebetzke & Farquhar 2004). Intrinsic WUE (WUEi) in the leaf is independent of evaporative 

demand and is the ratio of photosynthetic CO2 assimilation (A) to stomatal conductance (gs); 

it can be improved by either increasing A or decreasing gs, or both. Generally, reduction in 

gs leads to reduction in A, although the relationship is non-linear. WUEi = A/gs can be 

measured instantaneously via gas exchange, or estimated from carbon isotope discrimination 

(Δ13C) to give a long-term, time-integrated proxy that reflects WUEi  in theory (Farquhar, 

Ehleringer & Hubick 1989) and also in practice in many species, including tomato (Xu et al. 

2008). In whole plants, WUE can be determined gravimetrically as the ratio of biomass gain 

to transpiration; at the field scale, yield is related to water inputs as rainfall and irrigation. 

Genetic improvement of WUE requires changes that would either increase yield with similar 

water use, or lower water use without penalizing yield (Condon et al. 2004).  

Although transgenic improvement of WUE has been achieved by moderately reducing gs 

alongside minor depression in A (Thompson et al. 2007), conventional breeding for WUE 

has generally not been achieved by direct effects on A or gs at the leaf level (Richards 2006; 

Richards, Hunt, Kirkegaard & Passioura 2014). Instead, plant architecture, root development 
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or time to flowering have been modified to allow water to be captured and used effectively  

when and where it is available (Franks, Sim & Weis 2007). In collections of Arabidopsis  

ecotypes, a strong positive correlation was reported between long-term WUEi and time to  

flowering (McKay, Richards & Mitchell-Olds 2003; Kenney, McKay, Richards & Juenger  

2014) such that early flowering is associated with low WUEi. The evolved strategy may be  

to attain the highest rates of CO2 assimilation in the absence of stomatal limitation to achieve  

maximum growth prior to an early reproductive transition. In this way, the profligate use of  

stored soil water (and low WUE) allows faster biomass accumulation and greater  

reproductive fitness, provided that it occurs before soil water becomes limiting. Plant  

genotypes with conservative strategies in natural ecosystems that leave soil water for future  

use would be selected against due to competition with rapidly growing profligate neighbors.  

In contrast, conservative behavior in a crop monoculture would be beneficial if soil water is  

preserved for later growth; the breeder’s challenge is to identify conservative alleles at key  

loci that might improve WUE.   

Florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis, acts as a molecular signal  

to trigger flowering (Turck, Fornara & Coupland 2008; Wigge 2011), and can influence  

stomatal aperture through blue-light dependent activation of guard cell proton pumps  

(Kinoshita et al. 2011). FT is a member of the CETS (CENTRORADIALIS, CEN; TERMINAL  

FLOWER 1, TFL1; SELF-PRUNING, SP) gene family (Wickland & Hanzawa 2015). In  

tomato, flowering and growth habit are controlled by the FT ortholog, SINGLE FLOWER  

TRUSS (SFT) (Lifschitz et al. 2006), also a key driver of increased  yield, whereby sft  

heterozygous plants produce more inflorescences per shoot (Krieger, Lippman & Zamir  

2010). The possibility that florigen represents the molecular link between flowering time and  

WUE prompted us to assess WUE in tomato genotypes with different levels of SFT  

expression in the genetic background of cv. Micro-Tom (MT). Lines with altered abscisic  

acid (ABA) levels with known high and low WUE were used as controls.   

  

Materials and Methods  
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Plant material and growth conditions  

Tomato (Solanum lycopersicum L.) cv. Micro-Tom (MT) plants were used in all experiments.  

The genotypes are described in detail in Table S1. Briefly, we analysed genotypes with  

increased and reduced expression of SFT and additionally, plants with increased and reduced  

expression of ABA biosynthesis. MT seeds were provided by Dr. Avram Levy (Weizmann  

Institute of Science, Israel) in 1998 and subsequently maintained (through self-pollination)  

as a true-to-type cultivar. The single flower truss (sft) and notabilis (not) loss-of-function  

mutations were introgressed into MT to produce near-isogenic lines using the procedure  

described by Carvalho et al., (2011). Seeds of sft and not in their original backgrounds  

(LA2460, probably cv. Ailsa Craig; and LA0617, cv. Lukullus, respectively) were donated  

by Dr. Roger Chetelat (Tomato Genetics Resource Center, Davis, California). The NCED- 

ox line in the MT background derives from the sp12 line (originally named d9) in the cv.  

Ailsa Craig harboring the NCED (9-cis-epoxycarotenoid dioxygenase) tomato gene driven  

by the Gelvin Superpromoter. The transgene was introgressed in MT through crossing as  

described (Carvalho et al., 2011). The 35S::SFT construct was a kind gift of Prof. Eliezer  

Lifschitz (Technion-Israel Institute of Technology, Haifa) and used to genetically transform  

MT as described (Pino et al. 2010). Seeds were sown and plants were grown in semi- 

controlled glasshouse conditions as described previously (Silva et al. 2018). Briefly, mean  

temperature of 28°C, 11.5-h/13-h (winter/summer) photoperiod, 250 to 350 mmol m2 s-1  

PAR, and irrigation to field capacity once a day. Seeds were germinated in 350-mL pots with  

a 1:1 (v/v) mixture of commercial potting mix (Basaplan; Base Agro) supplemented with 1  

g L-1 10:10:10 NPK and 4 g L-1 dolomite limestone (MgCO3 + CaCO3). Upon appearance  

of the first true leaf, seedlings of each genotype were transplanted to pots containing the soil  

mix described above, except for the NPK supplementation, which was increased to 8 g L-1.  

Growth analyses  

Immediately after anthesis, which occurred at different times for each genotype, we  

determined branching pattern, length of third, fourth and fifth internodes, number of leaves  

up to the first inflorescence and on the main shoot (MS) (leaves of primary shoot plus leaves  

on sympodial units following the first inflorescence) and height of the plant on the primary  

shoot (MS).  
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Whole plants were harvested and the dry weight (DW), total leaf area (LA) and specific leaf  

area (SLA) were evaluated. LA was measured by digital image analysis using a scanner  

(Hewlett Packard Scanjet G2410, Palo Alto, California, USA) and the images were later  

processed using the ImageJ® software. SLA was calculated using the following equation:  

  𝑆𝐿𝐴 (𝑐𝑚2.  𝑔−1) = 𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎𝐿𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡          

  

Water loss determinations  

For water loss measurements, the terminal leaflets of the third leaf were detached from six  

different 42-day old plants and floated in MES-KCl buffer (5mM KCl, 10 mM MES, 50 μM  

CaCl2, pH 6.15) with the abaxial side down in Petri dishes and incubated under continuous  

illumination (120 μE m-2 s-1) at 25ºC for 2 h to induce stomatal opening. Water loss was  

determined gravimetrically over 4 h at the indicated time points. Water loss was then  

calculated as a percentage of the initial fresh weight.  

  

Carbon isotope composition analysis  

The third, fully expanded leaf of five plants per treatment were harvested and ground to fine  

powder. Samples were sent to the Laboratory of Stable Isotopes (CENA, USP, Piracicaba,  

Brazil), where they were analysed for 13C/12C ratio using a mass spectrometer coupled to a  

Dumas elemental analyser ANCA-SL (Europa Scientific, Crewe, UK). Carbon isotope ratios  

were obtained in δ-notation, where  

𝛿 = ( 𝑅𝑅standard ) − 1  

  

and R and Rstandard are the isotope ratios of the plant sample and the Vienna Pee Dee Belemnite  

(VPDB) standard, respectively. δ13C of atmospheric CO2 was assumed to be −8 per mil. The  

δ13C values for the samples were then converted to carbon isotopic discrimination values,  

Δ13C = (δa− δp)/(1 + δp), where δa is the δ13C of atmospheric CO2 and δp the δ13C of the  

material(Farquhar et al. 1989).   
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Infrared leaf thermography 

For thermal imaging analysis, representative plants were photographed. Thermal images 

were obtained using an infrared camera (FLIR systems T360, Nashua, USA) and the photos 

were processed by FLIR Tools + version 5.2 software. The leaf temperature was measured 

in eight plants of each genotype using an infrared thermometer (LASERGRIP GM400, 

Guangzhou, China). All measurements were obtained from 42-day old plants at 12:00 in the 

greenhouse. 

Gas exchange and chlorophyll fluorescence measurements 

Gas exchange parameters were determined simultaneously along with chlorophyll a (Chl a) 

fluorescence measurements using an open-flow infrared gas exchange analyzer system (LI-

6400XT; LI-COR Inc., Lincoln, NE) equipped with an integrated fluorescence chamber (LI-

6400-40; LI-COR Inc.). Instantaneous gas exchange was measured in the second leaf from 

top to the base in four 42-day-old plants after 1 h illumination during the light period under 

photon flux density (1000 μmol m–2 s–1). The reference CO2 concentration was set at 400 

μmol CO2 mol–1 air. All measurements were performed at 25 °C, and the leaf-to-air vapor 

pressure deficit was kept at 1.2-1.8 kPa, while the amount of blue light was set to 10% PPFD 

to optimize stomatal aperture. Data obtained were analyzed in the Curve Expert (Version 1.4 

Image Pro-Plus® software (version 4.5, Media Cybernetics, Silver Spring, USA). 

The initial fluorescence (F0) was measured by illuminating dark-adapted leaves (1 h) with 

weak modulated measuring beams (0.03 μmol m-2 s-1). A saturating white light pulse (8000 

μmol m-2 s-1) was applied for 0.8 s to obtain the maximum fluorescence (Fm), from which the 

variable-to-maximum Chl fluorescence ratio, was then calculated: Fv/Fm= [(Fm − F0)/Fm)]. 

In light-adapted leaves, the steady-state fluorescence yield (Fs) was measured with the 

application of a saturating white light pulse (8000 μmol m-2 s-1) to achieve the light-adapted 

maximum fluorescence (Fm´). A far-red illumination (2 μmol m-2 s-1) was applied after 

turning off the actinic light to measure the light-adapted initial fluorescence (F0´). The 

capture efficiency of excitation energy by open photosystem (PS) II reaction centers 

(Fv´/Fm´) was estimated as described (Logan, Adams & Demmig-Adams 2007) and the actual 

PSII photochemical efficiency (φPSII) was estimated as φPSII = (Fm´– Fs)/Fm´(Genty, Briantais 

& Baker 1989). 
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As φPSII represents the number of electrons transferred per photon absorbed in the PSII, the  

electron transport rate (Jflu) was calculated as Jflu = φPSII. α. β. PPFD, where α is leaf  

absorptance and β reflect the partitioning of absorbed quanta between PSII and PSI, and the  

product αβ, was adopted of the literature to C3 plants (Flexas et al. 2007). Dark respiration  

(Rd) was measured using the same gas exchange system as described above after at least 1 h  

during the dark period and it was divided by two (Rd/2) to estimate the mitochondrial  

respiration rate in the light (RL) (Niinemets & Sack 2006).  

  

Determination of mesophyll conductance (gm), maximum rate of carboxylation (Vcmax),  

maximum rate of carboxylation limited by electron transport (Jmax) and photosynthetic  

limitations   

The responses of AN to Ci (AN/Ci curves) were performed at 1000 μmol m-2 s-1 at 25 °C under  

ambient O2. Briefly, the measurements started at the ambient CO2 concentration (Ca) of 400  

μmol mol-1 and once the steady state was reached, Ca was decreased stepwise to 50 μmol  

mol-1. Upon completion of the measurements at low Ca, Ca was returned to 400 μmol mol-1  

to restore the original AN. Next, Ca was increased stepwise to 1600 μmol mol-1 for a total of  

13 different Ca values (Long & Bernacchi 2003). Corrections for the leakage of CO2 into and  

water vapor out of the leaf chamber of the LI-6400 were applied to all gas exchange data as  

described (Rodeghiero, Niinemets & Cescatti 2007). AN/Ci curves were obtained using the  

terminal leaflet of the 2nd fully expanded leaf from the top to the base in four different plants  

per genotype from 42 days old. The CO2 concentration in the carboxylation sites (Cc) was  

calculated according to Harley et al(Harley, Loreto, Di Marco & Sharkey 1992) as:  

  

Cc = *
 [Jflu+8 (AN + RL)] [Jflu – 4(AN + RL)]         

where the conservative value Γ* for C3 plants was taken from the same authors. gm was  

estimated as described (Ethier & Livingston 2004).  

From AN/Ci and AN/Cc curves, the maximum carboxylation velocity (Vcmax) and the maximum  

capacity for electron transport rate (Jmax) were calculated by fitting the mechanistic model of  

CO2 assimilation (Farquhar, von Caemmerer & Berry 1980), using the Ci and Cc based on  

temperature of kinetic parameters of Rubisco (Kc and Ko) (Walker, Ariza, Kaines, Badger &  



9 

 

Cousins 2013). While, Vcmax, Jmax and gm were normalized to 25ºC using previously described  

temperature response equations (Sharkey, Bernacchi, Farquhar & Singsaas 2007).  

To further investigate the photosynthetic responses we calculated the limitations as described  

(Grassi & Magnani 2005). Thus, these methods use the values of AN, gs, gm, Vcmax, *, Cc, Km  

and Km=Kc (1+ O/Ko) and permits the partitioning into the functional components of  

photosynthetic constraints related to stomatal (ls), mesophyll (lm), and biochemical (lb)  

limitations as shown below:  

  

𝑙𝑠 = (𝑔𝑡𝑜𝑡𝑔𝑠 𝑥 𝐴𝑁
𝐶𝑐 )(𝑔𝑡𝑜𝑡 + 𝐴𝑁
𝐶𝑐 )  

  

𝑙m = (𝑔𝑡𝑜𝑡𝑔m 𝑥  𝐴𝑁
 𝐶𝑐 )𝑔𝑡𝑜𝑡 + (𝐴𝑁
𝐶𝑐 )   

  

𝑙𝑏 = 𝑔𝑡𝑜𝑡(𝑔𝑡𝑜𝑡 + 𝐴𝑁/ 𝐶𝑐)  

gtot is the total conductance to CO2 from ambient air to chloroplasts: (gtot = 1/[(1/gs)+(1/gm)]).  

The partial derivative AN/Cc was calculated as:  

𝐴𝑁
𝐶𝑐 = ([𝑉cmax(∗ + 𝐾𝑚)])/(𝐶𝑐 + 𝐾𝑚)  

Stomatal opening and closure kinetics   

Stomatal conductance (gs) values were recorded at intervals of 30 s using the same gas  

exchange system described above. The gs responses to dark/light/dark transitions were  

measured in the second leaf from top to the base in four 42-day-old plants adapted to the dark  

for at least two hours. Light in the chamber was kept turned off, and then turned on/turned  

off for 2/30/30 min. The CO2 concentration in the chamber was 400 μmol mol–1 air. For  
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responses to CO2 concentration transitions leaves were exposed to 400/800/400 μmol mol–1 

CO2 air for 10/30/30 min under PPFD of 1000 μmol m-2 s-1. 

 

Leaf anatomy and histology 

Lateral leaflets of the third leaf from five 42-day-old plants were cleared in 95% methanol 

and transferred to 100% lactic acid, conditioned in a water bath at 95 °C until the leaf 

presented a completely translucent appearance. Sections were mounted on glass slides, and 

the samples of adaxial and abaxial epidermis were analyzed with photomicroscope Zeiss 

AxioScope A1 model (Thornwood, NY, USA) with an attached Axiovision® 105 color 

image capture system. Images obtained in the photomicroscope were evaluated in the Image 

Pro-Plus® software (version 4.5, Media Cybernetics, Silver Spring, USA). Stomatal density 

and stomatal index of the adaxial and abaxial faces (the ratio of stomata to stomata plus other 

epidermal cells) were determined in at least 6 fields of 0.05 mm2 per leaf from five different 

plants as described (Zsögön, Alves Negrini, Peres, Nguyen & Ball 2015). 

A fragment of 1 × 0.5 cm of 2nd central leaflet from the top to the base of four different plants 

from 42 days old was fixed in FAA 70%, and then dehydrated in an ethanol series (70%, 

85% and 95%), and infiltrated in historesin (Leica microsystems, Wetzlar, Germany). Cross-

sections of 5 μm thickness were stained with 0.05% toluidine blue and analyzed in light 

microscope (Zeiss AxioScope A1 model Thornwood, NY, USA) with image capture system 

Axiovision® 105 coupled color. Images were processed in Image Pro-Plus® software 

(version 4.5, Media Cybernetics, Silver Spring, USA) to quantify abaxial and adaxial 

epidermal thickness, whole leaf thickness, palisade parenchyma thickness, spongy 

parenchyma thickness and percentage of intercellular spaces analyzing nine fields per 

replicate.  

 

Stomatal aperture bioassays 

The response of intact leaves to the exogenous application of abscisic acid (ABA) or mannitol 

was evaluated to assess stomatal function. The third leaf from five 42-day-old plants was 

detached and floated in MES-KCl buffer medium under light, for 2.5 h to allow stomata to 

open, then ABA was added to the buffer solution. Leaves with the abaxial side up on open 

Petri dishes under a direct light source (120 μE m-2 s-1) at 25ºC and 70-80% relative humidity 
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in the plant growth chambers for 2 h. Subsequently control (solvent control), mannitol and  

ABA were added to the opening buffer to a final concentration of 0.1%, 20 mM and 5 µM,  

respectively. After 2 h of incubation stomatal aperture was evaluated. Leaf impressions were  

taken from the abaxial surface of the leaf with dental resin imprints(Berger & Altmann 2000).  

Nail polish copies were made using a colorless glaze (Von Groll, Berger & Altmann 2002).  

Samples were analyzed with the aid of a Zeiss AxioScope A1 photomicroscope with an  

attached Axiovision® 105 color image capture system. Images obtained were evaluated in  

the Image Pro-Plus® software (version 4.5, Media Cybernetics, Silver Spring, USA). At least  

100 stomata per genotype were analyzed.  

  

Gene expression quantification  

Quantitative real-time PCR (qRT-PCR) analysis was performed as described (Silva et al.  

2018) with total RNA isolated from the third terminal leaflet of plants after anthesis in four  

biological replicates and at least two technical replicates, harvesting and immediately snap- 

freezing the samples in liquid nitrogen. For RNA extraction, we used TRIzol® (Ambion,  

Life Technology, Waltham, USA) following the manufacturer’s manual. Digestion with  

DNase I (Ambion; was performed according to the manufacturer’s instructions. The integrity  

of the RNA was checked on 1% (w/v) agarose gels, and the concentration was measured after  

DNase I digestion using a Multiskan GOTM spectrophotometer (Thermo scientific,  

Massachusetts, USA) cDNA was synthesized using SuperScript III reverse transcriptase  

(Invitrogen, Carsbad California) according to the manufacturer’s instructions.   

For gene expression analyses Power SYBR® green PCR Master Mix was used in  

MicroAmpTM Optical 96-well reaction plates (both from Applied Biosystems, Singapore)  

and adhesive film MicroAmpTM Optical (Applied Biosystems, Foster City, CA, USA). The  

number of reactions from the cycle threshold (CT) as well as the efficiency of the reaction  

was estimated using the Real-Time PCR Miner tool (Zhao & Fernald 2005). Relative  

expression was normalized using actin, one constitutively expressed gene; actin was used to  

calculate ΔΔCT assuming 100% efficiency of amplification of genes (2-ΔΔCT). The relative  

transcript abundance of SFT was analyzed to confirm the genotypes. The primer sequences  

for actin (endogenous) and SINGLE FLOWER TRUSS (SFT) were ACTIN (Solyc03g078400)  

Fwd 5’-GGTCCCTCTATTGTCCACAG-3’ and Rev 5’-TGCATCTCTGGTCCAGTAGGA-3’; SFT  
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(Solyc03g063100) Fwd 5’-GACCCTGATGCTCCAAGTCC-3’ and Rev 5’- 

GTGACCAACCAGTGAAGGTATTC-3’.   

Experimental design and statistical analysis  

The data were obtained from the experiments using a completely randomized design using  

MT, sft and SFT-ox. Data are expressed as the mean ± standard error (SE). Data were  

submitted to one-way analysis of variance (ANOVA), followed by Tukey’s honestly  

significant difference (HSD) test  (P < 0.05) if the one-way ANOVA result was  

significant.Real-Time gene expression results were submitted to the Kruskal-Wallis one-way  

ANOVA test (P < 0.05). All the statistical analyses were performed using the Assistat version  

7.7 (Campina Grande, Brazil).  

Results  

SINGLE FLOWER TRUSS negatively influences water-use efficiency in tomato  

All genotypes showed the expected phenotype based on previously published work (Fig. 1).   

SFT transcript levels were low for sft and high for SFT-ox as expected, while not and NCED- 

ox were similar to MT, suggesting that ABA levels did not influence expression of SFT under  

these well-watered conditions (Fig. 1). As predicted from the known action of florigen, SFT- 

ox flowered early at 19 days, and sft flowered late at 57.3 days, compared to 43.5 days for  

MT (Table S2). SFT-ox plants were considerably smaller since vegetative development  

largely ceased at the time of flowering in MT, a determinate cultivar harbouring the self- 

pruning (sp) mutant allele (Pnueli et al. 1998). In our well-watered experiments, although  

NCED overexpression delayed flowering, it did not affect the number of leaves to first flower  

(Table S2), consistent with its unaltered SFT transcript levels (Thompson et al. 2007). ABA  

effects on flowering are known to depend on environment in Arabidopsis: under drought,  

ABA induced flowering by stimulating FT expression (Riboni, Robustelli Test, Galbiati,  

Tonelli & Conti 2016), but, under well-watered conditions, ABA repressed expression of  

SOC1, a key transcription factor promoting flowering (Riboni et al. 2016).  

Low sft expression led to increased WUEi  (Fig. 1) in the absence of significant differences  

in mesophyll conductance to CO2 (gm) and photosynthetic assimilation rates (A) (Table S3),  

suggesting that increased WUEi was the result of reduced gs. Reduced gs in turn decreased  
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leaf water loss, also observed as a higher leaf temperature due to lower evaporative cooling  

(Fig. S2). The SFT-ox line showed decreased WUE (determined gravimetrically, Fig. S4)  

mainly through reduction in dry mass gain (Table S4). Δ13C was lower in the sft mutant  

(indicating high WUEi; Fig. 1) and, across all genotype means, Δ13C had the expected inverse  

correlation with A/gs (Fig. 1), confirming that our estimates of WUEi were consistent whether  

measured in the short-term or in the long-term. These results were further confirmed when  

WUE was measured gravimetrically in whole plants: sft again had 9.7% higher WUE and  

SFT-ox had 24.3% lower WUE (Fig. S4, Table S4).   

SINGLE FLOWER TRUSS induces anatomical modifications in tomato leaves  

Higher SFT expression had a positive effect on specific leaf area (SLA; Fig. S3), due to  

decreased leaf thickness (Fig. 2). Leaf thickness tends to be positively correlated with WUEi  

because there is more photosynthetic activity per unit area with little impact on gs (Poorter,  

Niinemets, Poorter, Wright & Villar 2009).   

SFT expression levels did not affect stomatal size or density (Tables S5 and S6), nor the  

relative velocity of stomatal response to either changes in irradiance or CO2 concentration,  

but they did effect steady-state gs values (Fig. 3). sft mutant plants could not reach the same  

gs as MT plants under saturating irradiance, whereas SFT-ox plants maintained higher gs  

values in the dark which would reduce WUE by increasing non-productive water loss when  

no net assimilation was occurring.   

SINGLE FLOWER TRUSS controls stomatal conductance (gs) independently of abscisic  

acid (ABA) in tomato  

Abscisic acid (ABA) is one of the key molecular controllers of stomatal aperture and the  

signalling pathways are well-characterized (Munemasa et al. 2015), so we assessed  

exogenous application of ABA for interaction with SFT in the control of stomatal aperture.  

We found an independent and opposite effect of SFT and ABA on stomatal aperture, but not  

an interaction between them (Fig. 3; Table S7). ABA levels were not significantly altered in  

sft or SFT-ox compared to MT (Fig. 3), nor were SFT transcript levels altered in not or  

NCED-ox lines with altered ABA levels (Fig. 1).   

Discussion   



14 

 

Breeding crops with improved WUE is desirable in the face of a growing population with  

changing dietary profile (Fischer et al. 2014). In many species, WUE is strongly correlated  

with flowering time, as selection may have favored synchronization of plant phenology with  

seasonal moisture (Kenney et al. 2014). In Arabidopsis, for instance, pleiotropy of the  

flowering/vernalization gene FRIGIDA in part causes the correlation between phenology and  

drought physiology (Lovell et al. 2013). Tomato does not have a vernalization response,  

instead, we have shown that SFT, the tomato florigen (Shalit et al. 2009), appears to be a key  

player in the adaptive coordination of WUE and flowering time. Identification of florigen as  

the molecular link between time to flowering and WUE provides a new target for improving  

WUE via crop breeding. We have analyzed extremes in florigen expression, but genome  

engineering or wild relatives could be harnessed to produce alleles with intermediate  

expression levels or altered patterns of expression (Zsögön, Cermak, Voytas & Peres 2017).  

SFT had a strong influence on leaf thickness, with concomitant changes in specific leaf area,  

SLA, which is inversely correlated with WUE (Hoffmann, Franco, Moreira & Haridasan  

2005). The extension or reduction of the vegetative growth phase in SFT deficient and  

overproducing lines, respectively, could lead to changes in leaf structure that impact  

photosynthetic performance, water relations and thus WUE. For instance, leaf size tends to  

be optimized for a given environment (Parkhurst & Loucks 1971), and the positive  

correlation between increased individual leaf size and WUE has adaptive value under limited  

water availability (Dudley 1996a b).   

SFT expression levels do not influence the relative velocity of stomatal response to either  

changes in irradiance or CO2 concentration, but rather steady-state gs values. sft mutant plants  

cannot reach the same gs as MT plants under saturating irradiance, whereas SFT-ox plants  

maintain higher gs values in the dark. This suggests that SFT may be a necessary molecular  

player to relay environmental information allowing fine-tuning of stomatal aperture  

(Lawson, von Caemmerer & Baroli 2010; Lawson & Blatt 2014). Many mechanisms allow  

the relay of environmental information for fine-tuning of stomatal aperture (Lawson & Blatt  

2014; Matthews, Vialet-Chabrand & Lawson 2018). In a drought escape strategy, SFT may  

have the role of increasing the setpoint of stomatal aperture under a range of conditions to  

maximise assimilation rate and thereby allow sufficient biomass to accumulate prior to early  

flowering. The stomatal effects of SFT and ABA appear to act through independent  
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pathways, so the molecular intermediates between SFT and activation of the H+-ATPases 

that trigger guard cell movements remain to be unveiled (Kim, Böhmer, Hu, Nishimura & 

Schroeder 2010).  

ABA is one of the key molecular controllers of guard cell movement and stomatal aperture 

(Munemasa et al. 2015). ABA can, furthermore, either stimulate or inhibit flowering, 

depending on environmental conditions, particularly water availability. In Arabidopsis plants 

undergoing drought conditions ABA will induce flowering by stimulating FT expression 

(Riboni et al. 2016). Under well-watered conditions, on the other hand, ABA represses the 

flowering promoter SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), a 

key transcription factor integrating floral cues in the meristem (Riboni et al. 2016). We 

assessed the potential interaction of ABA with SFT in the control of stomatal aperture. We 

found an independent and opposite effect of SFT and ABA on stomatal aperture, but not an 

interaction between them. The stomatal effects of SFT and ABA do not appear to act through 

the same pathway, so this suggests a potential novel target in breeding for increased WUE.   

 

Conclusion 

Identification of florigen as a key player linking flowering time and water-use efficiency 

(WUE) paves the way for its exploitation in crop breeding. The universality of the genes of 

the florigen family makes them a promising target to engineer increased WUE in many crops. 

We explored the changes in florigen dosage in a determinate tomato background harboring 

a null allele of the anti-florigenic signal SP (Silva et al. 2018). The precise molecular 

mechanism through which florigen controls WUE is hitherto unclear, as both direct (e.g. 

stomatal conductance) and indirect (e.g. leaf blade thickness) pathways were found to 

contribute synergistically. Further work should dissect this coordination to unveil the precise 

molecular pathways involved. Identification of favorable combinations of alleles for ideal 

florigenic SFT/anti-florigenic SP ratios could lead to plants better adapted to specific 

agricultural systems in terms of increased yield (Park et al. 2014) and WUE.  Perturbations 

to these pathways have the potential to uncouple high WUE from late flowering; the ability 

to fine-tune flowering to water availability patterns whilst also achieving higher WUE could  

contribute to sustainable intensification.   
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Figure 1. SINGLE FLOWER TRUSS influences water-use efficiency in tomato. (a) Representative plants 
of tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) mutant, transgenic SFT over-
expression line (SFT-ox), abscisic acid deficient loss-of-function 9-cis-epoxycarotenoid dioxygenase (NCED) 
mutant notabilis (not) and NCED over-expression line (NCED-ox), 75 days after germination. (b) Relative 
transcript accumulation of SFT determined on 42-day-old leaves. Significant differences tested with Kruskal-
Wallis test on 2-ΔΔCt values; p-value: *0.05. Data was log-transformed and is depicted as means ± s.e.m. (n=4 
plants). (c) Relationship between net photosynthesis (A) and stomatal conductance (gs) determined under 
saturing light in fully expanded leaves. The solid line indicates a hyperbolic function was fitted to the data. 
Each point represents measurements on one individual plant. (d) Carbon isotope discrimination (Δ13C) 
measured in the same leaves as gas exchange, sampled 42 dag. Data are means ± s.e.m (n=6). (e) Intrinsic water-
use efficiency (A/gs) calculated using data shown in panel c. Values are mean ± s.e.m (n=5). (f) Relationship 
between A/gs and carbon isotope composition, calculated from data shown in panels d and e. Boxes in box-plots 
represent IQR, center line the median, dotted line the mean, and the ends of the whisker are set at 1.5*IQR 
above the third quartile  and 1.5*IQR below the first quartile. If the minimum or maximum value falls outside 
this range, it is considered an outlier and depicted as a full circle. Significant differences tested with one-way 
ANOVA followed by Tukey’s honestly significant difference (HSD) test; letters indicate significant 
differences, p-value < 0.05. 
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Figure 2. SINGLE FLOWER TRUSS induces anatomical modifications in tomato leaves. (a) Leaf 

anatomical parameters. Data are means ± s.e.m. (n=4). (b) Representative cross-sectional images of fully 

expanded terminal leaflets obtained from the second leaf from top in 42-day old plants of tomato cv. Micro-

Tom (MT); loss-of-function single flower truss (sft) mutant; transgenic SFT over-expression line (SFT-ox); 

abscisic acid deficient loss-of-function 9-cis-epoxycarotenoid dioxygenase (NCED) mutant notabilis (not) and 

NCED over-expression line (NCED-ox). Scale bars, 50 µm. Significant differences tested with one-way 

ANOVA followed by Tukey’s honestly significant difference (HSD) test; letters indicate significant 
differences, p-value < 0.05. (n.s. = non-significant). 
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Figure 3. SINGLE FLOWER TRUSS controls stomatal conductance (gs) independently of abscisic acid  

(ABA) in tomato. Comparison of tomato cv. Micro-Tom (MT) response to changes in (a), photosynthetic  

photon flux density (PPFD) with loss-of-function single flower truss (sft) mutant, and transgenic SFT over- 

expression line (SFT-ox) and (b), CO2 concentration. Measurements were performed over three days on attached  

terminal leaflets of the second leaf fully expanded leaf in 42/45-day-old plants. Data are means ± s.e.m. (n=4).  

(c) Measurements of stomatal pore width in MT, sft, SFT-ox, abscisic acid deficient loss-of-function 9-cis- 

epoxycarotenoid dioxygenase (NCED) mutant notabilis (not) and NCED over-expression line (NCED-ox).  

Measurements conducted after treatment with control buffer solution or 5 µM ABA solution from the third fully  

expanded leaf of 42-day-old plants. Each data point is the mean value (n=25 stomata) of one leaf replicate. (d)  

Representative stomata from light microscopy images in opening buffer (control) or 5 µM ABA. bar=20 µm.  

(e) Schematic representation of the relationship between SFT transcript level and ABA on the control of  

stomatal aperture. (f) ABA concentration in leaves of the genotypes 42 dag. Data are means ± s.e.m (n=6).  

Letters indicate significant differences determined by one-way ANOVA followed by Tukey’s HSD test, p-value  

< 0.05.  

  

  Supplemental data  

  

 

Figure S1. SINGLE FLOWER TRUSS affects photosynthetic capacity in tomato. Net photosynthesis (AN) 
curves in response to sub-stomatal (Ci) and chloroplastic (Cc) CO2 concentration in tomato cv. Micro-Tom 
(MT), loss-of-function single flower truss (sft) mutant and transgenic SFT over-expression line (SFT-ox) under 
saturating light (1000 µmol m-2 s-1). Values were obtained using the second fully expanded leaf counting from 
the apex. The solid line was fitted based on leaf biochemistry parameters.The biochemically based leaf 
photosynthesis model(Farquhar, von Caemmerer & Berry 1980) was fitted to the data based on Ci or Cc values 
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of AN/Ci or AN/Cc for five plants of MT (black symbols) and sft or SFT-ox (red symbols). Different symbols 
were used for each individual plant.  
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Figure S2. SINGLE FLOWER TRUSS influences water loss and leaf temperature in tomato. (a) Water  

loss rate in detached terminal leaflet of fully expanded leaves of tomato cv. Micro-Tom (MT), loss-of-function  

single flower truss (sft) mutant, transgenic SFT over-expression line (SFT-ox), abscisic acid deficient loss-of- 

function 9-cis-epoxycarotenoid dioxygenase (NCED) mutant notabilis (not) and NCED over-expression line  

(NCED-ox). Values are mean ± s.e.m. (n=6). (b) Leaf surface temperature determined by infrared thermography  

on the third fully expanded leaf 42 days after germination. Values are mean ± s.e.m. (n=10). Significant  

differences tested with one-way ANOVA followed by Tukey’s honestly significant difference (HSD) test, p- 

value < 0.01  
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Figure S3. SINGLE FLOWER TRUSS alters leaf area and leaf thickness in tomato. (a) Individual leaf area 
in tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) mutant and transgenic SFT over-
expression line (SFT-ox). Boxes in box-plots represent IQR, center line the median, “x” the mean, and the ends 
of the whisker are set at 1.5*IQR above the third quartile and 1.5*IQR below the first quartile. If the minimum 
or maximum value falls outside this range, it is considered an outlier and depicted as a full circle. Significant 
differences tested with one-way ANOVA followed by Tukey’s honestly significant difference (HSD) test, p-
value < 0.01. Letters indicate significant differences (b) Relationship between leaf lamina thickness and specific 
leaf area (SLA). Data points are means (n=6) ± s.e.m.  

 

 

 

Figure S4. Gravimetric water-use efficiency (WUE) is controlled by SINGLE FLOWER TRUSS in tomato. 

Comparison of WUE in tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) mutant, 
transgenic SFT over-expression line (SFT-ox), abscisic acid deficient loss-of-function 9-cis-epoxycarotenoid 
dioxygenase (NCED) mutant notabilis (not) and NCED over-expression line (NCED-ox). Boxes in box-plots 
represent interquartile range (IQR), center line the median, dotted line the mean, and the ends of the whisker 
are set at 1.5*IQR above the third quartile and 1.5*IQR below the first quartile. Significant differences tested 
with one-way ANOVA followed by Tukey’s honestly significant difference (HSD) test; letters indicate 
significant differences, p-value < 0.01 
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Table S2. Phenological parameters under the control of SINGLE FLOWER TRUSS in tomato.  

Comparison of tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) mutant, transgenic SFT  

over-expression line (SFT-ox), abscisic acid deficient loss-of-function 9-cis-epoxycarotenoid dioxygenase  

(NCED) mutant notabilis (not) and NCED over-expression line (NCED-ox). Data are means ± s.e.m. (n=5).  

Significant differences tested with one-way ANOVA followed by Tukey’s honestly significant difference  

(HSD) test; letters indicate significant differences p-value < 0.01. For leaves to first flower, significant  

differences were tested with Kruskal-Wallis p-value < 0.01.  

 
MT sft SFT-ox not NCED-ox 

Days to anthesis 43.5 ± 1.8b 57.3 ± 0.7a 19.0 ± 0.8d 41.5 ± 1.1c 50.2 ± 1.4b 

Leaves to 1st flower  6.1 ± 0.31b 12.1 ± 0.17a 2.8 ± 0.4c 5.5 ± 0.2b 5.5 ± 0.2b 

Height to 1st flower (cm) 6.1 ± 0.23b 15.0 ± 0.21a 2.7 ± 0.21c 6.1 ± 0.1b 6.3 ± 0.1b 

Stem diameter (cm) 5.3 ± 0.24a 5.3 ± 0.09a 3.8 ± 0.1b 5.1 ± 0.1a 5.2 ± 0.1a 

2nd internode length (cm) 0.80 ± 0.05b 1.10 ± 0.04a 0.77 ± 0.02b 0.90 ± 0.01b 0.90 ± 0.01b 

Specific leaf area (cm2 g-

1) 

416.6 ± 28.7b 356.0 ± 16.2b 586.6 ± 59.8a 434.5 ± 

28.7ab 

450.8 ± 47.8ab 

  

  

Table S1. Description of the genotypes in the Micro-Tom background used in this work. 

Genotype Description References 

Micro-Tom 
(MT) 

Harbors the recessive allele self-pruning (sp), which leads to 
a determinate growth and uniform fruit ripening; the recessive 
allele dwarf (d), which leads to reduced brassinosteroid 
biosynthesis. 

Meissner et al., 1997; 
Bishop et al., 1999; Martí 
et al., 2006   

single flower 

truss (sft) 

SFT (Solyc03g063100) codes for the floral inducer ‘florigen’. 
sft is a loss-of-function mutation introgressed into MT from 
its original background (LA2460, possibly cv. Ailsa Craig).  

Kerr EA, 1982; Molinero-
Rosales et al., 2004; 
Lifschitz and Eshed, 2006 

SFT-ox 

Plants with overexpression of SFT under the control of 
cauliflower mosaic virus (CaMV) 35S promoter have a high 
flowering induction.  

Lifschitz et al., 2006  

notabilis (not)  
(LA4487) 

NOT (Solyc07g056570) codes for A 9-cis-epoxycarotenoid 
dioxygenase (NCED), a key enzyme for oxidative cleavage of 
9-cis-epoxycarotenoids in ABA biosynthesis. The not 
mutation was introgressed into MT from its original 
background     (LA0617, cv. Lukullus) 

Tal, 1966; Carvalho et al., 
2011; Thompson et al., 
2004 

NCED-ox 

Plants overexpressing the NCED carotenoid cleavage enzyme 
under control of a superpromoter (sp) derived from CaMV 
35S.  The sp12 line, which has an increased ABA level but 
without increased seed dormancy and guttation, was 
originally produced in the Ailsa Craig background from which 
the transgene was introgressed into MT. 

Thompson et al., 2000; 
2007 
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Table S3. Photosynthetic characterization of tomato genotypes with different SINGLE FLOWER TRUSS 

expression. Gas exchange data for tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) 
mutant, transgenic SFT over-expression line (SFT-ox), abscisic acid deficient loss-of-function 9-cis-
epoxycarotenoid dioxygenase (NCED) mutant notabilis (not) and NCED over-expression line (NCED-ox). Data 
are means ± s.e.m. (n=5). Significant differences tested with one-way ANOVA followed by Tukey’s honestly 
significant difference (HSD) test; letters indicate significant differences p-value < 0.05. 

Parameters* MT sft SFT-ox 

Ci (µmol CO2 mol-1) 255.59 ± 6.74 248.41 ± 6.31 260.12 ± 4.43 

Cc (µmol CO2 mol-1) 132.9 ± 2.39a 119.67 ± 4.66b 137.64 ± 3.57a 

gm (mol CO2 m-2 s-1 bar-1) 0.16 ± 0.01 0.19 ± 0.03 0.17 ± 0.01 

Vcmax_Ci (µmol m-2 s-1) 82.63 ± 3.61 93.15 ± 9.32 86.01 ± 2.38 

Vcmax_Cc (µmol m-2 s-1) 165.76 ± 5.34 176.24 ± 4.46 173.63 ± 2.02 

Jmax_Ci (µmol m-2 s-1) 153.46 ± 6.68a 166.96 ± 14.37a 130.05 ± 5.76b 

Jmax_Cc (µmol m-2 s-1) 184.04 ± 5.07a 194.11 ± 6.88a 170.28 ± 2.15b 

Jmax_Ci : Vcmax_Ci 1.86 ± 0.04a 1.82 ± 0.08a 1.51 ± 0.06b 

Jmax_Cc : Vcmax_Cc 1.11 ± 0.01a 1.1 ± 0.02a 0.98 ± 0.02b 

Stomatal limitation 0.37 ± 0.02 0.43 ± 0.02 0.37 ± 0.01 

Mesophyll limitation 0.36 ± 0.01 0.31 ± 0.03 0.35 ± 0.02 

Biochemical limitation 0.28 ± 0.02 0.26 ± 0.02 0.29 ± 0.01 

* Ci, sub-stomatal CO2 concentration; Cc, Chloroplastic CO2 concentration; gm, mesophyll condutance to CO2  

estimated according to Harley et al.(Harley, Loreto, Di Marco & Sharkey 1992); Vcmax_Ci or _Cc, maximum  

carboxylation capacity based or Ci or Cc;  Jmax_Ci or _Cc, maximum capacity for electron transport rate based  

on Ci or Cc.  

  

Table S4. Gravimetric water-use efficiency (WUE) is controlled by SINGLE FLOWER TRUSS in tomato.  

Comparison of tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) mutant, transgenic SFT  

over-expression line (SFT-ox), abscisic acid deficient loss-of-function 9-cis-epoxycarotenoid dioxygenase  

(NCED) mutant notabilis (not) and NCED over-expression line (NCED-ox). Plants were grown in pots  

containing a closed water reservoir connected to the soil by a wick system. Pots were weighed and lost water  

replaced daily to the same initial volume over a period of 35 days. Data are means ± s.e.m. (n = 5). Significant  

differences tested with one-way ANOVA followed by Tukey’s honestly significant difference (HSD) test;  

letters indicate significant differences p-value < 0.01.  

 
MT sft SFT-ox not NCED-ox 

Water transpired (g) 
250.0 ± 14.9a 281.0 ± 13.4a 202.0 ± 8.7b 180.0 ± 

11.4b 

313.0 ± 20.3a 

Dry weight gained (g) 1.07 ± 0.06b 1.33 ± 0.13a 0.66 ± 0.04c 0.40 ± 0.03c 1.49 ± 0.12a 

WUE (g DW kg-1 H2O) 4.31 ± 0.11a 4.73 ± 0.15a 3.26 ± 0.06b 2.24 ± 0.14c 4.76 ± 0.14a 

  

  

Table S5. SINGLE FLOWER TRUSS does not affect stomatal size in tomato. Guard cells length and width  

measured in epidermal imprints of tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) mutant  

and transgenic SFT over-expression line (SFT-ox). Measurements obtained from the third fully expanded leaf  
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of 42-days old plants. Data are means ± s.e.m. (n=100 stomata). No significant differences were found using  

one-way ANOVA.  

Parameters MT sft SFT-ox 

Length (µm) 32.7 ± 1.1 33.6 ± 1.1 33.8 ± 0.8 

Width (µm) 25.3 ± 0.4 23.8 ± 0.3 23.1 ± 0.9 

Length x width (µm2)  835.4 ± 38.1 803.5 ± 34.2 787.8 ± 50.5 

 

Table S6. SINGLE FLOWER TRUSS does not affect stomatal density or stomatal index in tomato. Leaf 
epidermal features in tomato cv. Micro-Tom (MT), loss-of-function single flower truss (sft) mutant, transgenic 
SFT over-expression line (SFT-ox), abscisic acid deficient loss-of-function 9-cis-epoxycarotenoid dioxygenase 
(NCED) mutant notabilis (not) and NCED over-expression line (NCED-ox). Measurements obtained from the 
third fully expanded leaf of 42-days old plants. Data are means ± s.e.m. (n=5).  

Parameters* MT sft SFT-ox not NCED-ox 

SD 

 (mm-2) 

Adaxial 44.7 ± 2.7b 
 

48.6 ± 10.7b 51.5 ± 11.9b 84.8 ± 14.6a 55.3 ± 12.3b 

Abaxial 95.7 ± 7.5b 99.7 ± 6.1b 
 

109.8 ± 6.9b 132.6 ± 12.0a 100.8 ± 7.7b 

PCD  

(mm-2) 

Adaxial 
 

290.9 ± 13.2b 293.5 ± 18.8b 293.2 ± 26.7b 332.6 ± 27.3a 301.5 ± 

19.3b 

Abaxial 284.8 ± 9.5b 333.4 ± 22.1a 301.5 ± 5.6ab 329.5 ± 20.8a 307.6 ± 

18.0ab 

SI (%) 

Adaxial 13.4 ± 1.5b 14.2 ± 2.8b 15.3 ± 3.8ab 20.2 ± 3.1a 15.2 ± 2.9ab 

Abaxial 24.9 ± 1.7 
 

23.2 ± 1.2 26.7 ± 1.1 28.6 ± 1.1 24.7 ± 1.3 

* SD, stomatal density; PCD, pavement cell density; SI, stomatal index.   

Table S7. SINGLE FLOWER TRUSS affects stomatal aperture independently of ABA in tomato. Results  

of 2×3 two-way ANOVA using three levels of SFT transcript [(as quantified in tomato cv. Micro-Tom (MT),  

loss-of-function single flower truss (sft) mutant and transgenic SFT over-expression line (SFT-ox)] and two  

levels of ABA (either 0 or 5 µM ABA) as the independent variables. SS, sum of squares; df, degrees of freedom;  

MS, mean square; HSD (honestly significant difference) is the absolute (unassigned) difference between any  

two means required for significance at the designated level: HSD[.05] for the .05 level; HSD[.01] for the .01  

level. Raw data are plotted in Figure 3a of the main manuscript.   

  

Source SS df MS F Critical values 

     HSD [.05] HSD [.01] 

SFT level 185357533.62 1 185357533.62 296.24 120.23 158.33 

ABA 275227399.93 2 137613699.97 219.94 176.59 219.68 

SFT level × ABA 27570527.63 2 13785263.82 22.03 305.16 359.42 

Error 413585693.43 661 625696.96  

Total 871397631.42 666  
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