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Abstract 

Air Traffic Management is evolving towards a Trajectory-Based Operations paradigm. Trajectory 

prediction will hold a key role supporting its deployment, but it is limited by a lack of understanding of air 

traffic associated uncertainties, specifically contextual factors. 

Trajectory predictors are usually based on modelling aircraft dynamics based on intrinsic aircraft features. 

These aircraft operate within a known air route structure and under given meteorological conditions. 

However, actual aircraft trajectories are modified by the air traffic control depending on potential conflicts 

with other traffics. This paper introduces surrounding air traffic as a feature for ground-based trajectory 

prediction.  

The introduction of air traffic as a contextual factor is addressed by identifying aircraft which are likely to 

lose the horizontal separation. For doing so, this paper develops a probabilistic horizontal interdependency 

measure between aircraft supported by machine learning algorithms, addressing time separations at 

crossing points.    

Then, vertical profiles of flight trajectories are characterised depending on this factor and other intrinsic 

features. The paper has focused on the descent phase of the trajectories, using datasets corresponding to an 

en-route Spanish airspace volume.  

The proposed interdependency measure demonstrates to identify in advance conflicting situations between 

pairs of aircraft for this use case. This is validated by identifying associated air traffic control actions upon 

them and their impact on the vertical profile of the trajectories.  

Finally, a trajectory predictor for the vertical profile of the trajectory is developed, considering the 

interdependency measure and other operational factors. The paper concludes that the air traffic can be 

included as a factor for the trajectory prediction, impacting on the location of the top of descent for the 

specific case which has been studied.  
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1. Introduction 

Air Traffic Management (ATM) is evolving towards a Trajectory-Based Operations (TBO) paradigm.  

Trajectory prediction (TP) is at the core of the different components of the ATM system (International Civil 

Aviation Organization, 2005). The performance of the trajectory prediction affects the overall performance 

of the ATM system (Sáez Nieto, 2016), but it is limited by a lack of understanding of TP uncertainties, 

specifically contextual factors (Schuster and Ochieng, 2014). 

Contextual factors are usually associated with meteorological conditions and system constraints. The 

prediction of weather factors, mainly wind, has been addressed by academia and industry (Andrienko et al., 

2014; Sun et al., 2018), and also the weather impact in different contexts  (Franco et al., 2018; González-

Arribas et al., 2017).  

Air traffic as a contextual factor is usually considered for trajectory management, with longer prediction 

horizons to operations. For example, Air Traffic Flow and Capacity Management (ATFCM) measures are 

based on traffic indicators with different granularities and look-ahead times, such as the sector hourly entry 

count or the sector occupancy (Niarchakou, S., Simon Selva, 2017). An airspace sector is a volume of 

interest controlled by an air traffic controller (ATCo).  

In this sense, a planned trajectory represents the most likely behaviour of a flight through a volume of 

interest (EUROCONTROL, 2017). It is derived from the integration of data sources such as flight plans, 

ATC procedures, or the aircraft historical behaviour. The outcome of this process is the intent of the aircraft 

(Besada et al., 2013). 

Aircraft intents are used to generate aircraft expected trajectories that usually deviate with respect to the 

actual ones due to the stochastic nature of the predictors (Casado Magaña, 2016). A trajectory prediction 

can be computed by systems or be based on cognitive abstractions of the air traffic controllers (Histon and 

Hansman, 2008). The ATC service, fulfilling the separation management function of ATM, removes 

potential conflicts between aircraft (García González, 2013) by issuing tactical instructions. Those 

instructions affect the trajectories downstream impacting on the ATM trajectory management function. For 

example, an early tactical descent instruction may impact on the Arrival Manager (AMAN) function due to 

the variation of the aircraft performance.  

The objective of this paper is to introduce surrounding air traffic as a contextual factor for trajectory 

predictors. Firstly, the paper defines an interdependency measure between two aircraft as a probability 

measure depending on the performance of associated trajectory predictors. Secondly, that measure is 

included as a factor in a vertical trajectory predictor. The methodology approaches the problem by 

integrating model- and data-driven paradigms, based on well-known machine learning (ML) techniques for 

trajectory computation and a statistic-based interdependency definition.  

The proposed methodology is presented in Section 2. Section 3 and Section 4 present the dataset, the results 

and a discussion about them. Finally, Section 5 presents the conclusions of this paper and proposes further 

work. 
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2. Materials and Methods  

The main objective of this work is to introduce air traffic as a relevant factor for the trajectory prediction. 

The interaction between a pair of aircraft will be considered as a feature for predictors depending on the 

value of an interdependency measure. 

The definition of the interdependency between a pair of aircraft is a trending research topic. When this 

interdependency is generalised to more than two aircraft, it can be associated with air traffic complexity. 

Approaches vary between algorithmic ones (Delahaye et al., 2003; Delahaye and Puechmorel, 2010, 2000; 

Djokic et al., 2010; Prandini et al., 2011; Radanovic et al., 2018; Verdonk Gallego et al., 2016) and human-

factors based ones (Flynn, 2004; Suárez et al., 2014; Wickens, 2008).  

Interdependency relates to potential conflicts between aircraft. Probabilistic conflict detection has been 

addressed in past and recent research. (Paielli and Erzberger, 2008) proposed a probabilistic approach for 

conflict detection, which was later extended to include errors in the trajectory prediction (Erzberger et al., 

1997). There have been numerous research works that have extended or modified this approach, such as 

(Irvine, 2001) or (Piroddi and Prandini, 2010). (Hernández-Romero et al., 2019) conducted an extensive 

literature review about probabilistic approaches to conflict detection, including a detailed explanation of 

the different approaches to model the position errors. It also included an extensive review of a different 

approach to probabilistic conflict detection, based on the propagation of the uncertainty from a source, such 

as wind conditions, to the measures which are used to identify conflicts.  

These approaches look for identifying when the separation minima between a pair of aircraft will be 

infringed. The common methodology is based on propagating the trajectory within a given look-ahead time 

and determining if two are aircraft will lose separation by assessing the probability of their relative distance 

being below a given threshold for each value of the time series. More recently, (Ayhan et al., 2018) 

presented a novel approach to conflict detection and resolution in a strategic phase. It defined conflict 

detection in terms of the distance between aircraft and its comparison with the separation minima, but with 

a novel technique where trajectories were aligned with a 3D grid network, easing the process and enabling 

its scalation.  

This paper presents two main differences with the previous approaches. Firstly, the interdependency 

measure is not related to distance-based measures, but to the time separation on arriving to a pre-identified 

location, where the separation minima between them will be surely infringed if they arrive concurrently. 

This approach is based on ATCo cognitive abstractions (Histon and Hansman, 2008), where ATCOs 

concentrate on critical points for controlling the air traffic. Secondly, this paper addresses the probabilistic 

definition of the interdependency between two aircraft considering TPs’ performance instead of deviations 

from the actual trajectories. This approach modifies (Erzberger et al., 1997) and others (Chaloulos and 

Lygeros, 2007) by considering the uncertainty related to the temporal instead the spatial dimension.  

Trajectory predictors will be based on ML techniques influenced by ATCo cognitive abstractions (Histon 

and Hansman, 2008). Thus, the approach followed in (Verdonk Gallego et al., 2018b) is generalised to 

every flow within the airspace volume of interest. This work follows the “major flow” definition given by 
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(Delahaye et al., 2014).  Then, a probability measure of the horizontal interdependency between two aircraft 

is provided depending on the performance of the trajectory predictors.  

The second part of the paper exploits this horizontal interdependency measure. Firstly, vertical profiles and 

Top of Descent (TOD) locations are characterised depending on the interdependency measure. Secondly, 

this characterisation enables the introduction of this new feature into a trajectory predictor for the vertical 

profile of the aircraft trajectory. 

Figure 1 introduces the logical breakdown of the trajectory predictor and how the interdependency is 

introduced as a relevant factor for the intent generation (TOD location) and the trajectory computation. This 

TP logical breakdown is based on (EUROCONTROL, 2017). 

 

Figure 1 Trajectory Predictor Logical Breakdown 

The following subsections detail the methods used in each step of the methodology. Section 2.1 covers the 

determination of the aircraft expected trajectories. Then, the derivation of the interdependency measure is 

conducted in Sections 2.2 and 2.3. Finally, the trajectory vertical profile is modelled based on the TOD 

location and the descent profile (Section 2.4), where the interdependency measure may affect both (Section 

2.5). 

2.1. Expected Trajectory based on Observed Traffic 

A flown trajectory, 𝜂, can be described as a mapping 𝜂 from a time interval [a,b] ∈  ℝ to a state space E, 

with E being 𝕂6 x 𝕆4  ∈  ℝ10 . The former (𝕂6) corresponds to the kinematic state of the aircraft (position 

and velocity) as seen by the ATM ground system, whereas the latter (𝕆4) reflects the operational state of 

the aircraft (cleared heading, cleared flight level, cleared horizontal speed, and cleared vertical speed, if 

any),  

 𝜂(𝑡) = {𝑙𝑎𝑡(𝑡), 𝑙𝑛𝑔(𝑡), 𝐹𝐿(𝑡), 𝐻𝑑𝑔(𝑡), 𝑉𝑔(𝑡), 𝑉𝑧(𝑡), 𝜛(𝑡), 𝜐(𝑡), 𝜁(𝑡), 𝜚(𝑡)}, (1) 
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where 𝜛, 𝜁, 𝜐 and 𝜚 corresponds to the cleared heading, cleared flight level, horizontal speed and cleared 

vertical speed respectively.  

Let us consider an initial sample of trajectories Λ0 = {𝜂1(𝑡),⋯ , 𝜂𝑟(𝑡), ⋯ 𝜂𝑠(𝑡),⋯ 𝜂𝑁(𝑡)}, being N the 

sample size, which have flown through a given airspace. Such a set can be clustered by following Gariel’s 

methodology (Gariel et al., 2011), modified in its last step to include an implementation of RDBSCAN* 

(Verdonk Gallego et al., 2018a), or by any other clustering methodology. The proposed implementation 

allows a robust identification of the major flows within a given dataset. Thus,  Λ0 can be expressed as  

  Λ0 = ⋃λ𝑖0,𝐼
𝑖=1  (2) 

 

where λ𝑖0 corresponds to the major flow i, of a total of I flows. Each airspace flow λ𝑖0 can be decomposed 

into different recurrent patterns by applying again a clustering methodology. Therefore, a major flow 

decomposition can be expressed as: 

 λ𝑖0 = ⋃α𝑖𝑙0𝑝
𝑙=1 . 

 

(3) 

where α𝑖𝑙0  identifies a recurrent flow pattern l within a major flow i. α𝑖𝑙0  could represent diverse pattern 

types, which are enumerated as follows: 

1. A set of trajectories following a standard route (Standard Flow). 

2. A set of trajectories following a recurrent pattern which differs from the standard route (Recurrent 

Pattern). 

3. A set of trajectories which is not classified within categories 1 or 2. 

An example of the outcomes of Gariel’s Methodology and RDBSCAN* is introduced in Figure 2.  
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Figure 2 Main Flows – LECBCCC Sector, Barcelona ATCC and recurrent patterns associated to the main flows. 

For each recurrent pattern α𝑖𝑙0  we can define a set of associated elements which characterises the normal 

horizontal behaviour of a flight within that pattern. Each α𝑖𝑙0  has associated a horizontal central trajectory, 𝓱𝒊𝒍𝟎 . This element is formed by an ordered sequence of latitude-longitude tuples, where two consecutive 

tuples define a segment. Each segment length is bounded and the total horizontal central trajectory length, 𝐿𝑖𝑙 , is equal to the sum of its segment lengths.   

A horizontal central trajectory 𝓱𝒊𝒍𝟎  is associated with a function ℋ which maps the initial state of an aircraft 

to an offset with respect to the starting location of 𝓱𝒊𝒍𝟎 , assuming that the initial segment is linear. The 

domain of the function for the latitude and longitude is limited to the surroundings of the initial point of 𝓱𝒊𝒍𝟎 . Thus, ℋ is defined as: 

 
ℋ: ℝ4 → ℝ (𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑉𝑥, 𝑉𝑦) → ℋ(𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑉𝑥, 𝑉𝑦) 

(4) 

In addition, we can define 𝓱𝒊𝒍𝟎  in terms of its arc-length parameter 𝛾𝑖𝑙 (Delahaye et al., 2014). The origin of 𝓱𝒊𝒍𝟎  is 𝛾𝑖𝑙 =0, and the end point corresponds to 𝛾𝑖𝑙 = 𝐿𝑖𝑙 , therefore, the arc-length parameter space is Γ𝑖𝑙 
This space varies for each recurrent pattern α𝑖𝑙0  , and it ranges from 0 to 𝐿𝑖𝑙 .  
This function computes first the position offset with respect to 𝛾𝑖𝑙 =0, by considering the horizontal 

projection of the initial state (position and velocity) of the trajectory on 𝓱𝒊𝒍𝟎 . Then, ℋ translates the specific 

trajectory arc-length parameter 𝛾 to 𝛾𝑖𝑙, considering the offset previously computed.  This is based on that 

the assumption that the clustering methodology would have identified group of trajectories which a high 

degree of similarity.   

The identification of 𝓱𝒊𝒍𝟎  can be based on the Principal Component Analysis (PCA) decomposition which 

is used in the clustering methodology (see (Gariel et al., 2011)). Thus, the transformed coordinates 

corresponding to the nearest point to the median principal components for a given α𝑖𝑙0  is considered as the 𝓱𝒊𝒍𝟎  of the recurrent pattern.   

Let us assume that the clusterisation step has been able to isolate each recurrent pattern. Thus, the previous 

process can be applied to each trajectory 𝜂𝑟  and then (1) is collapsed to 

 𝜂𝑟( 𝛾𝑖𝑙)~{ 𝛾𝑖𝑙 , 𝑡( 𝛾𝑖𝑙), 𝑉𝑔(𝛾𝑖𝑙), 𝐹𝐿( 𝛾𝑖𝑙), 𝑉𝑧(𝛾𝑖𝑙), 𝜛(𝛾𝑖𝑙), 𝜐(𝛾𝑖𝑙), 𝜁(𝛾𝑖𝑙), 𝜚(𝛾𝑖𝑙)}, (5) 

as there is a bijection between each pair latitude-longitude and the time t. In addition, there is a bijective 

projection between each pair latitude-longitude and the arc-length parameter space, Γ𝑖𝑙. Hence, the 

composition of these two functions provides a bijective relation between  𝛾𝑖𝑙 and 𝑡, specific for each 

trajectory. That relation can be generated for every trajectory in α𝑖𝑙0 , and therefore, characterising them in 

terms of  𝛾𝑖𝑙.  
Once established this common parameter, the next step is to generate a TP tailored to each pattern α𝑖𝑗0 . In 

this paper, the TP objective is to predict the time 𝜏 to overfly a location ( 𝛾𝑖𝑙; 𝑋), where 𝑋 is an input vector 
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accounting for relevant aircraft intrinsic features. The TP’s performance can be characterised as a function 

of  𝛾𝑖𝑙, by observing the distribution of the residuals for the time prediction along 𝓱𝒊𝒍𝟎 .  

Several TP approaches may be applied, such as ML-enhanced point-mass models TP (Alligier et al., 2015, 

2013) or data-driven approaches (Alligier and Gianazza, 2018; de Leege et al., 2013; Tastambekov et al., 

2013). In this work, we apply an Artificial Neural Net (ANN) TP, following previous works in the literature 

(Verdonk Gallego et al., 2018b; Wang et al., 2018).  

The input vector for an ANN associated to α𝑖𝑙0  is formed by 𝛾𝑖𝑙, and a set of relevant features of the trajectory (𝑋). These features may be composed by the Requested Flight Level (RFL), the ground velocity (𝑉𝑔) as 

measured by the ground ATM system, the wake vortex, the aircraft model, the wind speed and direction, 

the pressure, the temperature or any other relevant feature, which will depend on the available data. This 

process is introduced in Figure 3. The output layer corresponds to the predicted time 𝜏. 

 

Figure 3 Artificial Neural Net Predictor for estimating the time (𝜏) of overflying 𝛾𝑖𝑙.  
2.2. Crossing Point Interdependency Definition 

When an aircraft is about to enter an airspace volume, the intention of the ATCo is fuzzily defined, and it 

depends on contextual factors of the trajectory, such as weather or surrounding aircraft. Approaches to 

tackle weather-based factors have been conducted at tactical (Hernandez et al., 2016) and strategic level 

(Ayhan and Samet, 2016; Pang et al., 2019). This paper addresses the interdependency definition for the 

latter case, focusing on the definition of a probabilistic measure for the horizontal time separation of two 

aircraft at a crossing point.    

Each flown trajectory 𝜂𝑟 within a recurrent pattern α𝑖𝑗0  is associated with a flight r. For each flight, a set of 

potential trajectories can be generated when it enters the airspace volume of interest. These potential 

trajectories can be generated by means of the recurrent patterns α𝑖𝑙0  associated to the parent flow λ𝑖0, which 

may fall into the Standard Flow or recurrent pattern categories.  

For example, if a major flow λ𝑖0 has associated three recurrent patterns, {α𝑖𝑙0 , α𝑖𝑚0 , α𝑖𝑛0 } we can introduce a 

set of potential trajectories for each flight:  
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 𝜂𝑟,ĩ = {𝜂𝑟,𝑖𝑙̃ (𝛾𝑖𝑙) , 𝜂𝑟,𝑖�̃�(𝛾𝑖𝑚), 𝜂𝑟,𝑖�̃�(𝛾𝑖𝑛)}, (6) 

Each recurrent pattern, {α𝑖𝑙0 , α𝑖𝑚0 , α𝑖𝑛0 },  has been associated with a horizontal central trajectory, 

(𝓱𝒊𝒍𝟎 , 𝓱𝒊𝒎𝟎 , 𝓱𝒊𝒏𝟎 ), and a trajectory predictor. In addition, the performance of each trajectory predictor is 

characterised along each central trajectory by observing the distribution of the residuals of the overflying 

time predictions for a previous sample as a function of 𝛾𝑖𝑙. 
Now, we can define the predicted time 𝜏 to arrive to a given 𝛾𝑖𝑙  as 𝜏𝑟,𝑖𝑙(𝛾𝑖𝑙) in terms of the residual 

distribution of the specific TP. If we consider now  𝒯𝑟,𝑖𝑙(𝛾𝑖𝑙) as a random variable defined as 

 
𝒯𝑟,𝑖𝑙(𝛾𝑖𝑙): Ω → ℝ 𝒯𝑟,𝑖𝑙(𝛾𝑖𝑙) ~ 𝐴𝑁𝑁𝑖𝑙(𝛾𝑖𝑙; 𝑋) + 𝜀𝑖𝑙(𝛾𝑖𝑙) 

(7) 

where Ω is endowed with a sigma field and probability, we can define the interdependency between two 

aircraft of different major flows λ𝑖0 and λ𝑗0 as follows.  

Let us consider the definition of Critical Point as given by (Histon and Hansman, 2008). Citing this work, 

“a critical point is a point in the airspace with a high concentration of traffic”. Different examples that are 

covered by this definition are crossing points or merge points. This interdependency definition focuses on 

crossing points.  

Let us define a crossing point as the common point between two patterns α𝑖𝑙0  and α𝑗𝑚0  belonging to major 

flows λ𝑖0 and λ𝑗0 respectively. Given two discrete sequences for the arc-length parameters along 𝓱𝒊𝒍𝟎  and 𝓱𝒋𝒎𝟎  respectively, we can identify two sequences of random variables associated to 𝜂𝑟,𝑖𝑙̃  and 𝜂𝑠,𝑗�̃�, given 

by:  

 

𝜂𝑟,𝑖𝑙̃ : {𝒯𝑟,𝑖𝑙(0) , … , 𝒯𝑟,𝑖𝑙(𝛾𝑖𝑙),… , 𝒯𝑟,𝑖𝑙(𝐿𝑖𝑙)} = { 𝒯𝑖𝑙0, … , 𝒯𝑖𝑙𝛾𝑖𝑙 , … 𝒯𝑖𝑙𝐿𝑖𝑙} 𝜂𝑠,𝑗�̃�: {𝒯𝑠,𝑗𝑚(0) , … , 𝒯𝑠,𝑗𝑚(𝛾𝑖𝑙), … , 𝒯𝑠,𝑗𝑚(𝐿𝑖𝑙)} = { 𝒯𝑗𝑚0 , … , 𝒯𝑗𝑚𝛾𝑗𝑚 , … 𝒯𝑗𝑚𝐿𝑗𝑚} 
(8) 

Let us assume that every residual distribution 𝜀𝑖𝑙(𝛾𝑖𝑙) and 𝜀𝑗𝑚(𝛾𝑗𝑚) are normally distributed without bias: 

  

𝜀𝑖𝑙(𝛾𝑖𝑙) = 𝜀𝑖𝑙𝛾𝑖𝑙  ~ 𝑁(0, (𝜎𝑖𝑙𝛾𝑖𝑙)2) 𝜀𝑗𝑚(𝛾𝑗𝑚) = 𝜀𝑗𝑚𝛾𝑗𝑚  ~ 𝑁 (0, (𝜎𝑗𝑚𝛾𝑗𝑚)2) . 
 

(9) 

Then, if we associate the value of  𝐴𝑁𝑁𝑖𝑙(𝛾𝑖𝑙; 𝑋) to the expectation of 𝒯𝑖𝑙𝛾𝑖𝑙, we can identify  𝒯𝑖𝑙𝛾𝑖𝑙 with a 

normal distribution with parameters 𝜇𝑖𝑙𝛾𝑖𝑙 and 𝜎𝑖𝑙𝛾𝑖𝑙: 
 

𝒯𝑖𝑙𝛾𝑖𝑙  ~ 𝑁(𝜇𝑖𝑙𝛾𝑖𝑙 , (𝜎𝑖𝑙𝛾𝑖𝑙)2), 𝜇𝑖𝑙𝛾𝑖𝑙 =  𝐴𝑁𝑁𝑖𝑙(𝛾𝑖𝑙; �⃗�), (10) 

where 𝜎𝑖𝑙𝛾𝑖𝑙 corresponds to the standard deviation of the residuals 𝜀𝑖𝑙𝛾𝑖𝑙. The same logic can be applied for 

each 𝒯𝑗𝑚𝛾𝑗𝑚
.  

Now, we can define a random variable for a given 𝛾𝑖𝑙 and a 𝛾𝑗𝑚 such that the time separation at 𝛾𝑖𝑙 and 𝛾𝑗𝑚,  Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚  , is defined as: 
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 Δ𝒯(𝛾𝑖𝑙 , 𝛾𝑗𝑚) = Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚 = |𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚|. (11) 

As 𝜏𝑖𝑙𝛾𝑖𝑙 and 𝜏𝑗𝑚𝛾𝑗𝑚
 are assumed to be normally distributed, their difference will also be normally distributed. 

This difference can be expressed as 

 𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚~𝑁 (𝜇𝑖𝑙𝛾𝑖𝑙 − 𝜇𝑗𝑚𝛾𝑗𝑚 , (𝜎𝑖𝑙𝛾𝑖𝑙)2 + (𝜎𝑗𝑚𝛾𝑗𝑚)2).  
 

(12) 

A new random variable Z can be defined so that: 

 𝑍 = (𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚) − (𝜇𝑖𝑙𝛾𝑖𝑙 − 𝜇𝑖𝑙𝛾𝑗𝑚)√(𝜎𝑖𝑙𝛾𝑖𝑙)2 + (𝜎𝑗𝑚𝛾𝑗𝑚)2  

 

(13) 

Therefore,  

 

𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚 = 𝜎𝑍 (𝑍 + 𝜇𝑍𝜎𝑍  ) , 𝜇𝑍 = 𝜇𝑖𝑙𝛾𝑖𝑙 − 𝜇𝑗𝑚𝛾𝑖𝑙 , 𝜎𝑍2 = (𝜎𝑖𝑙𝛾𝑖𝑙)2 + (𝜎𝑗𝑚𝛾𝑗𝑚)2. 
 

(14) 

Following the previous equation, the random variable Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚
 may be expressed as: 

 Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚~ |𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚| ~√(𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚)2 = 𝜎𝑍√(𝑍 + 𝜇𝑍𝜎𝑍  )2
 

 

(15) 

Thus, Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚
 corresponds to a scaled version of the square root of a non-central Chi-Squared distribution 

with one degree of freedom, being the non-centrality parameter  𝜆 = (𝜇𝑍𝜎𝑍)2
. The elementary probability of 

such a non-central chi-squared distribution can be expressed as: 

 𝑓(𝑦)𝑑𝑦 = √𝑦√2𝜋 𝑒12(−𝜆−𝑦) cosh(√𝜆𝑦) 𝑑𝑦𝑦 , 𝑦 > 0 (16) 

Substituting y by 𝑧2, then: 

 𝑓(𝑦)𝑑𝑦 = 𝑓(𝑧2)𝑑(𝑧2) = √𝑧2√2𝜋 𝑒12(−𝜆−𝑧2) cosh (√𝜆𝑧2) 𝑑𝑧2𝑧2  (17) 

Simplifying and rescaling by 𝜎𝑍 provides the probability density function (PDF) of Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚
: 

 𝑓Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚 (Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚) = 1𝜎𝑍 √2𝜋 cosh (Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚 ∙ 𝜇𝑍𝜎𝑍2 )𝑒(−(Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚)2+𝜇𝑍22𝜎𝑍2 )
 (18) 

Once this PDF has been obtained, we can derive the interdependency relationship for a crossing point for 

two patterns α𝑖𝑙0  and α𝑗𝑚0 . Figure 4 represents two recurrent patterns and the associated crossing point. α𝑖𝑙0  

is represented in green, whereas α𝑗𝑚0  is represented in orange. We can compute the relative distance between 

two aircraft if they were at 𝛾𝑖𝑙 and 𝛾𝑗𝑚 respectively, for any combination of 𝛾𝑖𝑙 and 𝛾𝑗𝑚. Let us declare a 

function D to define this distance:  
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𝐷𝑖𝑙,𝑗𝑚: ℝ 𝑥 ℝ → ℝ 𝐷𝑖𝑙,𝑗𝑚(𝛾𝑖𝑙 , 𝛾𝑗𝑚) = 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(ℋ𝑖𝑙−1(𝛾𝑖𝑙),ℋ𝑗𝑚−1(𝛾𝑗𝑚), 𝛾𝑖𝑙  𝜖 [0, 𝐿𝑖𝑙], 𝛾𝑗𝑚 𝜖 [0, 𝐿𝑗𝑚] (19) 

We can obtain  𝛾𝑖𝑙𝐶𝑃 and 𝛾𝑗𝑚𝐶𝑃 such that 𝐷𝑖𝑙,𝑗𝑚(𝛾𝑖𝑙𝐶𝑃 , 𝛾𝑗𝑚𝐶𝑃) = 0. We can also obtain all the combinations 

of  𝛾𝑖𝑙 and 𝛾𝑗𝑚 such that 𝐷𝑖𝑙,𝑗𝑚(𝛾𝑖𝑙 , 𝛾𝑗𝑚) is below a given threshold.  

 

Figure 4 Schematic representation of two recurrent patterns and a crossing point 

Following (Histon and Hansman, 2008)’s approach of only focusing on critical points, if we consider now 𝛾𝑖𝑙𝐶𝑃 and 𝛾𝑗𝑚𝐶𝑃, we can observe that  Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙𝐶𝑃,𝛾𝑗𝑚𝐶𝑃
 only approximates zero if  𝛾𝑖𝑙𝐶𝑃~𝛾𝑗𝑚𝐶𝑃, assuming 

similar aircraft dynamics for both patterns. In any other case, it is necessary to conduct a translation over 

one or both flows (an offset), to find the arc-length reference value that enables  𝛾𝑖𝑙𝐶𝑃~𝛾𝑗𝑚𝐶𝑃. If we 

introduce now 𝛾𝑗𝑚∗ = 𝛾𝑗𝑚 − 𝛾𝑗𝑚𝑜𝑓𝑓𝑠𝑒𝑡 , then we can redefine  

 𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚∗~𝑁 (𝜇𝑖𝑙𝛾𝑖𝑙 − 𝜇𝑗𝑚𝛾𝑗𝑚 + 𝜇𝑗𝑚𝛾𝑗𝑚𝑜𝑓𝑓𝑠𝑒𝑡 , (𝜎𝑖𝑙𝛾𝑖𝑙)2 + (𝜎𝑗𝑚𝛾𝑗𝑚)2 + (𝜎𝑗𝑚𝛾𝑗𝑚𝑜𝑓𝑓𝑠𝑒𝑡)2),  
 

(20) 

, and then  
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𝑓Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗ (Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗) = 1𝜎𝑍∗ √2𝜋 cosh(Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗ ∙ 𝜇𝑍∗𝜎𝑍∗2 )𝑒−((Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗)2+𝜇𝑍∗2)2𝜎𝑍∗2
 

𝜇𝑍∗ = 𝜇𝑖𝑙𝛾𝑖𝑙 − 𝜇𝑗𝑚𝛾𝑗𝑚 + 𝜇𝑗𝑚𝛾𝑗𝑚𝑜𝑓𝑓𝑠𝑒𝑡
 

𝜎𝑍∗2 = (𝜎𝑖𝑙𝛾𝑖𝑙)2 + (𝜎𝑗𝑚𝛾𝑗𝑚)2 + (𝜎𝑗𝑚𝛾𝑗𝑚𝑜𝑓𝑓𝑠𝑒𝑡)2
 

 

(21) 

Then, for each pair of potential trajectories  𝜂𝑟,𝑖𝑙̃  and 𝜂𝑠,𝑗�̃�, we can define their horizontal interdependency 

in terms of time and distance. Thus, we can measure the probability of these two aircraft arriving to 𝛾𝑖𝑙 and 𝛾𝑗𝑚∗ within a time separation of Δ𝑡𝑇ℎ𝑟𝑒𝑠 seconds if they were following patterns α𝑖𝑙0  and α𝑗𝑚0 .  

 

𝐼(Δ𝑡, 𝛾𝑖𝑙 , 𝛾𝑗𝑚∗) = 𝑃 (Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗ ≤ Δ𝑡|𝛾𝑖𝑙 , 𝛾𝑗𝑚∗) = ∫ (𝑓Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗)𝑑(Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗)Δ𝑡𝑇ℎ𝑟𝑒𝑠−∞= ∫ 𝑓Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗𝑑(Δτ𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚∗)Δ𝑡𝑇ℎ𝑟𝑒𝑠0= 12 (erf (Δ𝑡𝑇ℎ𝑟𝑒𝑠 − 𝜇𝑍∗√2𝜎𝑍∗ ) + erf (Δ𝑡𝑇ℎ𝑟𝑒𝑠 + 𝜇𝑍∗√2𝜎𝑍∗ )), 
 
 

(22) 

where 𝑒𝑟𝑓 is the function error. The interdependency calculation may be generalised for the set of 𝛾𝑖𝑙 and 𝛾𝑗𝑚∗ so that 𝐷𝑖𝑙,𝑗𝑚(𝛾𝑖𝑙 , 𝛾𝑗𝑚∗ ) ≤ 𝐷𝐻. So, if the intervals for both arc-length parameters that meet that 

conditions are [𝛾𝑖𝑙𝑚𝑖𝑛 , 𝛾𝑖𝑙𝑚𝑎𝑥] and [𝛾𝑗𝑚𝑚𝑖𝑛 , 𝛾𝑗𝑚𝑚𝑎𝑥], the generalised horizontal spatiotemporal 

interdependency measure for two aircraft r and s will be defined as: 

 

ΠΔ𝑡𝑇ℎ𝑟𝑒𝑠,𝐷𝐻𝑖𝑙,𝑗𝑚 (𝛾𝑖𝑙𝑚𝑖𝑛 , 𝛾𝑖𝑙𝑚𝑎𝑥 , 𝛾𝑗𝑚∗,𝑚𝑖𝑛 , 𝛾𝑗𝑚∗,𝑚𝑎𝑥) = 1𝐵(𝛾𝑖𝑙𝑚𝑖𝑛 , 𝛾𝑖𝑙𝑚𝑎𝑥 , 𝛾𝑗𝑚∗,𝑚𝑖𝑛 , 𝛾𝑗𝑚∗,𝑚𝑎𝑥) · 
∫ ∫ 𝑏𝑖𝑛(𝛾𝑖𝑙 , 𝛾𝑗𝑚∗, 𝐷𝐻) · 𝐼(Δ𝑡𝑇ℎ𝑟𝑒𝑠 , 𝛾𝑖𝑙 , 𝛾𝑗𝑚∗)𝑑𝛾𝑖𝑙𝑑𝛾𝑖𝑙𝑚𝑎𝑥

𝛾𝑖𝑙𝑚𝑖𝑛
𝛾𝑗𝑚∗,𝑚𝑎𝑥

𝛾𝑗𝑚∗,𝑚𝑖𝑛 𝛾𝑗𝑚∗ 

 

(23) 

Where 𝑏𝑖𝑛(𝛾𝑖𝑙 , 𝛾𝑗𝑚∗, 𝐷𝐻) is a binary function which equals 1 or 0 depending on whether  𝐷𝑖𝑙,𝑗𝑚(𝛾𝑖𝑙 , 𝛾𝑗𝑚∗ ) ≤ 𝐷𝐻  or not, whereas 𝐵(𝛾𝑖𝑙𝑚𝑖𝑛 , 𝛾𝑖𝑙𝑚𝑎𝑥 , 𝛾𝑗𝑚∗,𝑚𝑖𝑛 , 𝛾𝑗𝑚∗,𝑚𝑎𝑥) is the sum of 𝑏𝑖𝑛(𝛾𝑖𝑙 , 𝛾𝑗𝑚∗, 𝐷𝐻) over the intervals [𝛾𝑖𝑙𝑚𝑖𝑛 , 𝛾𝑖𝑙𝑚𝑎𝑥] and [𝛾𝑗𝑚𝑚𝑖𝑛 , 𝛾𝑗𝑚𝑚𝑎𝑥]. The introduction of these two 

functions is for guaranteeing that Π𝐻 is defined between 0 and 1, as there may be values of  𝛾𝑖𝑙 and 𝛾𝑗𝑚∗ 

within those intervals for which 𝑏𝑖𝑛(𝛾𝑖𝑙 , 𝛾𝑗𝑚∗, 𝐷𝐻) equal 0.  

2.3. Interdependency Determination for two flights  

Now, if we have two flights (r and s) associated to major flows λ𝑖0 and λ𝑗0 respectively, we can generate 

their expected trajectories for the recurrent patterns. Following Eq. (6), expected trajectories for aircraft r 

and s would be defined by 𝜂𝑟,ĩ and 𝜂𝑠,j̃ respectively.  

Then, we can obtain the arc-length parameter intervals for which the distance between the pair of aircraft 

would be less than a given threshold for each combination of recurrent patterns {α𝑖𝑙0 , α𝑗𝑚0 }. Thus, given Δ𝑡 
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and 𝐷𝐻 , it can be obtained a probability measure for the horizontal interdependency, ΠΔ𝑡,𝐷𝐻𝑖𝑙,𝑗𝑚
, for each 

combination of expected trajectories 𝜂𝑟,𝑖𝑙̃  and 𝜂𝑠,𝑗�̃�. 
Now, for each pair of flights, if λ𝑖0 and λ𝑗0 can be decomposed in p and o recurrent patterns respectively, we 

can define a horizontal interdependency matrix (HIM), 

 𝐻𝐼𝑀𝑟,𝑠 =
[  
   ΠΔ𝑡,𝐷𝐻𝑖1,𝑗1 ⋯ ⋯ ⋯ ΠΔ𝑡,𝐷𝐻𝑖1,𝑗𝑜⋮ ⋱ ⋮ ⋮ ⋮ΠΔ𝑡,𝐷𝐻𝑖𝑙,𝑗1 ⋮ ΠΔ𝑡,𝐷𝐻𝑖𝑙,𝑗𝑚 ⋮ ΠΔ𝑡,𝐷𝐻𝑖𝑙,𝑗𝑜⋮ ⋮ ⋮ ⋱ ⋮ΠΔ𝑡,𝐷𝐻𝑖𝑝,𝑗1 ⋯ ⋯ ⋯ ΠΔ𝑡,𝐷𝐻𝑖𝑝,𝑗𝑜 ]  

   . (24) 

Figure 5 introduces a schematic representation of this process. If we identify  λ10 with the flow represented 

in green and λ20 with the orange one, we can identify two {α110 , α120 } and three {α210 , α220 , α230 } associated 

recurrent patterns. Each of these patterns has a horizontal TP associated, with an associated residual 

distribution as a function of its arc-length parameter.  

 

Figure 5 Process for the generation of the Horizontal Interdependency Matrix 

Assuming the total length of the recurrent patterns associated to λ20 to be larger than those associated to λ10, 

when an aircraft r, represented in green, enters the volume of interest, a potential interdependent aircraft s 

represented in orange and associated to λ20, would be already at a given offset position 𝛾2𝑚𝑜𝑓𝑓𝑠𝑒𝑡 . Then, for 

computing the horizontal interdependency matrix, this aircraft has to be translated backwards along its 

actual recurrent pattern, to identify the initial and offset positions of that aircraft for the other expected 

trajectories associated to λ20.  

The horizontal and temporal dimensions of a potential conflict are gathered in the horizontal 

interdependency matrix. When any of those values is larger than a given threshold, it implies that those 

trajectories are operationally constrained. For the sake of simplicity, this paper will consider from now on 
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that two aircraft are horizontally interdependent if any value of their horizontal interdependency matrix is 

larger than a given threshold.  𝐻𝐼𝑀𝑟,𝑠 will define how two aircraft r and s are constrained horizontally and temporally. However, a 

potential conflict between two aircraft is defined in three dimensions: horizontal distance; time separation; 

and, finally, a vertical distance. Therefore, an additional vertical distance between two aircraft has to be 

also defined, depending on their vertical regimes at the crossing point.   

2.4. Vertical Trajectory Specification 

Once the interdependency between two aircraft has been modelled, the methodology addresses trajectory 

vertical profiles. This paper focuses on the modelling of the trajectory vertical profile in the airspace volume 

where the aircraft starts its descent. This vertical profile can be defined in terms of two segments, one 

depending on the position of the TOD and another one targeting the descent itself.  

The aircraft flight level can be similarly expressed in terms of the arc-length parameter, following (5). The 

main difference with the horizontal component is that 𝑉𝑧(𝛾𝑖𝑙) can be zero. For modelling the descent 

profile, we can transform the FL component to: 

 𝜌(𝛾) = 𝑅𝐹𝐿 − 𝐹𝐿(𝛾) (25) 

Now, we can establish a relation between 𝜌 and t.  𝜌(𝛾) equals 0 whenever the 𝐹𝐿(𝛾) corresponds to the 

RFL. In this paper, we assume that the TOD location of the trajectory, 𝛾𝑇𝑜𝑑,  corresponds to the last value 

of 𝛾 that meets such condition. Therefore, we can identify the time to descend 𝜌 FLs since the aircraft 

entered the airspace volume of interest as: 

 
𝑡(𝜌(𝛾), 𝛾𝑇𝑜𝑑  ) = 𝜃(𝜌(𝛾)) + 𝑡(𝛾𝑇𝑜𝑑)  𝛾 ≥ 𝛾𝑇𝑜𝑑;  𝜌(𝛾) ≥ 0 

(26) 

This function is only defined for horizontal arc-length parameters larger than 𝛾𝑇𝑜𝑑. 𝜃 reflects the time since 

the aircraft started to descend. Therefore, we divide the vertical profile of the trajectory along the airspace 

volume of interest in two phases, the cruise one as a function of 𝛾𝑇𝑜𝑑  , and the descent phase, depending on 𝜌. Now, if we consider a pattern α𝑖𝑙0 , we can define a new random variable  𝑇𝑖𝑙𝜌,𝛾𝑇𝑜𝑑  which characterises the 

time that the aircraft will take to descend 𝜌 flight levels since the aircraft entered the airspace volume of 

interest, depending on the location of the TOD.  

If now we want to remove the dependency with the location of the TOD, we need to marginalise this random 

variable over 𝛾𝑇𝑜𝑑 to obtain an expression for 𝑇𝑖𝑙𝜌. If we identify a potential TOD location as 𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙𝑘, 

we can define  𝑇𝑖𝑙𝜌,𝛾𝑘 as 

 𝑇𝑖𝑙𝜌,𝛾𝑘(𝜌, 𝛾𝑖𝑙𝑘)~𝒯𝑖𝑙𝛾𝑘 + Θ𝑖𝑙(𝜌|𝛾𝑖𝑙𝑘) 
 

(27) 

If we now follow the approach defined in (10), this equation is transformed to: 

 𝑇𝑖𝑙𝜌,𝛾𝑘(𝜌, 𝛾𝑖𝑙𝑘 )~𝑁 (𝜇𝑖𝑙𝛾𝑖𝑙𝑘 , (𝜎𝑖𝑙𝛾𝑖𝑙𝑘)2) + Θ𝑖𝑙(𝜌, 𝛾𝑖𝑙𝑘) 

 

(28) 



15 

 

If we assume that Θ𝑖𝑙(𝜌, 𝛾𝑖𝑙𝑘) can be treated similarly to the horizontal approach described in the previous 

section, we can define 

 Θ𝑖𝑙(𝜌, 𝛾𝑖𝑙𝑘)~𝑁(𝜇𝜃𝜌, 𝛾𝑘 , (𝜎𝜃𝜌, 𝛾𝑘)2) (29) 

Then, if we marginalise over 𝛾𝑖𝑙𝑘 and we consider a discrete set of 𝛾𝑖𝑙𝑘 values, of size K, then 

 𝑇𝑖𝑙𝜌~ ∑[𝑃(𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙𝑘)  ∙ 𝑇𝑖𝑙𝜌,𝛾𝑘(𝑡;  𝜌, 𝛾𝑖𝑙𝑘 )]𝑘  

 

(30) 

Then, the PDF 𝑓𝑇𝑖𝑙𝜌 of 𝑇𝑖𝑙𝜌 is defined as:  

 𝑓𝑇𝑖𝑙𝜌~ ∑[𝑃(𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙𝑘)  ∙ [𝑓𝒯𝑖𝑙𝛾𝑖𝑙𝑘 + 𝑓Θ𝑖𝑙𝜌,𝛾𝑖𝑙𝑘 ]𝑘 ] 
 

(31) 

Eq. (31) defines 𝑓𝑇𝑖𝑙𝜌 as a mixture of gaussian distributions which depends on the distribution of the TOD 

location along the trajectory. An illustration describing Eq. (31) is introduced in Figure 6. 

 

Figure 6 Description of the pdf of 𝑇𝑖𝑙𝜌=150
 

Figure 6 represents schematically different evolution profiles depending on the position of the TOD. The 

blue profile represents a descent starting at  𝛾𝑖𝑙𝑇𝑂𝐷 = 10 NM, the green profile describes it in the case it 

started descending at 40 NM, whereas the orange one represents the case when it starts at 80NM. The 

associated PDF functions are represented over the time axis (in vertical) for easing the interpretation of the 

figure, although they should be represented in a third dimension.  These PDFs are modulated depending on 

the probability assigned to the different TOD locations, with the orange case being more frequent than the 

other two. 𝑓𝑇𝑖𝑙𝜌(𝜌 = 150𝐹𝐿 ) is represented as a dashed line generated after the composition of the three 

PDFs.   

𝜌 

t

𝑓Θ𝑖𝑙150 ,𝛾𝑖𝑙80  𝑓Θ𝑖𝑙150 ,𝛾𝑖𝑙40  𝑓Θ𝑖𝑙150 ,𝛾𝑖𝑙10  

150 FL

𝑃(𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙10) ·

𝑃(𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙40) ·

𝑃(𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙80) ·

𝑓𝑇𝑖𝑙𝑉(𝑡;  𝜌 = 150 )~ ∑𝑃(𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙𝑘)  ∙ [𝑓𝒯𝑖𝑙𝛾 𝑖𝑙𝑘 + 𝑓Θ𝑖𝑙150 ,𝛾𝑖𝑙𝑘 ]𝑘  

𝐸[𝒯𝑖𝑙𝛾𝑖𝑙10

] 

𝐸[𝒯𝑖𝑙𝛾𝑖𝑙40

] 

𝐸[𝒯𝑖𝑙𝛾𝑖𝑙80

] 
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2.5. Contextual factors impacting on the Trajectory Vertical Profile.  

Previous works (Verdonk Gallego et al., 2018b) demonstrated that Θ depends on the RFL, 𝑉𝐺, the flow λ𝑖0 

and the location of the TOD, among other variables. In that work, the TOD location was assumed to be 

known. In this work, we explore further the characterisation of the TOD location. In this analysis, we will 

try to determine if the interdependency measure (see Section 2.3) could be considered for determining the 

TOD position.  

The hypothesis we are testing is that if we have two aircraft r and s associated to different major flows, the 

location of the TOD is independent of the interdependency between them or not,  

 𝑃(𝛾𝑖𝑙𝑇𝑂𝐷| �̅�𝑟 , FL𝑗𝑚𝑠  , 𝐻𝐼𝑀𝑟,𝑠) = 𝑃(𝛾𝑖𝑙𝑇𝑂𝐷; �̅�𝑟) 
 

(32) 

where we assume that the vertical interdependency is a function of the FL of another aircraft. �̅� is indicative 

of the intrinsic features of the aircraft belonging to the recurrent pattern α𝑖𝑙0 . 

A qualitative visual exploration of the location of the TOD will be conducted, together with an impact 

analysis on the trajectory vertical profile. In addition, a Chi-squared test will be carried out to evaluate this 

dependency. Once this dependency has been found or not, trajectory predictors for the vertical profile will 

be generated as described in (31). The vertical trajectory predictor for  Θ𝑖𝑙  will be defined as an Artificial 

Neural Network analogously to the horizontal one, as described in Eq. (9) and Eq. (10).  

3. Results 

3.1. Dataset 

A couple of datasets corresponding to the sector Central (LECBCCC) within the Barcelona ATC Centre in 

Spain are used in this study. The sector of interest corresponds to an en-route sector with evolution and 

cruise traffic, presented in Figure 7. The figure includes the route structure and relevant designated 

waypoints for the work carried out in this paper. Starting from the top-left of the chart and moving 

clockwise, these waypoints are PUMAL, NILDU, MAMES and LORES. Relevant navigation infrastructure 

points are also indicated (BGR, GIR, SSL and BCN). The most relevant route structures are from PUMAL 

to BCN (UN859), from BCN to LORES (UZ167), from PUMAL to LORES (UN13) and from BGR to 

BCN (UN975). UN13 was only activated after 2015 summer, so it was not defined for the period covered 

for the dataset.  

The data include track and ATC operational data. This dataset has been already used in (Verdonk Gallego 

et al., 2018b). The training dataset corresponds to four summer months of 2014, whereas the testing dataset 

covers two spring months of 2015. 

Flown trajectories are expressed following Eq. (3). Raw track data are reported every 4.8s, where each 

register is composed by latitude and longitude in WGS84 coordinates, pressure altitude in hundreds of feet 

as measured by the aircraft Mode C transponder, heading, ground velocity in knots and the rate of climb of 

descent in ft/min. These data are correlated with the operational state of the aircraft as recorded in the ATC 

operational data. The datasets do not include weather or flight plan data.  
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Figure 7 LECBCCC Sector - Barcelona Air Traffic Control Sector. (ENAIRE, 2016) 
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3.2. Expected Trajectories based on Observed Traffic 

The first step is the extraction of the major flows λ𝑖0 and recurrent patterns α𝑖𝑙0  associated to them. Figure 8 

illustrates both steps for the datasets of interest. The major flows are represented on the left-hand overlaying 

the sector represented in Figure 7. The major flows can be associated with the standard routes of the sector.  

The right-hand side of Figure 8 corresponds to the recurrent patterns extracted from two major airspace 

flows. The first major flow, λ10 from now on, corresponds to a North-South traffic flow flying from PUMAL 

to LORES. This flow corresponds to evolution traffic towards Palma de Majorca airport, with ICAO code 

LEPA. The second major flow, λ20, corresponds to an East-West cruise flow. Flights within λ20 usually enter 

the sector via MAMES and exit it via BCN.  

 

Figure 8 Major flows and recurrent patterns. The recurrent patterns illustrated in green correspond to the PUMAL-

LORES major flow, flying North-South, with destination LEPA. The recurrent pattern illustrated in orange corresponds 

to the MAMES-BCN flow, flying East-West in a cruise state.  

Following Eq. (7), and based on previous results (Verdonk Gallego et al., 2018b), ANN TPs were trained 

with interpolated data generated every 1NM along the trajectory. Additionally, the feature vector (𝑋) 

included the RFL, 𝑉𝑔 when the aircraft entered the sector, and finally, the wake vortex of the aircraft (Light, 

Medium, Heavy or Jumbo). The output data was provided in seconds.  

The aircraft model is a relevant feature for the trajectory prediction. However, the aircraft population of the 

sample was not homogenous, being largely dominated by Airbus A320 and Boeing B737-800. Other 

aircraft were less representative, and to prevent not having a representative population for every aircraft 

model, it was decided to convey the aircraft model feature into the wake vortex of the aircraft.  

The ANNs were formed by one input layer, one 10-neuron hidden layer and an output layer. The activation 

functions of the hidden neurons are sigmoid functions. The output neuron has a linear activation function. 



19 

 

Inputs and outputs are subject to a normalisation process which maps them between -1 and 1. The training 

dataset is further divided in three separate groups for training, validation (to prevent overfitting) and testing. 

The percentages associated to each category were 70%, 15% and 15% respectively.  

Equations (8), (9) and (10) assumed that the TP residuals were normally distributed. Figure 9 illustrates the 

behaviour of the residuals (see Eq. (9)) as a function of the arc-length parameters for the sample 

corresponding to the training dataset. Figure 9 illustrates the evolution of the residuals for 𝛼110 . This 

recurrent pattern corresponds to the standard route associated to the major flow λ10, with a total-length 𝐿11 

of 119 NM. The X-axis corresponds to the arc-length parameter (𝛾11), in NM, whereas the Y-axis 

corresponds to the residuals of the prediction in seconds. The boxes along the X-axis group the 50% of the 

residuals for the corresponding arc-length parameter. The bottom and top edges of the boxes represent the 

25th and 75th percentiles respectively. The whiskers cover 1.5 times the interquartile range previously 

defined.  

Figure 10 represents the distribution of the residuals for three different arc-length values (30NM, 60NM 

and 90NM). The horizontal axis represents the residuals in seconds while the vertical one represents the 

probability density. The residuals were fitted to normal distributions (continuous lines).  

 

Figure 9 Residuals for the ANN associated to the standard route associated corresponding to the flow Pumal-Lores 

(𝛼110 ) along 𝛾11.   
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Figure 10 Residuals distribution for different values of 𝛾11 for the standard route associated to the flow Pumal-Lores 

(𝛼110 ). The red series correspond to 𝛾11 = 30 NM, blue series correspond to 𝛾11 = 60 NM and green series correspond 

to 𝛾11 = 90 NM 

Table I includes the mean and Root Mean Squared Error (RMSE) values for selected values of 𝛾11. The 

table introduces the performance of the predictor for the training and testing datasets. It can be observed 

that the bias present in the residuals is concentrated around zero, meanwhile the RMSE grows with 𝛾11. 

The testing RMSE values are similar to the training ones.    

Table I Trajectory predictor performance as a function of the mean error and the Root Mean Squared Error (RMSE) 

of the residuals for different values of 𝛾11 for the standard route associated to the flow Pumal-Lores (𝛼110 ).  

Dataset Metric 15NM 30NM 45NM 60NM 75NM 90NM 

Training 

 

Mean 

Error [s] 

0.51 0.01 0.27 -0.17 -0.02 0.11 

RMSE [s] 1.59 3.23 5.11 7.31 9.67 13.92 

Testing 

 

Mean 

Error [s] 

0.65 1.02 1.34 0.985 0.135 -1.62 

RMSE [s] 1.77 3.50 5.40 7.65 10.17 14.43 

 

The normality assumption may be sensed observing Figure 10. Chi-Square goodness of fit tests have been 

carried out, rejecting the normality assumption. Figure 11 shows a QQ-plot to identify reasons for the 

normality assumption rejection. The case presented corresponds to α110 . and γ11 = 60 NM. It can be 

observed that the behaviour corresponds to a normal distribution between the standard normal quantiles -2 

and 2, and that the distribution is heavy tailed. It means that the residuals are showing more extreme values 

than expected by the normal distribution. The impact of this result will be further discussed in the Section 

4. 

The normality assumption is therefore partially accepted, as the bulk of residual values can be modelled as 

normal distributions. The next section analyses the interdependency definition results for these two 

recurrent patterns.  
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Figure 11 QQ-plot for 𝛾11 = 60 NM, corresponding to the recurrent pattern 𝛼110 . 

3.3. Crossing Point Interdependency Definition Results 

Eq. (11) introduced a probabilistic definition of the time separation with which two aircraft would have 

arrived at  𝛾𝑖𝑙 and 𝛾𝑗𝑚 if they were flying following 𝛼𝑖𝑙0  and 𝛼𝑗𝑚0  respectively. In addition, different recurrent 

patterns may have different lengths, and also aircraft do not enter the sector synchronously. Eq. (21) 

introduced an offset along one of the routes for considering for these two factors.    

Figure 12 illustrates the impact of this offset on the actual time separation of two aircraft arriving at 𝛾11 =64 NM and 𝛾21 = 94 NM respectively, where the offset is assigned to the major flow λ20. These arc-length 

parameters correspond to the crossing point of these two recurrent patterns. Histograms along the actual 

time separation dimension were generated for different offset values. The Z-axis represents the associated 

probability density for these histograms. Only the offset interval (0,35] NM is presented for the sake of 

clarity in the figure. The training sample has been used to generate this figure. 

 



22 

 

Figure 12 Actual Difference Time Values at the Crossing Point 

It is observed that the actual separation values (Δt11,2164,94
) are spread over the temporal dimension. The values 

tend to concentrate around zero when 𝛾21𝑜𝑓𝑓𝑠𝑒𝑡  tends to 35NM. However, it is also observed that there are 

values of 𝑓Δt11,2164,94(0) larger than zero for 𝛾21𝑜𝑓𝑓𝑠𝑒𝑡 = 25 NM and for 𝛾21𝑜𝑓𝑓𝑠𝑒𝑡 = 30 NM.  

Figure 13 represents the theoretical PDFs as derived from Eq. (21). Four pairs of aircraft corresponding to 

the testing sample are studied for 𝛾11 = 64 NM and 𝛾21 = 94 NM. Theoretical 𝑓Δ𝒯11,2164,94−𝛾21𝑜𝑓𝑓𝑠𝑒𝑡  values are 

generated considering  Δτ and 𝛾21𝑜𝑓𝑓𝑠𝑒𝑡  as parameters. Mean and standard deviations to be used in Eq. (21) 

are computed based on the residuals of the training sample. 

The PDF magnitude is represented by means of a colourmap, which is shared among the four figures. The 

purple boxes in each figure represent the actual time separation values, Δt, which correspond to the actual 

offset value of the aircraft belonging to λ20.  

 

Figure 13 Probability Density Function of the predicted time separation for four different cases. The purple box in 

each subplot is indicative of the actual time separation and the actual offset. 

Each figure title depends on the predicted times 𝜏1164 and 𝜏2194 for arriving at those locations. It can be 

observed how the critical predicted offset values ( Δτ  = 0 sec) range from 32 NM to 40 NM depending on 

the dynamics of involved aircraft. It is observed that actual values fall within high 𝑓Δ𝒯11,2164,94−𝛾21𝑜𝑓𝑓𝑠𝑒𝑡  values 

for the four cases. 

These four cases are illustrative of the results derived from Eq. (21). However, these four cases may not be 

representative of the whole sample. Figure 14 plots the residuals of the predicted time separation as a 

function of the actual time separation for those pairs of aircraft that flew following these recurrent patterns 

for the training sample. The critical cases (potential conflicts) would be those where the actual values are 

below the temporal threshold (120 s). The horizontal dotted lines represent 1σ, 2σ and 3σ of the residuals. 

It can be observed that there is not a relation between the actual time separation and the residuals. This 
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prediction is carried out between 8 and 10 minutes before arriving to the crossing point. The RMSE for the 

testing sample was 18.65s.  

 

Figure 14 Residual distributions as a function of the actual time separation. Different colours represent different offset 

values. 

3.4. Horizontal Interdependency 

Eq. (23) provided a measure of the horizontal interdependency between two aircraft r and s. The measure 

was function of a time separation threshold (Δ𝑡𝑇ℎ𝑟𝑒𝑠) and a horizontal distance threshold (𝐷𝐻).  

The interdependency measure answers in a quantitative manner the following question: what is the 

probability that two aircraft arrive at given locations so that their relative distance is equal or below 𝐷𝐻  

with a time separation of 𝛥𝑡𝑇ℎ𝑟𝑒𝑠 or below?  

For the sake of simplicity, results demonstrating Eq. (23) are illustrated by means of a series of figures. 

Figure 15 illustrates a case of two aircraft following the recurrent patterns 𝛼110  (green) and 𝛼210  (orange) 

respectively, including four charts. The top-left chart provides a representation of the horizontal projection 

of the actual trajectories for both aircraft.  

The top-right chart illustrates the relative distance 𝐷11,21 between them as a function of time. The relative 

distance is plotted in black, with reference to the left-hand vertical axis. The time reference is the timestamp 

corresponding to the first registered track of the aircraft which corresponds to 𝛼110 . This chart also includes 𝛾11 and 𝛾21 as a function of the time, corresponding to the right-hand side Y-axis. Finally, there are two 

additional reference lines, dashed and plotted in black. The horizontal reference line indicates the horizontal 

separation minima distance (5NM), with respect to the left-hand side Y-axis. The vertical reference line 

corresponds to the timestamp when the two aircraft were at their minimum distance.  
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The bottom-right chart characterises the vertical evolution of both aircraft along time. The X-axes of both 

charts on the right-hand side represent the same temporal data. The left Y-axis shows the FL in hundreds 

of feet, whereas the right-hand side shows again  𝛾11 and 𝛾21.  

Finally, the bottom-left chart represents ΠΔ𝑡𝑇ℎ𝑟𝑒𝑠,𝐷𝐻11,21
 for diverse values of 𝐷𝐻  (horizontal-axis) and Δ𝑡𝑇ℎ𝑟𝑒𝑠 

(vertical axis). Actual values are represented through a colourmap, which can be observed on the right-

hand side on that chart.  

 

 

Figure 15 Horizontal Interdependency Measure. Case of Study 1. 

The case illustrated in the Figure 15 was selected based on the values of ΠΔ𝑡𝑇ℎ𝑟𝑒𝑠,𝐷𝐻11,21
. The interdependency 

values were computed when the aircraft corresponding to 𝛼110  (green) entered the sector. Then, a set of 

highly interdependent pairs of aircraft were identified without a prior analysis of actual horizontal and 

vertical trajectory profiles.   

In this particular case, it can be observed that the metric provided a 100% certainty that the aircraft were 

going to be within a 2-minute temporal distance of losing horizontal separation. It can be observed that the 

actual distance fell below 5NM. If we observe the interdependency plot per row, the bottom one (Δ𝑡𝑇ℎ𝑟𝑒𝑠= 

30s) reflects a low probability of being in that situation, although it grows with 𝐷𝐻  (darker greens). If we 

analyse the same plot per column, from bottom to top, the interdependency values show a faster increasing 

rate for lower values of 𝐷𝐻 . The reason behind this behaviour is that there are fewer discrete values of  𝛾11 

and 𝛾21 that meet a restrictive 𝐷𝐻  condition. When Δ𝑡𝑇ℎ𝑟𝑒𝑠 is relaxed and the integrand values increase, 

these pairs have a greater weighting than those that have relaxed conditions of 𝐷𝐻 . 

An interdependence between a pair of aircraft has three dimensions: the horizontal distance; the vertical 

distance; and the temporal distance. Figure 15 shows that the horizontal and temporal distance were 

expected to be infringed and were actually infringed. Therefore, the conflict should have being prevented 

by the ATCo by acting on the vertical layer.  
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The vertical evolution plot (bottom-right corner) reflects a special condition of these two recurrent patterns. 

The normal TOD location of the North-South flow is located around the crossing point. Although these two 

aircraft were not initially expected to lose vertical separation (the evolving one is flying at RFL390 and the 

cruise one is flying at RFL350), both aircraft were operationally conflicting, as the cruise flight was 

restricting the descent phase of the other aircraft. Thus, the evolving aircraft was first cleared to FL360, and 

then, once the relative distance between them started increasing again, it was further cleared to continue 

the descent.  

Appendix I details three additional cases for further discussion about the interdependency measure (Figure 

26, Figure 27, Figure 28). Those cases are not discussed within the current section for easing the readability 

of the paper. The observation of these four cases outlined that these aircraft were in operational vertical 

conflicts, as the cruise flow restricted the descent of the evolution one. Consequently, the vertical 

interdependence between these two major flows was defined by establishing that, if the RFL of the evolving 

flight matched or was larger than the RFL of the cruise flight, both aircraft were vertically interdependent.  

3.5. Interdependence Effect on TOD Locations 

Summing up the previous sections, two aircraft r and s were expected to be in a horizontal conflict if their 𝐻𝐼𝑀𝑟,𝑠, following Eq. (24), had any of its components above a given threshold. The 𝐻𝐼𝑀𝑟,𝑠 values were 

calculated when the 𝛼110  flight entered the sector.  

For this study, the parameters Δ𝑡𝑇ℎ𝑟𝑒𝑠 and 𝐷𝐻  were set to 120s and 5NM respectively. These two choices 

were based upon two operational premises. The Short-Term Conflict Alert (STCA) look-ahead time (LAT) 

varies from 90 seconds to 120 seconds depending on the operational environment. In this Spanish en-route 

airspace is set to 120 seconds. The horizontal threshold corresponds to the horizontal separation minima 

for en-route airspaces. After the discussion of the previous section, it was decided to establish the HIM 

threshold at a 95% level. Finally, the vertical interdependence condition included operational conflicts, 

depending on whether there were restrictions on the evolution flights or not. 

Eq. (31) modelled the trajectory vertical profile as function of the TOD location. It was observed in Figure 

15 and Figure 26-Figure 28 that conflicting scenarios impacted on the TOD locations for these specific 

cases. Figure 17 shows the generalisation of this analysis for the training sample. The figure presents the 

TOD locations for all aircraft flying 𝛼110  with RFL370 depending on whether they were expected to be in a 

potential conflict when they entered the sector (blue series) or not (red series). 

Figure 16 discretises the horizontal axis (TOD location) in 1NM-width bins. The analysis of the red series 

(non-conflicting scenarios) shows that TODs are distributed from 30NM to 90NM, with the more frequent 

values ranging between 55NM and 65NM. In the case of conflicting flights, the TOD locations are spread 

over the 𝛾11 range. It is observed a remarkable number of flights with early CFL instructions (𝛾11 between 

0NM and 35NM), a circumstance that was negligible for non-conflicting flights. 

It is observed how the number of flights with a TOD location between 60NM and 65NM drops with respect 

to the non-conflicting aircraft, to rise again after 𝛾11 = 65NM, observing more frequent TOD locations after 

65NM for the conflicting aircraft.   
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Figure 16 TOD Location depending on whether the encounter was classified as a conflict or not. The red colour 

indicates non-conflicting encounters, whereas blue columns indicate the opposite. 

An example of the first case (early TOD) is shown in Figure 27, whereas two examples of the latter (TOD 

after 65NM) are represented in Figure 26 and Figure 28. Figure 15 illustrated a third case, where the flight 

was cleared to descend to an intermediate FL, until the potential conflict disappeared.  

Figure 16 show that the hypothesis formulated in Eq. (32) may be rejected. The application of the chi-

square test for testing the independence of two random variables for the training dataset, 𝜒2(8, 𝑁 =  2425) = 113.04, p < 1e-9 resulted in a strong rejection of the null hypothesis as formulated in 

Eq. (32), and therefore, the independence of the TOD position to the categorisation by the conflict measure 

can be rule out. The result is repeated again for the testing sample, where the 𝜒2(8, 𝑁 =  613) = 83.08, p 

< 1e-9 yielded a strong rejection of the null hypothesis again. 

The next step was to analyse the impact of the TOD locations on the vertical profile of the actual trajectories, 

depending on whether the flights were in an interdependent scenario or not.  

3.6. Trajectory Vertical Profile Characterisation  

Figure 17 illustrates the PDFs associated to 𝑇1𝑙𝜌 for different values of 𝜌 for non-conflicting flights. 𝑇1𝑙𝜌 

indicates the time to descend 𝜌 FLs (including levelled segments) since an aircraft enters the sector. As the 

total lengths of 𝛼110  and 𝛼120  were similar, both samples were merged for conducting the current analysis. 

That resulted in removing the index l from 𝑇1𝑙𝜌, for transforming it to 𝑇1𝜌. Figure 20 represents similar 

information, but for conflicting flights. 
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The first row corresponds to 𝜌 = 50FL, the second row to 𝜌 = 100FL and the third row to 𝜌 = 150FL. 

TOD locations have been grouped in 10NM-width bins to obtain visual meaningful information. In 

addition, times are also binned in 60-seconds categories for the sake of clarity.  

 

 

Figure 17 Time to descend 50, 100 and 150FL Density Probability for non-conflicting flights with RFL370, for 

different TOD locations grouped in 10NM-width bins.  
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Figure 18 Time to descend 50, 100 and 150FL Density Probability for conflicting flights with RFL370, for 

different TOD locations grouped in 10NM-width bins. 

 
 

Starting with the non-conflicting flights, the actual values of the studied variable are very spread. For 

example, values range from 500s to 1100s for 𝜌 = 100FL, being the median value around 720s. A similar 

ranges of values (700 s) can be seen for the other two rows.  

For the conflicting cases, it can be observed how distributions do not have clear medians for the first and 

second rows, showing a different pattern than for the mirrored cases for non-conflicting flights. On the 

other hand, the third row shows a closer behaviour to the non-conflicting flights, but with a heavy right tail. 
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The explanation for these behaviours can be extracted from observing Figure 19. It splits the second row 

of Figure 17 by TOD category, maintaining the colour characterisation. If we observe closely the early CFL 

cases (TODs from 10 to 30NM), the values of the studied time are spread more widely, whereas for the 

other cases, they have a more normal-like performance. The higher prevalence of these cases for the 

conflicting flights provokes that the mixtures of gaussian does not have a clearly defined median (second 

row of the Figure 20).  

The last step is to include this information in a trajectory predictor for the vertical profile of the trajectory. 

For doing so, we used an ANN TP to model  Θ𝑖𝑙  (see Eq. (29) and (Verdonk Gallego et al., 2018b; Wang 

et al., 2018). The neural networks had the same structure than the horizontal ones, and the inputs for them 

were 𝜌, 𝛾1𝑙𝑇𝑂𝐷, RFL, the wake vortex and 𝑉𝑔 at 𝛾1𝑙 = 0. 

Finally, the TOD locations were modelled depending on the observed frequency for the sample [𝑃(𝛾𝑖𝑙𝑇𝑂𝐷 = 𝛾𝑖𝑙𝑘)], depending on whether the flights were conflicting with other aircraft or not. 
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Figure 19 Vertical profile Density Probability for descending 100 FL for non-conflicting aircraft with RFL370, for 

different locations of the TOD. 
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Figure 20 Vertical profile Density Probability for descending 100 FL for conflicting aircraft with RFL370, for 

different locations of the TOD. 
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3.7. Vertical Profile Trajectory Predictor Results 

Following Eq. (31), each flight had a specific PDF 𝑓𝑇1𝜌 depending on the predicted values for arriving to 

the TOD locations and the descent profiles as a function of the TOD. All the predictions were carried out 

when aircraft entered the sector. 

Figure 21 illustrates these curves for the training sample for the non-conflicting cases. The left-hand side 

of the figures represents different 𝑓𝑇1𝜌 as a function of 𝑉𝑔 and the right-hand side represents 𝑓𝑇1𝜌 as a 

function of 𝑡1𝜌 (time to descend 𝜌 FLs). Each red point corresponds to the density value corresponding to 

an actual value. Both cases represent RFL370, wake vortex category “M” (medium) and 𝜌 = 100 FLs. 

These parameters have been selected due to their representativeness of the whole sample. 

 

Figure 21 𝑓𝑡1𝜌 distributions as a function of the time to descend 𝑡1𝜌=100
100FL for flights in non-conflicting scenarios. 

Each red point is the 𝑓𝑡1𝜌 value corresponding to an actual time to descend value. 

Figure 21 illustrates that the artificial PDFs have a clear median value, showing symmetry as well. The left-

hand side of the figure illustrates that as 𝑉𝑔 increases the PDFs are wider. It also shows that the median 

values decrease. This effect can be identified on the right hand-side as well. For example, for the extreme 

values around 1000 seconds, which correspond to low 𝑉𝑔 speeds, the curves have larger peaks than for 

higher values of 𝑉𝑔. 

The distribution of the actual values shows that they are more spread than in Figure 13. There are values 

corresponding to the median of their associated PDFs, but there are a high proportion of points on the tails 

of the distributions, with low density values associated. It was observed that conflicting and non-conflicting 

aircraft show a similar pattern. 

Figure 22 specifies the difference between the actual value of t1ρ=100
 and the median value of the theoretical 

probability density function ft1ρ = 100. Columns discriminate the residuals depending on whether the 

aircraft were conflicting with other traffic (right-hand side) or not (left-hand side).  The figure introduces a 

histogram of the distribution of the residuals, based on 10-second bins.   
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It can be observed that the range of these residuals varies from -150 to 250 seconds. There are also two 

identifiable mode values of the density distribution of the residuals, located around -30 and 130 seconds 

respectively. These patterns can be detected for both conflicting and non-conflicting cases.  

These patterns are indicative of a hidden binary variable. This restriction removes potential variables which 

vary in a broader range from being the source of this binary effect, such as wind direction or temperature.   

(Verdonk Gallego et al., 2018b) identified the distance of the TOD to the destination airport as a relevant 

factor impacting on the vertical profile of the trajectories. The sample that has been used within this work 

is characterised to be flying towards LEPA. The generalisation of the previous finding to this sample, in 

addition to the binary behaviour of the residual distribution, leads to a unique factor that has a binary 

behaviour and can reflect the distance from the TOD to the airport, which is the airport runway 

configuration.  

LEPA airport has two parallel runways, which can be operated in westerlies (24R/L) or easterlies (06R/L) 

configurations. Figure 23 classifies the residuals as a function of the runway configuration. It can be 

observed that the binary behaviour is fully characterised by this factor, which indicates that it should be 

introduced for the generation of the vertical probability density functions  ft1ρ . 
  

Figure 22 Vertical TP Residuals Distribution for non-conflicting flights (left-hand side) and conflicting flights 

(right-hand side). The top-row provides the residual distribution whereas the bottom row provides the values of 𝑓𝑡1𝜌 

corresponding to actual time to descend values. 

 



34 

 

 

Figure 23 Vertical TP Residuals Distribution for non-conflicting flights as a function of LEPA Runway Configuration.  

Eq. (31) introduced 𝑓𝑇𝑖𝑙𝜌 as a function of the probability mass function of the TOD location along the 

horizontal central trajectory. If now we train a model for the TOD location as a function of different 

parameters, such as 𝑉𝑔, RFL, the wake vortex and the airport configuration, we can generate k probability 

mass distributions for each one of the possible TOD categories. These mass distributions are generated by 

characterising the actual values of the TOD when that specific category was predicted.  

 

Figure 24 Vertical TP Residuals Distribution for non-conflicting after including the airport configuration as a factor 

for predicting the TOD position. The top-row provides the residual distribution whereas the bottom row provides the 

values of 𝑓𝑡1𝜌 corresponding to actual time to descend values. The top-row figure includes blue line corresponding to 

a fitted t-student distribution with parameters 𝜇 =  −15 sec and 𝜐 = 3.5.  

A simple ensemble predictor was used for the prediction of the TOD location for non-conflicting aircraft 

with RFL370. Results of the integration of the runway configuration by using this model are illustrated in 

Figure 24. It shows a healthier residual distribution, where the residuals were found to be following a t-

student distribution, with a 𝜇 parameter of -15 seconds and 𝜐 = 3.5 (degrees of freedom). The RMSE of 

the prediction was 108 seconds.  
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Figure 25 Vertical TP Residuals Distribution for non-conflicting after including the airport configuration as a factor 

for predicting the TOD position for the testing dataset. The top-row provides the residual distribution whereas the 

bottom row provides the values of 𝑓𝑡1𝜌 corresponding to actual time to descend values. The top-row figure includes 

blue line corresponding to a fitted t-student distribution with parameters 𝜇 =  −18.5 sec and 𝜐 = 2.19. 

Figure 25 represents the results for the testing dataset. It shows a similar residual distribution that for the 

training dataset. The residuals were found to be following a t-student distribution, with a 𝜇 parameter of -

18.5 seconds and 𝜐 = 2.19 (degrees of freedom), showing heavier tails than for the training dataset. The 

Root Mean Square Error (RMSE) of the prediction was 109.92 seconds  

4. Discussion 

The results have been organised in seven sections. The present section discusses key findings from each of 

them. Section 3.1 detailed the training and testing datasets used in this study. The datasets corresponded to 

an en-route sector with evolution flows which may conflict with cruise flows for two different years and in 

different seasonal periods.  

Section 3.2 demonstrated that the clustering approach which has been used within this study was able to 

discriminate between the major airspace flows in the sector of interest. In addition, the application of the 

same methodology to each major airspace flow provided their recurrent patterns. It can be observed on the 

right-hand side of Figure 8 that there are some trajectories which do not follow exactly the horizontal central 

trajectory of the Mames-BCN flow (orange). The difference is subtle and only affects a small portion of 

the whole trajectory, but it might have a relevant operational impact. Further work could consider 

developing a clustering process to improve the discrimination between those minor differences, which may 

improve the results of the application of this methodology.  

Section 3.2 also discussed the normality assumption for the TP’s residual distributions. Figure 9 

characterised the dependency of the residuals with the arc-length parameter along the horizontal central 

trajectory for one of the studied recurrent patterns. The normality assumption was rejected due to the 

behaviours of the residuals in the tails of the distribution. It was showed that rare cases were more frequent 

than expected, which may be propagated to the interdependency measure. In any case, the extreme 

combined error is below 60s (see Figure 14).  Further work could explore the statistical dependency of the 
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residuals of the prediction for one aircraft with the presence of another aircraft to analyse the mutual impact 

on the horizontal profile. 

Section 3.3 presented results about the horizontal interdependency measure between flights which belong 

to two recurrent patterns. The actual time separation at the crossing point varied depending on aircraft 

dynamics and the initial offset applied to one of the recurrent patterns. It was demonstrated that each aircraft 

pair had a specific probability density distribution associated to the expected time separation at the crossing 

point as a function of the offset. It was also demonstrated that the actual time separation values 

corresponded to high probability density values as modelled. This was further elaborated by analysing the 

density value associated to each residual. The total RMSE for the actual time separation and the predicted 

one was below 20s for the testing dataset, without bias.  

The definition of a probability measure of the horizontal interdependence between two aircraft r and s was 

presented in Section 3.4. It was shown how the measure varied depending on relevant parameters. It was 

demonstrated that the measure provided a clear indication about when two aircraft were expected to be 

horizontally and temporally interdependent by exploring four different cases. In addition, it was 

demonstrated that when the metric provided high-probability values, there was an action upon the vertical 

profile of the aircraft by the ATCo to guarantee the separation minima. The section introduced a conflict 

definition also involving operational vertical conflicts.  

The novel contribution of the approach was that it shifted from a distance-based to a time-based definition. 

The distance-based definition has been used in different research such as (Ayhan et al., 2018; Erzberger et 

al., 1997; Hernández-Romero et al., 2019; Liu and Hwang, 2011; Paielli and Erzberger, 2008; Piroddi and 

Prandini, 2010; Schefers et al., 2017). In addition, the modelling of the time separation as a folded normal 

distribution was similar to the one presented by (Irvine, 2001), but for time-based separations. Another 

relevant contribution is that the interdependency measure considers not only the standard routes, but also 

other recurrent patterns (typical ATC actions). This enables the identification of potential constraints on the 

trajectories and the ATC actions that may be issued. This approach was also introduced in (Hong and Lee, 

2015), but with other operational purpose. 

Based on the insights gained from Section 3.5, the validity of the metric was demonstrated by analysing the 

TOD location distribution depending on whether the evolution aircraft was expected to lose separation with 

other aircraft or not. It was shown that a relevant proportion of the aircraft in conflicting scenarios were 

given early CFLs along the route, compared with the normal behaviour. In addition, it was shown that there 

was a drop on the number of aircraft starting to descend around the crossing point position for conflicting 

aircraft. The dependency between the position of the TOD and the predicted conflicts was verified through 

Chi-Square tests. 

Figures showed that there were cases with early CFLs for non-conflicting aircraft. The studied recurrent 

pattern often interacts with the analysed cruise flow, but it can also interact with other major airspace flows 

that are less frequent, or even with itself. Future work should address the definition of the interdependency 

probability measures for other type of ATC conflicts, such as two aircraft flying in the same flow or the 

aggregation of different interdependencies. An example in this direction is the introduction of flow 
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abstraction factors, as defined in  (Histon and Hansman, 2008) and in (Hong and Lee, 2015), where the 

arrival times are predicted based on the situation of a precedent aircraft within the same terminal flow.  

Section 3.6 characterised the mixtures of gaussian associated to the descent profiles of these aircraft 

depending on whether they were expected to be in conflicting or non-conflicting situations. It was shown 

that the descent times for conflicting traffic was more spread than for non-conflicting flights. It was also 

shown that the impact of the potential conflict identification was reduced to the initial phase of the descent, 

which showed a greater variability.  

Finally, Section 3.7 exploited the results of the two previous sections in order to design a trajectory predictor 

for the vertical profile of the trajectories. The analysis of the residuals demonstrated that there was a binary 

hidden variable. This insight, together with conclusions of previous research work (Verdonk Gallego et al., 

2018b), led to the identification of the airport runway configuration as a key hidden variable.  

Once this variable was introduced in a predictor for the TOD location, that binary pattern disappeared. It 

was shown that they could be fitted to a known distribution, easing the handling of the uncertainty 

surrounding the vertical profile for this major airspace flow in the future. The predictor was tested with the 

testing dataset, yielding similar results.  

The prediction RMSEs for both datasets were still large, although the bias on the prediction was almost 

removed. The prediction was carried out when the evolution aircraft entered the sector. In addition, the 

vertical and horizontal ANN predictors did not include relevant features for aircraft dynamics such as the 

aircraft model, intrinsic intention features such as the expected guidance mode (Dalmau Codina, Ramon; 

Pérez-Batlle, Marc; Prats Menéndez, 2018) or the aircraft inferred mass (Alligier and Gianazza, 2018). The 

integration of richer datasets may reduce errors on the prediction, with longer look-ahead times.  

Trajectory predictors based on state-dependent hybrid mode transitions, such as (Dalmau Codina, Ramon; 

Pérez-Batlle, Marc; Prats Menéndez, 2018; Huang et al., 2007; Liu and Hwang, 2011) could benefit from 

this work to characterise the probability vector governing the transitions between states.  

In addition, the incorporation of weather-based information such as wind direction and intensity, 

temperature or pressure is crucial to improve the accuracy of the trajectory predictors.  Previous research 

(de Leege et al., 2013; Verdonk Gallego et al., 2018b) identified the ground speed and the initial altitude at 

the TOD as key explanatory variables. The ground speed partially captures the wind impact on the trajectory 

and how the aircraft reacts to achieve a desired performance and guidance.  

Moreover, it has been identified that the TP should not only consider local weather factors, but a global 

view of the meteorological conditions along the remaining planned trajectory or derived factors, such as 

the airport runway configuration. It could be explored the extension to the tactical TP the 4D data cubes 

proposed enriched with weather data by Ayhan in (Ayhan and Samet, 2016) aligned with the route structure 

and recurrent patterns.  

The conclusion of this paper should be aimed at unveiling if the traffic information shall be included in the 

trajectory predictors. Table II shows the results of conducting Chi-square tests for testing whether the 

position of the TOD is independent from the potential conflicts, as determined by the interdependency 
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measure. The results have been discriminated depending on the arrival runway, including all the recurrent 

patterns of the evolution flow. It can be observed that the independency hypothesis is strongly rejected for 

all cases. The impact of this dependency affects the trajectories in a short-term period after the TOD, as it 

was observed in Figure 17 and Figure 18. Therefore, the conclusion is that the inclusion of this factor would 

improve short-term trajectory predictions, although its impact when longer look-ahead times are considered 

shall be evaluated. 

Table II Chi-square tests for testing the independence between the position of the TOD and potential conflicts 

depending on the arrival runway. 

Chi-square tests Runway 24 Runway 06 

Training 𝜒2(9, 𝑁 =  1796) = 269.29, 

p<1e-9 

𝜒2(10, 𝑁 =  629) = 113.04, 

p<1e-9 

Testing 𝜒2(9, 𝑁 =  422) = 58.32, 

p<1e-6 

𝜒2(9, 𝑁 =  191) = 31.36, 

p<1e-3 

5. Conclusions 

The objective of this paper was to consider surrounding air traffic as a contextual factor for trajectory 

prediction. To that end, the paper proposed an interdependency measure at crossing points, combining data- 

and model-driven approaches. The interdependency measure was based on a probabilistic approach to air 

traffic interdependence supported by well-known machine learning algorithms. 

The interdependency measure was used to characterise vertical profiles. This characterisation was defined 

in terms of intrinsic aircraft features in addition to the mentioned air traffic interdependency. The vertical 

profile was modelled based on the location of the Top of Descent and different profiles for the descent 

phase, depending on those features. 

The paper applied known clustering techniques to extract the major airspace flows of the airspace volume 

of interest. The work extended the classification of the trajectories by extracting recurrent patterns within 

each major airspace flow. Then, trajectory predictors based on Artificial Neural Networks were developed 

for each recurrent pattern.  

After the application of the horizontal interdependency measure to the datasets, it was demonstrated that it 

enabled the identification of pairs of aircraft that were expected to lose horizontal separation. In addition, 

the vertical profiles of aircraft that were identified as horizontally interdependent were shown to diverge 

from a normal behaviour. As a conclusion, the proposed air traffic interdependency measure was shown to 

be a valid precursor of air traffic control actions on involved flights for the specific case study which was 

studied. 

The characterisation of the vertical profiles was reinforced by using surrounding air traffic as a relevant 

feature. In addition, the results indicated a dependency of the descent profiles on other features, such as the 

requested flight level or the ground velocity. In addition, the analysis of the residuals of the vertical 

predictors resulted in the detection of a hidden binary factor. The airport runway configuration 

demonstrated to be a relevant feature for defining the location of the TOD. The inclusion of this factor in a 



39 

 

vertical trajectory predictor resulted on the residuals following a known statistical distribution, which can 

lead to an enhanced handling of uncertainty in the vertical profile of the trajectory. 

The final conclusion of this paper is that the surrounding traffic information can impact on the position of 

the TOD when the crossing point is located around the normal TOD position. This dependency affects the 

trajectories in the short-term after the TOD, which is relevant in high-density scenarios where an ATC 

action is constrained by surrounding traffic and in scenarios where there are extended AMAN 

functionalities, and the position of the TOD may be crucial for handling the uncertainty of the time of 

arrival.  

The paper has focused in a specific Spanish airspace sector. Future work could address the generalisation 

of this interdependency metric for other crossing points and other airspaces. Moreover, other conflicts of 

different nature can be modelled, such as flow-based interdependencies. In addition, the aggregation of the 

interdependency measure for more than two major airspace flows could help to gain a greater understanding 

of the underlying patterns governing horizontal ATC actions on flights.  

Finally, trajectory management in ATM relies on air traffic metrics such as the hourly entry count or the 

sector occupancy. These metrics may be insufficient to characterise the complexity associated to the traffic 

flying through a given airspace volume. The generalisation of the proposed interdependency measure may 

help to develop new trajectory management metrics and procedures to manage complex operational 

environments. 
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p, o, q Total number of recurrent patterns within a major airspace flow 

r, s Flight r or Flight s within a traffic sample. 

Notation (order of appearance)  𝜂 Flown Trajectory 

Lat Latitude 

Lng Longitude 

t Time 

Hdg Heading 𝑉𝑔 Ground Velocity 

Vz Vertical speed 𝜛 Cleared Heading 𝜁 Cleared Flight Level 𝜐 Cleared Horizontal Speed 𝜚 Cleared Vertical Speed Λ0 Sample of trajectories λ𝑖0 Set of trajectories forming the major airspace flow i α𝑖𝑙0  Set of trajectories within λ𝑖0 which constitute the recurrent pattern l within λ𝑖0 𝒽𝑖𝑙0   Horizontal Central Trajectory of the recurrent pattern α𝑖𝑙0  𝛾𝑖𝑙 Arc-length parameter associated to 𝒽𝑖𝑙0  Γ𝑖𝑙 Arc-length space associated to 𝓱𝒊𝒍𝟎  𝐿𝑖𝑙  Total length of 𝒽𝑖𝑙0  𝑋 Feature vector for the horizontal trajectory predictor 𝜂𝑟,ĩ Set of predicted trajectories for the aircraft r for a major airspace flow i 𝜂𝑟,𝑖𝑙̃  Predicted trajectory for the aircraft r for a recurrent pattern l of a major airspace flow i 𝜏𝑖𝑙𝛾𝑖𝑙 Predicted time 𝜏 to arrive to a given location 𝛾𝑖𝑙 along 𝒽𝑖𝑙0  𝒯𝑖𝑙𝛾𝑖𝑙 Random Variable associated to 𝜏𝑖𝑙𝛾𝑖𝑙 𝜀𝑖𝑙𝛾𝑖𝑙 Residuals associated to the TP for the recurrent pattern α𝑖𝑙0  at the location 𝛾𝑖𝑙 𝜎𝑖𝑙𝛾𝑖𝑙 Standard deviation of the 𝜀𝑖𝑙𝛾𝑖𝑙 assuming a normal distribution. 𝜇𝑖𝑙𝛾𝑖𝑙 Expected value of  𝒯𝑖𝑙𝛾𝑖𝑙 Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚
 Random variable associated to the time difference with which two aircraft are arriving to 

two locations 𝛾𝑖𝑙 and 𝛾𝑗𝑚 respectively. 
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Z Auxiliar random variable to transform 𝒯𝑖𝑙𝛾𝑖𝑙 − 𝒯𝑗𝑚𝛾𝑗𝑚
 𝑓Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚  Probability Distribution Function associated to Δ𝒯𝑖𝑙,𝑗𝑚𝛾𝑖𝑙,𝛾𝑗𝑚

 𝐷𝑖𝑙,𝑗𝑚 Function defining the distance between two aircraft if they were at 𝛾𝑖𝑙 and 𝛾𝑗𝑚 respectively. Δ𝑡𝑇ℎ𝑟𝑒𝑠 Temporal threshold  𝐷𝐻  Horizontal Distance threshold ΠΔ𝑡,𝐷𝐻𝑖𝑙,𝑗𝑚
 Interdependency Probability Measure associated to two aircraft flying recurrent patterns α𝑖𝑙0  and

 α𝑗𝑚0 , given temporal and distance thresholds. 𝐻𝐼𝑀𝑟,𝑠 Horizontal Interdependency Matrix for two aircraft r and s 𝜌 Number of FL that an aircraft has descended from the RFL. 𝛾𝑇𝑜𝑑 Location along 𝒽𝑖𝑙0  when an aircraft starts descending 𝜃 Time since the aircraft started descending 𝑡𝑖𝑙𝜌,𝛾𝑘  Time for descending 𝜌 FLs if an aircraft starts its descent phase at 𝛾𝑘 when flying along 𝒽𝑖𝑙0  𝑇𝑖𝑙𝜌,𝛾𝑘 Random variable associated to 𝑡𝑖𝑙𝜌,𝛾𝑘  Θ𝑖𝑙𝜌,𝛾𝑖𝑙𝑘 Random variable associated to the time 𝜃 required to descend 𝜌 FLs if an aircraft starts its descent 

phase at 𝛾𝑘 when flying along 𝒽𝑖𝑙0  

Appendix I 

 

Figure 26 Horizontal Interdependency Measure. Case of Study 2 

The second case of study is illustrated in the Figure 26. The interdependency measure provided low 

probabilities of being in a tight conflict. The actual horizontal distance was larger than 5NM but below 10 

NM. The analysis of the vertical regime shows that the descent starts after the flights have overflown the 

crossing point, but not immediately after.  
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Figure 27 Horizontal Interdependency Measure. Case of Study 3 

The third case of study is illustrated in the Figure 27. The interdependency measure provided a high 

probability of losing horizontal separation. The actual horizontal distance was below 5NM. The analysis of 

the vertical regime shows that the evolution aircraft has an early CFL instruction one minute after entering 

the sector, to prevent the conflict. 

 

 

Figure 28 Horizontal Interdependency Measure. Case of Study 4 

The fourth case of study is illustrated in the Figure 28. The interdependency measure provided very high 

probabilities of losing the horizontal separation. The actual horizontal distance was near zero. The analysis 

of the vertical regime shows that the evolution aircraft was authorised to descend after the flight crossed 

the critical point. In addition, the RFL was 390, indicating that the descent should have started earlier, 

confirming the interdependence between these two aircraft. 
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