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The application of data innovations to geomorphological impact analyses in
coastal areas: an East Anglia, UK, case study

Abstract

Rapidly advancing surveying technologies, capable of generating high resolution bathymetric
and topographic data, allow precise measurements of geomorphological change and
deformation. This permits great accuracy in the characterisation of volumetric change,
sediment and debris flows, accumulations and erosion rates. However, such data can be
utilised inadequately by coastal practitioners in their assessments of coastal change, due to a
lack of awareness of the appropriate analytical techniques and the potential benefits offered
by such data-driven approaches. This was found to be the case for the region of East Anglia,
UK, which was analysed in this study. This paper evaluates the application of innovative
geomorphological change detection (GCD) techniques for analysis of coastal change. The first
half of the paper contains an extensive review of GCD methods and data sources used in
previous studies. This leads to the selection and recommendation of an appropriate
methodology for calculation of volumetric GCD, which has been subsequently applied and
evaluated for 14 case study sites in East Anglia. This has involved combining open source point
cloud datasets for broad spatial scales, covering an extended temporal period. The results
comprise quantitative estimates of volumetric change for selected locations. This allows
estimation of the sediment budgets for each stretch of coastline focused upon, revealing
fluctuations in their rates of change. These quantitative results were combined with
qualitative outputs, such as visual representations of change and we reveal how combining
such methods assists identification of patterns and impacts linked to specific events. The
study demonstrates how high-resolution point cloud data, which is now readily available, can
be used to better inform coastal management practices, revealing trends, impacts and
vulnerability in dynamic coastal regions. The results also indicate heterogeneous impacts of
events, such as the 2013 East Coast Storm Surge, across the study area of East Anglia.
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1.1 Introduction
Decision-making and environmental management in coastal areas requires the ability to
understand and quantify the variability of change and deformation of beaches and cliffs over
time. An understanding of their drivers may be gained through the quantification of such
changes (Schimel et al., 2015). Typically, this involves characterisation of debris flows,
accumulations and erosion rates. However, many coastal organisations, such as those in the
UK, are not currently utilising the range of advanced and appropriate techniques and
technologies, which are now readily available. Emergent remote sensing technologies are
able to generate far higher resolution measurements for coastal areas than have been
previously available, in both the vertical and horizontal planes. Such methods can allow more
precise measurements of coastal retreat to be undertaken than those extrapolated from
traditional topographic maps or aerial photos (Poulton et al., 2006). Analyses of such
measurements can lead to the production of derivative data products that can provide, for
example, retreat rates directly from volumetric change calculations (Esposito et al., 2018).
Additionally, data with a higher temporal resolution is also becoming available (Kromer et al.,
2017). This can reveal dynamic coastal processes with increased granularity, assisting in the
identification of both vulnerable and stable locations. Furthermore, when such morphological
data is combined with other measurements, causation of change can be determined (Leyland
et al., 2017; Rosser et al., 2005). This can improve our ability to model coastal processes and
to make informed projections on future coastal change scenarios.

Understanding the processes operating in coastal zones requires the ability to compare
datasets from different epochs1, and the consequent generation of quantitative and
qualitative representation of areas where loss and gain of beach and cliff material has
occurred (Earlie et al., 2015). This can enhance our understanding of processes, such as the
contribution of beach sediment to littoral cells (Young and Ashford, 2006). A wide range of
methods exist for geomorphological change detection (GCD), and the selection of appropriate
methods requires consideration as to the local environment, context, type of output desired,
i.e. volumetric change and/or linear change, output format (qualitative/quantitative), and
level of detail required from the subsequent analysis. For example, the monitoring of granular
deformations of hard rock cliffs (Rosser et al., 2005; Westoby et al., 2018) necessitates
separate survey and analytical data approaches than do studies that are restricted to
determining wider-scale cliff-top recession rates, or those monitoring beach levels (Shrestha
et al., 2005), or near-shore sediment movements (Burningham and French, 2011). Airborne
survey techniques can reveal cliff top retreat, however, for vertical cliffs, such approaches are
not capable of revealing cliff toe erosion and overhangs which can often lead to cliff failure
(Michoud et al., 2015; Obu et al., 2017). For this, survey techniques with a horizontal aspect
(ground or vessel based) are required (Michoud et al., 2015; Rosser et al., 2013). Yet, to date,
a comprehensive discussion on the suitability of different coastal GCD methods has not yet
been completed.

The main issue addressed by this research is that of the utilisation of point cloud based GCD
techniques by the coastal practitioner community. Outside academia, only limited adoption
of such methods has been witnessed. Despite a large archive of morphological point cloud
data existing for the many regions, coastal change analysis is most commonly based on more

1 For the purpose of this study an epoch is defined as the date and time in which a survey was completed at
one specific site.
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rudimentary methods, such as extraction of cliff edges from aerial imagery. Reasons why
more advanced point cloud-based methods have been underutilised include: a lack of
awareness of the available and appropriate analytical techniques, and inadequate knowledge
of the potential advantages that utilisation of such GCD approaches can generate. This paper
seeks to address these challenges through an initial discussion of point cloud based GCD
methods, and a subsequent practical GCD for a number of case study sites in East Anglia, UK.
East Anglia has a highly dynamic, vulnerable coastline, comprising soft cliffs and sandy
beaches, on which extraordinary rates of geomorphological change have been experienced,
(Brooks and Spencer, 2010). The region has been studied extensively, and many
morphological datasets representing its coasts are now freely available. These factors
combined, render this region especially suitable for analysis. As such, using a single GCD
method, centred on triangulated irregular network (TIN) model creation and planar surface
comparisons, datasets for 14 case study sites were combined and compared, for periods
ranging between 6 to 10 years. The sites selected were identified based on consultations with
those public sector bodies tasked with monitoring and managing the coastline of the region
e.g. Coastal Partnership East (CPE) and the Environment Agency (EA). The sites further
represent locations where a requirement exists to provide high temporal and spatial
resolution change analysis.

In this study we evaluate many GCD techniques and methods to assess their application in
different scenarios. A key objective was to evaluate the practical suitability of a point cloud
based GCD method for coastal change detection applications. In doing so, we demonstrate
how successful combination and analysis of point cloud data can reveal change and evolution
of coastal environments. In line with this, a second objective was to generate increased
understanding of recent morphological changes occurring at selected vulnerable stretches of
the East Anglian coastline. The GCD method utilised within this study was capable of
producing volumetric change estimates. Results generated through application of this
technique allowed quantification of the sediment budgets at each study site. Such outputs
are especially relevant to the coastal region of East Anglia and other recent studies have
sought to generate similar (Brooks and Spencer, 2010; Burningham and French, 2016). It is
envisaged that the outcomes generated from this study may raise awareness of the
possibilities presented by point cloud data analysis for studies focussing on coastal change
and deformation, and potentially assist practitioners and researchers in the selection of
appropriate GCD methods. Additionally, the quantitative results may form an input to future
research or decision-making processes. Many ‘state of the art’ developments in
geomorphological change analysis, relevant to coastal analysis, are underway in areas of
research outside the direct sphere of coastal studies, in areas such as analysis of fluvial
systems (Lague et al., 2013; Leyland et al., 2017) and non-coastal rock faces (Kromer et al.,
2017). Accordingly, note is given to a selection of these studies within this work.

1.2 Review of coastal GCD techniques

1.2.1 Monitoring the coast, beaches and cliffs

In attempting to understand coastal dynamics, an appreciation of processes operating across
coastal environments is essential; past studies have generally divided their focus between
cliffs and beaches. However, when modelling coastal cliff environments, data on the
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foreshore should also be included (Hobbs et al., 2010). Monitoring each environment
separately can require different data acquisition techniques and processing workflows. Yet a
number of studies exist that combine such techniques (Eisemann et al., 2018; Leyland et al.,
2017; Seker et al., 2003). Processes operating on the near-shore seabed are linked to erosion
and deposition events occurring on beaches (Sergeev et al., 2018). As such, an understanding
and integration of the influence of the offshore environment, is essential when modelling
future recession rates (Poulton et al., 2006). There are many drivers for monitoring the near-
shore environment, resulting in datasets becoming available that are able to reveal the
dynamic evolution of these areas. For example, seabed surveys can result from channel
dredging requirements, marine aggregate resource monitoring, and engineering works
related to undersea cables, pipelines and energy infrastructure (Schimel et al., 2015). As a
consequence, monitoring of the subsea domain has progressed rapidly, and now detailed
point cloud datasets are routinely generated by multibeam echosounder (MBES) surveys.
Moreover, repeat MBES surveys have facilitated change analysis to be completed for near-
shore environments (Kemp and Brampton, 2007; Leyland et al., 2017; Quinn and Boland,
2010; Schimel et al., 2015). Such studies can expose dynamic ‘live bed processes’, including
the migration of seabed features (Quinn and Boland, 2010). This current study included one
case study site (Case Study 10: Nearshore Lowestoft) for which MBES data from 11 epochs
were analysed. Compared to topographic datasets, such as derived from airborne lidar, the
number of Open Source MBES datasets available to download, are more limited. The costs
associated with completion of MBES surveys is one barrier, preventing many commercial
organisations who hold this data, making it available for free. However, there are initiatives
in place seeking to overcome such hurdles. For the UK, the Crown Estate stipulate that
datasets generated from seabed surveys related to offshore wind farms, must be made
available to the public after a 2 year period, this data should then be accessible via their
Marine Data Exchange (The Crown Estate, 2019).

Obtaining data for intertidal areas is challenging, there are limitations imposed on the ability
to acquire MBES in these areas, due to the draft of vessels upon MBES systems are mounted
on. However the growing use of unmanned surface vessels is reducing such limitations (Iwen
and WAz, 2019). A number of alternative methods of acquiring intertidal data exist, and
continual progress is being made in this field. Satellite derived bathymetry is one such rapidly
evolving method (Kulawiak and Chybicki, 2018; Sagar et al., 2016), as is the use of X-band
radar (Atkinson et al., 2018; Bell et al., 2016). However, the spatial resolution and accuracy of
data obtainable by these methods is lower than that possible using MBES. Another
alternative, is bathymetric Lidar (Andersen et al., 2017; Eisemann et al., 2018), this is can
provide higher resolution data than satellite or X-band radar, yet is limited by meteorological
and ocean conditions.

The use of remote sensing data offers significant accuracy improvements over the more
manual and traditional methods required to analyse historic analogue datasets, which also
rely on the skills of an individual, and can lead potentially to high levels of uncertainty
(Burningham and French, 2011). Furthermore, the ability to combine point cloud data,
revealing the complex spatial patterns of sand redistribution (both on beaches and in the
near-shore environment), is recognised as essential in attempts to represent adequately the
evolution of coastal processes (Mitasova, 2015; Mitasova et al., 2002). Traditional techniques
relying on manual interpretation and digitisation (Seker et al., 2003), can prove efficient in
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summarising change rates on a larger scale, yet can omit important site-specific details (Earlie
et al., 2015; Krolik-Root et al., 2015). A number of common GIS-based analysis techniques
such as the Digital Shoreline Analysis System (DSAS) (Appeaning Addo et al., 2008; Thieler et
al., 2009) and AMBUR (Jackson et al., 2012), also involve manual shoreline digitisation. Yet, in
comparing an approach based on DSAS, with more advanced, point cloud based methods,
Leyland et al. (2017) found it to be ‘error prone at high temporal resolution’. Methods used
to complete morphodynamic analyses of coasts can vary widely in complexity, from simple
approaches involving visual interpretation (Amaro et al., 2015), to surface comparisons based
on gridded or meshed datasets (Williams, 2012), and more advanced point cloud analysis
(Williams et al., 2018). It is in the field of cloud to cloud (C2C) comparison that some of the
most significant contemporary advances are being made. As such, C2C analysis offers an
optimal method for quantifying erosion (Lindenbergh and Pietrzyk, 2015). Automation of
processes and data workflows is now becoming a common feature associated with many
techniques (Esposito et al., 2018; Halls et al., 2018; Kromer et al., 2017; Kulawiak and Chybicki,
2018). In some cases this enables data to be processed at the rate of acquisition (Williams et
al., 2018). Ultimately, the techniques adopted for use should be dictated by the nature of the
coastline, the phenomena monitored and level of detail required (Westoby et al., 2018).

1.2.2 Coastal terrain data acquisition

There are a wide range of data capture methods available, for surveying coastal areas; a clear
distinguishing factor between these is the means of their deployment: airborne, ground or
vessel based. Airborne techniques benefit from their ability to cover large areas and to gain
coverage of otherwise difficult or inaccessible locations (Earlie et al., 2015; Young, 2018),
conversely they are hampered by drawbacks such as a decline in accuracy as the inclination
of the terrain surveyed increases (Obu et al., 2017; Young et al., 2010; Young and Ashford,
2006). Additional limitations can be imposed on the use of satellite data by inconsistencies
generated by rapid changes in coastal topography (Hobbs, 2008). Terrestrial laser scanning
(TLS) methods and ground-based photogrammetric methods are more capable of capturing
details on vertical cliff faces at higher resolution, with some allowing 10cm gridding of data
(Sergeev et al., 2018). However, these approaches can suffer drawbacks associated with
shadowing (occlusions) when used to survey complex cliff faces, due to scanning angles
(Hobbs et al., 2010). Mobile laser scanning (MLS), undertaken from moving platforms such as
boats, can partially overcome these issues, with multiple angles used to observe given points
(Leyland et al., 2017; Lindenbergh and Pietrzyk, 2015; Michoud et al., 2015). Methods that
generate dense point clouds are generally capable of producing more comprehensive
representations of topography and bathymetry than more sparse data acquisition methods,
such as GPS surveys, beach transects, and single-beam sonar surveys. Such methods can
require extensive interpolation to address large areas that lack coverage (Shrestha et al.,
2005). There are benefits that can arise in combining methods, for example, surfaces derived
from laser scanning techniques are frequently and usefully ground-truthed using GPS transect
data (Halls et al., 2018; Kaliraj et al., 2017; Pollard et al., 2019; Shrestha et al., 2005; White
and Wang, 2003).

1.2.3 Geomorphological Change Detection (GCD)

Depending on which data acquisition method is employed, varying levels of complexity and
interpolation are required to enable change analyses to be completed. A common option for
GCD involves the use of shoreline transects (Burningham and French, 2011; Environment
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Agency, 2013; Gorman et al., 1998; Halls et al., 2018; Obu et al., 2017). These transects
represent 2D beach and cliff profiles, generated through GPS surveys or derived from surfaces
extracted from raw survey data i.e. digital elevation models (DEM) (Eisemann et al., 2018).
However, high levels of uncertainty are inherent in the calculations derived through this
method, as surface heights between transects are interpolated, and are often derived by
multiplying profile end areas by the transect separation distance (Cantrill and Kruimel, 2013;
Corbí et al., 2018; Shrestha et al., 2005). Nevertheless, transect-based methods are still
frequently used in many studies and by coastal management bodies (especially for cliff retreat
calculations (Young, 2018)); they have also been combined with methods such as linear
regression (Appeaning Addo et al., 2008). One change comparison method (both 2D distance
and volumetric) which can be used with both transect-based calculations and those involving
surfaces, requires construction of a planar reference surface (or a geometric primitive)
(Lindenbergh and Pietrzyk, 2015). Estimates of change are then derived by comparing the
distances between survey points and the planar surface (for different epochs), along a static
vector (either a horizontal or vertical distance) (Figure 1).

Figure 1: Planar change comparison method along a horizontal vector (image
reproduced with permission from the Channel Coastal Observatory (2016))

If DEMs or topographical meshes are created from survey data, then direct comparisons can
be made between surfaces (for different epochs), either by using the reference plane method,
or more directly by simply subtracting elevation values of one surface from the other (Abellán
et al., 2014; Mitasova et al., 2002; Sergeev et al., 2018). Volume calculations are derived
through a summation of the change values of all pixels (or cells) within a given area of interest
(Kemp and Brampton, 2007; Obu et al., 2017; Zhou and Xie, 2009). This can reveal a ‘mosaic
of morphological change’ (Williams, 2012), and can also allow calculation of cliff recession
rates (Esposito et al., 2018). This kind of GCD method is imperfect yet is widely used and
reliable (Earlie et al., 2015). Variations of this technique have been termed DEM of Difference
(DoD) (Williams, 2012).

1.2.4 Surface creation

Most contemporary studies involving GCD for the coast involve some form of DEM creation.
Therefore, understanding the options for, and processes involved in DEM creation is
important. Converting an irregular cloud of data points into a cohesive surface is not
straightforward and requires interpolation. This can involve creation of a regularly spaced
raster grid. For coastal GCD, some common methods used for this include: nearest neighbour
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(Michoud et al., 2015), kriging (Quinn and Boland, 2010), splining (Mitasova et al., 2009),
linear interpolation (Eisemann et al., 2018), inverse distance weighting (IDW) (Halls et al.,
2018), and more software-specific methods such as ‘Topo to Raster’ (in ArcGIS) (Burningham
and French, 2011; Esposito et al., 2018), or CUBE2 in Caris HIPS/SIPS (Calder, 2003; Schimel et
al., 2015). Alternatively, DEMs can be formed from vector-based representations such as TIN
models (Amaro et al., 2015). TINs have been termed the ‘most common and reliable form of
representing high-resolution topographic data’ (Wheaton et al., 2010, p.152) and have
proven popular in coastal studies as the precision of the input data is preserved. TIN models
incorporate the original data points, limiting interpolation to areas between these (Aragonés
et al., 2016; Dawson and Smithers, 2010). This method encompasses ‘modelling the surface
as a collection of small (triangular) planes’ (Cantrill and Kruimel, 2013) and can account for
irregular and complex geometries, and micro-topographical irregularities (Krolik-Root et al.,
2015), for which a regular gridded surface proves inadequate. TIN models can also prove
beneficial in allowing complex topographic surfaces with varying levels of spatial variability to
be described (Gorman et al., 1998). Yet problems can be encountered where data is lacking,
and where oversized polygons are created (Hobbs et al., 2010), and misrepresentation errors
can contribute to surface uncertainty (Wheaton et al., 2010). Aside from DEMs, another
popular surface creation method is meshing, being most commonly applied to vertical cliff
faces (Rosser et al., 2005). Meshing also involves interpolation between points, but irregular
meshes can allow varying levels of resolution in surfaces, thus being able to capture more
complex morphologies and geometries (Zischg et al., 2018).

Analysis of DEMs using DoD was quoted to be the most popular method for point cloud
comparison in earth sciences (Lague et al., 2013). Yet despite the method’s popularity it holds
a number of drawbacks, such as high levels of interpolation, and artefacts can be generated
through the creation of surfaces (Kromer et al., 2015). It is inadequate for application to rough
surfaces and ultimately the technique is not 3D (Lague et al., 2013). It can be termed ‘2.5D’,
in that only a single height value is represented in the z-coordinate plane (Williams, 2012).
This can introduce bias when attempting to represent complex vertical surfaces such as
overhangs (Lague et al., 2013). Tracking surface change along a static vector (which the DoD
methods involve) is also regarded by Mitasova (2015) as simplistic, in that it fails to ‘capture
the complexity of elevation surface dynamics’ such as movements which combine both
vertical and horizontal components.

1.2.5 Point cloud data

For more comprehensive 3D analytics it is necessary to consider C2C comparisons, using point
cloud data which has not been triangulated, meshed or gridded. Consequently, analysis is not
restricted to planar comparisons. C2C comparisons can overcome many uncertainties and
inaccuracies introduced by triangulation/meshing/gridding. Using cloud-based techniques, it
is possible to register vertical and overhang components of cliffs. Additionally options exist
for calculating slope-dependent change vectors, or surface normals, for comparisons (Kromer
et al., 2017). This can result in efficiency gains through the correct points being compared
between two point clouds (Williams et al., 2018). This method is particularly suited to rough

2 CUBE: Combined Uncertainty and Bathymetric Estimator
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surfaces and complex geometries, where an assumption that all changes take place in the
same direction can be a gross simplification, misrepresenting reality. Continual progress is
being made in relation to point cloud comparison methods and novel workflows and
algorithms have been devised for GCD, such as M3C2 (Multiscale Model to Model Cloud
Comparison) (Lague et al., 2013). The M3C2 algorithm, first estimates surface normals
(detects change orientation) then generates mean surface change distances along normal
directions (including an uncertainty component), and ‘assigns a level of significance to
calculated changes’ (Leyland et al., 2017). A number of adaptations of M3C2 (Kromer et al.,
2015; Williams et al., 2018), and similar methods (Abellán et al., 2014), have been
implemented in studies centring on GCD. A typical application of this type of method is where
small detailed changes/deformations need to be monitored.

1.2.6 Inconsistencies and errors

In calculating coastal change, high levels of uncertainty are inherent in the methods used.
However, in many studies, errors appear to be overlooked (Abellán et al., 2014). This is
especially so where more simplistic, manual approaches are employed. Yet errors can act as
‘the main controlling factor in the ability to detect change’ (Kromer et al., 2015). As such, for
change estimates to be reliable, it is important to differentiate actual geomorphic change
from that generated by errors (Williams, 2012). Errors can arise through a variety of means,
including: data collection methods, processing techniques, surface type, surface roughness,
vegetation, variability in point density, atmospheric conditions, incidence angle,
heterogeneity of point spacing, topographic complexity (Kromer et al., 2017, 2015; Williams,
2012), and (mis)registration of the surfaces compared (Miller et al., 2008). The use of remote
techniques such as Lidar can necessitate establishing a minimum threshold for errors, which
may thereby increase confidence in consequent change estimates (Young et al., 2010). As
such, many GCD methods can involve establishment and application of volumetric confidence
intervals, as well as minimum threshold values for change detection (Abellán et al., 2014).
Such threshold values can be termed the limit of detection (LoD), whereby changes smaller
than the LoD are discounted as they could be attributed to system errors or noise (Schimel et
al., 2015). Threshold methods such as the LoD approach are not perfect solutions. There is a
danger in applying LoD methods (as other error accounting techniques) of removing too much
data, which can result in eliminating real geomorphological change, and potentially important
features (Young, 2018; Young et al., 2010). As such, careful consideration is required in the
selection of appropriate techniques. For example, for DoD methods, probabilistic approaches
are reported to generate more reliable estimates than those based on LoD alone (Williams,
2012). For some DoD methods, uncertainties and errors are accounted for directly within
calculations. For example, Wheaton et al. (2010) have developed a technique to account for
errors that involves a ‘fuzzy inference system’3, addressing spatially variable uncertainties
(related to differing slope, point density, and point quality across a comparison area). LoD
calculation are also regarded by Williams et al. (2018) to be improved through using 3D point
cloud methods and by techniques allowing spatially variable confidence intervals (Kromer et
al., 2017). Moreover the M3C2 algorithm (and other similar methods) directly integrates an
error component within its calculations (Lague et al., 2013).

3 This technique is freely available for download and has been utilised within this study.
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1.2.7 Temporal resolution of data

The ability to detect spatial patterns of coastal terrain evolution is directly influenced by how
frequently surveys are undertaken (Mitasova et al., 2009). Generally, for change analysis to
represent dynamic coastal processes more accurately, frequent monitoring is required. This
can provide a ‘methodological understanding’ of change mechanisms (Rosser et al., 2005). A
number of studies have successfully revealed change processes and drivers through
comparison and modelling of near-continuous, high temporal resolution data (Rosser et al.,
2013; Williams et al., 2018). This would be difficult to establish, with any degree of certainty,
through isolated surveys, each providing no indication of change between survey epochs
(Kemp and Brampton, 2007). Additionally data collected infrequently can be
unrepresentative, due to it being prone to bias introduced as a result of specific events, such
as those resulting from severe weather which can, for example, introduce temporary objects
(Lindenbergh and Pietrzyk, 2015; Obu et al., 2017). As such, the separation between survey
epochs is an important consideration. Short term variability is not captured when comparing
datasets representing distant epochs. This can lead to simplification of complex
geomorphological behaviour and change patterns being wrongly interpreted as episodic
(Rosser et al., 2013). There are a range of novel interpretation and visualisation techniques
which can be employed to represent dynamic changes, derived through comparison of high
temporal resolution datasets. For example, variable spatio-temporal stability can be revealed
through multi-temporal, per-cell, raster statistics (Mitasova et al., 2009) or creation of
isosurfaces, used to sum elevation changes across multiple periods (Mitasova, 2015).

1.2.8 GCD technique selection

The requirements for GCDs depend on the phenomena being monitored and can range from
the need to establish general trends of long term 2D coastal change, to high spatial and
temporal resolution 3D morphological monitoring of cliff faces, revealing, for example,
individual rock fall events. For monitoring large and obvious changes, simpler, more efficient
methods can be used (Lindenbergh and Pietrzyk, 2015). Yet if granular details need to be
focused on, precise in-situ measurement techniques can be required (Ganju et al., 2017),
necessitating more complex workflows (Williams et al., 2018). In such cases, more simplistic,
commonly used methods can generate errors larger than the changes or rates of retreat being
measured (Ganju et al., 2017; Rosser et al., 2005). Table 1 provides an overview of the various
GCD methods discussed. Ultimately though, the method selected is dependent on what
datasets are already available, or can be acquired.

Many organisations responsible for managing risk in coastal areas, have been concerned
primarily with generalised linear erosion rates, so have settled for basic level change
comparisons centred on visual interpretation of aerial images and digitised shorelines
(Stanley and Staley, 2017), and beach profile comparisons based on GPS transects
(Environment Agency, 2013). In such cases, shifting to an approach deriving linear retreat
rates from comparisons of DEM surfaces, such as DoD (Williams, 2012), can offer clear
improvements over existing methods. In many other instances, linear retreat or analyses of
change limited to one plane or vector is inadequate, particularly where small changes need
to be monitored in areas of complex geometry. Furthermore, where causation of change is
sought, this level of abstraction may over-simplify complex changes. In such instances, high
temporal and spatial resolution C2C techniques are more applicable (Kromer et al., 2015),
and can permit change detection based on dynamic surface normals, as opposed to static
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vectors. The scale at which changes must be monitored, also imposes restraints on GCD
method selection. It may not be adequate to focus on change in one location for example, so
scanning methods generating high-resolution point clouds, may not be feasible, and lower
resolution techniques based on surface creation may be more appropriate.

This study seeks to address the coastal GCD requirements of a broad range of the stakeholder
parties who wish to model such heterogeneous phenomena. However, the study is limited in
scope, so focuses on a single aspect of GCD. Based on feedback received from coastal
practitioners4, in which their most immediate requirements and current challenges were
outlined, a decision was made to focus on broad-scale general trends of morphological
change. Previously reported change analyses for East Anglia have mainly focussed on linear
change estimates, largely neglecting quantification of loss/gain of coastal material
(Environment Agency, 2013, 2012, 2011). Yet many past studies for the region have
highlighted the importance of deriving quantitative estimates of sediment budgets (Brooks
and Spencer, 2010; Burningham and French, 2016). Recent analysis undertaken for East
Anglia also outlines a requirement for future incorporation of volumetric analysis based on
Lidar datasets (Stanley and Staley, 2017). The 14 case study sites we selected, contain varying
morphological characteristics. Given this, linear change analysis was not deemed suitable by
the authors, to adequately capture the diverse morphological processes operating within all
study sites (not all of which were characterised by net coastal erosion). A generalised method
was required, allowing quantification of net material gain or loss at each location, over
multiple epochs. Therefore, for this study a decision was made to focus on the calculation of
volumetric change, and based on the criteria detailed in Table 1, a TIN-based differencing,
surface comparison method was selected (Cove and Lavoie, 2007). This involves calculation
of surface volumes, based on elevation relative to a uniform planar surface. Prior to the
selection of this method a number of other options were trialled, for example, those based
on regular gridded raster surface creation, as described in Cantrill and Kruimel (2013). The
method selected was considered the most suitable, given the nature of the terrain being
modelled (generally complex, including steep surfaces), the data types being used (mainly
airborne Lidar), and the irregular spacing of data points. The TIN models retained the original
elevation at data points, thus minimising interpolation and smoothing, in which actual
features could be misinterpreted as noise and so be lost from the analysis.

4 Feedback was received from members of Coastal Partnership East (UK), the Environment Agency, and
members of the Anglian Coastal Monitoring Group.
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Table 1: Comparison of GCD methods

Type of GCD Method Benefits Drawbacks Area of Application

Manual
Interpretation /
Digitisation

2D linear retreat
derived from aerial
images/maps

Simple method. Not reliant on point
cloud data being available; can be
applied to topographic maps/aerial
imagery. Easily applied at varying spatial
scales.

High levels of interpolation required.
Reliant on the skills of the operator.
Error prone at high temporal resolution.
No options for volumetric change
calculation.

Where large obvious changes are
present and general trends
required. Wide scale linear trend
identification.

Linear retreat
derived from
profiles/transects

Volumetric change can be obtained
through interpolation between
transects. Can be based on GPS surveys.
Simple.

Incomplete representation of coastal
areas. Interpolation of data points
between transects reduces accuracy.

General long-term trends of coastal
erosion/accretion.

Surface
Comparison

DEM of Difference
(DoD)

Most popular and commonly used
method. Simple. Variants allow error
terms to be incorporated in calculations.
DoD surfaces can provide visualisation of
change/qualitative outputs, in addition
to quantitative results.

Comparing data for multiple epochs can
be time consuming and error prone. Not
suitable for vertical cliff face
comparisons. Interpolation required for
surface creation, thus artefacts can be
generated, or real data points
misinterpreted as noise. Not a 3D method
(2.5D), limited to only one elevation value
per raster grid cell.

Beach level comparison, where
simple geometry is present.
Qualitative identification of
patterns of sediment movement.
More suited to a limited number of
epochs. For aerial and subsea
survey datasets. Capable of
application at larger spatial scales.

TIN to TIN
Comparison

TINs account for irregular and complex
geometries, and micro-topographical
irregularities. Original data points
preserved within calculations. Difference
surfaces can provide visualisation of
change. TINs are suitable where spatial
variability of point density is present.

Comparing data for multiple epochs can
be time consuming and error prone.
Limitations imposed on the size of
datasets/number of data points which
can be used in TINs. TINs can be
problematic where there are data gaps
(occlusions).

Suitable for modelling complex
topographic surfaces with varying
levels of spatial variability. Suited to
aerial and subsea survey methods.

Planar Comparison
(TIN/DEM)

Comparison not limited to vertical
change vectors, can use horizontal,
inclined and vertical reference planes.
Distinct volumes obtained for each
epoch; easy to compare data for multiple
epochs. For TINs, the benefits listed
above also apply.

Change analysis along a static vector fails
to capture the complexity of elevation
surface dynamics, and movements which
combine vertical and horizontal
components. Limited to quantitative
outputs. For TINs, the drawbacks listed
above also apply.

Can handle the datasets generated
from survey techniques with a
horizontal aspect (TLS/MLS). Can be
applied where a high number of
epochs are to be compared. Suited
to aerial and subsea survey
methods.
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Mesh Comparison
(Planar/direct)

Can allow varying levels of resolution in
surfaces to be compared; able to capture
complex morphologies and geometries.
Suitable for high density point clouds.

Interpolation required in surface creation.
Time consuming. Limitations on scale of
application.

For vertical and inclined cliff faces.
Higher resolution data.
Identification of smaller changes
over multiple periods. Localised
scale.

Cloud to Cloud
(C2C)
Comparison

Static Vector Lower levels of interpolation due to
change estimates based on original data
points. Simpler and quicker to restrict
change to one vector. More suited to 3D
analysis than surface-based techniques,
can overcome many uncertainties and
inaccuracies introduced by
meshing/gridding. Many options for the
orientation of the static change vector.

Drawbacks associated with using a static
change vector. Limitations on spatial scale
of application. High density datasets
required. Method required to account for
any gaps between data points.

Where detailed linear retreat
estimates are.

Surface Normals Method permits comprehensive error
accounting. Direction of change given,
more complete picture of change;
efficiency gains through the correct
points being compared between two
point clouds. Potentially, lowest level of
interpolation of all methods. The fact
that changes occur in multiple directions
is also accounted for.

Requires high density point cloud data.
User expertise requirements for
application. Limitations of spatial scale of
application. High computation power
requirements, potentially due to larger
datasets.

Optimal method for precise
quantification of erosion at a
localised scale; monitoring of
granular deformations such as that
in hard rock cliffs. Suitable for
determination of change causation,
rough surfaces and complex
geometries. Can be used to reveal
individual rock fall events.
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1.3 Methods

1.3.1 Application of a GCD technique to the case study region

The 14 case study sites encompassed over 24km of coastline (Figure 2). The sites are widely
distributed across the region, and each site contained unique features in terms of coastal
change parameters, erosion/accretion methods, geology and vulnerability characteristics.
Table 2 lists the case study sites with their rationale for selection and the datasets obtained
for each site.

Figure 2: Location of study sites
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Table 2: Case study sites

Location Reason for Selection Datasets Obtained (collection
method and epochs)

Hunstanton North &
Hunstanton South

Rapid erosion of vertical cliff faces. Lidar:2008, 11, 12, 13, 14, 15, 16, 17
TLS: 2012, 17

Cromer Partially defended coast. Eroding
chalk cliffs fronted by sand and
shingle beach.

Lidar: 2008, 11, 12, 13, 14, 15, 17, 18

Sidestrand to Trimingham Undefended. Complex landslide,
erosion, unpredictable, better
information on erosion rates
needed.

Lidar: 2008, 11, 12, 13, 14, 15, 17, 18
TLS: 2000, 01, 02, 03, 04, 05, 06, 07,
16

Mundesley High water erosion trends. Lidar: 2011, 12, 13, 14, 15, 17, 18

Bacton Gas Terminal Eroding coast, property (critical
national infrastructure) at risk.

Lidar: 2011, 12, 13, 14, 15, 17, 18

Walcot to Happisburgh Complex landslides.
Walcott - entire cliff encased in
concrete. High erosion rates;
partially defended; one of the few
sites in the world where coastal
defences have been removed and
policy has shifted from ‘Hold the
Line’ to ‘Managed Retreat’.

Lidar: 2008, 09, 12, 13, 14, 15, 16, 17,
18
TLS: 2001, 02, 03, 04, 05, 06, 07, 09,
11, 16

Hemsby Rapid erosion events resulting in
houses collapsing into the sea.

Lidar: 2009, 12, 13, 15, 16, 18
MBES, Full Coverage: 2005, 11
Offshore only: 1990, 92, 93, 94, 96,
98, 99;
2000, 01, 02, 03, 04, 07, 11, 12, 13, 15

Corton to Lowestoft &
Lowestoft Nearshore

Sandy coast, simple failure
mechanism, rapid erosion.

Lidar: 2008, 09, 11, 12, 13, 14, 15, 16,
17
MBES: 1991, 92, 93, 94, 96, 97, 98, 99,
2000, 01, 02, 03, 04, 05, 07, 08, 09,
10, 11, 13, 15

Kessingland High erosion rates. Lidar: 2008, 11, 12, 13, 14, 15, 16, 17

Benacre High erosion rates, complex
processes related to migration of
the ‘Ness’.

Lidar: 2008, 11, 12, 13, 14, 15, 16, 17

Easton Bavents Cliff eroding rapidly north of
properties.

Lidar: 2008, 11, 12, 13, 14, 15, 16, 17

Thorpness Defences crumbling, public hazard. Lidar: 2008, 11, 12, 13, 14, 15, 16, 17

As with other similar contemporary studies, this study is made possible due to the extensive
quantities of available open source5 coastal datasets (Rumson and Hallett, 2018): bathymetric
data was obtained from the UKHO6; Lidar, TLS and limited bathymetry was obtained from the
EA7; and, TLS data was provided by BGS. From the large quantity of seabed data for the region
obtained from the UKHO, only two locations had repeat bathymetry data available for
multiple epochs in areas sufficiently close to the coastline to warrant inclusion in the
subsequent analysis. These locations being in the nearshore areas close to Lowestoft and
Hemsby. The horizontal coordinate system used throughout this study was OSGB 1936, and

5 Much of the Open Source data utilised has been made available to the public following a successful 2015
DEFRA initiative to place environmental datasets in the public domain (GOV.UK, 2017).
6 Data Source: http://aws2.caris.com/ukho/mapViewer/map.action
7 Data Source: https://data.gov.uk/publisher/environment-agency
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the ODN (Ordnance Datum Newlyn) vertical datum. Topographic data required no
transformation, whilst bathymetric data was supplied in WGS 84 coordinates and was
transformed to OSGB 1936. The main datasets used in this study were EA Lidar, for these the
data acquisition dates used for each year are given within 1.8.1 Appendix 4.1.

1.3.1.1 Software selection

A wide range of software, tools, add-ins and toolboxes are available for GCD. In many
instances, the methods selected for generating change models in previous studies are a
consequence of the options within the available software packages (Hobbs et al., 2010). A
common method used in many studies is GIS data analysis (Esposito et al., 2018; Jackson et
al., 2012; Mitasova, 2015; Sergeev et al., 2018). Within GIS packages, tailored products are
being developed. These can involve the creation of bespoke scripts, and can draw on software
specific functionality such as ArcGIS Model Builder (Halls et al., 2018; Zhou and Xie, 2009) or
Caris Process Designer (Foster et al., 2017). However, GIS is not suitable for point cloud
comparison. It is common for C2C comparisons to involve the use of tailored scripts and task
specific algorithms; many past studies have utilised Matlab for this (Kromer et al., 2017;
Michoud et al., 2015; Williams et al., 2018). Examples of software used for point cloud data
based GCD include Polyworks (Michoud et al., 2015), Cyclone (Corbí et al., 2018), and
CloudCompare (Corbí et al., 2018; Lague et al., 2013; Leyland et al., 2017). The M3C2
algorithm developed specifically for C2C comparisons (Section 1.2.5), now comes complete
with the software CloudCompare, as a plugin (“M3C2 (Plugin)”, 2018).

Although not widely utilised for this purpose, hydrographic software packages can also
present opportunities for GCD analysis. A software tool produced by Teledyne Caris, termed
Bathy DataBASE (BDB) has been identified as being particularly suitable, and was selected as
the primary software tool utilised within this study. Caris BDB has been used previously for
volumetric calculations of material removed from the seabed, such as that associated with
dredging operations (Cantrill and Kruimel, 2013), and it is configured to work with a variety
of terrestrial point cloud datasets and formats, in particular .laz and .las files (the format in
which datasets used for this study were typically supplied). Preconfigured software
functionality, such as that utilised for this study, can offer quick and efficient tools for
completion of GCD. However, the software used did not provide options for including error
accounting techniques within GCD calculations. Due to constraints on time and resources,
and only general trends being sought, this limitation of the software functionality was
deemed acceptable by the authors. However, efforts have been taken in the selection of
methods within the workflow developed (Figure 3) to minimise error sources.

1.3.1.2 Software methodology

A workflow was developed in which a standardised series of operations were undertaken
(Figure 3).
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Figure 3: Software workflow for volume calculations

1.3.1.2.1 Software workflow

Step 1: Source Data
Initially, datasets covering the entire coastline of East Anglia were obtained. From this, data
for the selected test sites were extracted based on the corresponding Ordnance Survey (OS)
grid cells for each area. The extent of data availability varied by site and by the data
acquisition method used. The minimum time period for which data was available, for any site,
was 7 years and 6 epochs.

Step 2: Data import and QC
Processed point cloud data was imported as .las, .pts, .csv, or .ascii file formats. This was
converted into Caris’ native .csar file format, which enabled the data to be compared visually,
and for its coverage to be inspected. Initially, datasets for each case study area were imported
in this manner into a BDB BASE Editor project. Data varied in resolution, quality and coverage
by year. Therefore, it was necessary to undertake a visual inspection of datasets available for
each site, prior to deciding which datasets/epochs would be used for comparison. The 3D
viewing option in BASE Editor was utilised for this (Figure 4). When areas with adequate
spatial coverage and resolution were identified, a first set of boundaries were created. These
were used to extract a single point cloud dataset for each selected epoch. Initially datasets
derived from airborne Lidar, TLS and MBES surveys were imported. Visual analysis of the data
revealed that for most TLS datasets, large data occlusions (gaps) were present, which would
necessitate extensive interpolation. Also, for many of the TLS datasets, coverage was only
provided for limited areas, not the entire comparison areas selected. Due to this, a decision
was made not to include the TLS datasets within the volumetric change calculations, as



17

adequate coverage and data point density was provided by the majority of Lidar datasets.
Section 1.2.2 highlighted how airborne Lidar provides inadequate point density for vertical
cliff faces, yet among the case study areas, only a limited number of sites contained such
vertical cliffs (the most prominent being Hunstanton). Of the two sites for which bathymetric
datasets were available, the only site where there was adequate quality and coverage of data,
over the required number of epochs, was Lowestoft. Therefore, a nearshore site at Lowestoft
was the only location for volumetric comparisons based on MBES data.

Figure 4: TLS dataset coverage/resolution comparison in BDB software, illustrating cliff
retreat left to right (red arrow) for Sidestrand

Step 3: Preliminary change assessment
Using the extracted point cloud datasets, DEM surfaces were created for the first and last
epoch for each site. A DEM differencing function in BDB was used to directly compare the two
surfaces to generate a difference dataset. These datasets were displayed using a graduated
colour schema based on elevation change, and represented change areas in 2.5D (Appendix
4.2). From this, the main areas of change and deformation could be determined.
Subsequently, a second set of boundaries were created for each site, within which the main
areas of change were included. Care was taken when creating boundaries to avoid including
features which could generate errors in volume calculations. The resulting comparison areas
formed a narrow band running along the high-water line for each site. The seaward limits of
the boundaries ran as close to the coast as possible, so as to still include all areas of change
identified. The reason for excluding obvious intertidal areas was that the Lidar datasets were
obtained at different points within the tidal cycle for each area, so returns from the ocean
surface could be misinterpreted as land and introduce errors within the calculations. The
landward boundaries also did not extend far inland, past cliff edges. This minimised the
inclusion of buildings, infrastructure, vegetation, and other error sources, within volume
calculations. As a result, the coastline areas and lengths contained within comparison areas
differ for each case study site (Table 5).
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Step 4: TIN model creation
For data to be compared within the BDB software, surfaces were created using TIN models.
TINs were found to be the most reliable and accurate method for surface comparison,
following experimentation with other methods such as gridded raster surfaces. Additionally,
working directly with TINs bypassed errors associated with the process of resampling TINs
onto a regular raster grid, to create DEMs (Wheaton et al., 2010). Using point cloud data
contained within the second set of boundaries, TIN models were created for each epoch at
every site. The TIN models were inspected visually to identify areas where data was lacking
and where large triangles with long vertices were thereby created. In some cases, this related
to areas of vegetation, missing data or other errors. Where possible and necessary,
boundaries were altered to remove areas where excessive interpolation had been completed,
and new TIN models were subsequently created. A software function was also utilised to
remove triangles with long vertices, along the outer edges of the TIN models.

Step 5: Volume Calculation
Using the Engineering Analysis Module in the BDB software, horizontal planar surfaces were
created using the final boundaries for each comparison area and stored as templates (Figure
5). The BDB Triangular Volume Calculation tool was used to calculate volumes between the
TIN surfaces for each epoch and the associated reference surfaces. The height of all reference
surfaces, used for comparison of topographic data, was set as 2m below Mean Sea Level (MSL)
with reference to ODN and for bathymetric data comparison, the reference surface height
used was 10m below MSL. Prior to volume calculation a visual check was made to ensure no
data points fell below the reference surfaces. Volume estimates for each epoch were stored
within a spreadsheet and used to calculate volume changes between sequential epochs,
resulting from surface elevation changes (Section 1.4). Once change estimates were obtained,
a manual quality control process was undertaken. This involved visual inspection of surfaces
associated with irregular volume changes. This enabled errors or missing coverage that might
bias the change results, to be identified. In some cases, this necessitated removing datasets
from comparisons for certain epochs or altering comparison area boundaries and recreating
the associated TIN models. Direct comparisons between TIN models were also completed for
all areas, however, the results generated proved unreliable and inconsistent, so all volume
calculations were thence made in relation to a fixed planar reference surface.

1.3.1.2.2 Additional GCD Analysis Methods

The main software functionality used in this study was that allowing calculation of volumetric
change. However, a number of additional analytical and visualisation features in BDB
software were tested, and these assisted in analyses of the large number of datasets utilised.
Simple comparisons of DEM surfaces were completed through profile or transect creation
(Figure 6). Additionally, where a specific focus was required on Top of Cliff or Base of Cliff,
then these were calculated roughly using an automated process, within the software, which
estimates their respective positions through analysis of surface gradients. Top/Base of cliff
values were then compared for two or more epochs (Figure 7). This method bypasses
requirements for manual digitisation, as do other recently developed techniques (Payo et al.,
2018a). Within the BDB software there is also an option to complete volume calculations
relative to a vertical or inclined reference plane. This functionality was tested and proved
especially suitable to areas where vertical cliffs were present (Figure 5). However due to the
heterogeneous nature of the morphology of the 14 case study sites, this method was
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unsuitable for adequately capturing adequately volume changes in all areas. As the main
sources of data drawn upon were from airborne Lidar surveys, in which only 1 elevation point
is recorded for each horizontal grid square, a 2.5D analysis method focusing on comparison
of elevation changes was more appropriate. Furthermore, using the same comparison
method at each site was more conducive to allowing direct comparisons of the results
generated for sites across the region (such as those presented in Section 1.4).

A B C

Figure 5: Planar Comparisons in Caris BDB including use of a vertical reference
surface, for Happisburgh Case Study Site (A - reference surface creation; B - point
cloud data for a single epoch superimposed over reference surface: C - surfaces for
two epochs superimposed over a vertical reference surface).

Figure 6: Profile/Transect Creation from DEM in Caris BDB



20

Figure 7: Top and base of cliff, change analysis in Caris BDB

1.4 Results
Surface volume estimates were generated for each epoch in which the required coverage and
quality of data were available. Table 3 provides an overview of the raw results generated for
each area. Cumulative change volumes obtained are presented in Table 4, with the volumes
for the first epoch, at each site, listed as zero, as this represents the reference epoch. These
results are represented graphically in Figure 8 and Figure 9. Results for each site are also
presented individually in Appendix 4.2. This includes visual representations of the results of
the initial DEM difference comparisons for each site, displayed as 2D raster images, using
colours graduated by change magnitude.

Table 5 provides summary statistics for each case study area. Direct comparison between the
results generated for the separate case study sites is problematic due to different lengths and
areas of coastline being compared at each site, the sample period being compared, and the
number of epochs used. In an effort to account for these factors, a set of summary statistics
have been generated, so that comparisons can be made between the case study sites (other
than cumulative net volume change). The two new statistical measures generated are
labelled: ‘Average Yearly Volume Change/ metre of Coastline Sampled’, and ‘Average Height
Change Across Area Sampled / Year’. Separate comparisons of change across the study sites
based on these two statistics are presented in Figure 10 and Figure 11.

The raw cumulative net change results (Figure 8 and Figure 9) reveal Trimingham, Hemsby
and Happisburgh as the sites experiencing the highest rates of change. However, by
separately accounting for (a) length of coast, and (b) period of comparison and area of each
site, the relative rates of change alter (Figure 10 and Figure 11). In both sets of statistics
Easton Bavents emerges as the site with the highest rate of change, whilst when the area of
each site is accounted for (b), Benacre emerges as experiencing the second highest rate of
change. The change experienced at the sites, over the entire sample periods, generally takes
the form of erosion, except at two locations, Lowestoft near shore and Hunstanton South;
the possible causation of this is discussed in Section 1.5.
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Table 3: Annual indicative volumes calculated for all epochs at each case study area (relative to a fixed reference plane)

Area

Volume by Year (m3)

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Hunstanton
North - - - 193140 - - 189203 189338 193399 186638 186981 196916 183652

-

Hunstanton
South - - - 138434 - - 143976 141855 145974 148112 148862 153062 154341

-

Cromer - - - 500964 - - 505195 503427 505664 482274 482774 - 479926 -

Trimmingham - - - - - - - 17902336 17848229 17610944 17577588 - 17360414 17206431

Mundesley - - - - - - 2345921 2352377 2340532 2298903 2302621 - 2291523 2294828

Bacton Gas
Terminal - - - - - - - 706013 703679 679948 686004

-
679492 679097

Happisburgh - - - 1412590 - - 1339946 1268277 1169700 1137102 1133140 1098229

Hemsby - - - 2338355 - - 2206983 2054796 - 1979472 1992364 - 1868003

Corton to
Lowestoft - - - 2689242 - - 2550845 2626298 2680332 2649146 2611697 - 2675196 -

Lowestoft
Nearshore 811172 790141 814778 813311 856769 874044 861102 911558 931426 958281 980840 - - -

Kessingland - - - 302287 299053 300549 300063 293592 291062 276659 260999 -

Benacre - - - - - - 504103 494043 490507 410487 405517 362777 340006 -

Easton Bavents - - - 312353 - - 308064 306538 301535 291233 262940 183715 181338 -

Thorpness - - - 231833 - - 224402 228021 219167 231502 217428 209478 174204 -
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Table 4: Annual cumulative volume change for each case study area relative to a reference year

Area

Volume change per Year (m3)

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Hunstanton North - - - 0 - - -3937 -3802 259 -6502 -6159 3776 -9487 -

Hunstanton South - - - 0 - - 5542 3421 7540 9678 10428 14628 15907 -

Cromer - - - 0 - - 4231 2463 4700 -18690 -18190 - - -21038

Sidestrand to
Trimmingham

- - - - - -
- 0 -54107 -291392 -324748

-
-541922 -695904

Mundesley - - - - - - 0 6456 -5388 -47018 -43300 - -54398 -51093

Bacton Gas
Terminal

- - - - - - -
0 -2334 -26064 -20009

-
-26521 -26916

Happisburgh - - - - 0 - - -72644 -144313 -242890 -275489 -279450 -314362

Hemsby - - - - 0 - - -131371 -283558 -358882 -345991 - -470352

Corton to
Lowestoft

- - -
0

-
-138397 -62944 -8910 -40096 -77544 - -14045

-

Lowestoft
Nearshore 0 -21031 3606 2140 45598 62872 49931 100387 120254 147110 169668

- - -

Kessingland - - - 0 - - -3234 -1738 -2224 -8695 -11226 -25629 -41288 -

Benacre - - - - - - 0 -10060 -13596 -93616 -98586 -141326 -164097 -

Easton Bavents - - - 0 - - -4290 -5816 -10818 -21120 -49413 -128639 -131015 -

Thorpness - - - 0 - - -7431 -3812 -12667 -331 -14405 -22355 -57630 -

Note: the first year data was available for (for each area) is taken as a reference year, and displayed as zero. The difference in volume between the reference year and that calculated for
subsequent years is given for each year.
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Figure 8: Cumulative net change shown for each area

Figure 9: Cumulative net change for areas experiencing lower levels of net change
(larger scale version of graph in Figure 8, excluding higher net change areas, to allow
remaining profiles to be viewed in greater detail)
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Table 5: Summary statistics for all case study sites

Area

Comparison /
Sample Area Used Data Sample Period

Cumulative
Volume
Change

(m3)

Net
Erosion /
Accretion

Averaged
Volume

Change /
year

Average
Yearly

Volume
Change /

m of
Coastline
Sampled

Average
Volume
Change
(per m)
/ year

Average
Height
Change
Across
Area

Average
Height
Change

Across Area
Sampled (m)

/ Year
Area
(m2)

Length of
Coast (m) From To Years Epochs

Hunstanton
North 14440 1200 2008 2017 9 8 -9487 Erosion -1054 -7,91 -0,88 -0,66 -0,07

Hunstanton
South 29594 770 2008 2017 9 8 15907 Accretion 1767 20,66 2,30 0,54 0,06

Cromer 31539 900 2008 2018 10 7 -21038 Erosion -2104 -23,38 -2,34 -0,67 -0,07

Trimmingham 603287 4230 2012 2018 6 6 -695904 Erosion -115984 -164,52 -27,42 -1,15 -0,19

Mundesley 222687 2570 2011 2018 7 7 -51093 Erosion -7299 -19,88 -2,84 -0,23 -0,03

Bacton Gas
Terminal 50709 1110 2012 2018 6 6 -26916 Erosion -4486 -24,25 -4,04 -0,53 -0,09

Happisburgh 158542 2910 2009 2017 8 7 -314362 Erosion -39295 -108,03 -13,50 -1,98 -0,25

Hemsby 265093 2340 2009 2018 9 6 -470352 Erosion -52261 -201,01 -22,33 -1,77 -0,20

Corton to
Lowestoft 196653 3280 2008 2017 9 7 -14045 Erosion -1561 -4,28 -0,48 -0,07 -0,01

Lowestoft
Nearshore 211548 660 2005 2015 10 11 169668 Accretion 16967 257,07 25,71 0,80 0,08

Kessingland 27047 650 2008 2017 9 8 -41288 Erosion -4588 -63,52 -7,06 -1,53 -0,17

Benacre 79737 2090 2011 2017 6 7 -164097 Erosion -27349 -78,52 -13,09 -2,06 -0,34

Easton
Bavents 29208 620 2008 2017 9 8 -131015 Erosion -14557 -211,31 -23,48 -4,49 -0,50

Thorpness 35573 640 2008 2017 9 8 -57630 Erosion -6403 -90,05 -10,01 -1,62 -0,18
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Figure 10: Mean volume change / metre of coast sampled, for each case study area

Figure 11: Mean height change across the sampled area (m / year) for each case
study site

1.5 Discussion

1.5.1 GCD Method Evaluation

This study has sought to evaluate the practical suitability of a point cloud based GCD
method for coastal change detection applications. In doing so the case study region of
East Anglia was used, noting the approaches are of wider application. The study region
benefits from an extensive archive of coastal monitoring data, much of which results
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from the Anglian Coastal Monitoring Programme (Environment Agency, 2016). Yet
datasets available for the area have been underutilised in documented GCD studies
undertaken by practitioners, and the potential benefits to coastal analysis offered by
such terrain data have not been fully realised. Commonly employed methods for coastal
GCD based on linear change analysis, derived from comparisons of survey data (such as
that generated by topographic surveys), only incorporate a small portion of the
extensive quantities of data collected for each site (which includes high resolution point
cloud data). However, the volumetric change analyses, undertaken within this study has
sought to incorporate all relevant and valid data points collected for a given comparison
area. This enabled more comprehensive estimates of geomorphological change and
deformation to be obtained, and reduces the requirement for interpolation and the
associated uncertainty.

The selected GCD method used in this study, is limited to measuring change along a
single vector (horizontal), yet it allows simple comparisons to be made between surface
representations for different epochs at each site. This in turn enabled trends to be
revealed, and comparisons to be made between sites in different locations. Application
of this method seeks to address the requirements of those who need to gain a general
understanding of wide-scale impacts and coastal processes. It is acknowledged that the
level of detail permitted by such a technique may prove inadequate for monitoring of
more granular processes (for which C2C analysis or similar techniques, using higher
resolution data, may be more appropriate). Also, by limiting change analysis to
measurement along a horizontal vector, the ability to accurately monitor the
deformation of vertical cliff faces is greatly reduced. However, the primary purpose of
applying this GCD method was not to determine linear cliff face retreat, but to estimate
net volume change, allowing quantification of each case study area’s sediment budget.
Given this the method was deemed appropriate, and adequate given the spatial scales
assessed.

Our estimates of volumetric change for each study site are indicative of levels sediment
loss/gain at each location. Other studies focusing on East Anglia have generated similar
results for a number of the sites we selected. We calculated the following sediment loss
rates (m3/year): Easton Bavents 14,557 (2008-2017); Benacre 27,349 (2011-2017);
Thorpness 6,404 (2008-2017) (Table 5). Whilst Brooks and Spencer, (2010) focussed on
a preceding time period in their study (2001-2008) and calculated sediment volumetric
loss rates (m3/year) of: Easton Bavents 16,868; Benacre 19,629. Burningham and French
(2016), also completed sediment budget estimates for similar areas, and for multiple
periods, one of which overlapped with that we studied (1999-2013). They calculated the
following sediment loss rates for this period (m3/year): Easton Bavents 24,990;
Thorpness 4,326. The results generated in these studies are not directly comparable
with our results, given we cover a different time period, and the boundaries and
shoreline lengths for each site will not be equal. However, the results are within the
same order of magnitude, for each area, so this provides some assurance over the
validity of our results. The methods used in these previous studies differ to what we
employed, and include higher levels of interpolation, drawing on transect data, and
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interpretation of aerial imagery. Given this, and considering the associated issues listed
in Table 1, the TIN based methodology we have used appears more robust.

The workflow developed for this study (Figure 3), involves significant levels of manual
intervention and interpretation. Therefore, undertaking similar analysis on a large-scale
would prove time consuming, and would be reliant on the skills of an individual
operator. However, options exist to standardise and automate many of the tasks
completed within the workflow by using the ‘Process Designer’ function in BDB or
developing Python scripts to simplify and streamline processes, making execution of the
workflow more efficient and reliable. The ability to work with point cloud data and
surfaces in 3D was integral to the successful completion of the work. Preconfigured
functionality in the BDB software, allowed rapid calculation of volumes and enabled
analysis to be undertaken for the multiple sites and epochs included. Comparable
functionality did not exist in other software trialled, including a number of commonly
used GIS packages.

1.5.2 Data Use and Availability

The requirement for interpolation is reduced further when higher resolution datasets
are used in analysis. However, there is a trade-off between data density and the scale of
analysis possible. The Lidar datasets used in analyses, are on average at a 1m resolution,
whilst some of the TLS data examined was under 10cm in pixel resolution. Use of higher
resolution data imposes limits on the size of an area that can be analysed and was
therefore deemed unsuitable given the spatial extents associated with this study.
Furthermore, surface creation using TIN models was found to be problematic with large,
high density datasets. For the level of detail required, the 1m Lidar data was found to be
adequate to generate general trends at a wider scale. The temporal resolution of data
collection was also observed as being critical in determining trends accurately. For East
Anglia, the datasets available were limited to annual intervals (see 1.8.1 Appendix 4.1).
The annual datasets proved effective for determining general trends, yet for more
detailed analysis, such as studies determining causation of change, data collected over
shorter intervals might be required. Also, if impacts resulting from successive high-
energy events are to be compared, surveys need to be completed pre and post event.
This could prove difficult though if data acquisition methods such as airborne Lidar are
relied upon. However, using in situ methods such as static TLS monitoring of cliff faces
(Williams et al., 2018) could provide the required temporal frequency of data. For the
East Anglian datasets utilised in this study, there are examples where larger intervals are
present between sequential epochs, for example, from 2008 to 2011 at Corton, from
2009 to 2012 at Hemsby, and from 2008 to 2012 at Thorpness. The only attempt at
interpolation between these gaps (Figure 8 and Figure 9) is to link points by a straight
line. This method, although indicative of longer-term patterns, is crude, giving no
accurate indication of change within the extended interval between sample points, and
if more detailed analysis was required, this interpolation could prove inadequate.
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1.5.3 Evaluation of Results

This study focussed primarily on the application and evaluation of methods for GCD
using point cloud datasets. Given this, the discussion does not provide extensive analysis
of the significance of the results generated in relation to the local coastal management
context, i.e. that relating to causation of trends, patterns, and impacts. Yet the results
generated could form a valuable input to further studies focusing on such aspects. In
particular, for each of the sites studied the main areas of coastal change were captured.
Estimates of cumulative change over the sample periods provide some indication of the
extents of net erosion or accretion occurring at each site, and furthermore, the sites
contribution to local sediment cells. The stretch of coast from Sidestrand to
Trimmingham stood out as experiencing the largest net loss of material and the highest
rates of erosion, followed closely by Hemsby and Happisburgh. These results conform
with empirical knowledge, as all 3 sites have witnessed rapid and extensive erosion over
the temporal period represented in this study (Nicholls et al., 2015; Payo et al., 2018b).
Yet, if the size of sample area and length of coastline for each site was considered,
Easton Bavents emerged as the site experiencing the highest rates of erosion (Figure 10
and Figure 11). Again, this conforms with established knowledge, as Easton Bavents has
been heavily impacted by coastal erosion and for this reason was focused on within
the Coastal Change Pathfinder Programme (as was Happisburgh and Trimingham)
(Defra, 2012). The emergence of Eastern Bavents as a heavily impacted area
corresponds with what can be deduced from the initial DoD visual results and cross
profiles generated from the TIN surfaces. These indicate large sections of coast which
have eroded by over 20m laterally, at some locations, over the 9 year sample period
(Figure 12). The results, presented in Figure 10 and Figure 11, should be viewed with
some caution though, as for some sites, such as Kessingland, the comparison area
included only a relatively small section of coast, where higher levels of erosion were
concentrated, so the results were not representative of change rates across the wider
area. Conversely, sites such as Corton to Lowestoft, included a longer stretch of
coastline, in which areas of change were more widely dispersed.
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Figure 12: 2D Profile of Easton Bavents TIN surfaces from 2008 – 2017, showing
over 20m horizontal cliff recession. The plan view image represents areas of
accretion/erosion using a graduated colour scheme, with areas of higher erosion
coloured red and stable areas green. Profiles generated for sequential years are
assigned separate colours, detailed in a legend (not correlated with the plan view),
these range from 2008 shown in red through to 2017 displayed as a green line. A
blue arrow indicates a period between 2015-2016 where higher rates of erosion
were experienced.

Net erosion was experienced at twelve of the case study sites during the period studied,
yet the extent of this varied considerably, with locations such as Bacton, Mundesley,
Thorpness, and Hunstanton North experiencing lower levels of cumulative material loss.
However, in the period between Lidar Surveys being completed in late September 2016
and November/December 2017, Thorpness experienced a dramatic increase in erosion
rates (Figure 9 and Appendix 4.2). The quantity of material removed from the Thorpness
case study area (35,275m3), in this period of just over one year, was over 150% of that
removed in the preceding eight years (22,355m3). This observation ties in with media
coverage focusing on the area during that period, where in January 2017, dramatic
erosion events and a subsequent cliff collapse resulted in loss of life (BBC, 2017). One
site which doesn’t conform with the general trend of erosion is Hunstanton South,
where our results indicate net accreation. In terms of spatial orientation, this site is
noticibly unique in that its coastline is west facing. Here, partial protection is provided
from the full force of the North Sea by The Wash.The stretch of coastline between
Corton and Lowestoft also stood out due to it fluctuating between states of net erosion
and accretion. This case draws attention to how the net volume change figures obtained
for the entire sample period (such as generated in the initial DoD calculations) can be
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misleading, and consideration of changes across all epochs sampled is necessary to gain
a more complete understanding of actual trends.

The one site for which nearshore bathymetry was analysed (Lowestoft) showed a net
accumulation of sediment in the area. The coastline adjacent to this section of seabed
is heavily defended by concrete structures, indicating that sediment eroded from
locations further along the coast, or discharged from Lake Lothing, is being deposited in
this location. This case also demonstrates clearly the need to consider both visual
representations of change, in addition to quantitative assessments. The visualisation
generated from the initial DEM of difference calculation (Figure 13) reveals an uneven
distribution of change across the site. To the east a deepening channel has emerged, in
which an elevation reduction of up to 4.6m has been observed, whilst to the south west
of the area, elevation increases of up to 2.6m are present. The deepening channel does
not appear to align with known dredging activity in the area, or with documented
shipping channels and approaches (VisitMyHarbour.com, 2019), therefore it could be
attributed to local coastal processes.

Figure 13: DEM difference surface for Lowestoft representing a comparison of
data collected between 2005 and 2015. Change is displayed numerically and via a
graduated colour scheme. All changes are given in metres, with areas of accretion
assigned negative values, and are coloured orange/red. Numbers depicting spot
change values are superimposed over the respective areas.
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1.5.3.1 The 2013 East Coast Storm Surge

The most significant hazard event which impacted the case study region, during the
period focussed on in this study was the 2013 East Coast Storm Surge (Environment
Agency, 2016). This event took place between on 5-6 December 2013, and resulted in
the highest still water levels on record being observed at many sites across the region
(Spencer et al., 2015). The dates of acquisition of the Lidar data used in this study (Table
6) indicate that all 2013 datasets were collected prior to this event. Most datasets were
acquired shortly before it, in October 2013, however subsequent surveys for most areas
were not completed until October or November 2014. Given this, estimates of change
for each area, between 2013-14, would not represent the immediate impacts of the
event. The 10-11 month gap, post event (prior to resurvey), would have allowed time
for sediment to be redistributed in each area. Notwithstanding this, a number of
observations were made in relation to results for the period. The most prominent sharp
increases in erosion, which could be attributed to this event, were witnessed at Cromer,
Mundesley, Bacton Gas Terminal, and Benacre (Appendix 4.2). The shift in the rate of
lateral erosion during the period between 2013 and 2014 is clearly evident in the
shoreline profile for Benacre, displayed in Figure 14. A noticable difference in the
volume change rate between 2013 and 2014, was not visible in the results for a number
of sites. There are many possible explanations for this. One could be that coastal change
on some stretches of coastline, was heavily influenced by rainfall-induced landslides, in
addition to coastal processes. Another could be, that the surge redistributed sediment
within the boundaries of a study area (during the interving period between surveys),
resulting in minimal change to the net volume of material observed.

The 2013 storm surge is just one high energy event which can be linked to the results
for selected sites within this study. Closer inspection of the change estimates generated,
especially the cumulative change profiles for individual sites (Appendix 4.2), may reveal
additional trends for which causation and correlation with events could be determined.
For example, examination of successive coastal profiles for Easton Bavents (Figure 12)
indicates a significant increse in the rate of cliff recession in the period between
November 2015 and October 2016.
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Figure 14: 2D Profile of Benacre TIN surfaces from 2011 – 2017, showing
approximately 20m horizontal cliff recession. The plan view image represents
areas of accretion/erosion using a graduated colour scheme, with areas of higher
erosion coloured red and stable areas green. Profiles generated for sequential
years are assigned separate colours, detailed in a legend (not correlated with the
plan view), these range from 2011 shown in red through to 2017 displayed as a
green line. A blue arrow indicates a period between 2013-2014 where higher rates
of erosion were experienced.

1.5.4 Limitations

The GCD undertaken within this study is primarily based on volume calculations founded
on elevation changes. Of the available methods this was deemed by the authors, the
most suitable for analysis of such a wide range of datasets, yet there are limitations
imposed by this method. Prominent among these is the inability to account for
redistribution of cliff or beach material within the boundaries of a comparison area. Such
changes could be better identified from the visual representations generated from the
DoD surfaces i.e. Figure 13, or in 2D profiles (Figure 12 and Figure 14), yet they were
inadequately represented in the quantitative change estimates. For example, where a
cliff face has eroded, the eroded material typically accumulates at the toe of the cliff, or
is deposited further along the beach. This volume of accreted material would partially
offset the volume of eroded material caputured for the whole comparison area. Given
this, processes operating in the area would not be fully captured within a single
quantitative volume change estimate. If the results of GCD analyses were required to
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enable more precise impacts at specific locations and dates to be determined, then a
more general overview method, could obscure important details, thus proving
inadequate. A partial solution to this issue could be to isolate material change
calculations to limited spatial extents such as a cliff face alone, thereby excluding beach
sediment yields. Also, through combining qualitative visual representations of change,
generated through DoD calculations, and the quantitative volumetric change results
generated by TIN-differencing, more comprehensive change analysis is permitted.

Another limitation which needs to be noted for this study relates to error accounting.
The technique we selected for undertaking GCD calculations was based on
preconfigured functionality within a commercial software. This limited our ability to
directly account for errors and uncertainties, and placed a heavy burden on manual
quality control. This proved time consuming and imposed caveats on the reliability of
the results produced. For the purposes of this study, this method was deemed adequate,
as the results produced are only intended to give indications of general trends. Yet it
should be noted that any future attempts to implement a similar methodology should
look to options for implementing more systematic and robust error accounting
techniques, such as those outlined by Wheaton et al. (2010), or options allowing levels
of significance to be assigned to calculated changes (Leyland et al., 2017).

1.6 Conclusions

This study presents a critical evaluation of GCD methods based on analysis of point cloud
datasets for coastal and nearshore areas, involving the use of Lidar, TLS and MBES
datasets. The results provide quantitative estimates of geomorphological impacts,
which can be attributed to coastal processes operating across the case study region of
East Anglia. 14 case study sites were included in the study, representing differing coastal
geologies, morphologies, levels of hazard exposure, and types of adaptive measures in
place. Cumulative change results were generated for each study site, revealing the
temporal and spatial distribution of coastal erosion and accretion trends. The results
presented indicate the suitability of the selected GCD methods, revealing how
comparative statistics and visualisations can be generated through creation and analysis
of DEMs or TIN surfaces. We also note how advances in both data acquisition and
processing technology allow high spatial and temporal resolution morphological data to
be combined within coastal change analyses. This can reduce uncertainty, through
reducing the requirements for interpolation, which are commonplace in many
traditional and in-use techniques, which demand higher levels of manual interpretation.

The methods employed, and the workflows developed, are suited to more general
implementation, offering analysis at wider spatial scales. The main analysis undertaken
related to cumulative volumetric change, taking place within defined case study sites.
The creation of surfaces using TIN models, and volume calculations relative to a
horizontal plane, proved adequate in providing quantitative estimates of each site’s
sediment budget. Site-specific factors influenced selection of this method; the East
Anglian coast is predominantly comprised of low gradient soft cliffs, so it was possible
to use a volumetric change method based on surface creation from Lidar data. However,
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the authors acknowledge that such analytical approaches are not optimal for estimating
other types of change, i.e. linear coastline retreat. In cases where higher levels of detail
and granularity are required, or where there is a requirement to precisely identify cliff
edges or individual rockfall events, it may be preferable to utilise GCD methods that base
calculations of change on individual data points, rather than on interpolated surfaces.
The software utilised within this study also lacked functionality allowing systematic
errors and uncertainties to be accounted for. Future analysis would benefit from
incorporation of explicit methods accounting for spatially variable uncertainties.

The majority of datasets drawn on within this study are open source and so can be
obtained with ease. The study benefitted from the required data being available for the
sites selected. However, data availability, acquisition method, and frequency of
collection, varies considerably depending on location. As such, these factors should be
considered in any future selection of an appropriate GCD method. For the GCD method
we used, the main software employed was Caris BDB, which is proprietary. However,
the workflow developed involves standardised processes, such as TIN model creation
and comparison, so could potentially be recreated using alternative means. One clear
drawback of the method employed, is the requirement for manual
intervention/interpretation. The workflow developed (Figure 3), is reliant on operator
skills, and their ability to distinguish potential error sources within datasets, that need
to be excluded from calculations (such as vegetation, the ocean surface, buildings, and
areas of insufficient data coverage). This places limits on the ability to reproduce the
results and reapply the methodology. The next logical step, following on from this work,
would therefore be standardisation and automation of the operations detailed as
making up our workflow. This could increase the reliability of results generated, and
reduce the skills and time required for data analysis. In this study we have provided the
basis of such future advances, through revealing the practical suitability of a point cloud
based GCD method, for increasing understanding of morphological changes taking place
on selected stretches of coastline. This reveals how more effective utilisation of a new
generation of high-resolution point cloud datasets, can lead to implementation of more
robust and sustainable coastal management practices.
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1.8 Appendices

1.8.1 Appendix 4.1 Survey Data Collection Dates

Table 6: Lidar Survey Collection Dates. For each year the dates on which datasets were acquired are given in the format of
day/month for the respective years.

Area 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Hunstanton
North & South

20/05
17/06
09/07 - -

04/05
26/10

26/05
27/05
13/11 03/10

27/02
28/02
09/11

05/03
07/03

11-12/11 02/11 07/11

-
-

Cromer 27/02 - -
23/11
26/11

12/11
15/11 05/10

28/10
24/11 11/11

- 28/01; 30/03;
06/11

-

Trimmingham - - - - 15/11 05/10 24/11 11/11 - 28/01 08/01

Mundesley - - - 08/02 15/11 05/10 24/11 11/11 - 28/01 08/01

Bacton Gas
Terminal - - - - 15/11 05/10 24/11

27/02; 11/11;
23/11

-
28/01 08/01

Happisburgh
18/01
20/01 - - 15/11

01/04; 06/04;
05/10 24/11

11/11
23/11 27/10

28/01
05/11

Hemsby
11/01
24/01 - -

11/11
12/11

01/04; 06/04;
05/10 -

20/01; 27/02;
23/11 27/10 - 08/01

Corton to
Lowestoft 29/06 - - 23/11 11/11 03/10 27/10

14/01; 16/01;
23/11 -

04/11
05/11 -

Lowestoft N/S NA NA NA NA NA NA NA NA - - -

Kessingland
23/05
29/06 23/11

11/11
18/11

03/10
06/10 27/10

14/01
16/01

27/10
11/11

27/10; 05/11;
02/12 -

Benacre - - - 23/11
11/11
18/11

03/10
06/10

27/10
06/11 23/11

27/10
11/11

05/11
02/12 -

Easton Bavents
23/05

- -
23/11 11/11;

18/11 03/10; 06/10
27/10
06/11 23/11

27/10
11/11

05/11
02/12 -

Thorpness
07/02
16/06 - -

23/11
19/11 06/10 27/10 23/11 30/09

05/11
02/12 -
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1.8.2 Appendix 4.2 case study site results

1.8.2.1 Case Study Site 1: Hunstanton North

Cumulative Volume Change (m3)
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2008 0

2009 -
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2011 -3937

2012 -3802

2013 259

2014 -6502

2015 -6159

2016 3776

2017 -9487
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1.8.2.2 Case Study Site 2: Hunstanton South

Cumulative Volume Change (m3)

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Hunstanton South Cumulative Volume
Change m3 (over 0.77km of coastline)

2008 0,00

2009 -

2010 -

2011 5542

2012 3421

2013 7540

2014 9678

2015 10428

2016 14628

2017 15907
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1.8.2.3 Case Study Site 3: Cromer

Cumulative Volume Change (m3)
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2018 -21038
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1.8.2.4 Case Study Site 4: Sidestrand/Trimingham

Cumulative Volume Change (m3)
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1.8.2.5 Case Study Site 5: Mundesley

Cumulative Volume Change (m3)
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1.8.2.6 Case Study Site 6: Bacton Gas Terminal

Cumulative Volume Change (m3)
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1.8.2.7 Case Study Site 7: Walcot to Happisburgh

Cumulative Volume Change (m3)
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2017 -314362
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1.8.2.8 Case Study Site 8: Hemsby

Cumulative Volume Change (m3)
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1.8.2.9 Case Study Site 9: Corton to Lowestoft

Cumulative Volume Change (m3)

-160000.00

-140000.00

-120000.00

-100000.00

-80000.00

-60000.00

-40000.00

-20000.00

0.00

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Corton to Lowestoft Cumulative Volume
Change m3 (over 3.28km of coastline)

2008 0

2009 -

2010 -

2011 -138397

2012 -62944

2013 -8910

2014 -40096

2015 -77544

2016 -

2017 -14045



45

1.8.2.10 Case Study Site 10: Lowestoft NearShore

Cumulative Volume Change (m3)
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1.8.2.11 Case Study Site 11: Kessingland

Cumulative Volume Change (m3)
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1.8.2.12 Case Study Site 12: Benacre

Cumulative Volume Change (m3)
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1.8.2.13 Case Study Site 13: Easton Bavents
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1.8.2.14 Case Study Site 14: Thorpness

Cumulative Volume Change (m3)
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