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Abstract

Oxy-fuel combustion is currently gathering attention as one of the promising options

for capturing CO2 efficiently, when applied to power plants, for subsequent carbon

sequestration. However, this option requires a large quantity of high-purity oxygen that

is usually produced in an energy-intensive air separation unit (ASU). Chemical looping

combustion (CLC) is a technology with the potential of reducing the costs and energy

penalties associated with current state-of-the-art cryogenic ASUs. In this work, the

techno-economic performance of a natural gas-fired oxy-combustion cycle with

cryogenic ASU is compared with that based on CLC. Two natural gas-fired cycles are

considered: (i) staged oxy-fuel natural gas combined cycle as a reference; and (ii) gas-

fired CLC with supercritical CO2 cycle. The process models were developed in Aspen

Plus® in order to evaluate the thermodynamic performance of the proposed system

and to benchmark it against the reference cycle. The results show that the net

efficiency of the proposed cycle, including CO2 compression, is more than 51%, which

is comparable to that of a conventional natural gas combined cycle with CO2 capture

and 2.7% points higher than that of the reference cycle. Moreover, the economic

evaluation indicates that a reduction in levelised cost of electricity from £38.3/MWh to

£36.1/MWh can be achieved by replacement of the ASU-based oxy-fuel system with

CLC. Hence, gas-fired CLC with a supercritical CO2 cycle has high potential for

commercialisation.

Key words: Carbon capture, oxy-fuel turbine, cryogenic ASU, chemical looping

combustion, natural gas combined cycle, oxygen production
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1. Introduction

Carbon capture and storage (CCS) is increasingly regarded as an effective option to

limit greenhouse gas emissions, while still maintaining the ability of utilising fossil fuels

for power generation. The potential strategies proposed for CCS include pre-

combustion, post-combustion and oxy-combustion [1].

Oxy-combustion has become one of the most promising options applicable to power

generation systems [2]. This technology involves the process of fuel combustion in a

high-purity O2 environment that results in the flue gas containing mostly pure CO2 after

water vapour has been separated by condensation. Importantly, fuel combustion

under such conditions would result in intolerably high temperatures in the combustors,

reaching more than 2000°C. Therefore, some fraction of the exhaust gas is recycled

back into the combustor to moderate the flame temperature.

It needs to be stressed, however, that the oxy-combustion process requires high O2

production capacity, as for a 500 MWe power plant the O2 requirement is almost

10,000 t/d [3]. Currently, the cryogenic air separation unit (ASU) is the only

commercially applied and mature technology that is capable of producing such large

quantities of O2 at high purity [4], but it is a complex and energy-intensive technology,

the power requirement for which is about 200 kWh/tO2 at 95%vol O2 purity [5].

In chemical looping combustion (CLC), O2 is separated from the air and then

transported to the fuel via an oxygen carrier (OC). In its preferred embodiment, CLC

consists of two interconnected fluidised bed reactors: an air reactor and a fuel reactor.

O2 separated from the air in the air reactor is transferred by OCs to the fuel reactor [6].

The chemical reactions in the air and fuel reactors, respectively, are as follows:

�������(�) + ���(�) ⟶ �����(�) + ������ �������� ��� (�) (R1)

�����(�) + ���� ⟶ �������(�) + ���������� �������� (�) (R2)

The reduced OC is then recycled to the air reactor. The gas stream leaving the fuel

reactor comprises mainly CO2 and water vapour. The benefit of using CLC is that the

combustion products (CO2 and water vapour) are inherently separated from other

components such as N2 and Ar. Hence, unlike in the case of post-combustion capture

(PCC), no additional energy is required for CO2 separation [7].
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CLC is a promising technology [8] which has been developed for combustion of

gaseous, liquid and solid fuels and is undergoing significant scale-up at present [9].

The largest (120 kW) gas-based CLC system is located at the Vienna University of

Technology [10]. Furthermore, a number of OCs have been thoroughly studied. Källén

et al. [11,12] tested calcium manganite in a 10 kW pilot-scale CLC unit and

iron/manganese/silicon-based OCs in a 300 W lab-scale CLC unit. All performed well

with respect to gas conversion, achieving high O2 transport capacity. Furthermore,

regarding the performance of different CLC configurations, Brandvoll and Bolland [13]

revealed that a net efficiency of 54% was obtainable with integration of CLC to a humid

air turbine cycle. Naqvi and Bolland [14] showed that using CLC in the conventional

combined cycle can result in a net efficiency of 53%, including CO2 compression. Chen

et al. [15] analysed the possibilities and benefits of integration of CLC with supercritical

CO2 for combined heat and power cogeneration. Their proposed cycle reached a net

power efficiency of 41.3% with a heating efficiency of 40.4%. However, the economic

feasibility of such concept has not yet been proven. Spallina et al. [16] performed a

thermodynamic analysis on the integration of solid oxide fuel cells (SOFCs) with CLC

in natural gas-fired power plants. The integrated plant showed a net efficiency in the

range of 63-70%. Hamers et al. [17] analysed a two-stage CLC integrated with a coal

gasification plant. They revealed that a two-stage CLC can achieve a net efficiency of

about 40% and results in significantly lower reactor cost compared to a single-stage

CLC. Olaleye and Wang [18] performed an economic analysis of a CLC unit integrated

with a humid air turbine that was characterised with an efficiency of 57.1%. Their study

has shown that for a 50 MWth plant, the capital cost and net present value are £52M

and £104M, respectively, assuming a cost of electricity of £77.5/MWh. However, to

support commercialisation of the CLC technology, its techno-economic feasibility

needs to be further evaluated, especially considering advanced power cycles, such as

the supercritical CO2 cycle (sCO2) that is considered as a suitable replacement for

conventional steam cycles [19].

This work evaluates the techno-economic feasibility of integrating CLC with the sCO2

cycle to achieve high efficiency with low CO2 emissions and affordable electricity cost.

A novel gas-fired chemical looping combustion process with supercritical CO2 cycle

(CLC-sCO2) is proposed and its performance is benchmarked against staged oxy-fuel

natural gas combined cycle (SOF-NGCC). The process model of the CLC-sCO2 is
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developed in Aspen Plus®. Parametric studies are performed to determine the

optimum thermodynamic performance, characterised with the highest net efficiency.

Finally, the economic feasibility of the considered cycles is evaluated and compared

in terms of capital cost and levelised cost of electricity. Therefore, this work

demonstrates the advantage of using CLC instead of an ASU-based oxy-fuel

combustor for high-efficiency low-CO2-emission power generation. It also proves the

economic feasibility of linking CLC with the sCO2 cycle that is characterised by a higher

efficiency and smaller size compared to other cycles, such as the conventional steam

cycle. Such information on process design, operation, and techno-economic feasibility

will support further development of CLC for power generation.

2. Process description and simulation

Figure 1 presents a schematic of the SOF-NGCC. The entire quantity of high-purity

O2, required to ensure complete combustion, enters into the first combustion stage,

whereas natural gas enters into each of three combustion stages with nearly equal

feed rates. The combustion products of the first stage, along with unreacted O2, act as

a diluent for the second-stage combustion. Additionally, to maintain the desired

combustion temperature of the topping cycle, excess heat is extracted from the first

stage to pre-heat the CO2 stream in the sCO2 cycle primarily by radiation as described

by Gopan et al. [20,21]. Absence of the exhaust gas recycle (EGR) results in a high

combustion temperature and heat transfer. This may result in a high surface

temperature that may exceed allowable operating limits. This challenge is addressed

by staging the delivery of the fuel and controlling the characteristics of the flame [22].

This process continues until O2 is almost entirely (except for 5% excess O2) consumed

at the last combustion stage. The exhaust gas, which is mainly composed of water

vapour and CO2, is expanded in the turbine to generate power. The flue gas then

passes through a heat exchanger and transfers heat to the O2, fuel and CO2 streams

in the sCO2 cycle. The water vapour is easily separated from the cold flue gas and the

remaining CO2 is sent to the carbon purification unit (CPU) to be conditioned for

storage. In the bottoming cycle, the sCO2 stream is first pressurised to 300 bar and

then preheated in a high-temperature recuperator (HTR) and low-temperature

recuperator (LTR), as well as multi-stage combustor, before entering the high-
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pressure CO2 turbine. A detailed description of SOF-NGCC is presented in Khallaghi

et al. [23].

Figure 1. Schematic of SOF-NGCC.

As shown in Figure 2, the CLC-sCO2 power section is the same as the closed sCO2

cycle used as a bottoming cycle in the SOF-NGCC. Conversely, the heat is transferred

indirectly from two fluidised bed reactors, oxygen-depleted air and exhaust gas to the

sCO2 cycle. Then, the hot sCO2 enters the high-pressure CO2 turbine. Two reactors

work at considerably lower pressure (1.25 bar) than that in SOF-NGCC combustors

(300 bar). Although this results in no power obtained from exhaust gas and oxygen-

depleted air leaving the reactors, it is expected that such reactors will have a

significantly smaller capital cost. Finally, to ensure that the separated CO2 leaves the

system at the pressure required for its storage, the CO2 stream is pressurised to 120

bar after water separation.
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Figure 2. Schematic of CLC-sCO2 (sCO2 gains heat, Depleted Air-1 loses heat, Flue gas-1 loses

heat, Air-2 gains heat, sCO2-4 loses heat, sCO2-5 loses heat)

2.1. Model development

The process model for CLC-sCO2 has been developed in Aspen Plus®. The package

used for the thermodynamic property estimation is the Peng Robinson equation of

state which is suitable for hydrocarbons and light gases, such as CO2 and H2 [24]. All

components are defined as conventional except for OCs which are solid. The reactors

are modelled as Gibbs reactors (RGibbs), which assume chemical and phase

equilibrium based on Gibbs energy minimisation [25]. Importantly, it is assumed that

heat loss is negligible. All heat exchangers are modelled using the MHeatX block and

designed based on the assumption that the minimum temperature approach of the

heat exchangers is 5°C, similarly to previous studies on the sCO2 cycle [26,27].

Similarly to the study by Hanak and Manovic [19] and Le Moullec [28], it is assumed
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that high-pressure CO2 in the sCO2 cycle is heated in the CLC reactors. All turbines

are modelled as individual turbine sections using the Compr block. Cu has been

selected as OC for this study due to its high reaction rate, high O2 transport capacity

and its complementary combustion thermodynamics that completely convert fuel to

CO2 and water vapour [29,30]. It is assumed that the agglomeration rate of Cu is

negligible. Moreover, due to the high oxidation conversion rate of Cu [31] and its high

combustion temperature, it is assumed that the complete oxidation of Cu occurs [32].

The properties of the natural gas, key assumptions used in modelling, the

turbomachinery and initial simulation parameters for the CLC-sCO2 are summarised

in Table 1.

Importantly, the SOF-NGCC, which has been thermodynamically analysed by

Khallaghi et al. [23], is selected as a reference cycle in this study. To have a fair

comparison between CLC-sCO2 and the reference cycle, the SOF-NGCC simulation

is adapted to the new assumptions mentioned in Table 1.
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Table 1. Main assumptions and turbomachinery specification for simulation

Parameter Value

Natural gas composition and conditions [23]

Methane (%vol) 89

Ethane (%vol) 7

Propane (%vol) 1

Butane (%vol) 0.1

Pentane (%vol) 0.01

CO2 (%vol) 2

N2 (%vol) 0.89

Lower Heating Value (LHV) (MJ/kg) 46.50

Temperature (°C) 15

Pressure (bar) 1.25

Turbomachinery specification

Isentropic efficiency of pump (%) [33] 90

Isentropic efficiency of turbine (%) [33] 93

Isentropic efficiency of compressor (%) [33] 89

Mechanical efficiency of compressors and pump (%) [34] 99.6

Electrical efficiency of generator (%) [35] 98.5

Initial CLC-sCO2 operating parameters

Oxygen carrier type Cu/CuO

Oxygen carrier mass flow rate (kg/s) 350*

Combustors (oxidation and reduction) pressure (bar) 1.25

Combustors and reactor pressure drop (mbar) 150

Pressure drop in heat exchangers (%) 1

Oxidation reactor temperature (°C) 995

Reduction reactor temperature (°C) 900

Turbine backpressure (bar) 35

sCO2 turbine inlet temperature (°C) 700

sCO2 turbine inlet pressure (bar) 300

sCO2 turbine backpressure (bar) 75

Recompression split fraction (-) 0.3

*Assumption is made based on fully oxidised oxygen carrier flowing into the fuel reactor.

2.2. Model validation

The considered process consists of two parts: (i) the power generation, which is based

on the sCO2 cycle, and, (ii) CLC that converts the chemical energy of natural gas into

heat for the sCO2 cycle. Importantly, the prediction of the CLC model is comparable to

that presented in the work by Mantripragada and Rubin [10]. The sCO2 cycle has been

developed based on the recompression sCO2 cycle from Moisseytsev and Sienicki

[36] and has been validated by Hanak and Manovic [19]. As this study considers a

pump in place of the main compressor, the data from Moisseytsev and Sienicki [36]

are used as a benchmark for the prediction of the sCO2 cycle model used in this study

(Table 2).
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Table 2. Benchmark of the sCO2 cycle stream data with Moisseytsev and Sienicki [36].

Stream

Temperature Pressure

Literature Model Literature Model

sCO2-7 31.3 31 74.0 75

sCO2-10 84.4 52 200.0 200

sCO2-11 171.8 178 199.6 198

sCO2-1 323.3 317 199.1 196

sCO2-3 471.8 472 198.4 198

sCO2-4 362.3 364 77.3 77

sCO2-5 190.7 190 76.9 76

sCO2-6 90.2 85 76.3 75

Using the maximum cycle pressure of 200 bar for the stream entering LTR and sCO2

turbine inlet temperature of 472°C as in Moisseytsev and Sienicki [36], the

temperatures and pressures of the streams in the sCO2 cycle are compared with the

data reported in that study. The main reasons for such a deviation are different

turbomachinery efficiencies and pressure drops considered in this study compared to

those in Moisseytsev and Sienicki [36]. Moreover, a pump and a compressor are used

in this study instead of two compressors for the compression stage. This resulted in a

lower temperature of the CO2 stream entering the LTR. Nevertheless, the model

prediction was found to be in good agreement with the literature data.

3. Techno-economic performance indicators

To evaluate the thermodynamic performance of the CLC-sCO2, the thermal efficiency

of the system is defined in Eq. (1) as the ratio of the net power output (Ẇnet), which is

calculated as the gross power output less the system’s parasitic load, and the chemical

energy input to the system, that is defined as the product of the fuel consumption rate

(ṁfuel) and its lower heating value (LHV). The gross power output of the CLC-sCO2 is

the electric power output of the generator linked with the sCO2 turbine through the

mechanical shaft. Importantly, the parasitic load is the sum of all parasitic loads of the

entire cycle associated with its compressors and pumps.
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���� =
�̇���

�̇���� ∙ ���
(1)

The economic performance of the considered cases is evaluated using the levelised

cost of electricity (LCOE), defined in Eq. (2). This equation is based on the assumption

that the capital cost of the proposed process is completely covered by the revenue

from electricity sales. Therefore, the LCOE indicates the minimum electricity price

required for the system to become economically feasible. This approach correlates the

net power output, net thermal efficiency, and capacity factor (CF) with economic

performance indicators, such as total capital requirement (TCR), variable (VOM) and

fixed (FOM) operating and maintenance costs, specific fuel cost (SFC) and the fixed

charge factor (FCF). The main assumptions for the economic analysis are described

in Table 3.

���� =
��� × ��� + ���

8760 × �̇��� × ��
+
���

ŋ���
+ ��� (2)

Table 3. Assumptions for the economic analysis [34]

Parameter Value

Variable operating cost as a fraction of total capital cost (%) 2.0

Fixed operating cost as a fraction of total capital cost (%) 1.0

Natural gas price (£/GJ) 3.0

Plant lifetime (years) 25

Project interest rate (%) 8.75

Capacity factor (%) 80

Importantly, FCF, which divides the total capital cost into uniform annual amounts over

the project lifetime, is calculated using Eq. (3) considering the project interest rate (r)

and project lifetime (T). Finally, the annual net electricity generation, FCF along with

the fuel costs, and operating and maintenance costs, are assumed to be constant for

the project lifetime.

��� =
�(� + �) �

(� + �) �− �
(3)

The capital costs for the considered cases are estimated using the bottom-up

approach, considering the individual capital costs of the key equipment. The capital

costs for combustors in the SOF-NGCC and reactors in the CLC-sCO2 are estimated
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using the component scaling factor, as shown in Eq. (4). In the latter case, both

reactors are assumed to be fluidised bed reactors. Having assumed that the residence

times for the air reactor and fuel reactor are 5 and 60 seconds [37], respectively, the

volume for each reactor is calculated using the procedure described by Lyngfelt et al.

[38]. Then, the weight for each reactor is calculated as presented in Peters and

Timmerhaus [39]. Thereafter, by considering reactors described by NRE [40] as a

reference and using the scaling factor of 0.67, the capital cost of both CLC reactors is

estimated. On the other hand, the reference for capital cost of combustors used in the

SOF-NGCC is selected from López et al. [41]. Considering the total outlet mass flow

rate as a scaling parameter and the scaling factor of 0.6, the cost for the combustor in

the SOF-NGCC is calculated.

���� �� ��������� �

= (����	��	���������	����)

× (
�������� �� �

�������� �� ����
)�������	������

(4)

The capital cost of the SOF-NGCC topping cycle is determined based on the capital

cost correlations for specific pieces of equipment, using the bottom-up approach.

These correlations were taken from the literature and are gathered in Table 4.
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Table 4. Capital cost estimation for SOF-NGCC topping cycle

Equipment [scaling parameter] Correlation

Fuel compressor [Brake power

requirement,�̇��,��� (kW)] [42,43]
�� = ��,��� (

�̇��,���

���
)�.��

Air/O2 compressor [Brake power

requirement, �̇��,��� (kW)] [42,43]
�� = ��,��� (

�̇��,���

���
)�.��

Air separation unit [O2 production rate,

���(kg/s)] [44]

���� = �.�����(
���

��.�
)�.�

Oxygen pressure booster pump [Break

power output �̇��,���(kW), Isentropic

efficiency ŋ��(-)] [45]

��� = ���.�� ��̇��,����
�.��

(� +
�.�

�− ŋ��
)

Turbine [Break power output, �̇�,���

(kW)] [46]

�� = ����.� (�̇�,���)�.� − ��.� ��̇�,����
�.��

Generator [Break power output,

�̇�,���(kW) [46]

���� = ��.�� (�̇�,���)�.��

The capital costs associated with the SOF-NGCC bottoming cycle and the power cycle

of the CLC-sCO2, both of which are sCO2 cycles, are determined from the capital cost

correlations for each specific piece of equipment as outlined below. To estimate the

costs of the sCO2 turbine and compressor, the methodology presented by Benjelloun

et al. [47] is used. Eqs. (5) and (6), respectively, relate the capital cost of the turbine

and compressor to their operating parameters, such as mass flow rate (�̇), pressure

ratio (�), isentropic efficiency	� (�) η and turbine inlet temperature (��,�). Eq. (7), which

is taken from Gabbrielli and Singh [48], is used to calculate the capital cost of any type

of heat exchanger. This capital cost depends on the surface area (���) and the

operating pressure (���) of the particular heat exchanger.

�� = �̇� ∙ � . �
���.�

�− ��
� ∙ ��(�)�� + �����.��� ��,� − ��.���� (5)

�� = �̇� �
��.�

�.��− ��
� ��. ��(��) (6)

��� = ����.� ∙ ���
�.�� ∙ ���

�.�� (7)
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The capital cost of the CO2 pump is estimated using Eq. (8) [48] that considers the

brake power (�̇�) and isentropic efficiency (��,�).

�� = 3531.4 ∙ �̇�
�.��

∙ �1 + �
1− 0.8

1− ��,�
�

�

� (8)

4. Results and Discussion

4.1. Thermodynamic performance

The thermodynamic assessment of the CLC-sCO2, considering initial design

parameters presented in Table 1, revealed that this cycle has a net power output of

380.3 MW. Such output corresponded to a net efficiency of 49.3%. The detailed

performance summary of the CLC-sCO2 is shown in Table 5. As can be observed, a

considerable share of total system energy input (26.4%) is utilised for the sCO2

compression stage (compressor and pump).

Table 5. Performance summary of CLC-sCO2

Component Value

Thermal energy input (MW) 768.3
s-CO2 turbine power output (MW) 609.6
Air compression power consumption (MW) 5.4
s-CO2 cycle compression stage power consumption (MW) 203
CO2 compression for storage power consumption (MW) 23.6
Net power output (MW) 377.6
Net efficiency (%) 49.1

The thermodynamic performance of the proposed process is directly dependent on

the performance of the closed sCO2 cycle. Therefore, a parametric study of the CLC-

sCO2 was performed by varying the sCO2 turbine inlet temperature (TIT) and turbine

inlet pressure (TIP). In addition, in the sCO2 cycle, there is an imbalance in the specific

heat of the hot- and cold-side of the recuperator [49], as the specific heat of the sCO2

stream is higher at the condition of low temperature and high pressure [50]. This

difference results in a pinch point problem [26].To compensate for this imbalance, the

sCO2 stream is split after the LTR, as shown in Figure 2b. Recompressing one stream

without heat rejection [51] compensates for this imbalance, reducing the amount of

waste heat in the system, and subsequently leading to a higher net efficiency. Thus,

the effect of the split fraction (SF) on the net efficiency is analysed.
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Figure 3 shows the variation in the CLC-sCO2 net efficiency with split fraction. The

split fraction varies from 0.25 to 0.4, indicating the fraction of total flow entering the

HTR. Figure 3 reveals that the maximum efficiency is achieved when the split fraction

is 0.38. This is because, at this split fraction, the approach temperature is minimised

at both ends of the LTR, maximising the heat transfer rate.

Figure 3. Effect of split fraction on the net efficiency

The effect of the sCO2 TIT and TIP on the net efficiency of the cycle is presented in

Figure 4. This parametric analysis indicated that the net efficiency of the cycle is

correlated to the sCO2 TIT and TIP. It can be seen that the correlation with the

temperature is nearly linear (Figure 4a) while that with the pressure is of the second

order (Figure 4b). The highest TIT of the sCO2 cycle in this study is set at 700°C,

considering the cost and lifetime of the materials under high-pressure and high-

temperature conditions. Operation under such conditions was found to result in a net

efficiency of 51.4%. However, further development of materials for high-temperature

application would enable even higher efficiencies as further increase in TIT to 800°C

resulted in a net efficiency of 55.5%. On the other hand, the analysis of the net

efficiency trend in Figure 4b indicates that an increase in TIP from 200 bar to 240 bar

has a more pronounced effect on the cycle performance (efficiency increases from

49.1% to 50.6%) than that from 240 bar to 300 bar (efficiency increases from 50.6%

to 51.4%). It needs to be highlighted, however, that such trends for temperature and

pressure, respectively, are in agreement with the results reported for sCO2 cycles in

different applications [52].
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a)

b)
Figure 4. Effect of sCO2 turbine inlet a) temperature, and b) pressure, on the net efficiency

4.2. Techno-economic performance comparison

The thermodynamic performance of the SOF-NGCC and the CLC-sCO2 is

summarised in Table 6. The same natural gas input (59470 kg/h) is used for both

cycles. The analysis shows that the CLC-sCO2 has a net power of 395 MW (Eq. 9)

with a net efficiency of 51.4%. This performance is worse than that of the state-of-the-

art NGCC without CO2 capture with a net efficiency of above 62% [53]. However, it is

comparable with NGCCs with CO2 capture as PCC implementation was reported to

result in an efficiency penalty of more than 8% [54]. Importantly, the net efficiencies

of other configurations of CLC have been reported as below:
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• CLC integrated with the humid air turbine considered by Brandvoll and Bolland

(54%) [13] and by Olaleye and Wang (57.1%) [18];

• CLC-based NGCCs comprising the conventional air turbine cycle and steam

cycle considered by Mantripragada and Rubin (48.9–53.2%) [10] and Naqvi and

Bolland (53%) [14]; and

• CLC-sCO2 for combined heat and power (net power efficiency of 41.3% and

total efficiency of 81.7%) proposed by Chen et al. [15].

Although the sCO2 cycle compared to the conventional power cycles, such as the air

turbine cycle and steam cycle, and advanced power cycles, such as the humid air

turbine cycle, has a higher thermal efficiency, the CLC-sCO2 in this study has lower

efficiency compared to the studies above. This is mainly because of different

turbomachinery assumptions considered in this study. It also needs to be highlighted

that, based on the turbomachinery efficiencies considered in this study, the SOF-

NGCC has a net power output of 374.1 MW (Eq. 10) with an efficiency of 48.7%, which

is lower by 20.9 MW compared to that of the CLC-sCO2. This is mainly because of the

power consumption of the cryogenic ASU and subsequent O2 compression to 300 bar,

which is the combustion pressure in the SOF-NGCC. In addition, compared to the

required power for CO2 compression for storage in the CLC-sCO2, the power

consumption for CO2 purification and compression in the SOF-NGCC is much lower,

23.6 MW and 4.0 MW, respectively. This is mainly due to the higher pressure ratio for

CO2 compression (for storage) in the CLC-sCO2 than in the SOF-NGCC, 120 and 3.4,

respectively. It is worth mentioning that there is a slight difference in the CO2 purity for

storage in both cycles, 96.7% for CLC-sCO2 and 97.6% for SOF-NGCC. This is mainly

because of CPU implementation in the SOF-NGCC case. Importantly, the

thermodynamic assessment of the CLC-sCO2 considered in this study indicates that

such concept could be a feasible option that would support achieving the emission

reduction targets by 2050. Importantly, when natural gas is substituted with biogas,

such concept will become carbon negative. Yet, the economic feasibility of such

concept needs to be proven.
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Table 6. Thermodynamic performance comparison between CLC-sCO2 and SOF-NGCC

Component CLC-sCO2
SOF-
NGCC

Thermal energy input (MW) 768.3 768.3

High-pressure turbine power output, W1 (MW) - 64.4

sCO2 turbine power output, W2 (MW) 658.7 576.7

Natural gas compressor power consumption, W3 (MW) - 3.8

Air separation unit power consumption, W4 (MW) - 51.9

Air/O2 compression power consumption, W5 (MW) 5.4 41.4

sCO2 compression stage power consumption, W6 (MW) 234.7 165.9

CO2 purification and compression power consumption, W7 (MW) - 4.0

CO2 compression (for storage) power consumption, W8 (MW) 23.6 -

Gross power output, Wgross (MW) 424.0 475.2

Net power output, Wnet (MW) 395.0 374.1

Net efficiency (%) 51.4 48.7

����, �������� = �� −�� −�� −�� (9)

����, �������� = �� + �� −�� −�� −�� −�� (10)

������, �������� = �� −�� (11)

������, �������� = �� + �� −�� (12)

The results presented in Table 5 are used as the inputs in the economic assessment

of both the SOF-NGCC and CLC-sCO2. Using these inputs, the LCOE has been

calculated to assess the economic feasibility of the considered cases. The breakdown

of the capital cost for both considered cases is shown in Figure 5a and Figure 5b. The

capital cost of the CLC-sCO2 is lower by £2M than that of the SOF-NGCC (£323M and

£325M, respectively). The capital cost associated with the CLC reactors is almost 4

times as high as that associated with the combustors implemented in the SOF-NGCC

(£41.3M and £10.8M, respectively). In addition, the higher pressure ratio of the CO2

compressor for storage in the CLC-sCO2 compared to the SOF-NGCC results in that

compressor being more than 4 times as expensive as the corresponding unit in the

SOF-NGCC (£42.2M and £9.4M, respectively). However, the cost associated with the

ASU in the SOF-NGCC (£53M) results in higher capital cost of SOF-NGCC compared

to CLC-sCO2. It is worth pointing out that in both cycles, the cost associated with

turbines and pumps has the highest contribution to the total capital cost.
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Importantly, the specific capital cost of the CLC-sCO2 and the SOF-NGCC are

estimated to be £761/kWgross and £684/kWgross. Such specific capital costs are

comparable with the range reported for NGCCs without CO2 capture (£400/kWgross–

£700/kWgross) and figures reported for NGCCs with CO2 capture (£730/kWgross–

£1010/kWgross) [34] . This indicates that both cycles are economically competitive to

more mature technologies.

a)

b)

Figure 5. Breakdown of the capital cost for a) SOF-NGCC and b) CLC-sCO2

The LCOE for the CLC-sCO2 is £36.1/MWh, compared to £38.3/MWh for the reference

SOF-NGCC cycle. This is because of the lower capital cost and higher net efficiency
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of the CLC-sCO2 compared to those of the SOF-NGCC, which results in lower fuel

costs per unit of generated power. The LCOE of the CLC-sCO2 (£36.1/MWh) is within

the range reported for conventional fossil fuel power plants (£28/MWh–£55/MWh) [34]

. It also needs to be highlighted that it is almost half of the cost of electricity considered

for CLC with the humid air turbine (£77.5/MWh). In addition, it is superior to the LCOE

of the Allam cycle (£50/MWh) [55] which is known to have the best performance

among all NG-fired oxy-combustion cycles with the maximum net efficiency of 55.1%

[56] and 54.6% [57] and other fossil fuel power plants with CO2 capture (£39/MWh–

£78/MWh) [34]. Therefore, further development of the CLC-sCO2 would contribute to

decarbonisation of the power sector at an affordable cost.

5. Conclusions

This study presents a novel concept of gas firing using chemical looping combustion

(CLC) for oxygen supply rather than an air separation unit (ASU) in oxy-combustion

systems, and the supercritical CO2 cycle for power generation (CLC-sCO2). A process

model of the proposed system was developed in Aspen Plus®, and a parametric study

was conducted by varying the inlet sCO2 turbine conditions and split fraction to achieve

the optimal performance of the CLC-sCO2. This was followed by an economic

assessment to evaluate the economic performance of the CLC-sCO2 and staged oxy-

fuel natural gas combined cycle (SOF-NGCC). It was found that the CLC-sCO2 is

characterised with a net efficiency of 51.4%, which is higher than the SOF-NGCC,

which was considered as a reference, with a net efficiency of 48.7%. Lower capital

cost of the CLC-sCO2 compared to that of the SOF-NGCC (£323M and £325M,

respectively), along with its lower power consumption, mainly due to no ASU, results

in lower levelised cost of electricity (LCOE) by £2.2/MWh (£36.1/MWh and

£38.3/MWh, respectively). Importantly, the techno-economic performance of the CLC-

sCO2 has been shown to be superior to other high-efficiency low-emission power

generation cycles, such as the Allam cycle and CLC integrated with a humid air

turbine, which attracts profound interest in its commercialisation.
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List of Abbreviations

ASU Air Separation Unit
PCC Post-Combustion Capture
NGCC Natural Gas Combined Cycle
SOF-NGCC Staged Oxy-fuel Natural Gas Combined Cycle
sCO2 Supercritical CO2

CPU Carbon Purification Unit
CLC Chemical Looping Combustion
OC Oxygen Carrier
TIT Turbine Inlet Temperature
TIP Turbine Inlet Pressure
LCOE Levelised Cost of Electricity
CCS Carbon Capture and Storage
SOFC Solid Oxide Fuel Cell
EGR Exhaust Gas Recycle

Nomenclature

AHE Heat exchanger surface area [m2]

Cj Capital cost of equipment j [£]

CF Capacity factor [-]

FCF Fixed charge factor [-]

FOM Fixed operating and maintenance cost [£]

LCOE Levelised cost of electricity [£/MWh]

LHV Lower heating value [kJ/kg]

�̇���� Fuel consumption rate [kg/s]

�̇�� O2 production rate in air separation unit [kg/s]

PHE Heat exchanger operating pressure [bar]

r Project interest rate (%)

SFC Specific fuel cost [£/MWh]

T Project lifetime (years)

TCR Total capital requirement [£]
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��� Turbine inlet temperature [°C]

VOM Variable operating and maintenance cost [£/MWh]

�̇�,��� Break power output/requirement of equipment j [kW]

�̇��� Net power output [kW]

�� Isentropic efficiency of equipment j [%]

���� Thermal efficiency [%]

� Pressure ratio [-]
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