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Abstract

In this work we present the development of a torque vectoring controller for electric ve-
hicles. The proposed controller distributes drive/brake torque between the four wheels
to achieve the desired handling response and, in addition, intervenes in the longitudinal
dynamics in cases where the turning radius demand is infeasible at the speed at which the
vehicle is traveling. The proposed controller is designed in both the Linear and Nonlin-
ear Model Predictive Control framework, which have shown great promise for real time
implementation the last decades. Hence, we compare both controllers and observe their
ability to behave under critical nonlinearities of the vehicle dynamics in limit handling
conditions and constraints from the actuators and tyre-road interaction. We implement
the controllers in a realistic, high fidelity simulation environment to demonstrate their
performance using CarMaker and Simulink.
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Chapter 1

Introduction

1.1 Motivation

Chassis control systems have been in the centre of research many decades, controlling

the longitudinal, lateral and vertical motion of the vehicle in order to improve handling

and acceleration\braking behavior [21]. This subject area growing fast nowadays due to

the increased safety concerns rising from the increasing number of automobiles on the

road in combination with higher performance. Additionally, the rapid development in

the microprocessor computing field is offering faster and cheaper platform solutions for

chassis control deployment.

In 1978, the introduction of the Anti-lock Braking System (ABS) was one major

breakthrough and now is a standard basic feature of every vehicle. A few years later

another chassis control system was introduced, the Traction Control System (TCS), ex-

1



2 CHAPTER 1. INTRODUCTION

panding the ABS by including slip control during acceleration [34]. Later on, more con-

trol systems came to light such as Four Wheel Steering (4WS), active suspension and

braking systems like Electronic Stability Program (ESP) [58].

Losing control of a car in a corner is dangerous. Ideally, a car should be able to ne-

gotiate the corner under control with neither excessive oversteer or understeer. However,

taking a corner too fast, performing an emergency maneuver, bad weather, defective road

surfaces or poor maintenance of the car may result in a loss of grip leading to a loss of

control. Systems that control the lateral dynamics, in such scenarios, mainly focus on

improving the steerability of the vehicle and preventing the driver from losing control in

limit handling conditions. On the other hand, longitudinal vehicle control is commonly

regulated under the command of the driver with systems such as Cruise Control (CC)

in which, recently, safety functions for vehicle speed regulation have been integrated, to

keep a safe distance from the front vehicle. However, it is recognised that active con-

trol of longitudinal dynamics can improve the vehicle’s stability in terminal understeer

situations.

Understeer, oversteer and neutral steer are terms used to describe the vehicle’s re-

sponse to steering inputs. Due to the complexity in the relation between the steering angle

on the wheels and the response of the vehicle, the concept of the understeer gradient Kund

has been introduced. Assuming a single-track model under steady state cornering with

all tyres at their linear region operation, the understeer gradient gives an indication of the

natural behavior of the vehicle under a constant steering input from [49]

δ =
L
R
+Kunday, (1.1)

where δ is the front wheels’ steering angle, L is the vehicle’s wheelbase, R is the vehicle’s

path radius and ay =
V 2

x
R is the lateral acceleration at the vehicle’s Centre of Mass (CoM).
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The three cases are:

• Kund = 0, neutralsteer, no need to vary the steering angle ,

• Kund > 0, understeer, the steering angle has to be increased according to the second

term of (1.1) in order to keep a constant radius path, with a characteristic speed

Vchar being the speed at which the steering angle is double the Ackerman angle

δacker =
L
R [23] as shown in Fig1.1

• Kund < 0, oversteer, the steering angle has to be decreased while the speed increases

until the vehicle reaches the critical velocity Vcrit and the steering angle is zero

δ

Vx
VcharVcrit

neutralsteer

oversteer

understeer

L
R

2 L
R

Figure 1.1: Understeer gradient characteristic

Despite the fact that the understeer gradient can quantify the natural tendency of the ve-

hicle to follow a path radius or not, it is important to note that the vehicle’s behavior can

change while cornering due to the its drivetrain topology and use of acc\brake pedal. This

derives from the longitudinal and lateral tyre force coupling effect in which the lateral tyre

force reduces when the longitudinal tyre force increases.

Understeer usually occurs when the front wheels reach the tyre’s cornering stiffness

limit and lose grip earlier than the back wheels, resulting in the car continuing straight
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instead of turning. Most Front Wheel Drive (FWD) cars tend to understeer when acceler-

ating out of a bend, mostly because the front tyres do the job of acceleration-deceleration

and steering. Approaching a corner faster than what the tyres can support, causes the

front tyres to struggle to keep the car in line, and try to steer the car in a direction you’re

pointing it to.

Oversteer is the opposite of the understeer where the rear tyres lose grip while the

front wheels remain bellow the limit of adhesion. Rear Wheel Drive (RWD) cars, on the

other hand are less prone to understeer, because the front wheels do the steering and the

rear ones the driving. Accelerating hard out of a bend in a RWD car could cause it to

oversteer due to the rear wheels running out of grip from the power being delivered and

the turning of the car.

Therefore, returning to the limit handling scenarios, terminal understeer refers to a

vehicle in which the front tyres potential lateral force is at a maximum due to excessive

vehicle speed while cornering. In [68] the importance of a velocity regulation is men-

tioned as a performance requirement for the development of ESP system by Bosch.

Electric Vehicles (EV) have gained a lot of popularity the last years not only for their

important role as environmentally friendly transportation but also for their increased per-

formance in traction and stability systems. Having the ability of different propulsion

system configurations, such as independent motors for each wheel, electric vehicles allow

us to implement more efficient safety algorithms [7, 64].

One of the most trending algorithms is Torque Vectoring (TV) which controls the

wheel torque distribution respecting as closely as possible the drivers steering wheel and

throttle/brake commands to improve the passengers safety. To be more precise, TV sys-

tems aim at controlling the lateral dynamics of the vehicle by tracking the yaw rate and

occasionally the side slip angle reference signals while at the same time following closely

the torque demand input given by the driver using the pedals. As shown in Fig.1.2 the
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vehicle consists of four independent electric motors, each one driving a wheel. Since the

driver’s intention is to turn left, as shown from the yaw moment Mz, the torque vectoring

control algorithm sets the appropriate torque values on each wheel. Therefore the wheel

torques on the outer side of the turning vehicle are positive and on the inner side are nega-

tive. Torque Vectoring is used in sublimit cases to deliver customisable handling behavior

and can act as stability control as the tyres reach their adhesion limit.

Figure 1.2: Torque Vectoring technique

1.2 Literature Review

The literature of the most important vehicle chassis control solutions in both the automo-

tive industry and academia, is being split into lateral and longitudinal dynamics control

systems.
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1.2.1 Active Chassis Control

In AVEC ’92 a number of papers were presented for the first time refering on the use

of left-right tyre force distribution to control the vehicle’s lateral dynamics [21]. One of

the studies which made a debut was the β -method emphasising the role of side-slip an-

gle under acceleration\braking while cornering [59]. The results not only showed that

yaw moment gain decreases while sideslip angles increase thus influencing the vehicle’s

maneuverability, but also that the yaw moment ”shifting” to high values can change a

vehicle’s behavior from neutralsteer to understeer during acceleration and the opposite

during deceleration. A final note in [59] indicates that yaw moment gain under steady-

state cornering can be expressed as a function of both longitudinal and lateral acceleration

and through the use of a hypothetical external yaw moment the influence of that accelera-

tion and deceleration can be eliminated. This method is called Direct Yaw Control (DYC)

and was applied on an All Wheel Drive (AWD) vehicle where the external yaw moment

was expressed as a distribution of the traction and braking forces on the rear wheels, while

keeping the front-rear distribution constant. The results showed the effectiveness of the

method and popularised the brake stability systems by the late 90s.

The most popular types of DYC application so far are [43]:

• lateral braking control, which uses independent braking between the left and right

side of the vehicle to generate a yaw moment

• torque distribution control, which splits the engine’s torque between left and right

wheels resulting in a driving torque difference between them hence a yaw moment

generation

• torque vectoring control, which transfers torque from left side wheels to right side

ones or vice versa, in order to create a braking torque on one wheel while at the
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same time transferring an equal amount of driving torque to the other side wheel.

Using braking to control the lateral dynamics of the vehicle, hence ”lateral” brak-

ing control, is effective across a wide range of vehicle operating conditions, making it

widely used in limit handling scenarios where stability is more important than comfort,

but creates a negative feeling on the driver due to the deceleration of the vehicle [43].

The most successful system under this category is Bosch’s ESP [40] with other car man-

ufacturers following their example such as Ford [67] and BMW [38]. Other studies that

include lateral dynamics braking control are [6], where a H∞ controller uses Active Front

Steering (AFS) and and differential braking to achieve the yaw rate and sideslip angle

targets, [66], which uses a Sliding Mode Control (SMC) strategy for yaw rate and sideslip

control while taking into account variations in the longitudinal dynamics, and [31] which

uses throttle control and differential braking to manipulate the slipping condition of the

rear tyres according to a yaw rate target on a RWD vehicle.

The last two DYC techniques mentioned above, quickly gained popularity against

the lateral braking control due to their less intrusive character in sub-limit conditions.

Systems with lateral torque distribution are mainly active differentials that regulate the

direction of torque to the left and right wheels under both limit and sub-limit conditions

but their main disadvantage is that they cannot generate a corrective yaw moment when

the engine torque in not large enough, for example when the vehicle is decelerating [43],

or when the engine torque is zero [53]. The most successful example is the Active Torque

Transfer System (ATTS) from Honda [57] which shows improved stability and handling

during a combination of steering and acceleration\deceleration inputs. In the case of

torque vectoring control, the torque transmitted between the wheels does not conflict with

the driver’s acceleration and braking commands although it can have a negative effect on

the vehicle’s steering wheel action when it’s applied on the front axle. The most popu-
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lar example is the Active Yaw Control (AYC) system from Mitsubishi and its successor

the Super AYC [74]. They use a mechanism which transfers and controls the rear wheel

torques under different driving conditions, limiting the vehicle’s yaw moment and en-

hance its cornering performance. AYC can also act like a limited slip differential by

containing rear wheel slip to improve traction.

Torque distribution, nowadays, has also found its way into the AWD vehicles. In

[46, 47], Piyabongkarn showed that front-rear torque distribution can change the under-

steer characteristiccs of the vehicle, although it is not as effective as left-right distribu-

tion. A representative example is a series of papers from Ricardo developing a centre

differential for a Sports Utility Vehicle (SUV), where experiments in a BMW X5 showed

mixed results [72] and led to a left-right differential change instead in [71]. Distribution

of the torque to all four wheels gives better traction compared to a FWD\RWD solu-

tion and the cornering performance can be improved without interfering with the driver’s

throttle\brake inputs [55]. The most characteristic example is the Super Handling AWD

(SH-AWD) system implemented by Honda which combines a set of electromagnetic clut-

shes to vary the front-rear distribution and an improved variant of the ATTS to vary the

left-right distribution in a single unit at the rear axle. Experimental results showed less

understeering behavior when the SH-AWD system was used but when the vehicle was

off-throttle it was not possible to transfer torque between wheels [36].

1.2.2 Electric Motor as Control Actuator

The rapid development of both Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV)

has already presented exciting new possibilities on the vehicle dynamics area. Both EVs

and HEVs have attracted attention not only as response to the increasing fuel prices and

the growing environmental concerns but also because EMs deliver both tractive and brak-
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ing torque. Depending on vehicle topology we can distribute torque between front/rear

axles, left/right wheels of one axle, or all 4 wheels therefore eliminating the distinction

between the different control strategies documented above (braking, torque distribution

and torque vectoring) thanks to the use of the electric motor.

Most of the research has been focused on the energy management and powertrain

technology challenges [11]. However, the electirc motor has some distinct advantages

over the conventional drivelines [26, 28, 52]:

• extremely quick and accurate response and can be controlled according to speed or

torque demand

• dual operation, can be used as a motor or a generator with almost equal efficiency

• high energy efficiency up to 90%

• in the case of in-wheel motors the powertrain architecture is simplified with less

mechanical parts giving also way to new passenger cell designs

Despite the advantages mentioned above, there are a few risky questions left. While

the fundamentals of vehicle dynamics do not need to be redefined, certain challenges

come to light when the powertrain is changed from a conventional Internal Combastion

Engine (ICE) to an electric one. The most important ones are the increased sprung mass

and packaging constraints related to the necessary inclusion of the battery and the in-

creased unsprung mass and suspension packaging in the case of in-wheel motors, both

investigated from Crolla and Cao [12]. Extra load from the battery can impact roll sta-

bility, ride vibration and comfort while the increase of unsprung mass makes the vertical

wheel motion more challenging. It is obvious that there are clear advantages and disad-

vantages using an electric motor as the main actuator and both academia and automotive
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industry are actively looking at appropriate solutions along with the increased government

interest over the years.

A meaningful amount of torque vectoring examples on EVs can be found in literature.

In [51] a SMC strategy is used with the driver steering input modeled as a disturbance,

and in [75] a Linear Quadratic Gaussian (LQG) controller, used to enhance steerability

within a given yaw and sideslip control region or maneuverability outside it. In the case

of AWD EVs one of the earliest examples is presented from Hori Laboratory in Tokyo

University [26] where they implemented ABS and TCS on an EV and later extended to

yaw rate tracking [22, 44]. Other drivetrain topologies and control methodologies found

in literature include an integrated torque control of a rear electric motor and the electro-

hydraulic brake system using a fuzzy logic controller in [33], an adaptive controller on

a system with independent rear in-wheel motors and AFS [8] and a rather unique EV

concept developed by the Technical University of Munich called MUTE, where apart from

the main electric motor there is also a second one superimposed in the rear differential

to obtain torque vectoring capabilities [25]. Another study controlling the lateral vehicle

dynamics can be found in [45] where they use a Proportional-Integrated-Derivative (PID)

controller to calculate the requests on the two rear axle electric motors for yaw rate and

sideslip angle error minimisation from target values set by a bicycle model.

A characteristic example of torque vectoring control can be found from the 7FP EU

project E-VECTOORC [3] where they employed a control allocation scheme for torque

vectoring of a four electric motors pure EV. The main aim of the project was to create

a fun-to-drive vehicle while at the same time improving energy efficiency using torque

modulation for brake energy recuperation, ABS and TCS functionality. In [27] an ap-

propriate cost function is presented for the control of the vehicle dynamics while in [13]

Novellis et al. focus on the control allocation problem using an offline optimisation al-

gorithm using a range of different cost functions based on performance and power usage
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criteria. The authors conclude that slip-based cost functions are highly recommended for

control allocation of the wheel torques in EV applications. Finally they extended their pre-

vious work adding a sideslip angle control strategy which activates a sideslip-based yaw

moment contribution when the sideslip angle value exceeds a pre-defined threshold [14].

Until now, the longitudinal dynamics control of the vehicle has largely remained un-

der the full authority of the driver being restricted in systems such as the CC for comfort

reasons and in autonomous vehicle control applications. In addition, braking systems for

DYC that decelerate the vehicle are mostly viewed as depreciating on the driving expe-

rience [46, 54]. Although it is well known that the driver should remain at the centre of

the longitudinal dynamics control, later research has proven that active control can im-

prove the stability in limit handling situations [24, 39]. Terminal understeer arises when

an overspeeding vehicle enters a turn and its turning radius cannot be decreased to match

the minimum turn-radius given by its velocity and understeer gradient. One of the earliest

studies which explored this idea is [35] where they noted that stability and path tracking is

improved with the combination of a corrective yaw moment and braking through appro-

priate brake control of the four wheels. More recently, Rajamani and Piyabongkarn [50]

concluded that a reduction of lateral acceleration by decreasing the velocity of the ve-

hicle before entering a sharp turn provides a better cornering performance and rollover

mitigation than a typical yaw rate controller. Reduction of lateral acceleration results in

reduction of slip angle at the tyres and lower chances of exceeding the limit of adhesion.

A more interesting EV implementation of active longitudinal dynamics control can be

found in [61]. Here, a combined solution of yaw stabilisation and velocity regulation for

terminal understeer mitigation is presented. The controller is an extension of a previous

work [69] which consisted of a Linear Quadratic Regulator (LQR) with the steering angle

and the angular rate of the rear wheels as inputs. In addition, they extended the control ar-

chitecture to contain a rear axle torque vectoring configuration, considering independently
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driven rear wheels and taking into account the requested turning radius in agreement with

the velocity of the vehicle.

1.2.3 Model Predictive Control in Chassis Control

Model Predictive Control (MPC) models are mainly solving complex dynamical systems.

This complexity occurs due to large time delays and high-order dynamics where PID con-

trollers have a difficulty solving. Recently, the emergence of MPC and efficient numerical

algorithms, has made it possible for such techniques to be used in vehicle chassis control

applications, delivering optimal solutions and incorporation of critical constraints in the

calculation of the control action.

In the automotive research and development sector, a variety of MPC solutions can be

found in the literature, ranging from steering control [18] to semi-active suspension con-

trol [10], longitudinal following control of autonomous vehicles to achieve vehicle pla-

toons [48] and emission regulation [56]. Looking closer in our area of interest, the area of

vehicle dynamics control, we distinguish two major MPC application areas, autonomous\semi-

autonomous vehicle control and active safety control systems. However, due to the rapid

improvement of sensor technologies and sensor fusion algorithms, the distinction between

those two application fields is becoming ambiguous nowadays.

From the autonomous vehicle applications perspective, a series of papers have been

presented from Borrelli and Falcone [9,17–20] and Keviczky [32], exploring the applica-

tion of MPC for trajectory tracking in an autonomous vehicle application using the AFS

system with/without differential braking and traction control. In [9, 32] both authors im-

plemented a nonlinear MPC (NMPC) strategy for tracking a determined trajectory using

the AFS of an autonomous vehicle which, according to the authors, sets the benchmark

for future sub-optimal strategies. Since the problem with the NMPC strategy was that it
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could not be implemented in real-time, in [18], Falcone et al. presented a Linear Time

Varying (LTV) MPC linearising the NMPC problem from [9, 32] about the operating

point. Simulation and experimental results show no infeasibility issues in high veloci-

ties but are suffering in tracking performance compared to the NMPC formulation. In the

next two papers [17,19] they integrated more functions in the MPC including independent

wheel braking and active front and rear differentials. Another distinction from the previ-

ous work is the replacement of the bicycle model by a four-wheel vehicle model in [19],

although the effect of load transfer is still not taken into account. The goal of the MPC

is to follow a predefined trajectory as before but also follow a given velocity reference.

The double lane change simulations on a low-µ road surface show a comparison of dif-

ferent drivetrain topologies, one which includes AFS with braking and traction control,

another which neglects traction control and finally one including AFS only. As for the test

results, it is interesting to note that the reference velocity used is set equal to the initial

velocity of the vehicle, thus a speed decrease is observed due to the vehicle reaching a

terminal understeer condition. From the above results, the authors concluded the solution

that combines AFS with braking and traction control has the best overall performance but

the best lateral position tracking is achieved by the solution that uses AFS with braking

control only.

In the final work of the series [20] the authors constructed two NMPC strategies, one

employing a four-wheel vehicle model with wheel dynamics and control inputs the front

steering and individual wheel brake torques and another one that uses a bicycle model

instead, with a direct yaw moment along with AFS as control inputs. Although simulation

tests on a double-lane change show promising results, once again the main problem for

both controllers remains to be the high computational cost, making them impossible for

real-time implementation. For that reason, a third controller is developed which uses a

linearisation of the first, more complex, controller about the operating point and tested on
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a vehicle with rather good path tracking results. All three controllers showed some trade-

offs exhibiting certain advantages and disadvantages, although a recurring topic seems to

be the importance of good tuning.

In the field of active safety control systems there is plenty of literature too, varying

from yaw stability controllers using independent braking of the four wheels based on a

LTV-MPC strategy [5] and hybrid MPC [15], to slip controller using torque blending of

both electric and hydraulic brake torque [7] and torque vectoring algorithm to achieve

minimum time performance maneuvering [64]. Having a closer look at Basrah et al. [7],

they employed both linear and nonlinear MPC strategies integrating a slip controller and

torque blending between both electric and hydraulic braking actuators. The internal model

used in the MPC algorithm is a single-wheel model consisted of longitudinal acceleration,

angular wheel rate and the total amount of wheel torque equal to the summation of electric

and hydraulic torque. For the calculation of the tyre force they use a simplified version of

Pacejka’s Magic Formula (MF) which contains the controlled longitudinal slip to compute

the longitudinal force, and neglect the lateral movement of the vehicle. Simulation results

show that the linear MPC suffers from poor performance at low speeds compared to the

nonlinear one, but both controllers track the slip reference target in a similar way for most

of the braking maneuver. A solution to that poor performance is proposed by reducing the

sampling time of the linear MPC, however the computational performance is worsened

making the controller not implementable in real-time. One interesting observation was

made under the split µ simulation maneuver where the vehicle maintains stability and

steerability throughout the braking with sufficient countersteering by the CarMaker driver

model.
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1.3 Gap in knowledge

A series of torque allocation techniques including predictive control have been done by

Khajepour et al. from the University of Waterloo in collaboration with General Motors

(GM). In [30] they deployed a linear MPC technique using recursive linearisation of the

vehicle dynamics, to achieve the desired handling response (yaw rate) by distributing

the torque demand in the four wheels of an electric vehicle. Later, in [29] they expanded

their work by adding a velocity estimation method which treats acceleration measurement

noises and road conditions as uncertainties, implementing an Unscented Kalman Filter

(UKF). Longitudinal and lateral tyre forces are assumed to be known from the Kalman

Filter estimation without requiring the road friction coefficient. The MPC calculates the

appropriate wheel torque according to the yaw rate, the yaw moment of the lateral tyre

forces and the wheel speed tracking errors. Then they feed the torque change for each

wheel from the current driver’s torque demand, based on the accelerator pedal position,

to the vehicle. The real-time results in both [29] and [30] show effective handling and

stability performances tested on a four electric motor wheel vehicle under several driving

scenarios.

In [63] a combined yaw stabilization and velocity regulation is presented to mitigate

terminal under-steer using rear axle electric torque vectoring. The vehicle model incorpo-

rates nonlinear tyre characteristics and coupling of the longitudinal and lateral tyre forces

and linear MPC designs are presented using recursive linearisation of the vehicle dynam-

ics. Recently, the control design from [63] has been extended to nonlinear MPC in [62]

and compared with previous linear approaches, both in terms of control objective achieve-

ment and demanded computational resource. It is worth noting that the control scheme of

both [63] and [62] does not take into consideration any torque demand by the driver. The

controller aims at stabilizing the lateral dynamics of the vehicle and tracking a speed ref-
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erence determined from the steering input of the driver in order for the requested turning

radius to be feasible. In addition, this approach does not consider the modification of the

handling behavior of the vehicle, as for instance in [14] where the understeer gradient of

the controlled vehicle is actively modified by the torque vectoring system.

In this research study we present the development of a torque vectoring controller

to distribute the requested drive/brake torque to the four wheels of an electric vehicle

to control the longitudinal and lateral dynamics. In addition to the approaches of [30]

and [14], which are close to the classic torque vectoring, the controller is designed to

intervene to the longitudinal dynamics of the vehicle in cases of overspeeding in a cor-

nering maneuver, thus having a protection on terminal understeer. The controller delivers

an on-demand modified lateral dynamics response and aims to deliver the torque demand

set by the driver in addition to the approach of [63] and [62]. We employ a NMPC design

which accounts for vehicle dynamics nonlinearities and actuator limitations. In addition,

the longitudinal intervention is integrated into the control design by introducing a feasible

velocity constraint, rather than tracking a velocity reference as in [63] and [62]. The con-

troller is implemented in a high fidelity simulation environment, IPG Carmaker [2], where

its performance is demonstrated and the real time implementation capability is discussed.

1.4 Objectives and Methodology

The aim of this research is to develop a real-time implementable torque vectoring control

algorithm for electric vehicles with a limit case scenario expansion for limit handling con-

ditions. The attention is focused on a specific vehicle, the Delta Motorsport E-4 Coupe

which is a AWD electric vehicle with four electric motors each commanding one wheel.

The final solution will be able to stabilise the vehicle under any sub\limit handling con-

dition including oversteer cases.
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In order to meet this objective, some contributions must be achieved first:

• develop a computationally simple yet accurate vehicle model to produce the refer-

ence signals needed for the controller to follow

• develop an unconstrained linear optimal control to observe the torque vectoring

behavior

• develop a constrained version of the previous controller showing the importance of

the velocity regulation under limit case scenarios

• expand the constrained controller to nonlinear and analyse both advantages and

disadvantages

• compare both linear and nonlinear optimal controllers’ computational computer real

time performance

It is important to note at this point that all the developed strategies will be systemat-

ically assessed in terms of real-time feasibility, since in the context of vehicle dynamics

control strategies like the ones presented here it is important to make sure that all solu-

tions are real-time implementable. The simulation studies are made on a laptop computer

(i7-4710HQ at 2.50 GHz with 16 GB of RAM memory).
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Chapter 2

Vehicle Modelling

2.1 Vehicle Dynamics

In this section we provide the vehicle dynamics model which is used to calculate the opti-

mal control inputs by the Model Predictive Controller presented in the following section.

As mentioned in the introduction, the controller is aimed to intervene in both longitudinal

and lateral dynamics and hence longitudinal, lateral speed and yaw rate are the selected

state variables of the model.

A three Degrees of Freedom vehicle model is used in this study where its Equations

of Motion (EoM) are expressed in a coordinated frame attached to the center of mass as

shown in Fig. 2.1. Similar to common practice [60,70], in order to reduce the complexity

of the model certain assumptions are made, neglecting:

19
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• the Ackerman Principle, therefore both front wheels steer with the same angle

• the rolling resistance

• the suspension dynamics

• pitch and roll motion of vehicle

• the transmission and brake system characteristics

• the aerodynamic forces

z

x

y

Figure 2.1: Vehicle coordinate system

Using Newton’s 2nd Law in the longitudinal and lateral direction we derive the Equa-

tions of Motion:

max = ∑ fx,

may = ∑ fy,

(2.1)
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where ax,ay are the longitudianl and lateral accelerations respectively and can be ex-

pressed in terms of the corresponding velocities Vx and Vy and the yaw rate r as follows:

ax = V̇x− rVy,

ay = V̇y + rVx

(2.2)

Additionally, including the rotational part of the Neuton-Euler equations and the an-

gular rate dynamics of the four wheels, the EoM for the four wheel vehicle model are:

mV̇x = ( fFLx + fFRx)cosδ − ( fFLy + fFRy)sinδ + fRLx + fRRx +mrVy, (2.3a)

mV̇y = ( fFLx + fFRx)sinδ +( fFLy + fFRy)cosδ + fRLy + fRRy−mrVx, (2.3b)

Izṙ = lF [( fFLx + fFRx)sinδ +( fFLy + fFRy)cosδ ]− lR( fRLy + fRRy)

+wL(− fFLx cosδ + fFLy sinδ − fRLx)+wR( fFRx cosδ − fFRy sinδ + fRRx), (2.3c)

where m is the mass of the vehicle, δ is the steering angle on both the front wheels,

Iz is the vehicle’s moment of inertia about the vertical axis and ṙ is the vehicle’s yaw

moment. The longitudinal and lateral tyre forces are denoted by fi jk where i= F,R (Front,

Rear), j = L,R (Left, Right) and k = x,y. Finally, the distances lF , lR,wL,wR determine

the location of the center of each wheel with respect to the CoM as shown in Fig.2.2.

In the EoM above we consider the steering angle as a parameter provided by the

driver. The longitudinal tyre forces are calculated from wheel torque rate control inputs

and vertical wheel loads whereas the lateral tyre forces are provided as functions of the

corresponding tyre slip angle as described in the following section. All the parameters

used for the vehicle and tyre model can be seen in Table 2.1.
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Figure 2.2: Four wheel vehicle model.

Table 2.1: Vehicle properties.

Parameter (Unit) Description Value

m (kg) mass 1137
L (m) wheelbase 2.5

Rw (m) wheel radius 0.298
h (m) height of C.M. 0.317

Iz (kg·m2) yaw inertia of vehicle 1174
lF (m) front axle to C.M. distance 1.187
lR (m) rear axle to C.M. distance 1.313
wL (m) left wheels to C.M. distance 0.687
wR (m) right wheels to C.M. distance 0.687

2.2 Tyre Forces

By neglecting the pitch and roll rotation along with the vertical motion of the sprung

mass of the vehicle, the vertical force fi jz on each wheel is calculated using the static load



2.2. TYRE FORCES 23

distribution and longitudinal and lateral weight transfers [69]:

fFLz = f 0
FLz
−∆ f x

L−∆ f y
F ,

fFRz = f 0
FRz
−∆ f x

R +∆ f y
F ,

fRLz = f 0
RLz

+∆ f x
L−∆ f y

R,

fRRz = f 0
RRz

+∆ f x
R +∆ f y

R, (2.4)

∆ f y
F =

mhlR
(lF + lR)(wL +wR)

ay,

∆ f y
R =

mhlF
(lF + lR)(wL +wR)

ay,

∆ f x
L =

mhwR

(lF + lR)(wL +wR)
ax,

∆ f x
R =

mhwL

(lF + lR)(wL +wR)
ax, (2.5)

where f 0
i jz is the static vertical force distribution, ∆ f y

F and ∆ f y
R the weight transfer along

the lateral body axis resulting from lateral acceleration ay and ∆ f x
L and ∆ f x

R the weight

transfer along the longitudinal body axis resulting from longitudinal acceleration ax.

As mentioned before the longitudinal forces in EoM (2.3a) - (2.3c) are considered

as the control inputs of the vehicle dynamics. In the literature TV controllers deliver

wheel force (or torque) commands. A low level controller then is applied to provide the

commanded wheel forces, controlling the wheel dynamics. In the proposed method we

assume knowledge of the friction coefficient between the tyre and road (µ) and use this

as a constraint on the individual wheel force command. Hence the demanded force is

always feasible, although there will be a delay between applied torque and wheel force

associated with the wheel inertia. For simplicity and computational efficiency we do not

implement a low level controller for wheel dynamics, however the controller is validated
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in the following using a rich vehicle model including wheel dynamics as well as the elec-

tric motor’s dynamics. Assume we can control longitudinal forces of the tyre directly we

can associate the normalised longitudinal tyre forces µi jx with the applied wheel torques

as follows [30]:

µi jx =
Ti j

fi jzRw
, (2.6)

where Ti j is the torque of each wheel and Rw the wheel’s radius.

Next we introduce a model for the calculation of the lateral tyre forces, which includes

the dependence on tyre slip angle (cornering stiffness), a linear dependency on the normal

force and the coupling with the longitudinal tyre forces.

Using the friction circle concept, the maximum lateral tyre force coefficient µmax
i jy is

given by the tyre-road friction coefficient mu and the controlled longitudinal tyre force

coefficient µi jx :

µ
max
i jy =

√
µ2−µ2

i jx . (2.7)

Neglecting wheel dynamics and tyre force dependency on slip, we assume direct con-

trol of longitudinal forces. We are still able to incorporate the friction circle constraint.

The lateral force coefficient is then calculated as a linear function of the tyre slip angle,

saturated by the above µmax
i jy limit.

µi jy = sign(αi j) ·min(µmax
i jy ,ni j|αi j|), (2.8)

where αi j is the slip angle at each of the four tyres, and ni j is the cornering stiffness

coefficient of each tyre defined as the ratio of tyre cornering stiffness divided by the

normal force at each tyre.
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In order to avoid the non-smoothness at the point of saturation in equation (2.8), we

propose to use an approximation of this expression using the Logistic function [37] as

follows:

µi jy =
2µmax

i jy

1+ e−kniαi j
−µ

max
i jy . (2.9)

In the above equation k is the steepness of the curve and is tuned according to the

cornering stiffness coefficient of the tyre. To be more precise, we simulated the tyre

model under the same road friction coefficient but different understeer gradients, found

the best match for the variable k in each case and then calculated a curve that fits those

points using MATLAB’s ”fit” command. The k as a function of µmax
i j is:

k(µmax
i j ) = (p1 · (µmax

i j )2 + p2 ·µmax
i j + p3) (2.10)

where p1 = 5.179, p2 =−12.37 and p3 = 9.429.

As we can see in Fig.2.3 the saturating equation (2.9) not only follows the boundaries

but is smoother than the one corresponding to (2.8). Finally, the longitudinal and lateral

tyre forces are calculated using the normal force at each tyre as follows:

fi jx = fi jz µi jx and fi jy = fi jz µi jy (2.11)

2.3 Powertrain

In a vehicle, the powertrain portrays the fundamental components that generate power

and drive it to the road surface. This incorporates the motor, transmission, drive shafts,
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Figure 2.3: Lateral road coefficient approximation; (a) µmax = 0.9, (b) µmax = 0.7, (c)
µmax = 0.5

differentials, and the final drive. In the last decade more elements have been added to the

powertrain group due to the emergence of electric and hybrid vehicles, such as the battery,

the electric motor and the control algorithm.

The powertrain used in this study is based on an electric vehicle with four individual

electric motors (EM). Each EM delivers torque to one wheel limited by the producer’s

specs. In our case the electric vehicle used for the simulations is based on the Delta E4-

coupe, a prototype vehicle manufactured by Delta Motorsport [1], a company based in

Silverstone circuit. Their vehicle has four individual YASA electric motors with maxi-

mum and minimum torques Tmax = 750Nm and Tmin =−500Nm respectively. The vehicle

is also equipped with every necessary measurement sensors all road vehicles include.

The torque vectoring control algorithm we employ is deeply focused on pure electric

vehicle control, however the vehicle features hydraulic brakes on each wheel for safety

reasons. As shown in Fig.2.4 the static torque of the YASA-750 electric motor is not con-

stant but changes according to its rotational speed, making it important to include torque
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constraints in the controller. The control scheme we are implementing is respecting the

EM torque limits and can be easily reconfigured to work with different brand manufac-

turers without losing its robustness.

Figure 2.4: Static torque map of YASA-750 motor. [60]
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Chapter 3

Model Predictive Control Fundamentals

Model Predictive Control is an optimisation based control law which utilises an interior

model of the procedure, a measured history of the past control inputs and an optimisation

cost function J over a receding prediction horizon. MPC, is also called Receding Horizon

Control (RHC). This control algorithm computes the necessary control inputs for the plant

every time step. To be more precise, it solves an omptimisation problem for the current

prediction horizon, then applies the first value of the computed control sequence to the

plant and finally gets the system state and recomputes at the next time step. This concep-

tual idea of the so-called receding horizon policy is shown in a simple graph presentation

in Fig.3.1.

While MPC has attracted both automotive industry and academia research, especially

when using constraints, it has some drawbacks which need careful consideration when

designing the controller:

29



30 CHAPTER 3. MODEL PREDICTIVE CONTROL FUNDAMENTALS

Figure 3.1: Receding Horizon Control policy.

• intenral model: a large, nonlinear model can rapidly increase the number of opti-

misation variables and the complexity of the problem to be solved

• sampling time: a longer sampling time can reduce the number of optimisation vari-

ables in a fixed horizon but may result in slower, ineffective control actions

• prediction and control horizons: short horizons for a fixed sampling time can also

reduce the number of optimisation variables but may result in inadequate control

actions too

• constraints: a large number of constraints and nonlinear state and control input

constraints, increases the problem complexity, whereas linear constraints may fail

to capture the nature of the original limits

• weighting parameters: tuning parameters to be chosen which relate to the minimi-

sation of the cost function like in any other optimal control problem
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Therefore, there is a clear trade-off between performance and computational effort

attached to both the internal model of the MPC choice and the tuning parameters, which

in the case of a vehicle control strategy with fast dynamics, need to be carefully chosen.

MPC is an optimization based control law, and the cost function almost always con-

sists of quadratic terms. The objective is to find the optimal control input u that min-

imises the cost J under a finite prediction horizon N, by defining positive definite matri-

ces Q = QT > 0 and R = RT > 0 which are the weighting matrices on the state error and

control input respectively.

The simple MPC regulation problem is:

min
x,u

N−1

∑
k=0

(xk− xre f )
T Qd(xk− xre f )+(uk−ure f )

T Rd(uk−ure f ), (3.1a)

subject to: xk+1 = Axk +Buk, k = 0,1, ...,N−1 (3.1b)

xk ∈X , k = 1, ...,N (3.1c)

uk ∈U , k = 0,1, ...,N−1 (3.1d)

x0 = x(t). (3.1e)

where (3.1a) is the cost function to minimise with x and u being the states and control

inputs respectively, (3.1b) are the affine discrete system dynamics and (3.1c) - (3.1d) are

the state and input inequality constraints respectively with X and U the corresponding

boundaries. Finally the (3.1e) sets the initial state x0 equal to the current state.

Based on the above observations we construct a linear and nonlinear MPC approach

as described in the following sections.
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3.1 Cost Function

The main objective of the controller is to track a yaw rate reference and respect the drivers

torque demand while at the same time regulating the velocity so that it stays within a

feasible region. Therefore, the objective function is defined as:

J =
N−1

∑
k=0

qr(r− rre f )
2 +qTdmd(Tdmd−Tveh)

2 +quu2 +ρrer +ρV eV , (3.2)

where qr, qT and qu in front of each term are their corresponding weights, r is the current

yaw rate of the vehicle, Tdmd is the driver’s total torque demand, u corresponds to the

wheel torque control inputs and er and eV are used in the yaw rate and velocity constraints

as described in Section 3.2.

The first term in the cost function relates to the yaw rate tracking error. As com-

mon practice suggests [14], we use a linear steady-state bicycle model with the desired

handling characteristic (understeer gradient) to create the reference yaw rate:

rre f = δ
Vx

L+KundV 2
x
, (3.3)

where L is the length of the vehicle and Kund is the desired understeer gradient. The second

term in (3.2) is defined such that the controller meets the drivers torque demand, where

Tveh is the summation of all four wheel torques Ti j. The third term introduces penalisation

of the control inputs. As explained in the following section, the last two terms are used to

soften the yaw rate and velocity constraint respectively.
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3.2 State Constraints

As discussed in the introduction, the aim of the proposed controller is to intervene in

the longitudinal dynamics, when the requested lateral acceleration is infeasible for the

given velocity of the vehicle. Accordingly, we chose the state vector for the controller

x = [Vx Vy r].

From the steady-state equations of the bicycle model the reference yaw rate corre-

sponds to a reference lateral acceleration, which is limited by the available tyre-road fric-

tion coefficient (grip)

ayre f =V rre f 6 µg, (3.4)

where g is the acceleration of gravity and V is the current vehicles total speed [49]. The

above can be interpreted as a limit of the vehicle’s speed such that the requested yaw rate

(or lateral acceleration) is feasible:

Vlim = g
µ

rre f
. (3.5)

This translates to a state constraint:

∣∣∣ Vx

cosβ

∣∣∣6Vlim + eV , (3.6)

which is implemented as a soft constraint with slack variable eV > 0. It is important to

note that we implement a soft constraint at this stage because the yaw rate reference is

generated by the driver’s steering input and there are no guarantees that the constraint

will be respected. The control action to reduce the speed (brake) in order to satisfy the

constraint (3.6) is herein referred to as Active Trail-Braking.
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Similar to [62, 63] we impose a yaw rate constraint to increase the robustness of the

controller:

|r|6 rlim + er, (3.7)

where er > 0 is the corresponding slack variable and rlim is calculated using the current

total vehicle velocity V :

rlim = g
µ

V
. (3.8)

3.3 Input Constraints

The driver’s torque demand is another parameter our controller focuses on. Electric vehi-

cles have many precautions when it comes to safety especially regarding the input voltage

and current of their electric motors since EMs cannot operate all the time at maximum

power. Because of those limitations, each EV has an accurate system protection im-

plemented between the control systems and the electric motors. From this perspective,

taking into account the motor’s torque map features, we feedback the rotational wheel

speeds from the motors back to the controller, calculate the wheel torque constraints us-

ing the motor’s torque map as shown in Fig.3.2 and also use the maximum torque limits

to derate the driver’s torque command, Fig.3.3.

Figure 3.2: Wheel torque limit calculation block.
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Figure 3.3: Torque demand limit calculation block.

As control inputs for both linear and nonlinear formulation we use the wheel torques

which are fed to the vehicle as demanded torques. Considering the limits on the torque

capacity of each electric motor, we constraint the control inputs as:

T min
i j 6 Ti j 6 T max

i j , (3.9)

where T min
i j and T max

i j are calculated as described above and shown in Fig.3.2 which only

corresponds to the front-left wheel.

In the nonlinear control development section we also test a different formulation where

the control input changes to wheel torque rates instead of wheel torques and the wheel

torques become states which are also constrained as in (3.9). Additionally, constraints are

set on the control inputs ∆Ti j so that the rates of torque on the wheels never exceed the

maximum allowable torque change for both motor and battery safe operations

|∆Ti j|6 ∆Tsa f eTs, (3.10)

where ∆Tsa f e is given by the electric motor supplier. All the motor parameters which were

taken under consideration for our simulations can be seen in Table 3.1.
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Table 3.1: Motor specs in simulation. [1]

Parameter (Unit) Description Value

∆Tsa f e (Nm/s) motor/battery torque rate limit 10000
Tmax (Nm) maximum torque 700
Tmin (Nm) minimum torque -500



Chapter 4

Linear Torque Vectoring Control

Development

Based on the standard linear MPC problem (3.1) a dense MPC formulation using soft

constraints on the states is used in this chapter to avoid infeasibility problems [41], with

the necessary A and B matrices updated at each time step according to the current steering

command from the driver and the current vehicle velocity. In addition, we chose the state

vector for the controller x = [Vx Vy r] and as control input the torque for each wheel

u = [Ti j]. The resulting Quadratic Programming (QP) problem is then solved using a

specialised solver FORCES Pro solver [16] in MATLAB which employs the Primal-Dual

Interior Point (PDIP) method [73, 76].

In order to create the mandatory formulation for the linear controller, first we have to

linearise the continuous system as described in Chapter 2, using the continuous vehicle

37
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dynamics (2.3). There is plenty of research work done around linearisation techniques in

the literature. For our research we used a complex variable derivative estimation technique

which is faster and easier to implement [65]. Let F(z) be an infinitely differentiable and

smoothly extended into the complex plane function, x0 be a point on the real axis and h

be a real parameter. Expanding F(z) in a Taylor series off the real axis we get:

F(x0 + ih) = F(x0)+ ihF ′(x0)−h2 F ′′(x0)

2!
− ih3 F(3)(x0)

3!
+ ... (4.1)

Dividing the imaginary part by h

F ′(x0) =
Im(F(x0 + ih))

h
+O(h2) (4.2)

gives an approximation to the value of the derivative, F ′(x0), that is accurate to order

O(h2). In our linearisation we choose h = 10−16.

An MPC controller requires a discrete form of the internal prediction model. Hence,

after computing the linearised formulation of the system

ẋ = Acx+Bcu (4.3)

we descretise the Ac and Bc matrices using the Euler’s approximation [42]:

Ad = I +TsAc (4.4a)

Bd = TsBc (4.4b)

where I is the identity matrix and Ts is the controller’s sampling time. Then the descretised

system becomes

x̃k+1 = Ad x̃k +Bd ũk. (4.5)
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4.1 Simulation Results

In this section we compare the MPC strategies to one another as well as against an uncon-

trolled vehicle with equal wheel torque split using the high fidelity vehicle model and the

driver model available in CarMaker. The vehicle model in CarMaker is naturally under-

steer and was granted by Delta Motorsport. The testing maneuvers are a Step-Steer and

Double Lane Change scenario.

4.1.1 Step Steer

In the Step-Steer maneuver we assume a constant torque demand by the driver and apply

a steering wheel input δ = 90° after 2 seconds. This scenario is considered fundamental

for the controller as the weights of the cost function are tuned related to it and are kept

the same for the purposes of comparison. The range of the driver’s torque demand can

vary from 0Nm to 3000Nm, although due to the extreme handling conditions while the

torque increases as well as the chosen controller’s tuning parameters, the vehicle obeys

the driver’s torque command up to 1800Nm.

4.1.1.1 Importance of velocity constraint

The following simulations show the necessity of adding a velocity regulation feature in

the control scheme. The comparison is done between an uncontrolled vehicle (UnCtrl),

where there is no Torque Vectoring control and the driver’s torque demand is equally split

to the 4 wheels, a vehicle that includes TV implemented with a LMPC including a yaw

rate constraint inside the yaw rate reference signal and control input constraints on the

wheel torques but without state constraints (LMPC Unconstr), similar to [30], and a fully

TV controlled vehicle with velocity regulation feature as implemented in this research

(LMPC Constr).
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As shown in the velocity graph in Fig.4.1, the uncontrolled vehicle, green line, doesn’t

regulate its speed during cornering whereas the controlled ones respond better. The blue

line which corresponds to a vehicle similar to [30], has no hard constraint on both yaw

rate and velocity although due to the constraining of the yaw rate reference signal we ob-

serve a much better velocity reduction than the uncontrolled case. On the other hand, the

controller implemented for this research adjusts the vehicle’s velocity quickly in less than

2 seconds and then remains constant during the maneuver slightly under the constraint.

The soft constraint on the velocity allows the controller to find a solution even though the

constraint itself is not respected, depending on the value of its weighting parameter inside

the cost function, in our case the pV in (3.2). All the details regarding the weights are

mentioned in the Appendix section.
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Figure 4.1: Velocity, step-steer at Tdmd = 1000Nm and Vin = 40kph.
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Figure 4.2 shows the yaw rate responses of the three vehicles being compared. Once

again, it is easily observed that the vehicle with equal torque split to all four wheels

doesn’t go into a steady-state phase. The LMPC unconstrained vehicle has no hard con-

straints on velocity as proved on the previous graph nor on yaw rate, but the yaw rate

response has a lower slope and respects the yaw rate reference with a minor error. The

only vehicle that goes into steady-state is the constrained LMPC. While there is a minor

overshoot at the start of the step-steer between the seconds 2 and 3, which is allowed by

the yaw rate soft constraint similar to the velocity one, the controller respects the yaw rate

constraint quicker than the velocity case and then follows the reference signal with an

error of 1.5°/s. Moreover, all the trajectories of the vehicles are shown in Fig.4.3 where

the fully constrained vehicle, LMPC Constr, completes a circle whereas the other vehicles

are following a more spiral path.
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Figure 4.2: Yaw rate, step-steer at Tdmd = 1000Nm and Vin = 40kph.
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Figure 4.3: Position, step-steer at Tdmd = 1000Nm and Vin = 40kph.

According to the system protection which all EVs have as mentioned in Chapter 3,

the wheel torques of the same step-steer example (1000Nm and Vin = 40kph) shown

in Fig.4.4 don’t reach the expected 250Nm torque each, in the first 2 seconds due to

the torque derates of the motor’s driving current limitations inside the system protection

block. Furthermore after the 2 seconds have passed, we observe a torque reduction on the

inner left wheels and a complementary increase on the outer right wheels of the vehicle,

until the velocity constraint is hit where the vehicle starts braking. The braking torques

are configured based on the qTdmd weighting parameter under the overspeeding case (see

Appendix for further details). Under the chosen tuning parameters the controller brakes

the outer wheels of the vehicle more than the inner ones trying to maintain stability and

then enters the steady-state where all wheel torques are positive but the outer wheels have

slightly more torque than the inner wheels.

Finally, to show the robustness of the controller working under a different range of

driver’s torque demands, we observe on Fig.4.5 that all cases reach the steady-state. In

this graph the dashed and continuous lines represent the driver’s torque demand and the
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vehicle’s total torque respectively whereas the different line colors differentiate the sce-

narios between them.
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Figure 4.4: Wheel torques, step-steer at Tdmd = 1000Nm and Vin = 40kph.
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Figure 4.5: Total torque, step-steer at Vin = 40kph with a variation of Tdmd .
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4.1.1.2 Understeer gradient tuning performance

As shown in equation (3.3) the Kund has a crucial role on the yaw rate reference genera-

tion. Having the ability to independently tune the understeer gradient of the controller’s

internal vehicle model, gives us the freedom to extensively control the turning radius of

the vehicle’s trajectory. The understeer gradient used for the tuning purposes is based

on an understeer vehicle with Kund = 0.0017rad/s = 1°/g. Furthermore the robustness

of the controller was tested for different values of Kund = 0 and Kund = −0.0017rad/s

which correspond to a neutralsteer and oversteer vehicle respectively.
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Figure 4.6: Position responses of different Kund , step-steer at Tdmd = 1000Nm and Vin =
40kph.

4.1.2 Double Lane Change

The double lane change maneuver we used is the ”Double Lane Change ISO” provided

by CarMaker. The CarMaker driver parameters used for the lateral dynamics are shown in

Fig.4.7 and the longitudinal dynamics are set manually through Simulink by the constant
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driver’s torque demand. The vehicle was tested under different road friction coefficients

assuming a constant torque demand from the driver and Kund = 0.0017rad/sec, as as-

sumed in the previous testing scenario also. One more important thing to mention is that

our internal model has a configured constant road friction coefficient µ = 0.7. This value

was chosen in order to test the controller’s robustness on a variety of different surfaces as

it is demonstrated bellow.

Figure 4.7: Lateral dynamics CarMaker driver parameters.

4.1.2.1 Double Lane Change µ = 0.5

As we can see from both yaw rate and position figures, Fig.4.8 and Fig.4.9 respectively,

the uncontrolled vehicle on low road friction coefficient µ = 0.5 is starting to lose control

from a total torque demand of 700Nm and above whereas the LMPC can successfully

complete the maneuver. However, the maximum torque demand on the LMPC is limited

up to 720Nm before the controlled vehicle is unable to maintain stability for the given set

of tuning parameters. Although this can be increased by changing the tuning parameters

of the controller, the weights inside the cost function, appropriately.

It is important to note that the yaw rate doesn’t respect the constraint all the time
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because the driver is the one who controls the steering wheel which has a large effect

on the excitement of the vehicles yaw rate. Although the controller continues to find an

optimal solution as it is shown on later graphs, because of the soft constraints used as

mentioned in Section 3.
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Figure 4.8: Yaw rate, double lane change at µ = 0.5, Tdmd = 700Nm and Vin = 8kph.
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Figure 4.9: Position, double lane change at µ = 0.5, Tdmd = 700Nm and Vin = 8kph.
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The velocity graph, in Fig4.10, is zoomed in and presents the velocity regulation com-

parison between our controller and the uncontrolled vehicle. As it is shown the velocity

is regulated as soon as it fails to respect the constraint thus keeping the car inside the

maneuver track width. The slope difference in the acceleration phase occurs due to the

controller’s weighting factor on the driver’s torque demand. The red dotted line corre-

sponds to the value of Vlim referred in equation (3.5) and has an upper limit of 80mps as

the vehicle’s maximum speed.
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Figure 4.10: Velocity, double lane change at µ = 0.5, Tdmd = 700Nm and Vin = 8kph.

4.1.2.2 Double Lane Change µ = 0.7

Increasing the simulations road friction coefficient to wet asphalt µ = 0.7 the driver’s

torque demand range where the vehicle remains under his control, is increased up to

950Nm without a TV controller. The maximum torque demand before the controlled

vehicle loses stability for the given set of tuning parameters is limited to 1150Nm on a

medium wet road.

The yaw rate in Fig.4.11 and top view position of the car in Fig.4.12 show a limit
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handling comparison of the uncontrolled car and the TV car where the later completes

the maneuver successfully. Both graphs show quite similar response with the previous

double lane change configuration. The velocity graph, Fig.4.13 ,is also similar where the

velocity is decreased every time it overcomes the constraint and increased when yaw rate

goes to zero after the vehicle takes the last lane change.

0 2 4 6 8 10 12 14 16 18
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time (s)

Y
aw

R
at
e
(d
eg
/s
)

 

 

constr
rref LMPC Constr
UnCtrl
LMPC Constr

Figure 4.11: Yaw rate, double lane change at µ = 0.7, Tdmd = 950Nm and Vin = 8kph.
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Figure 4.12: Position, double lane change at µ = 0.7, Tdmd = 950Nm and Vin = 8kph.
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Figure 4.13: Velocity, double lane change at µ = 0.7 and Vin = 8kph.

The total torque calculated by the LMPC is lower than the driver’s torque demand

as discussed previously in Chapter 3 due to the motor torque map derate. As we can

inspect on Fig.4.14 the torque delivered to the vehicle through the wheels, the powertrain

torque (Ttot PT), is also lower than the demanded torque computed by the LMPC which

makes sense considering the system protection block, located between the controller and

the electric motors, contains all the required limitations so that the EV operates according

to safety instructions.
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Figure 4.14: Total torque, double lane change at µ = 0.7, Tdmd = 950Nm and Vin = 8kph.

4.1.2.3 Double Lane Change µ = 0.9

Changing the friction of the road to dry asphalt µ = 0.9 increases the vehicle’s drive-

ability. Figures 4.15-4.17 show the inability of the uncontrolled car to take such a ma-

neuver while the controlled vehicle doesn’t lose stability with a maximum driver’s torque

command up to 1700Nm based on the current tuning configuration and Fig.4.18 shows

the total torque derived from the LMPC solution. All these figures have similar results

with those from the previous road friction configurations. One important note, is that once

again the tuning parameters play a crucial role on the optimisation and solving ability/in-

ability of the controller.
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Figure 4.15: Yaw rate, double lane change at µ = 0.9, Tdmd = 1150Nm and Vin = 8kph.
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Figure 4.16: Position, double lane change at µ = 0.9, Tdmd = 1150Nm and Vin = 8kph.
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Figure 4.17: Velocity, double lane change at µ = 0.9 and Vin = 8kph.
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Figure 4.18: Total torque, double lane change at µ = 0.9, Tdmd = 1150Nm and Vin = 8kph.

4.2 Computational Performance

The performance of the controller is tested in real time on the laptop computer machine

used for the current research. In this section we present some plots showing the perfor-

mance of the linear controller. The ’solvetime’ is the time the controller takes to find a
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solution and the ’exitflag’ determines whether the solver has exited without an error1. In

our formulation the number of iterations the solver overtook to find or not a solution, is

capped at a maximum number of 300.

In Fig.4.19 we demonstrate the results of the same step-steer maneuver tested in the

velocity constraint importance subsection of this chapter. The LMPC solves at around

2ms each sampling time always giving an optimal solution. The number of iterations

needed are also quite low making the the controller promising for this particular scenario

for real vehicle implementation.
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Figure 4.19: LMPC performance, step-teer at Tdmd = 1000Nm and Vin = 40kph.

Performance results in the Double Lane Change maneuver are analogous with the

above one. The solve time of the controller remains bellow the sampling time in ev-

ery scenario which means once more that it solves in computer real-time giving optimal

solution, without depending on the road friction coefficient change.

11 - optimal solution found to the requested accuracy; 0 - reached maximum number of iterations or
maximum computation time, the returned solution is the best found so far; -6 - NaN or INF occurred during
evaluation of functions and derivatives; -7 - The convex solver could not proceed. The problem might be
infeasible.
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Figure 4.20: LMPC performance, double lane change; top - µ = 0.5, Tdmd = 700Nm;
middle - µ = 0.7, Tdmd = 950Nm; bottom - µ = 0.9, Tdmd = 1150Nm.

4.3 Discussion

In this chapter we have presented the linear MPC strategy for torque vectoring and com-

pared it to an uncontrolled vehicle, which is basically a vehicle with equal torque split on

all four wheels, and also to another formulation of linear MPC as found in [30], which

has no constrains on yaw rate and velocity but only on the wheel torque control inputs.

Both MPC controllers use the same PDIP method to solve the subsequent QP problem.

After comparing the three strategies against each other it was shown that the linear

MPC not only tries to respect the yaw rate and velocity constraints but also performs

better regarding the yaw rate and velocity response and is a promising control method for

real time implementation under a fine tuning. Furthermore, the controller was robust in

a range of different torque demands and road friction coefficients tested on a 90° step-

steer and a Double Lane Change ISO maneuver proving also the capability of the Torque

Vectoring systems.

One final note, is that the chosen sampling time used for the LMPC can be easily
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decreased to 10ms as seen from the performance graphs, but the 20ms was the best com-

promise for later comparison purposes with the nonlinear MPC. The results with a sam-

pling time of 10ms would be slightly more responsive regarding the yaw rate error and

thus respecting the velocity constraint quicker with the appropriate torque demand by the

controller.
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Chapter 5

Nonlinear Torque Vectoring Control

Development

5.1 Nonlinear MPC formulation

Nonlinear Model Predictive Control, or NMPC, is a variation of Model Predictive Control

(MPC) that is defined by the use of nonlinear models as internal model in the prediction

horizon. As in the case of linear MPC, NMPC also requires the iterative solution to be

optimal on a finite prediction horizon. While these problems are convex in linear MPC,

in nonlinear MPC they are not convex. This poses challenges for both NMPC stability

theory and numerical solution [4].

The main difference between the NMPC and LMPC is the internal vehicle model.

In the NMPC case we use the nonlinear vehicle dynamics, as opposed to the LMPC

57
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where we use a linearised vehicle model, using the Runge Kutta 4th order as discretisation

method for the continuous internal model.

For comparison reasons we used the same cost function and state and input constraints

as those on the previous LMPC construction section. Therefore, the optimal control for

the nonlinear continuous-time system ẋ = fc(x,u) with states and control inputs x and u

respectively is:

min
x,u

J(x,u), (5.1a)

subject to: xk+1 = fd(xk,uk), k = 0,1, ...,N−1 (5.1b)

xk ∈X , k = 1, ...,N (5.1c)

uk ∈U , k = 0,1, ...,N−1 (5.1d)

x0 = xin. (5.1e)

5.2 Simulation Results

The testing maneuvers used for the NMPC results are identical to those the LMPC was

tested too, using the same sampling time and prediction horizon.

5.2.1 Step Steer

In this step-steer maneuver we assume a different constant torque demand by the driver

Tdmd = 1200Nm and keep the initial velocity at 40kph. The results from the velocity

graph in Fig.5.1 show a minor difference on the velocity reduction slope where the linear

controller seems to respond faster to the velocity constraint limitation. On the other hand,

in Fig.5.2 the yaw rate is respected more often by the nonlinear other than the linear. Fur-

thermore, both controllers’ vehicle position paths, Fig.5.3, show significant improvement
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not only against the uncontrolled car but also against the unconstrained one as mentioned

in the previous section.
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Figure 5.1: Velocity, step-steer at Tdmd = 1200Nm and Vin = 40kph.
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Figure 5.2: Yaw rate, step-steer at Tdmd = 1200Nm and Vin = 40kph.
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Figure 5.3: Position, step-steer at Tdmd = 1200Nm and Vin = 40kph.

Finally in Fig.5.4 we compare the respectability of the driver’s torque demand under

both linear and nonlinear MPC formulation. In general the nonlinear controller configu-

ration shows an expected better response than the linear one. This can be justified by the

internal vehicle model used for the prediction which is a nonlinear model as opposed to

the linearised version used in the LMPC, having the ability of better accuracy.
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Figure 5.4: Total torque, step-steer at Tdmd = 1200Nm and Vin = 40kph.
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5.2.2 Double Lane Change

In the Double Lane Change maneuver we make the same assumptions like in the linear

simulation results testing the nonlinear MPC under different road surfaces. In this section

we only compare the NMPC with LMPC which has been already compared with both the

uncontrolled and unconstrained vehicle before.

5.2.2.1 Double Lane Change µ = 0.5

In low friction surface the nonlinear controller doesn’t respond as well as the linear one.

This is basically because the tuning process was mainly focused on a compromise between

both controllers’ performance. Different weight tuning in the cost function might increase

the nonlinear controller’s computational performance but on the other hand can influence

the LMPC’s stability on finding an optimal solution.

The velocity as presented in Fig.5.5 follows the same line as the linear case until the

vehicle reaches the final lane change where the nonlinear controller has difficulty solving

as will be discussed later on the performance subsection. In any case it responds to the

velocity constraint all the time. Furthermore, in Fig.5.6 the yaw rate has a similar response

with the linear controller but loses a little bit of grip on the last lane change for the same

reason the velocity does.

The top-view position comparison between the two controllers is clear from what

was mentioned earlier in Fig.5.7. The NMPC struggles to keep the vehicle on track but

eventually the driver doesn’t lose control of the vehicle compared to the uncontrolled case

examined and compared in Chapter 4.
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Figure 5.5: Velocity, double lane change at µ = 0.5, Tdmd = 700Nm and Vin = 8kph.
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Figure 5.6: Yaw rate, double lane change at µ = 0.5, Tdmd = 700Nm and Vin = 8kph.
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Figure 5.7: Position, double lane change at µ = 0.5, Tdmd = 700Nm and Vin = 8kph.

The total torque of the nonlinear controller compared to linear one is almost identical

with minor difference while braking on the first lane change as presented in Fig.5.8. On

the second lane change after the 15th second the nonlinear controller doesn’t find an op-

timal solution on the current prediction horizon thus has a much different response from

the LMPC. The reason behind this issue is because the NMPC was tuned based on the

LMPC weight matrices for comparison purposes. Different tuning weight parameters in

the cost function of the NMPC formulation can give a lower cost function closer to zero

making the solver find an optimal solution faster.
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Figure 5.8: Total torque, double lane change at µ = 0.5, Tdmd = 700Nm and Vin = 8kph.
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5.2.2.2 Double Lane Change µ = 0.7

Matching the road friction coefficient to the internal vehicle model of the controller has

more promising results for the nonlinear than before. Taking a quick look at both the ve-

locity and yaw rate graphs, Fig.5.9 and Fig.5.10 respectively, we notice a quicker velocity

regulation on nonlinear formulation which on one hand results on slower exit velocity

of the vehicle but on the other hand the yaw rate response is quicker after the final lane

change than the linear controller.
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Figure 5.9: Velocity, double lane change at µ = 0.7, Tdmd = 950Nm and Vin = 8kph.
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Figure 5.10: Yaw rate, double lane change at µ = 0.7, Tdmd = 950Nm and Vin = 8kph.

The above observation is also detectable clearly in the position comparison Fig.5.11

where the blue line which corresponds to the NMPC has a better grip than the linear

control scheme.
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Figure 5.11: Position, double lane change at µ = 0.7, Tdmd = 950Nm and Vin = 8kph.

Finally, getting a closer look at the torque demand graph, Fig.5.12, we notice a re-
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sponse difference between the nonlinear and the linear controller. The nonlinear con-

troller has more often less total torque but that gives a quicker response to the driver to

react by adjusting the steering wheel. One more thing to point out is that the nonlinear

internal model respects the torque demand by the driver throughout the maneuver in con-

trast with the linearised model which once more exceeds it at some point depending on

the cost function value the controller has to minimise. The torque spikes are result of the

torque vectoring penalization in the cost function. Depending on the weight factors the

controller adjusts the wheel torques accordingly so that it can minimise the whole cost

function in the chosen prediction horizon.
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Figure 5.12: Total torque, double lane change at µ = 0.7, Tdmd = 950Nm and Vin = 8kph.

5.2.2.3 Double Lane Change µ = 0.9

The results of the nonlinear MPC formulation are more visible in the case where the road

friction coefficient is increased to µ = 0.9. The solver has also difficulty solving as in

the case of µ = 0.7 but this time the comparison is distinct between the controllers as
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the driver’s torque demand increases, with the nonlinear gaining advantage. The velocity

graph in Fig.5.13 has a similar comparison response as the Fig.4.13 where it follows the

linear for most of the maneuver but losing track in the end of the last lane change for

almost 1 second and finally accelerating after exiting. Similar to the velocity graph, the

yaw rate graph in Fig.5.14 shows slightly better response of the NMPC compared to the

LMPC after the first lane change.
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Figure 5.13: Velocity, double lane change at µ = 0.9, Tdmd = 1150Nm and Vin = 8kph.
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Figure 5.14: Yaw rate, double lane change at µ = 0.9, Tdmd = 1150Nm and Vin = 8kph.
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Looking at Fig.5.15 we notice a quicker return to the straight line of the nonlinear

controller as opposed to the linear as a result of what was mentioned above. Finally,

in Fig.5.16 the total torque demanded by the NMPC obeys the driver’s torque demand

throughout the maneuver and never exceeds it, whereas the LMPC exceeds it even more

than in previous scenarios. This happens mainly because of the increase of the Tdmd and

its weighting factor which remains constant regardless the driver’s torque command.
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Figure 5.15: Position, double lane change at µ = 0.9, Tdmd = 1150Nm and Vin = 8kph.
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Figure 5.16: Total torque, double lane change at µ = 0.9, Tdmd = 1150Nm and Vin = 8kph.
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5.3 Torque rate expansion

After having a complete look at both LMPC and NMPC we decided to take the NMPC a

step further changing its formulation from wheel torques to wheel torque rates as control

inputs of the controller in order to include the motor’s torque rate constraints (see Table

3.1).

5.3.1 Step Steer Results

From a first glance, one can notice the smoothness of increment and decrement on the

velocity over acceleration and deceleration respectively, opposed to the NMPC with wheel

torque inputs in Fig.5.17. Both controllers meet the steady-state almost at the same time

and although the nonlinear with the torque rate implementation hits the constraint at a

lower speed and has one oscillation before reaching it.
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Figure 5.17: Velocity, step-steer at Tdmd = 1000Nm and Vin = 40kph.

The yaw rate presented in Fig.5.18 has a comparable response with the velocity graph

because of the relation between those two variables. Even though the NMPC with torque
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rate control inputs has a wide oscillation around the 4th second, reaches the steady-state

yaw rate quicker than the wheel torque control input nonlinear formulation. The top-view

position in Fig.5.19 of the vehicle’s centre of mass shows very similar results on both

controllers with slight error between them.
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Figure 5.18: Yaw rate, step-steer at Tdmd = 1000Nm and Vin = 40kph.
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Figure 5.19: Position, step-steer at Tdmd = 1000Nm and Vin = 40kph.
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Finally, the biggest change is observed in the total torque graph in Fig.5.20 where the

difference between the two controllers’ formulation is distinct. In that mater, the expanded

controller (blue line), shows a significant brake intervention while decelerating in order

to meet the velocity constraint which refers to the case of active trail-braking. During

the acceleration and deceleration the torque change is limited not only due to the torque

rate control input constraints but also due to their selected weights in order to satisfy our

controller’s purpose. An important note is that the weighting parameters chosen for the

NMPC with torque rates have been changed because the whole problem has also been

changed. For a closer look at the weights see Appendix.
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Figure 5.20: Total torque, step-steer at Tdmd = 1000Nm and Vin = 40kph.

5.3.2 Double Lane Change Results

The nonlinear torque rate control input expansion strategy is also tested in a Double Lane

Change maneuver. We define a variety of different road friction coefficients similar to the

previous simulations with an initial velocity Vin = 8kph. In Fig.5.21 the same velocity

characteristics are seen as mentioned on the step-steer maneuver, where it has a smoother

increase and decrease during acceleration and braking and whenever it hits the velocity

constraint immediately starts to adjust.
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Figure 5.21: Velocity, double lane change; top - µ = 0.5, Tdmd = 700Nm; middle - µ =
0.7, Tdmd = 950Nm; bottom - µ = 0.9, Tdmd = 1150Nm.
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As seen in the yaw rate response graphs in Fig.5.22 , on low road µ = 0.5 the vehicle

loses grip at the end of the final lane change whereas in higher road friction coefficients

responds as close to the reference signal while at the same time trying to respect the

yaw rate constraint. As mentioned again, both yaw rate and velocity can exceed their

constraints in order the solver to find an optimal solution, because the constraints have

been softened.

Having a closer look at Fig.5.23 the position of the vehicle’s CoM in low friction

surface goes sideways and hits a red cone on the exit of the final lane change but soon the

driver regains control. In all three maneuvers the vehicle follows the same path until the

driver reaches the end of the first lane change and starts the last one, at the point where the

blue line meets the horizontal line Y=1. As the friction coefficient between the road and

the tyre increases, it is easier for the driver to follow the route as seen in the middle and

bottom plots of the figure. Of course all these results are taken considering the driver’s

characteristics described in Chapter 4.

Finally, the total torque demanded by the controller is examined in Fig.5.24 where a

curved increment on the acceleration is noticed just like on the step-steer scenario. On

the other hand, the deceleration has a more steep slope but compared to the wheel toque

control input case is less. On µ = 0.5 the controller demands more braking torque than

both the other two road friction scenarios and on high friction µ = 0.9 the demanded

torque is decreased, after the end of the double lane change where the driver accelerates

in a straight line, because of the safety protection block and its torque, voltage and current

limitations.
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Figure 5.22: Yaw rate, double lane change; top - µ = 0.5, Tdmd = 700Nm; middle -
µ = 0.7, Tdmd = 950Nm; bottom - µ = 0.9, Tdmd = 1150Nm.



76CHAPTER 5. NONLINEAR TORQUE VECTORING CONTROL DEVELOPMENT

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4

5

X position (m)

Y
p
o
si
ti
o
n
(m

)

 

 

NMPC dT

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4

5

X position (m)

Y
p
os
it
io
n
(m

)

 

 

NMPC dT

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4

5

X position (m)

Y
p
os
it
io
n
(m

)

 

 

NMPC dT

Figure 5.23: Position, double lane change; top - µ = 0.5, Tdmd = 700Nm; middle - µ =
0.7, Tdmd = 950Nm; bottom - µ = 0.9, Tdmd = 1150Nm.



5.3. TORQUE RATE EXPANSION 77

0 2 4 6 8 10 12 14 16 18 20

−400

−200

0

200

400

600

800

Time (s)

T
o
rq
u
e
(N

m
)

 

 

Tdmd

Ttot NMPC dT

0 2 4 6 8 10 12 14 16 18
−400

−200

0

200

400

600

800

1000

Time (s)

T
or
q
u
e
(N

m
)

 

 

Tdmd

Ttot NMPC dT

0 2 4 6 8 10 12 14 16
−200

0

200

400

600

800

1000

1200

1400

Time (s)

T
or
q
u
e
(N

m
)

 

 

Tdmd

Ttot NMPC dT

Figure 5.24: Total torque, double lane change; top - µ = 0.5, Tdmd = 700Nm; middle -
µ = 0.7, Tdmd = 950Nm; bottom - µ = 0.9, Tdmd = 1150Nm.



78CHAPTER 5. NONLINEAR TORQUE VECTORING CONTROL DEVELOPMENT

5.4 Computational Performance

The computational time performance of both NMPC control strategies is larger than that

of the linear strategy, although they all run in real-time on the laptop computer machine

this research has been implemented. As seen in Fig.5.25, under the step-steer scenario

the torque rate NMPC always solves optimal with an average time of 11ms compared to

the wheel torque control input formulation which has a smaller average solve time of 5ms

but it’s more solve sensitive as the exitflag can reach a value of -6 in such low demanding

cases.
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Figure 5.25: NMPC performance, step-steer at Tdmd = 1000Nm and Vin = 40kph; Left
images - torque rates NMPC; Right images - wheel torques NMPC.

In the Double Lane Change ISO, there some points of interest emphasized. The

NMPC in Fig.5.26 shows a low average solve time but occasionally hits high values close

to the sampling time. This usually occurs when the exitflag equals to zero, although in the

tested scenarios we have safely chosen a higher safe sampling time so that the controller

can solve in real time. Furthermore, it is easily observed that, in all road friction surfaces,

the solver every now and then has trouble finding an optimal solution, where the exitflag
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is equal to -6. In that case we take the previous optimal solution and apply it to the current

state.
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Figure 5.26: NMPC performance, double lane change; top - µ = 0.5, Tdmd = 700Nm;
middle - µ = 0.7, Tdmd = 950Nm; bottom - µ = 0.9, Tdmd = 1150Nm.

The computational performance of the torque rate nonlinear formulation in Fig.5.27

has a greater solve time than the previous NMPC but finds an optimal solution more often

especially while the road friction coefficient increases. An important note, also mentioned

before, is that this controller has a different problem to solve thus its cost function for-

mulation but also the weight parameters are different than the previous controllers tested

and compared. Along these lines, it is hard to make a good comparison between the two

NMPC strategies.
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Figure 5.27: NMPC dT performance, double lane change; top - µ = 0.5, Tdmd = 700Nm;
middle - µ = 0.7, Tdmd = 950Nm; bottom - µ = 0.9, Tdmd = 1150Nm.

5.5 Discussion

The nonlinear strategy implemented in this section is tuned under the same weight param-

eter values of the linear MPC for comparison reasons. Under the step-steer maneuver both

linear and nonlinear behave alike compared on the velocity regulation approach. How-

ever, in the Double Lane change scenario, the linear MPC shows better results on lower

tyre-road friction than the nonlinear. That happens because the nonlinear controller lacks

the ability to solve optimal given these weight parameters. The results of the NMPC im-

prove when we increase the surface friction not only on a vehicle’s trajectory perspective

but also on the yaw rate response, velocity regulation and torque demand approach.

Finally taking the nonlinear control scheme a step further, we change the formulation

to torque rate control inputs instead of the wheel torques used previously making the

controller to take into account the torque change capabilities of the electric motor. The
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results presented were also promising emphasizing the smooth total torque change of the

vehicle compared to all the other control allocations. Both nonlinear controllers have

similar response on yaw rate and trajectory but the torque rate NMPC takes much more

computational time due to the increased amount of constraints. The wheel torque NMPC

computational times are bigger than the linear version but they still remain under the

sampling time making it also feasible for real-time implementation.
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Chapter 6

Conclusions and Further Research

6.1 Concluding Remarks

In this research the fundamental aim was to investigate different predictive control ap-

proaches combining the classic torque vectoring technique with a velocity regulation ap-

proach during both limit and sublimit handling cases. All the developed optimal con-

trollers are implementable in real-time on a laptop computer machine (CPU i7-4710HQ

at 2.50GHz and 16GB of RAM). To solve our problem we used both linear and nonlinear

control strategies and in order to compare both strategies we have made tuning perfor-

mance compromises on both sides.

The linear torque vectoring formulation shows significant improvement over the equal

torque split vehicle not only under constant steering angle but also using a high fidelity

driver model through CarMaker. Furthermore, the importance of a velocity regulation
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is assessed by adding a velocity constraint in the control strategy, showing additional

improvement to the drivability of the vehicle. The driver’s torque demand is not being

neglected, on the contrary the controller meets that torque demand whenever possible

while at the same time not affecting its ability to respect both the yaw rate reference

generated and the velocity constraint. Finally, the linear controller shows very promising

real-time computational results on the current hardware making it feasible for real-time

vehicle implementation research.

The nonlinear strategy implemented shares some great results too, tuned under the

same weight parameter values of the linear MPC for comparison reasons. Although the

linear MPC has better results on lower tyre-road friction than the nonlinear, it is mainly

because the nonlinear controller lacks the ability to solve optimal given these weight pa-

rameters. The results of the NMPC improve when we increase the surface friction not

only on a vehicle’s trajectory perspective but also on the yaw rate response, velocity reg-

ulation and torque demand approach. Its computational times are bigger than the linear

version but they still remain under the sampling time making it also feasible for further

real-time implementation research. Finally taking the nonlinear control scheme a step fur-

ther, we change the formulation to torque rate control inputs instead of the wheel torques

used previously making the controller to take into account the torque change capabili-

ties of the electric motor. The results presented were also promising emphasising on the

smooth total torque change of the vehicle compared to all the other control allocations.

Both nonlinear controllers have similar response on yaw rate and trajectory but the torque

rate NMPC takes much more computational time due to the increased amount of con-

straints. A further tuning investigation on both controllers will improve their ability to

solve optimal and focus on the real-time deployment research.
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6.2 Future Work

This research studied the integration of a torque vectoring technique with velocity reg-

ulation using both linear and nonlinear Model Predictive Control, in real-time through

simulations computed in Simulink and CarMaker environments. Some of the most im-

portant future works are:

• better tuning of both linear and nonlinear strategies to expand the increase the num-

ber of optimal solutions under different testing maneuvers

• implementation of the current linear/nonlinear controller on a real-time dSPACE

deployment machine which has less computational power than the current computer

• change the current linear formulation to torque rate control inputs and compare the

results

• testing and validation of the controller using hardware-in-the-loop test rig and fur-

ther implementation on a real electric test vehicle

• implementation of a tyre-road friction coefficient estimation which was assumed

constant for the MPC strategies and in real vehicle implementation, there is no

measurement available for this parameter

• include electric motor dynamics in the internal vehicle model and make a systematic

sensitivity analysis of the controller’s weight matrices
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Appendix A

Tuning Parameters

All the values used for the weights where chosen after numerous simulations. The tuning

of all our controllers is not constant but instead the parameters change value according to

the vehicle’s velocity. There are two main cases, the underspeeding case where the vehicle

enters a turn with less speed than the Vlim as calculated in Chapter 3, and the overspeeding

case where the vehicle has excessive speed and the controller needs to take action. The

steady-state case is considered inside the underspeeding case.

The main body of the tuning algorithm for both LMPC and NMPC with wheel torque

control inputs is:

if V_lim >= V %underspeeding case

qr = 1/(1) ^2;

qr_e = 0.1;

qV_e = 0.1;

qTdmd = 8/(4* Tm_max)^2;

qT = 0.08/( Tm_max)^2;

if ((abs(r_ref - r) <= 5*pi /180.0) && (V_lim - V < 1))

|| hold == 1 % vehicle in steady -state
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qr = ( -560* Kund +1.033) /(1) ^2;%address the variety

of understeer gradient

qr_e = 4000;

qV_e = 400000;

qTdmd = 0.28/(4* Tm_max)^2;

qT = 0.08/( Tm_max)^2;

hold = 1;

if (V_lim - V > 5) %unhold steady -state

hold = 0;

end

end

else %overspeeding case

qr = 0.08;

qr_e = 0.1;

qV_e = 0.1;

qTdmd = 0.1/(4* Tm_max)^2;

qT = 0.04/( Tm_max)^2;

hold = 0;

end

The parameters have changed for the NMPC with torque rate control inputs into:

if V_lim >= V

qr = 2/(1) ^2;

qr_e = 1000;

qV_e = 100000;

qTdmd = 2/(4* Tm_max)^2;
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qdT = 1/( dT_lim)^2;

if ((abs(r_ref - r) <= 3*pi /180.0) && (V_lim - V < 1))

|| hold == 1

qr = 4*( -560* Kund +1.033) /(1) ^2;

qr_e = 4000;

qV_e = 400000;

qTdmd = 0.6/(4* Tm_max)^2;

qdT = 0.28/( dT_lim)^2;

hold = 1;

if (V_lim - V > 3)

hold = 0;

end

end

else

qr = 1/(1) ^2;

qr_e = 3;

qV_e = 1;

qTdmd = 2/(4* Tm_max)^2;

qdT = 4/( dT_lim)^2;

hold = 0;

end
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