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Abstract: In predictive control a nonlinear optimization problem has to be solved at each
sample instant. Solving this optimization problem in a computationally efficient and numerically
reliable fashion on an embedded system is a challenging task. This paper presents results to
reduce the computational requirements for solving fundamental problems that arise when im-
plementing predictive controllers in finite precision arithmetic. By employing novel formulations
and tailor-made optimization algorithms, this paper shows that computational resources can
be reduced using very low precision arithmetic. We also present new mathematical results that
enable computational savings to be made in the most numerically critical part of an optimization
solver, namely the linear algebra kernel, using fixed-point arithmetic. Our theoretical results
are supported by numerical results from implementations on a Field Programmable Gate Array
(FPGA).
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1. INTRODUCTION

This paper is concerned with the important problem of
choosing the right number system when implementing a
predictive controller on an embedded control system, e.g.
as in automotive, aerospace, electrical power, healthcare,
communications, manufacturing and motion control ap-
plications. The number representation has a big impact
on the computational efficiency and performance of the
optimization solver that is used within the predictive con-
trol scheme. Decreasing the number of bits needed to do
the computations, or by changing from floating-point to
fixed-point, can significantly reduce the time, silicon area,
cost and energy needed to compute the control action.
However, numerical errors could potentially offset com-
putational performance gains and result in poor closed-
loop performance, hence a good understanding of number
representation is crucial for the successful implementation
of predictive controllers in demanding and safety-critical
control applications.

A major driving factor in deciding what to include on a
microprocessor is the area of the chip. Static and dynamic
power consumption of a chip roughly grows at least lin-
early with area, ignoring the additional increase in power
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consumption due to increases in interconnection length.
Furthermore, because of defects during manufacturing, not
all dies manufactured are acceptable; a good rule of thumb
for modern manufacturing processes is that the cost per
processor die grows roughly with the square of the die
area [Hennessy and Patterson, 2011, Chap. 1.6].

One of the key choices that an engineer has to make in
order to control the area of a chip is the number repre-
sentation that will be used for the arithmetic units [Ko-
ren, 2002]. For fixed-point arithmetic with bit parallel
two’s complement, the area of multipliers typically scales
quadratically and the area of adders scales linearly with
the number of bits. For floating-point arithmetic, the area
of multipliers and adders usually scale somewhere between
linearly and quadratically with the number of bits, since
the area of the shifter in the floating-point adder scales
somewhere between linearly and quadratically with the
number of bits. It is clear that significant savings in cost
and power requirements are possible by appropriate choice
of number representation and reducing the number of
bits. Of course, similar improvements in latency (time
taken to complete a computation, or commonly referred
to as the computational delay) and throughput (number
of completed computations per unit time) are also possible
by reducing the number of bits. However, the amount of
improvement is implementation dependent and it is often
possible to trade off area against latency or throughput.

Nearly all CPUs within modern desktop PCs provide
hardware support for the IEEE-754 standard for double
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precision floating-point, which uses 52 bits for the mantissa
(significand), 11 bits for the exponent and one bit for the
sign. However, most microprocessors in embedded systems
do not offer any support for double precision floating-
point. Instead, they may only offer floating-point support
for single precision (23 bits for the mantissa and 8 bits for
the exponent) or half precision (10 bits for the mantissa
and 5 bits for the exponent) or not even provide any
support for floating-point at all. It is therefore possible
that, because of a significant decrease in precision, a
predictive control algorithm that gives reliable numerical
results when implemented in the office desktop computer
or laptop might give completely different results when
implemented on the real embedded control system.

Because energy consumption and cost are two major con-
cerns in embedded control systems, most microprocessors
provide very good support for fixed-point arithmetic. This
is because a fixed-point arithmetic unit takes up signifi-
cantly less area on a chip than a floating-point unit with
the same number of bits, therefore resulting in significant
savings in manufacturing cost and energy requirements.
Fixed-point units are also faster than floating-point units
with the same number of bits, due to the fact that the
radix points (binary points) of two numbers do not need
to be aligned during addition or subtraction. These re-
ductions in cost, computation time and energy come at
the price of a significant reduction in the dynamic range
(ratio of the largest representable number to the smallest
non-zero representable number) of numbers that can be
represented using fixed-point compared to floating-point.
As a consequence, a predictive control algorithm that
was numerically well-behaved when implemented using
floating-point arithmetic might produce a significant num-
ber of numerical errors, such as overflow or underflow,
when implemented using fixed-point arithmetic.

Since the choice of number representation can have a
dramatic effect on the numerical robustness of a predictive
controller implemented in an embedded control system,
it is crucial to have a good understanding of the effect
that the choice of number system and precision of the
computations has on overall system performance. Rather
than relying on heuristic methods for addressing this issue,
it is important to develop systematic and mathematically
rigorous methods that allow the implementation of predic-
tive controllers on current and future embedded control
systems with guarantees on stability and system perfor-
mance. A sound theoretical basis with supporting devel-
opment tools will enable the transfer of predictive con-
trol technology to current and future applications where
speed, cost or energy requirements are too demanding
for implementations based on double precision floating-
point, thereby necessitating a switch to a different number
representation.

This paper gives an overview of some recent work done
at Imperial College London that aims to develop a deep
understanding of the fundamental issues that are impor-
tant in numerical representation in predictive control. We
show that existing formulations and algorithms for solving
predictive control problems result in very poor perfor-
mance when a low precision or fixed-point implementation
is used. We summarize some new systematic methods and
theoretical results that we have developed for addressing

some of these problems. These results allow for predictive
controllers to be implemented in embedded control sys-
tems with dramatic reductions in cost, computation time
and energy requirements, compared to existing methods.

We present results and methods that are generic and that
can be applied, in principle, to most existing processors
used in embedded control systems, including DSPs and
embedded GPUs. However, one of the main challenges
when doing fundamental research on numerical representa-
tion is to have a sufficiently flexible platform for generating
numerical results in order to compare against theoretical
predictions. Most microprocessors only allow one to choose
from a predetermined set of number systems, which is not
ideal for fundamental research in this area. It is possible to
emulate different number representations in software (e.g.
with the GNU MP 1 and MPFR 2 libraries for arbitrary-
precision arithmetic or the Matlab 3 Fixed-Point Tool-
box) as an initial step in evaluating the effect of a given
number representation on algorithm behavior. However, a
software emulation approach makes it difficult to quantify
how the computational resources would scale in practice if
a processor does not yet exist that would provide hardware
support for a non-standard number representation.

Fortunately, current Field Programmable Gate Arrays
(FPGAs), which are already extensively used in a number
of embedded control systems, are sufficiently flexible to
allow a researcher to explore a variety of number represen-
tations, yet powerful enough to implement predictive con-
trollers for challenging control applications. In an FPGA
one can choose to implement floating-point, fixed-point
or any other number representation, such as logarithmic,
residue or custom number systems, with arbitrary preci-
sion. The reconfigurability of an FPGA allows experimen-
tation with different number representations in order to
get a better understanding of the trade-offs that has to be
made in practice between closed-loop performance, compu-
tational hardware resources, accuracy and precision. It is
for this reason that some of the numerical results presented
in this paper include those from implementations on an
FPGA.

Section 2 of this paper is concerned with the case when the
predictive control implementation uses a very small num-
ber of bits. The main point made here is that the choice
of discretization method is a key factor in the behavior
of a predictive control algorithm implemented in low pre-
cision. The method commonly used in predictive control
applications to compute an equivalent discrete-time model
of the continuous-time system, namely the shift form, can
be numerically sensitive to round-off error; an off-the-shelf
optimization algorithm would not be able to detect and
correct for any errors in the data, because information is
lost prior to solving the optimization problem. We propose
a novel formulation of the optimization problem, based on
the delta operator approach of Middleton and Goodwin
[1986], which allows the computation of an equivalent
discrete-time model that is less susceptible to numerical
errors compared to the shift form. In order to solve this
optimization problem, we also outline a novel algorithm
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that pays attention to the order in which computations
should be done in order to minimize the effect of numerical
errors and avoid any increase in computational resources
or latency. This section is based on results in Longo et al.
[2012] and the reader is referred to that paper for a more
in-depth discussion.

Section 3 is based on results in Jerez et al. [2012a,b].
and discusses what happens when implementing the most
computationally expensive and numerically critical part
of an optimization algorithm, namely the computation of
the search direction, using a fixed-point representation.
In particular, we discuss the use of the minimal residual
(MINRES) method for solving the resulting set of linear
equations and implement the Lanczos kernel using fixed-
point arithmetic. The main challenge of fixed-point over
floating-point is to develop a computationally tractable
method to a priori determine tight bounds on the dynamic
range of the variables, which is not possible using existing
methods. This section presents a novel preconditioner
that guarantees that the eigenvalues of the preconditioned
matrix has eigenvalues inside the unit disk. This allows us
to analytically derive tight bounds on all the variables in
the Lanczos process, in order to determine a priori where
to place the radix point (binary point) such that numerical
errors due to overflow are avoided.

The paper draws some conclusions in Section 4.

2. LOW PRECISION ARITHMETIC

Double- or single-precision floating-point representation
may be unnecessarily precise for a given application,
where precision would be better traded in for improving
more important aspects, such as speed, cost and energy
consumption. Reducing the number of mantissa bits can
significantly reduce the hardware resources required and
the latency of a predictive control algorithm, as can be
seen in Figure 1, which shows the resources required for an
implementation of the predictive control algorithm of Rao
et al. [1998] on an FPGA.

The problem with reducing the number of bits is that ex-
isting predictive control algorithms may give unacceptable
results when using a very low precision. Figure 2 shows
that the closed-loop response of a 5-bit implementation
of Rao et al. [1998], which uses the shift form to obtain
a discrete-time model, may give an unacceptable response
compared to a double precision implementation of Rao
et al. [1998]. However, Figure 2 also shows that a 5-bit
implementation based on solving the optimization problem
outlined below, which is based on obtaining a discrete-
time model using the delta operator approach of Middleton
and Goodwin [1986], produces trajectories that almost
perfectly overlap with the ones from a 52-bit shift imple-
mentation.

The reason for the problem with using the shift form,
which is the common method used to discretize the
continuous-time system in existing predictive control for-
mulations, is easily understood. Consider the continuous-
time LTI plant model

ẋ(t) = Acx(t) +Bcu(t) (1)

where x(t) ∈ Rnx , u(t) ∈ Rnu . Suppose the input sig-
nal u(·) is piecewise constant, e.g. when there is a zero-
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Fig. 1. FPGA resources required for double (52 bits),
single (23 bits) and custom (5 bits) floating-point
implementations for a predictive control algorithm
with 6 states, 2 inputs and a horizon length of
200 steps. The number of Flip-Flops (FF), Look-
Up-Tables (LUTs), Digital Signal Processing (DSP)
units required and the latency (calculated at a clock
frequency of 200 MHz, assuming 10 interior-point
iterations) are given.
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Fig. 2. Sample state and input trajectories of the closed-
loop response of a benchmark spring-mass system
with 6 states, 2 inputs, horizon length of 2 s and
sample period of 10 ms.

order hold at the output of the controller, with a sampling
period h such that

u(t) = u(ih), ∀t ∈ [ih, ih+ h),

where i ∈ N0 is the sample instant. We will adopt the
more convenient notation xi := x(ih) and similarly for
other vectors.

The equivalent discrete-time/sampled-data model in the
so-called shift form (as implemented in, for example,
Matlab’s c2d function) is given by

xi+1 = eAch︸︷︷︸
=:As

xi +

[∫ h

0

eAc(h−τ)Bcdτ

]
︸ ︷︷ ︸

=:Bs

ui, (2)

where, following from the definition of the matrix expo-
nential, the exponential of the matrix Ach is given by



eAch = I +Ach+
(Ach)2

2!
+

(Ach)3

3!
+ . . . . (3)

It is important to sit back here and note the well-known
(but not often appreciated) fact that

lim
h→0

As = I and lim
h→0

Bs = 0.

This is not nice, because it implies that the discrete-time
matrices do not converge to the continuous-time matrices
as the sample period tends to zero. This is not just an
interesting theoretical curiosity, but has very important
implications for implementation of predictive controllers
in finite precision arithmetic.

The above equations suggest that significant problems
might occur in practice when implementing a controller
using finite precision arithmetic. If the product Ach in (3)
results in a matrix with entries much smaller than one,
then the transition matrix As in (2) will be a matrix where
the elements on the diagonal are the summation of 1 with
a much smaller number, hence the significant bits of the
coefficients will be truncated and some of the information
contained in Ach + (Ach)

2

2! + (Ach)
3

3! + . . ., which is where
the plant dynamics are represented, might be lost.

In practice, a system does not need to be sampled at very
fast rates before truncation or round-off errors become a
problem when using a small number of bits to represent
the data. Sample times of the order of 10 to 20 times less
than the dominant time constant of the system are often
sufficient for numerical problems to arise, and sampling
slower than this is usually only done if computation time
is an issue.

2.1 An Alternative Discrete-Time Representation

One way to address the above numerical problem is to
use an alternative representation for the discrete-time
model. A very good candidate is the delta operator ap-
proach [Goodwin et al., 2010, Middleton and Goodwin,
1986]. Consider substituting (3) into (2) and rewriting it
as

xi+1 − xi
h

= Aδxi +Bδui, (4a)

where
Aδ := ΩAc, Bδ := ΩBc, (4b)

and

Ω :=
1

h

∫ h

0

eAcτdτ = I +
Ach

2!
+
A2
ch

2

3!
+ . . . (4c)

=
1

h
[I 0] exp

([
Ac I
0 0

]
h

)[
0
I

]
. (4d)

Clearly, (4a) is mathematically equivalent to (2). However,
this observation can be used to reduce the numerical errors
due to finite precision effects. What is nice about the delta
form is that the discrete-time plant matrices converge to
their continuous-time counterparts, i.e.

lim
h→0

Aδ = Ac and lim
h→0

Bδ = Bc.

This is a very useful property to have when implementing
predictive controllers in finite precision arithmetic.

2.2 A New Formulation of the Constrained LQR Problem

Suppose that the problem is to find an input and state
sequence that minimizes a positive semidefinite quadratic

stage and terminal cost on the states and inputs, subject to
satisfying the model constraints and given linear inequality
constraints on the state and input over a finite horizon, as
is standard in predictive control formulations based on the
constrained LQR problem [Scokaert and Rawlings, 1998].
The question is whether it is possible to formulate and
solve an optimization problem that utilizes the delta form,
rather than the shift form, in a smart way in order to
minimize effects due to finite precision arithmetic.

One possible solution is to start by introducing an addi-
tional variable δi ∈ Rnx and rewrite (4a) equivalently as

δi := Aδxi +Bδui, (5a)

xi+1 = xi + hδi. (5b)

In order to preserve the information contained in Aδ
and Bδ, the important point to note is that the decision
variables in the optimization problem should not only
include the input and state sequences as decision vari-
ables, as in existing predictive control formulations [Rao
et al., 1998], but also the sequence of additional vari-
ables {δ0, δ1, . . .}. The plots in Figure 2 for the 5-bit shift
representation are a clear illustration of the unintended
consequences of not including the additional variables
{δ0, δ1, . . .} in the formulation of the QP.

One could therefore proceed, as proposed in Longo et al.
[2012], by defining the decision variables for the optimiza-
tion problem as

θ :=
[
u′0 δ

′
0 x
′
1 u
′
1 δ
′
1 x
′
2 · · · u′N−1 δ′N−1 x′N

]′
, (6a)

and formulate the optimal control problem in the form

min
θ

1

2
x′NQfxN +

1

2

N−1∑
k=0

[
xk
uk

]′ [
Q M
M ′ R

] [
xk
uk

]
(6b)

s.t. x0 = x̂, (6c)

δk = Aδxk +Bδuk, ∀k ∈ {0, 1, . . . , N − 1} (6d)

xk+1 = xk + hδk, ∀k ∈ {0, 1, . . . , N − 1} (6e)

Jxk + Euk ≤ d, ∀k ∈ {0, 1, . . . , N − 1} (6f)

where N is the number of samples in the horizon, x̂ is
a given measurement or estimate of the current state, all
matrices and vectors have compatible dimensions and the
cost is convex.

2.3 Solving the New Constrained LQR Problem (6)

It is straightforward to show that (6) can be written as a
convex QP of the form

min
θ

1

2
θ′Hθ (7a)

s.t. Fθ = f, Gθ ≤ g, (7b)

where the matrices F , G and H are sparse and banded.

A naive approach to solving the QP (7) would be to
arbitrarily choose an existing off-the-shelf QP solver code,
which has support for sparse matrices, and compile it for
a target embedded system with low precision arithmetic.
This approach may fail early on in the implementation
phase. For example, the preprocessor of the QP solver
might want to first eliminate the additional variables
{δi}N−1i=0 to produce a smaller QP, thus destroying some
of the important information contained in Aδ and Bδ. Of
course, the information contained in Aδ and Bδ could also



be destroyed at any stage in the QP solver, depending on
the details of the algorithm. On the other hand, an existing
solver may appear to work in exhaustive simulations, but
won’t come with any rigorous theoretical guarantees on
the accuracy of the solution, hence making it difficult to
certify for safety-critical applications.

It could therefore be potentially disastrous to proceed with
a low precision implementation of a QP solver and not
care about the details of the algorithm or the hardware.
An important research goal is to develop optimization
algorithms with a guarantee that the loss of accuracy due
to finite precision effects is minimized or bounded a priori,
thereby enabling implementations using very low precision
arithmetic with guarantees on the accuracy of the solution.

Another research question is whether the introduction of
the additional variables {δi}N−1i=0 in the QP significantly
increases the computational resources required such that
any potential gains due to working in low precision are
lost, compared to solving a QP with only the inputs and
states as the decision variables using the shift form with
a higher precision. It is possible to show that, provided
care is taken in the development of the QP solver and
its implementation, this is not the case. We briefly outline
the arguments, which can be found in more detail in Longo
et al. [2012], in the remainder of this section.

Consider proceeding along similar lines to the algorithm
in Rao et al. [1998], which is based on the interior point
algorithm of Mehrotra [1992]. The calculation of the search
direction is the most computationally expensive and nu-
merically sensitive part of the algorithm, hence we present
only the ideas crucial to this. Suppose the variables in
the reduced KKT system Aξ = b, where ξ is the search
direction, are interleaved in a fashion similar to Rao et al.
[1998], i.e.

ξ :=
[
∆u′0 ∆γ′0 ∆δ′0 ∆λ′1 ∆x′1 ∆u′1 ∆γ′1 ∆δ′1 · · · ∆x′N

]′
,

where ∆γi and ∆λi are the search directions for the
Lagrange multipliers. By performing a sequence of block
eliminations on the KKT system, it is possible to show the
search direction can be computed via a Riccati recursion
similar to Rao et al. [1998]. Figure 2 shows some numerical
results for a 5-bit delta implementation, which nearly over-
laps with the results from a 52-bit shift implementation.

Although more multiplications and additions are required
for the delta formulation, compared to the shift formula-
tion of Rao et al. [1998], the critical path (the longest non-
parallelizable sequence of operations) remains unchanged.
As an example, let us compare the discrete-time Riccati
difference equation (DRDE) of the delta formulation

Pk−1 := Qk−1 + Pk + h2A′δPkAδ + hA′δPk + hPkAδ

− (Mk−1 + h2A′δPkBδ + hPkBδ)(Rk−1 + h2B′δPkBδ)
−1

(M ′k−1 + h2B′δPkAδ + hB′δPk),

with the equivalent DRDE of the shift formulation

Pk−1 := Qk−1 +A′sPkAs + (Mk−1 +A′sPkBs)

(Rk−1 +BsPkAs)
−1(M ′k−1 +B′sPkAs).

The data dependencies of the calculations to com-
pute Pk−1 are shown as a graph in Figure 3. For the
delta case, there are four extra matrix additions to be
performed, shown in Figure 3 by the boxes with dotted

Delta Shift

Addition/Subtraction

Multiplication

Solve linear system

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Fig. 3. Data dependencies of the DRDE for the delta and
shift formulations. For delta, Ā := hAδ and B̄ := hBδ.
For shift, Ā := As and B̄ := Bs. Both algorithms have
the same critical path (thicker arrows).

edges. Assuming a fully parallel implementation, a maxi-
mum of three matrix adders and three matrix multipliers
are used simultaneously at each stage of the algorithm;
this is true for both the delta and shift case, implying
that the same number of hardware blocks are needed for
both implementations (of course, in the delta case, the
adders will be used more often). Hence, although four
extra additions are needed for the delta case, the number of
computational resources needed for minimal latency is the
same in both cases. Similar arguments hold for the other
computations involved in determining the search direction.

Of course, without knowing the details of the target
processor, compiler or programming language, it may be
difficult to tell whether it is possible to do a parallel
implementation of an algorithm for the delta formulation
as above, which is guaranteed to have the same latency or
use as many resources as an equivalent algorithm for the
shift formulation. However, with advances in computing
technologies, this might be possible in the near future.
Fortunately, the future is already here in the form of
FPGAs, where it is possible to have exact control over
the sequence in which computations are performed and
the resources that they require. Hence, it is possible to use
an FPGA to solve a QP with the delta formulation using
the same amount of computational resources as would be
required to solve a QP with the shift formulation.

When designing new algorithms for predictive controllers
implemented in low precision arithmetic, the first point to
take home from this section is that it is important to be
careful with the formulation of the QP so that important
information is not lost prior to solving the QP. The second
point is that the sequence in which computations are done
might be critical to minimizing numerical errors while
solving the QP, e.g. it might be important to add numbers
of a similar magnitude together before adding the result to
numbers with a larger magnitude. The third point is that,
for a computationally efficient and numerically reliable
implementation, the details of the embedded computing
platform and development tools should inform the details
of the algorithm and vice versa.

3. FIXED-POINT ARITHMETIC

As mentioned in the introduction, porting part or all of
an algorithm from floating-point to fixed-point can reduce
both the hardware resource requirements and arithmetic
delays. As can be seen in Table 3, it is possible to



Table 1. Resources required and latency (in
clock cycles) for a single floating- or fixed-point
adder on a Xilinx Virtex-7 XT 1140 FPGA.

Number Representation Registers LUTs Latency

double float (52-bit mantissa) 1046 911 14
single float (23-bit mantissa) 557 477 11

53-bit fixed-point 53 53 1
24-bit fixed-point 24 24 1

decrease the latency of an addition by roughly one order
of magnitude, with an even bigger relative reduction in
the resources required, by switching from floating-point to
fixed-point in an FPGA. Of course, the relative reductions
in resources and latency are different for other arithmetic
units and for other architectures, but the general argument
will hold that it is computationally more efficient to use
fixed-point than floating-point arithmetic.

The reason for the large differences in resource usage and
latency is as follows. Recall that a floating-point number
consists of a sign bit, a mantissa and an exponent. During
every addition or subtraction the exponent part is used by
the circuitry to align the radix points (decimal or binary
point) of the two numbers. For example, consider adding
the unsigned decimal numbers 1.200×102 and 3.400×100,
each with four digits for the mantissa and one digit for
the exponent. The radix point in the second number first
needs to be shifted to give 0.034× 102 before adding it to
the first number to give the correct answer 1.234 × 102.
In contrast, fixed-point numbers have a fixed number of
bits for the integer and fractional parts, which means
that all the extra circuitry and processing is unnecessary.
For the above example, if three digits are used for the
integer part and two digits for the fractional part in a
fixed-point representation, then the first number would be
represented as 120.00 and the second number as 003.40
so that the addition of the two numbers gives the correct
answer 123.40.

The price to pay with fixed-point is a reduction in the
dynamic range (ratio of the largest representable number
to the smallest non-zero representable number) that can
be represented with the same amount of bits. Following
on from the example above, in fixed-point one would be
able to represent the range of non-zero numbers 000.01
to 999.99 using a total of 5 digits, which has a dynamic
range of 9.9999×105. In floating point one can represent a
much larger range of non-zero numbers from 0.001×100 to
9.999×109, which has a dynamic range of 9.999×1012. At
least 13 digits would be necessary in fixed-point in order
to represent the same range.

The fundamental problem in representing a variable in
fixed-point is to determine the worst-case peak values in
order to decide how many bits to allocate for the integer
part, while also having a grasp on the dynamic range to
decide on the number of bits for the fractional part. In
optimization solvers, particularly interior-point methods,
some of the variables have a large dynamic range, due
to some elements becoming large and others small as the
iterates approach the constraints. An implementation of
an interior point algorithm in fixed-point would require a
very large number of bits for the integer part, in order
to capture large numbers, as well as a very large number

Algorithm 1 The Lanczos Algorithm

Given q1 such that ‖q1‖2 = 1 and an initial value β0 := 1
for i = 1 to imax do

1. qi ← qi
βi−1

2. zi ← Aqi
3. αi ← qTi zi
4. qi+1 ← zi − αqi − βi−1qi−1
5. βi ← ‖qi+1‖2

end for

of bits for the fractional part, in order to capture small
numbers.

As mentioned in Section 2.3, the most computationally
expensive and numerically critical part of an optimization
algorithm is the computation of the search direction ξ,
which involves computing the solution to a set of linear
equations of the form

Aξ = b, (8)

where A is a symmetric matrix.

The challenge with implementing linear solvers using fixed-
point arithmetic is that it is very difficult to bound or con-
trol the dynamic range of the variables. Current methods
for automatically computing the range of variables cannot
handle algorithms that are both nonlinear and recursive,
which includes direct and iterative algorithms for solving
systems of linear equations. By solving this problem, it
would be possible to achieve significant speedups by ef-
ficiently implementing part or all of the linear solver in
fixed-point.

Iterative methods for solving linear equations, such as
MINRES, have a number of advantages compared to direct
methods, such as LU or QR factorization; they are easier to
parallelize, require less hardware and memory and allows
trading off accuracy of the solution against computation
time. At the core of modern iterative solvers, such as
MINRES, is the Lanczos algorithm, which accounts for
the majority of the computational resources and time. In
this section, we present some new results that make it
possible to implement the Lanczos algorithm in fixed-point
arithmetic.

3.1 The Lanczos Algorithm

The Lanczos algorithm, which is described in Algorithm 1,
transforms a symmetric matrix A ∈ RN×N into a tridiag-
onal matrix T with similar spectral properties as A using
an orthogonal transformation matrix Q. At every iteration
the approximation is refined such that

QTi AQi = Ti :=


α1 β1 0

β1 α2
. . .

. . .
. . . βi−1

0 βi−1 αi

 , (9)

where Qi ∈ RN×i and Ti ∈ Ri×i. The tridiagonal ma-
trix Ti is easier to operate on than the original matrix.
The algorithm can be used to extract the eigenvalues
and singular values of A or to solve systems using the
Conjugate Gradient method when A is positive definite
or MINRES when A is indefinite. The Arnoldi iteration,
a generalisation of Lanczos for non-symmetric matrices,
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is used in the Generalized Minimal Residual method for
general matrices.

In order to illustrate the problem of bounding the dynamic
values, Figure 4 shows the evolution of the peak value of α
(Line 3 in Algorithm 1) generated during an implemen-
tation of the interior point method in Wright [1997] for
solving a set of constrained LQR problems. For this set
of problems, 22 bits are needed for the integer part to be
able to represent the largest value of α; moreover, using
this number of bits does not guarantee that overflow will
not occur for a different set of initial states. Figure 4 also
shows the range of the same variable when employing a
novel preconditioner, discussed below, to the same set of
problems; moreover, this new preconditioner can be used
to analytically compute the range of the variables and
guarantee that overflow will not occur for a different set
of initial states.

3.2 A Novel Preconditioner for (8)

Preconditioning is often used to improve the behavior of
iterative methods for solving linear systems, where it is
usually employed to accelerate convergence of the algo-
rithm. Our aim is different here, since we are interested in
restricting the range of the variables inside the algorithm.

Instead of solving (8) directly, we propose to solve the
problem

S−
1
2AS−

1
2ψ = S−

1
2 b⇔ Âψ = b̂, (10)

where S is chosen to avoid overflow in a fixed-point im-
plementation and the solution to the original problem is
recovered through the transformation ξ = S−

1
2ψ. We em-

ploy a positive diagonal matrix S whose diagonal elements
are given by the following expression:

Skk :=

N∑
j=1

|Akj |, (11)

i.e. Skk is the absolute sum of the elements in row k.

The above preconditioner can be used to derive bounds
on the variables within the Lanczos algorithm. The proof
of the following result follows from the careful application
of standard results from linear algebra and is based on
the fact that it is possible to show that the eigenvalues of

the preconditioned matrix Â are contained inside the unit
disk [Jerez et al., 2012b]:

Theorem 1. Given preconditioner (11), the symmetric

Lanczos algorithm applied to Â := S−
1
2AS−

1
2 , for any

non-singular symmetric matrix A, has intermediate vari-
ables with the following bounds for all i: qi ∈ (−1, 1),

Â ∈ (−1, 1), Âqi ∈ (−1, 1), αi ∈ (−1, 1), βiqi−1 ∈ (−1, 1),

αiqi ∈ (−1, 1), Âqi − βi−1qi−1 ∈ (−2, 2), qi+1 ∈ (−1, 1),
qTi+1qi+1 ∈ (−1, 1), βi ∈ (ε, 1), and 1/βi ∈ (1, 1/ε), where ε
is a small positive number determined by an appropriately
defined termination criterion.

It turns out that the bounds obtained by Theorem 1 are
quite tight in practice, as can be seen in Figure 4.

The important practical implication of Theorem 1 is
that, provided S is computed with a sufficiently high
precision, Theorem 1 can be used to a priori compute the
resources required by the Lanczos algorithm to solve the
preconditioned problem using fixed-point arithmetic:

Corollary 2. The integer part of a fixed-point two’s com-
plement representation requires, including the sign bit, at

most one bit for qi, Â, Âqi, αi, βiqi−1, αiqi, qi+1, βi and

qTi+1qi+1, two bits for Âqi − βi−1qi−1 and d− log2(ε)e bits
for 1/βi.

Figure 5, taken from Jerez et al. [2012a], shows the
trade-off between latency and hardware resources offered
by floating-point and fixed-point implementations of the
Lanczos algorithm with the new preconditioner (11). The
figure shows that fixed-point implementations make more
efficient use of the resources and reduces latency, while also
being able to guarantee the same accuracy of the solution
as with a floating-point implementation.

4. CONCLUSIONS

Existing formulations of predictive control with off-the-
shelf optimization solvers are not guaranteed to work when
implemented on embedded systems, even if the simulations
on a desktop or laptop give acceptable results. This is
because the majority of microprocessors in embedded sys-
tems do not support IEEE-754 double precision floating-
point, due to cost and energy requirements. In order to
guarantee that a predictive controller will work in practice,
new formulations and solvers need to be developed in
order to work on number systems typically implemented
in embedded microprocessors.

This paper has shown that the choice of discretization
method and details within the optimization solver are
critical for guaranteeing good numerical behavior of a pre-
dictive controller when using very low precision arithmetic.
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Fig. 5. Latency against FF utilization trade-off on a Xilinx
Virtex-7 XT 1140 FPGA for the same benchmark set
as in Figure 4 with N = 229; the trade-off is simi-
lar for other resources. Double (52-bit mantissa) and
single (23-bit mantissa) precision floating-point are
represented by solid lines with crosses and circles, re-
spectively. Fixed-point implementations with 53 and
29 bits for the fractional part are represented by
the dotted lines with crosses and circles, respectively;
these implementations meet the same accuracy spec-
ifications as for the floating-point implementations.

In addition, this paper has presented new results that
allow for the implementation of the most computationally
expensive and numerically critical part of an optimization
solver, namely the Lanczos algorithm when computing the
search direction using an iterative linear solver, in fixed-
point arithmetic.

An important decision that a researcher or developer has
to make is whether it is worth investing time in studying
computer architecture and arithmetic, since processors
are continuously changing and arguably developing at a
much faster rate than some well-established programming
languages, like C/C++. It might be true that, for some
applications, it would be better to wait for technology to
catch up such that the details of the processor are unim-
portant and that the control specifications can be met by
porting code that uses existing methods. For some current
and future applications this arguably may not happen for
a few more decades, if at all. In some applications an
understanding of the hardware architecture and associated
numerical issues could result in significant improvements
in the development cost, performance and reliability of the
embedded control system.

This paper presented some numerical results for imple-
mentations on an FPGA. At the moment, development
tools for FPGAs are arguably not yet as easy to use as
the majority of tools for embedded systems based on high
level languages, such as C/C++, but we expect this gap
to decrease with time. In the meantime, we would like to
encourage researchers, hesitant to take the leap to FPGAs
but willing to make contributions to the implementation of

predictive controllers, not to constrain their ideas to what
is currently possible with non-FPGA technologies. By tak-
ing an active interest in new ideas and trends in computing
they will be able to make fundamental contributions and
develop the algorithms of the future.

Our view of which control formulations, algorithms, hard-
ware and software design processes are (or will be) useful
has changed since trying to implement predictive con-
trollers on embedded systems. We hope that this paper will
have given a glimpse of some of the exciting opportunities
for fundamental research in this area.
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