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Abstract

This study focuses on the operational and resource-constrained condition-based cleaning

planning problem of integrated production and utility systems under uncertainty. For the

problem under consideration, a two-stage scenario-based stochastic programming model that

follows a rolling horizon modelling representation is introduced; resulting in a hybrid reactive-

proactive planning approach. In the stochastic programming model, all the binary variables

related to the operational status (i.e., startup, operating, shutdown, under online or offline

cleaning) of the production and utility units are considered as first-stage variables (i.e.,

scenario independent), and most of the remaining continuous variables are second-stage

variables (i.e., scenario dependent). In addition, enhanced unit performance degradation and

recovery models due to the cumulative operating level deviation and cumulative operating

times are presented. Terminal constraints for minimum inventory levels for utilities and

products as well as maximum unit performance degradation levels are also introduced. Two

case studies are presented to highlight the applicability and the particular features of the

proposed approach as an effective means of dealing with the sophisticated integrated

planning problem considered in highly dynamic environments.

Keywords: production planning, cleaning, utility system, stochastic programming, rolling

horizon, optimization.

1. Introduction

The process industry is a key economic sector globally. The global market share and business

performance of the process industry is heavily based on the value that can be generated from

its assets and while the range of valuable assets is large, nearly all the economic value in

terms of operating profit in the process industry is a direct result of operations of plant

equipment (Christofides et al., 2007). Also, major plant equipment constitute highly expensive

capital assets that are typically subject to performance degradation and require periodic

maintenance to avoid their damage or inefficient operation. Typically, maintenance planning

follows very conservative approaches and is done separately from the production planning.

Such approaches result in increased needs for maintenance resources (and associated

costs), material waste, and productivity losses. All these, make clear the imperative need for

systematic approaches for the efficient management of equipment operations and

maintenance to preserve the major assets of a process industry and increase financial gains

and competitiveness.
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In process industries, a sequential approach is typically used for the operational planning of

utility and production systems. First, the planning of the production system is performed

considering simply upper bounds on the availability of utilities. Once the production plan is

derived, the utility needs of the production are known. This information is then used to obtain

the operational planning of the utility system. This sequential approach provides suboptimal

solutions (mainly in terms of resource and energy efficiency and costs) because the two

interconnected systems are not optimized at the same time. Importantly, the sequential

approach often faces the risk of providing utilities generation targets that cannot be met by the

energy system (i.e., infeasible solutions), and in that case a re-planning of the production

system is usually employed (Zulkafli and Kopanos, 2016). What is more, conservative

maintenance planning is usually performed separately from operational planning which

typically does not consider the dynamic condition of the equipment.

Modern process industries operate in highly dynamic environments that usually involve

significant fluctuations on key operational, costs and market related parameters (e.g., demand

fluctuations, prices variations or unit breakdowns). This makes essential the development and

use of efficient planning approaches to deal with such types of uncertainties. There are two

major types of planning approaches to deal with uncertainties, namely reactive and proactive

approaches. In general, reactive approaches involve the repetitive solution of the deterministic

planning problem within a rolling horizon framework, and are especially suitable for highly

dynamic environments with limited information about the behavior of the uncertainty (Zulkafli

and Kopanos, 2017). In simple words, these approaches basically rely on a wait and react

approach with respect to unexpected events. Proactive approaches are typically used when

some information about the behavior of the uncertainty is available, and their purpose is to

provide solutions that will be immune to uncertainty. These approaches rely on an act before it

happens basis. Stochastic programming or robust optimization are usually used in proactive

planning approach. In general, proactive approaches propose more conservative solutions in

comparison with reactive approaches, and are more suitable for less flexible environments in

terms of changing frequently major operational decisions.

A number of works that proposed proactive approaches for operational planning problems can

be found in the open literature. For example, Cobuloglu and Esra Büyüktahtakın (2017) 

proposed a two-stage stochastic programming model for maximizing economic and

environmental aspects of food and biofuel production under yield and prices uncertainty. Choi

et al. (2016) presented a stochastic programming model under a Monte-Carlo simulation to

develop a multi-period energy planning model under uncertainty in market prices and

demands for energy resources. Huang et al. (2016) presented a two-stage stochastic

programming model for the electricity planning under demand uncertainty. Kostin et al. (2012)

studied a multi-scenario problem on the design and planning of integrated bioethanol-sugar

supply chains under demand uncertainty. Other works have developed proactive approaches

for cleaning planning problems. For instance, Gössinger et al. (2017) presented a condition-

based cleaning policy to deal with stochastic deterioration processes. In the same line,

Samuelson et al. (2017) presented a stochastic programming model for different cleaning

strategies in continuously deteriorating systems. A two-stage nonlinear stochastic

programming model for production and cleaning planning with yield and demand uncertainty

was proposed by Ekin (2017), while Khatab et al. (2017) studied the cleaning planning

problem for a multi-component system with stochastic durations of alternative cleaning

actions. Zhou et al. (2016) presented an optimal cleaning policy of a parallel-series system

considering stochastic and economic dependence under limited cleaning resources. The



optimal cleaning schedule for heat exchanger network in an oil refinery under fouling and

different aging scenarios was studied by Diaby et al. (2016) while Biyant et al. (2016) used

different stochastic optimization methods developed for the optimal cleaning schedule in crude

preheat trains. Among a limited number of works that combine reactive and proactive

approaches, Silvente et al. (2015) developed a rolling horizon stochastic programming

approach for the energy supply and demand management of microgrids. The authors further

developed their model to consider a rolling horizon approach for optimal management of

microgrid under stochastic uncertainty (Silvente et al., 2017). In addition, Gupta and Maranas

(2000) studied a two-stage stochastic programming model to solve supply-chain planning

problem under demand uncertainty through a rolling horizon framework.

In fact, most of the previous studies in literatures have addressed separately the operational

planning problems or cleaning planning problems (i.e., sequential approach) under uncertainty

for either utility or production system. A brief literature reviews on sequential approaches in

process industries and a discussion on the need for integrated plant-wide planning

approaches can be found in Zulkafli and Kopanos (2016). Importantly, Zulkafli and Kopanos

(2017) showed that significant total cost reductions (from 5% to 32%) can be achieved if an

integrated planning approach is used instead of the sequential alternative. Therefore, there is

an important need for development of integrated planning approaches that also account

efficiently for uncertainty to deal with the dynamic nature of the process industries.

This paper presents a two-stage scenario-based stochastic programming approach for the

integrated planning of utility and production systems under uncertainty. It is assumed that

some information about the behavior of the uncertainty parameters is known (i.e., number of

scenarios with associated probability of occurrence, and given parameter values for each

scenario). In particular, this study is a major extension of our previous work (Zulkafli and

Kopanos, 2017) by: (i) providing a two-stage scenario-based stochastic programming version

of a modification of the previously deterministic model, (ii) introducing an improved cumulative

operating level deviation model for condition-based cleaning policies, (iii) defining improved

terminal constraints for the maximum allowable unit performance degradation level (i.e.,

minimum performance level) at the end of the planning horizon, (iv) incorporating the resulting

two-stage scenario-based stochastic programming model into a rolling horizon framework to

readily deal with various types of uncertainties. The proposed approach follows a plant-wide

condition-based approach for the cleaning actions that explicitly consider the condition of the

units as a result of the optimized operational planning of the production and utility systems. To

the best of our knowledge this is the first work that proposes a rolling horizon stochastic

programming approach for the simultaneous operational and condition-based planning for

integrated production and utility systems.

This paper is organized as follows. Section 2 provides a formal statement of the problem

under study. The proposed optimization framework is presented in Section 3 followed by two

case studies in Section 4. Finally, some concluding remarks with ongoing research directions

are provided in Section 5.

2. Problem Statement

This work studies the stochastic version of the integrated operational and condition-based

cleaning planning of production and utility systems under alternative resource-constrained

cleaning policies, by considering performance degradation and recovery for utility and

production units. Demand profiles for products are considered as the uncertain parameters of

the problem in question, and it is assumed that they can be modeled by defining a number of



different scenarios with given probability of occurrence. This results into a two-stage scenario-

based stochastic programming planning problem which is formally defined in terms of

following items:

• A given planning horizon divided into a number of equal-length time periods t T∈ .

• A set of scenarios n N∈ with given probability of occurrence for each scenario
p

nδ .

• A set of resources e E∈ that are divided into product ( PRe E∈ ) and utilities ( ∈ UTe E ).

• Given demand profiles for products per scenario ( , , )n e tζ (i.e., stochastic parameter).

• A set of units ∈i I that are classified to utility ( ∈ ii UT ) and production ( ∈ ii PR ) units and

could produce a number of resources ∈ ie E . Maximum (minimum) operating levels max
( , )i tκ

( min
( , )i tκ ) for utility units and production levels max

( , , )i e tκ ( min
( , , )i e tκ ) for production units are given.

For every unit that is subject to startup and shutdown actions ( SFi I∈ ), the startup ( ( , )
S
i tφ )

and shutdown ( ( , )
F
i tφ ) costs are also given. For any unit that is subject to minimum runtime

and shutdown time restrictions (i.e., minSi I −∈ and minFi I −∈ , respectively), the minimum
runtime after its last startup

iω and the minimum idle time after its last shutdown ψ i
are

also defined.

• A set of resource-dedicated inventory tanks
ez Z∈ that can receive resources from units

zi I +∈ and send resources to units zi I −∈ . Inventory tanks have a given maximum

(minimum): inventory tank level max
( , )e zβ ( min

( , )e zβ ), inlet resource flow ,max
( , , )e z tβ + ( ,min

( , , )e z tβ + ), and outlet

utility resource flow ,max
( , , )e z tβ − ( ,min

( , , )e z tβ − ). Initial inventory tank levels ( , )e zβ and losses

coefficients loss
zβ are also given.

• Different cleaning policies for the units are considered. In particular, a unit could be

subject to: (i) flexible time-window offline cleaning (
ii FM∈ ) with a given earliest es

iτ and

latest ls
iτ starting time, (ii) in-progress offline cleaning carried over from the previous

planning horizon (
ii DM∈ ), or (iii) condition-based cleaning (

ii CB∈ ) with known

performance degradation rates. Two types of condition-based cleaning tasks are

considered, namely: online cleaning tasks (
i

onCB ) with given recovery factors
i

recρ , and

offline cleaning tasks (
i

offCB ).

• A set of alternative cleaning tasks options
iq Q∈ for each unit that is subject to flexible

time-window cleaning (
ii FM∈ ) or offline condition-based cleaning ( ∈

i

offi CB ). The

cleaning tasks options are characterized by different durations ( , )i qν , cleaning resource

requirements
( , )i q

offϑ , and associated cleaning costs
( , , )i q t

offφ .

• For every production unit PR
ei I∈ , fixed and variable utility needs for the production of

products are given ( ( , , )i e eα ′ and ( , , )i e eα ′ , respectively).

• Given variable and fixed operating costs for production and utility units, ( , , )
PR,op-var
i e tφ and

( , , )
PR,op- fix
i e tφ , and ( , )

UT,op-var
i tφ and ( , )

UT,op- fix
i tφ , respectively.



• Given purchase prices for acquiring utilities and products from external sources, ( , , )
UT ,ex
e i tφ

and ( , )
PR,ex
e tφ , respectively.

• A given time-varying energy price profile ( , )
pw
i tφ .

For the planning horizon considered, the optimization goal is to minimize the total cost which

mainly includes unit operational and cleaning costs and resource purchases. In order to

achieve this, for every time period, the key decisions to be optimized are: the operational

status of each production and utility unit (i.e., startup, shutdown, in operation, idle, under

online or offline cleaning); the selection of the timing and the offline cleaning task option for

each unit; the operating level for each production and utility unit for each scenario; the

inventory level for utilities and product resources for each scenario; and the utility

requirements per scenario for each production unit.

The decision variables of the two-stage scenario-based stochastic programming problem

under consideration are divided in first-stage and second-stage variables as shown below.

First-stage variables (i.e., scenario independent):

 ( , )

1 if unit is operating during time period ,

0 otherwise.
i t

i t
X

=


 ( , )

1 if unit starts up at the beginning of time period ,

0 otherwise.
i t

i t
S

=


 ( , )

1 if unit shuts down at the beginning of time period ,

0 otherwise.
i t

i t
F

=


 ( , , )

1 if cleaning task option for ( ) begins at the start of time period ,

0 otherwise.

off
i i

i q t

q i CB FM t
H

 ∈ ∪=


 ( , )

1 if an offline cleaning task for ( ) begins at the start of time period ,

0 otherwise.

off
i i

i t

i CB FM t
W

 ∈ ∪=


 ( , )

1 if an online cleaning task for ( ) takes place in time period ,

0 otherwise.

on
i i

i t

i CB UT t
V

 ∈ ∩=


 ( , , )

1 if an online cleaning task for ( ) that produces in time period ,

0 otherwise.

on
PR i i i
i e t

i CB PR e E t
V

 ∈ ∩ ∈=


 ( , , )

1 if production unit produces product during time period ,

0 otherwise.

i

i e t

i PR e t
Y

 ∈=


 ( , )i tR : cumulative time of operation for units subject to condition-based cleaning.

Second-stage variables (i.e., scenario dependent):

 Operating levels for utility units ( , , )n i tQ .

 Production levels for utilities and products from their respective unit ( , , )n i,e tQ .

 Inventory levels for utilities and products ( , , , )n e z tB .



 Total inlet flow of utilities and products to their respective inventory tanks ( , , , )n e z tB+
.

 Total outlet flow of utilities and products from their respective inventory tanks ( , , , )n e z tB−
.

 Extra energy consumption of units due to their performance degradation ( , , )n i tU .

 Cumulative operating level deviation for units subject to condition-based cleaning ( , , )n i tD .

 Operating level deviations of production units from their reference operating level ( , , , )
dev
n i e tQ .

 Operating level deviations of utility units from their reference operating level ( , , )
dev
n i tQ .

 Purchases of utilities ( , , , )
UT
n e i tNS or products ( , , )

FP
n e tNS .



Initialization Step

Define the number of scenarios for the stochastic
parameters and specify the values and the probability of
occurance for each scenario.
Define the length of the: (i) total planning horizon (TH); (ii)
prediction horizon (PH); (iii) control horizon (CH); and (iv)
the initial state of the system.
Set total number of iterations: (total = TH). Set iter=1.

Update Step

Update the uncertain parameters (e.g., product demands)
for each scenario and the current state of the overall
system.

Optimization Step

Solve the stochastic programming problem for the given
PH considering updated data for all parameters.

Implementation Step

Apply(save) the solution only for the variables of the
predefined CH of the active scenario.

iter > total

END

ite
r

=
ite

r
+
1

YES

NO

Figure 1: Planning via a rolling horizon stochastic programming method.

3. Optimization Framework

This part presents the proposed stochastic programming model for the integrated planning

problem described in the previous section. This stochastic programming model follows a

rolling-horizon modelling representation, and that way results in a hybrid reactive-proactive

planning approach, when applied within a rolling-horizon scheme. Figure 1 shows a schematic

representation of the steps of the proposed planning approach that work as follows. First, one

needs to define a number of scenarios with assigned probabilities of occurrence and specified

values for the uncertain parameters considered. Next, a prediction horizon is defined for which



the stochastic programming model is solved. The length of the prediction horizon depends on

the quality of the available information of the uncertain parameters. In the rolling-horizon

approach, it is implemented in practice the solution of a limited number of periods (i.e., usually

just that of the first time period of the prediction horizon) that have been considered in the

prediction horizon. In such approaches, it is essential to update properly the initial state of the

overall system before solving the optimization problem for the given prediction horizon.

Especially, if a scenario-based stochastic approach is used, the active scenario (i.e., scenario

that eventually occurred) should be known/defined and update the initial state of the system

with respect to this active scenario. In this study, the main parameters that describe the initial

state of the overall system are: (i) the inventory levels for utilities and products; (ii) the

cumulative time of operation for each unit; (iii) the cumulative operating level deviation for

each unit; (iv) the current operating status of each unit; (v) the startup and shutdown history of

each unit; (vi) the online and offline cleaning history of each unit; (vii) the cleaning resources

history of units; and (viii) the demands for products per scenario considered. A more detailed

description and discussion on the reactive planning via a rolling horizon framework can be

found in Zulkafli and Kopanos (2017).

The stochastic programming model presented is an enhanced modified version of the

deterministic model of our previous work (Zulkafli and Kopanos, 2017). For this reason,

constraints that remain unchanged from its deterministic version, proper references will be

given to the constraints of our previous work to avoid unnecessary repetitions. A description of

the proposed optimization framework follows.

3.1. Major operational and cleaning decisions.

Constraints related to major operational and cleaning decisions are modeled through first-

stage binary variables. These constraints are the same with those of the deterministic version

of the model presented in our previous work. More specifically, the stochastic programming

model includes constraints (1) to (9) and (23) to (25) from Zulkafli and Kopanos (2017). In

brief, these constraints model the operational status for units with respect to startup,

operation, shutdown, and online or offline cleaning decisions as given in the Supplementary

Material. These constraints model: (i) minimum run and shutdown periods (i.e., SM1); (ii) in-

progress offline cleaning tasks (i.e., SM2.1); (iii) flexible time-window offline cleaning

tasks(i.e., SM2.2); (iv) condition-based online cleaning tasks (i.e., SM2.3); (v) operational

constraints for offline cleaning tasks(i.e., SM2.4); and (vi) resource limitations for cleaning

resources(i.e., SM2.5). A detailed description of these constraints can be found in Zulkafli and

Kopanos (2017).

3.1.1.Performance degradation and recovery models for units.

For each scenario, the performance of any unit that is subject to condition-based cleaning is

modeled through the extra energy consumption ( , , )n i tU due to its deviation from its completely

clean condition. It is assumed that the performance of a unit decreases as this extra energy

consumption increases. To avoid the energy inefficient use and potential damage of the unit,

this extra energy consumption for the units under operation should not exceed a maximum

extra energy consumption limit max
iυ , as defined by:

max
( , , ) ( , ) , ,n i t i i t iU X n N i CB t Tυ≤ ∀ ∈ ∀ ∈ ∀ ∈ (1)



The extra energy consumption of an operating unit is related to its cumulative time of

operation ( , )i tR and its cumulative operating level deviation ( , , )n i tD , through parameters
iδ and

q
iδ that represent the corresponding degradation rates, as given by:

max
( , , ) ( , ) ( , , ) ( , )

max
( , , ) ( , ) ( , , ) ( , )

(1 ) , ,

(1 ) , ,

q
n i t i i t i n i t i i t i

q
n i t i i t i n i t i i t i

U R D X n N i CB t T

U R D + X n N i CB t T

δ δ υ

δ δ υ

≥ + − − ∀ ∈ ∀ ∈ ∀ ∈

≤ + − ∀ ∈ ∀ ∈ ∀ ∈
(2)

Please refer to Zulkafli and Kopanos (2017) for a more detailed discussion on the proposed

performance degradation and recover models.

Cumulative time of operation. The variables that describe the cumulative time of operation

are first-stage variables, and the corresponding constraints considered are the same with the

deterministic constraints (12) to (15) of our previous work (Zulkafli and Kopanos, 2017).

Cumulative operating level deviation. The variables that describe the cumulative operating

level deviation are second-stage variables, and the corresponding constraints are presented

here. First, similarly to the cumulative time of operation, the occurrence of an offline cleaning

task in a unit resets its cumulative operating level deviation to zero, as defined by:

( , , ) ( , ) ( , )(1 ) , ,off
n i t i t i t iD μ W n N i CB t T≤ − ∀ ∈ ∀ ∈ ∀ ∈ (3)

Parameters
( , )i tμ are sufficient big numbers that could be calculated through the

corresponding maximum extra energy consumption and degradation rate parameters.

In comparison with our previous work, in this study we present improved sets of constraints for

the modeling of the cumulative operating level deviation for units subject to condition-based

cleaning. More specifically, in this study the cumulative operating level deviation of a unit

resets to zero only after the occurrence of an offline cleaning task while in our previous it was

assumed that this happens after the shutdown of the unit.

The new sets of constraints for the modeling of the cumulative operating level deviation of

utility units subject to condition-based cleaning are presented below:

( , ) ( , , )

( , , ) ( , ) ( , )

( , )

( , ) ,

( , , ) ( , ) ( , )

( , )

( , , ) ( ,

(1 ) , ( ),

(1 ) , ( ),

ref
i t n i tdev

n i t i t i t i iref
i t

ref
i t (n i,t)dev

n i t i t i t i iref
i t

dev
n i t i

q Q
Q X n N i CB UT t T

q

q Q
Q X n N i CB UT t T

q

Q

µ

µ

µ

 −  ≤ + − ∀ ∈ ∀ ∈ ∩ ∈   

 −  ≥ − − ∀ ∈ ∀ ∈ ∩ ∈   

≤ ) ( , ) , ( ),t i t i iX n N i CB UT t T∀ ∈ ∀ ∈ ∩ ∈

(4)

( , , ) ( , , ) ( , ) ( , ) ( , )

( , , ) ( , , 1) ( , , ) ( , ) ( , ) ( , )

( ) , ( ), : 1

D ( ) , ( ), : 1

i

q dev
n i t n i t i t i t i t i i

dev
n i t n i t n i t i t i t i t i i

D Q W V n N i CB UT t T t

D Q W V n N i CB UT t T t

ρ µ

µ−

≤ + + + ∀ ∈ ∀ ∈ ∩ ∈ =

≤ + + + ∀ ∈ ∀ ∈ ∩ ∈ >


(5)

( , , ) ( , , ) ( , ) ( , ) ( , )

( , , ) ( , , 1) ( , , ) ( , ) ( , ) ( , )

( ) , ( ), : 1

D ( ) , ( ), : 1

i

q dev
n i t n i t i t i t i t i i

dev
n i t n i t n i t i t i t i t i i

D Q W V n N i CB UT t T t

D Q W V n N i CB UT t T t

ρ µ

µ−

≥ + − + ∀ ∈ ∀ ∈ ∩ ∈ =

≥ + − + ∀ ∈ ∀ ∈ ∩ ∈ >


(6)

( )

( )

( , , ) ( , , ) ( , ) ( , )

( , , ) ( , 1) ( , , ) ( , ) ( , )

(1 ) (1 ) , ( ), : 1

D (1 ) (1 ) , ( ), : 1

i

q dev rec on
n i t n i t i i t i t i i

dev rec on
n i t i t n i t i i t i t i i

D Q V n N i CB UT t T t

D Q V n N i CB UT t T t

ρ ρ µ

ρ µ−

≥ + − − − ∀ ∈ ∀ ∈ ∩ ∈ =

≥ + − − − ∀ ∈ ∀ ∈ ∩ ∈ >


(7)



New variables ( , , )
dev
n i tQ have been defined to describe the additional cumulative operating level

deviation at each time period from a reference operating level ( , )
ref
i tq . That way the cumulative

operating level deviation variables ( , , )n i tD do not reset to zero whenever a unit shuts down

(i.e., if ( , ) 0i tX = , then ( , , ) 0dev
n i tQ = and ( , , ) ( , , 1)n i t n i tD D −= ). The cumulative operating level

deviation can be reset to zero if and only if a utility unit undergoes offline cleaning. Under

online cleaning periods, the cumulative operating level deviation of a utility unit is reduced

partially by a given recovery factor, as defined by constraints (7).

In the same line, the cumulative operating level deviation of production units subject to

condition-based cleaning is modeled by the new sets of constraints presented below:

( , , ) ( , , , ) max
( , , , ) ( , , )

( , , )

( , , ) , , max
( , , , ) ( , , )

( , , )

(1 ) , ( ), ,

(1 ) , (

ref
i e t n i e tdev

n i e t i i e t i i iref
i e t

ref
i e t (n i e,t)dev

n i e t i i e t iref
i e t

q Q
Q Y n N i CB PR e E t T

q

q Q
Q Y n N i CB P

q

υ

υ

 −  ≤ + − ∀ ∈ ∀ ∈ ∩ ∈ ∈   

 −  ≥ − − ∀ ∈ ∀ ∈ ∩   

( , , , ) ( , ) ( , , )

), ,

, ( ), ,

i i

dev
n i e t i t i e t i i i

R e E t T

Q Y n N i CB PR e E t Tµ

∈ ∈

≤ ∀ ∈ ∀ ∈ ∩ ∈ ∈

(8)

( , , ) ( , , , ) ( , ) ( , ) ( , )

( , , ) ( , 1) ( , , , ) ( , ) ( , ) ( , )

( ) , ( ), : 1

D ( ) , ( ), : 1

i

i

i

q dev
n i t n i e t i t i t i t i i

e E

dev
n i t i t n i e t i t i t i t i i

e E

D Q W V n N i CB PR t T t

D Q W V n N i CB PR t T t

ρ µ

µ

∈

−
∈

≤ + + + ∀ ∈ ∀ ∈ ∩ ∈ =

≤ + + + ∀ ∈ ∀ ∈ ∩ ∈ >

∑

∑



(9)

( , , ) ( , , , ) ( , ) ( , ) ( , )

( , , ) ( , 1) ( , , , ) ( , ) ( , ) ( , )

( ) , ( ), : 1

D ( ) , ( ), : 1

i

i

i

q dev
n i t n i e t i t i t i t i i

e E

dev
n i t i t n i e t i t i t i t i i

e E

D Q W V n N i CB PR t T t

D Q W V n N i CB PR t T t

ρ µ

µ

∈

−
∈

≥ + − + ∀ ∈ ∀ ∈ ∩ ∈ =

≥ + − + ∀ ∈ ∀ ∈ ∩ ∈ >

∑

∑



(10)

( , , ) ( , , , ) ( , ) ( , )

( , , ) ( , 1) ( , , , ) ( , ) ( , )

(1 ) (1 ) , ( ), : 1

D (1 ) (1 ) , ( )

i

i

i

q dev rec on
n i t n i e t i i t i t i i

e E

dev rec on
n i t i t n i e t i i t i t i i

e E

D Q V n N i CB PR t T t

D Q V n N i CB PR

ρ ρ µ

ρ µ

∈

−
∈

  ≥ + − − − ∀ ∈ ∀ ∈ ∩ ∈ =  

  ≥ + − − − ∀ ∈ ∀ ∈ ∩  

∑

∑



, : 1t T t∈ >

(11)

For every unit, parameter q
iρ represents its cumulative operating level deviation just before the

beginning of the planning horizon of interest (i.e., initial state).

3.2. Utility and production units: operating levels bounds.

Utility system. The utility system consists of a number of utility units that could generate a

number of utility resources required by the production system. The operating level for each

operating utility unit per scenario should be between its lower and upper operating level

bounds ( min
( , )i tκ and max

( , )i tκ ). The maximum operating levels during online cleaning periods are

modeled as discussed in our previous work (Zulkafli and Kopanos, 2017). The operating

bounds are given by:

( , ) ( , ) ( , , ) ( , ) ( , ) ( , )( ) , ( ),min max on on
i t i t n i t i t i t i i t i iX Q X V n N i UT CB t Tκ κ π≤ ≤ − ∀ ∈ ∀ ∈ ∩ ∈ (12)



Some types of utility units, such as combined heat and power units, generate at the same time

more than one utility resources. The generated amount of any utility resource from each utility

unit per scenario and time period is modeled by:

( , , , ) ( , ) ( , , ) , , ,n i e t i e n i t i iQ Q n N i UT e E t Tρ= ∀ ∈ ∀ ∈ ∈ ∈ (13)

Parameters ( , )i eρ denote the stoichiometry coefficients that relate the operating level of the

utility unit with the generated amount of each utility resource type ( ( , , , )n i e tQ ) that is cogenerated

by the same utility system (e.g., heat to power ratio of a combined heat and power unit).

Production system. This study considers a single-stage production process with a number of

different units operating in parallel for producing the whole set of desired products. Similarly to

utility units, changes in the maximum production levels during online cleaning periods are

considered. Therefore, the production bounds of this general case are given by:

min max
( , , ) ( , , ) ( , , , ) ( , , ) ( , , ) ( , , )( ) , ( ), ,on PR on
i e t i e t n i e t i e t i e t i i e t i i iY Q Y V n N i PR CB e E t Tκ κ π≤ ≤ − ∀ ∈ ∀ ∈ ∩ ∈ ∈ (14)

The production unit could produce at most one product resource per time period as modeled

by constraints (29) and (30) of our previous work (Zulkafli and Kopanos, 2017).

3.3. Inventory tanks for utilities and products.

The overall system contains a number of resource-dedicated inventory tanks for the storage of

utilities and products. Decisions related to inventories depend on each scenario, and thus they

are described by second-stage variables through the following set of constraints.

( , , , ) ( , , , )

( )

, , ,
e z

n e z t n i e t e

i I I

B Q n N e E z Z t T
+

+

∈ ∩

= ∀ ∈ ∈ ∈ ∈∑ (15)

( , , ) ( , , , ) ( , , ) , , ,+,min +,max
e z t n e z t e z t eB n N e E z Z t Tε ε+≤ ≤ ∀ ∈ ∈ ∈ ∈ (16)

( , , , ) ( , ) ( , , , ) ( , , , )

( , , , ) ( , , , 1) ( , , , ) ( , , , )

, , , : 1

(1 ) , , , : 1

n e z t e z n e z t n e z t e
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B B B n N e E z Z t T t

B B B B n N e E z Z t T t

β

β

+ −

+ −
−

= + − ∀ ∈ ∈ ∈ ∈ =

= − + − ∀ ∈ ∈ ∈ ∈ >


(17)

( , ) ( , , , ) ( , ) , , ,min max
e z n e z t e z eB n N e E z Z t Tξ ξ≤ ≤ ∀ ∈ ∈ ∈ ∈ (18)

Constraints (15) define the total inlet flow ( ( , , , )n e z tB+ ) to each inventory tank from units zI + that

are connected to. Constraints (16) give the lower and upper bounds on these inlet flows.

Resource balances for every inventory tank, scenario and time period are modeled by

constraints (17), where variables ( , , , )n e z tB indicate the inventory level per scenario, resource

and inventory tank at the end of each time period and variables ( , , , )n e z tB− represent the outlet

flow from each inventory tank per scenario. Parameters ( , )e zβ define the initial inventory for

inventory tank at the beginning of the planning horizon (i.e., initial state) and parameters loss
zβ

give the losses coefficients. Inventory levels bounds are defined by constraints (18).

For each time period and scenario, the amount of each utility that leaves its dedicated

inventory tank per scenario is equal to the total amount of utility consumed by the associated

production units zI − . These outlet utility flows are bounded within a lower and upper limit.
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,min ,max
( , , ) ( , , , ) ( , , ) , , ,UT
e z t n e z t e z t eB n N e E z Z t Tε ε− − −≤ ≤ ∀ ∈ ∀ ∈ ∈ ∈ (19)

3.4. Demands for products.

For every scenario and time period, demands for products need to be satisfied, according to:

( , , ) ( , , , ) ( , , ) , ,
e

FP PR
n e t n e z t n e t

z Z

NS B n N e E t Tζ−

∈

+ = ∀ ∈ ∈ ∈∑ (20)

Variables ( , , )
FP
n e tNS denote the unsatisfied product demand from the internal production system.

If the demands for products cannot be met from the internal production system and there are

no available external sources for product purchases, these variables represent lost sales of

products. A high penalty cost is used in the objective function to avoid satisfying the demands

for products from external sources.

3.5. Requirements for utilities (link between utility and production systems).

Utilities requirements provide the linking constraints between utility and production systems.

For each time period and scenario, the utilities needs per production unit PR
eI consist of: (i)

scenario-independent fixed utilities requirements that depend on the operational status of the

production unit (first-stage variables); and (ii) scenario-dependent variable utilities

requirements that depend on the production level of the production unit (second-stage

variables). The utilities balance is then given by the following constraints:

,
( , , , ) ( , , , , ) ( , , ) ( , , , ) ( , , ) ( , , )

( ) ( )

( ) , , ,
PR

e i i

UT UT UT PR
n e i t n e z i t ei e e n i e t i e e i e t

z Z Z e E E

NS B Q Y n N e E i I t Tα α
−

−
′ ′ ′ ′

′∈ ∩ ∈ ∩

+ = + ∀ ∈ ∈ ∈ ∈∑ ∑ (21)

Variables ( , , , )
UT
n e i tNS represent the unsatisfied utility requirements. Similarly to the unsatisfied

demand for products, high penalty costs for acquiring utilities from external sources are

introduced in the objective function of the optimization problem to favor the generation of

utilities from the internal utility system.

3.6. Objective function

The optimization goal is to minimize the total cost of the production and the utility system

along with the purchases of products and utilities from external sources. More specifically, the

objective function includes: startup and shutdown costs for units, total cleaning costs related to

online and offline cleaning tasks of production and utility units that are subject to performance

degradation variable, variable and fixed operating costs for units, penalty or purchase costs for

acquiring products or utilities from external sources, and total extra energy consumption costs

for utility and production units that are subject to performance degradation modeling. The

objective function considered in this study is then given by:
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In the above expression, the small-letter symbols correspond to the cost coefficients of the

corresponding optimization variables. Probabilities of occurrence for each scenario are

defined and multiplied with the associated second-stage variables. A detailed definition of

each set, parameter, variable of the optimization framework can be found in the

Nomenclature.

3.7. Terminal constraints

Terminal constraints are defined for the last time period of a given optimization problem as a

means of preserving the operability and stability of the system at the end of the planning

horizon considered. Here, we define terminal constraints for: the minimum inventory levels for

utilities and products ( ( , )
B
e zλ ), and the maximum allowable unit performance degradation levels

(
U
iλ ) for utility and production units, according to:

max
( , , , ) ( , ) ( , )

max
( , ) ( , , )

, , , :

, , :

B
n e z t e z e z e

q U
i i t i n i t i i i

B n N e E z Z t T t T

R D n N i CB t T t T

λ ξ

δ δ λ υ

≥ ∀ ∈ ∈ ∈ ∈ =

+ ≤ ∀ ∈ ∈ ∈ =
(23)

These terminal constraints are applied to any stochastic programming problem solved in this

study.

4. Case Studies

In this part, two case studies are presented for the integrated planning of utility and production

systems by employing the proposed stochastic programming approach. Both case studies

follow the same plant layout that is displayed in Figure 2. The first case study considers a

flexible time-window cleaning policy for production units and a condition-based cleaning policy

for utility units. We consider alternative offline cleaning tasks options with respect to duration,

cost and cleaning resource requirements. A maximum cleaning resources availability per time

period is also considered. It is assumed that the reference operating level for any unit is equal

to its maximum operating level. The second case study deals with the reactive planning using

the proposed stochastic programming model through a rolling horizon framework. This

problem considers a conditioned-based cleaning policy for both utility and production units.

The resulting optimization problems have been solved in GAMS/CPLEX 12.6 in an Intel(R)

core(TM) i7 under standard configurations. A 1% optimality gap has been achieved for the first

case study after 12 CPU h and a zero optimality gap for all optimization problems of the

second case study.



Figure 2: Plant layout for both case studies (utility and product flows from left to right).

4.1. Case Study 1: Integrated Planning of Utility and Production Systems via

Stochastic Programming

In this case study, a combination of cleaning policies for units is studied. More specifically,

flexible time-window offline cleaning tasks for production units and conditioned-based cleaning

tasks (online and offline) for utility units are considered. The problem has been solved by the

proposed two-stage scenario-based stochastic programming model.

4.1.1.Case Study 1: Description.

The production facility under consideration consists of five utility units ( i1- i5 ) and three

production units ( i6 - i8 ). Utility units could produce two utilities ( e1 , e2 ) which could be either

stored in their associated inventory tanks ( z1 , z2 ) or consumed directly by the production

units. Two products ( e3 , e4 ) could be produced by the production units that can be either

stored in their dedicated inventory tanks ( z3 , z4 ) or meet directly the demands for products. A

total planning horizon of 14 days (i.e., 2 weeks), divided in day time periods, is considered.

Utility units are subject to online or offline conditioned-based cleaning, while production units

are subject to flexible time-window offline cleaning. Earliest and latest starting cleaning times

for all production units are on day 1 and 9. All parameters related to online and offline

conditioned-based cleaning for utility units can be found in Table 6 of Zulkafli and Kopanos

(2017). The only difference is the value for minimum time between two consecutive online

cleanings (
on
iγ ) that in this case study is considered to be equal to five time periods (i.e., four

periods without online cleaning between two online cleanings). All parameters values that fully

define the initial state of the overall system are given in Table 1. In this case study, initial

parameters related to condition-based cleaning tasks (i.e., initial cumulative time of operation

iρ and initial state of unit with respect to its last online cleaning
on
iγ ) for production units are

ignored, since in this problem instance we do not consider a condition-based cleaning policy

for production units.

i2

i3

i4

i5

i1

e3

e4

utility units production unitsinventory tanks

(e1)

(e2)

inventory tanks

(e4)

(e3)

i6

i7

i8

z3

z4

z1

z2

demand

demand



Table 1. Initial state for utility and production units.

Parameter i1 i2 i3 i4 i5 i6 i7 i8

iρ 2 2 7 9 10 6 7 3

on
iγ

5 14 12 4 17 20 14 14

iω 2 16 7 1 7 7 5 18

iψ
 0 0 0 0 0 0 0 0

q
iρ

2 3 4 3 1 4 3 1

iχ 1 1 1 1 1 1 1 1

( 1, 1)e zβ 10 units Initial inventory for utility e1

( 2, 2)e zβ 20 units Initial inventory for utility e2

( 3, 3)e zβ 50 units Initial inventory for product e3

( 4, 4)e zβ 300 units Initial inventory for product e4

The following terminal constraints are imposed at the end of the planning horizon. The

inventory levels for each inventory tank should be greater or equal to 10% from its

corresponding maximum inventory level ( max
( e,z )ξ ), and the performance degradation level of any

utility unit should be lower or equal to 25% of the corresponding extra power consumption limit

( max
iυ ). Maximum total cleaning resources availability is 12 units for each time period. There

are three alternative offline cleaning options ( q1 , q2 , q3 ) that are characterized by different

durations, cleaning resources requirements and associated costs. The cleaning duration ( ( , )i qv )

for offline cleaning task options q1 , q2 and q3 is 3, 4 and 5 days, respectively. The resource

requirements ( ( , )
off
i qϑ ) for offline cleaning task options q1 , q2 and q3 is 6, 4 and 3 cleaning

resources, respectively. The resource requirement for online cleanings ( on
iϑ ) is 1 cleaning

resource. A more detailed description of this case study and other main parameters can be

found in Section 4.2.1 and Tables 1 to 5 of our previous work (Zulkafli and Kopanos, 2017).

For the stochastic programming problem, three different scenarios with respect to the demand

profiles for products are considered, as displayed in Figure 3. More specifically, scenario n1

represents medium demand profiles while scenario n2 and n3 correspond to high and low

demand profiles, respectively. The probability of occurrence (
p

nδ ) is equal to 30% for

scenario n1 , 40% for scenario n2 , and 30% for scenario n3 . Figure 3 displays the

normalized demand profiles for products by having as a reference the peak demand values of

the high-demand scenario n2 . The major assumption in this work is that the three scenarios of

demand profiles with respect to low, medium and high demand scenarios are considered the

same for all time periods of the proposed two-stage stochastic programming model. Notice

that, the number of scenarios considered may not be the most realistic scenarios in a real

problem. The most appropriate method to deal with the real problem is multistage stochastic

programming model (refer section 4.3). However, these three scenarios of demand profiles



are sufficient to show the representation of the two-stage stochastic programming model in

order to solve the problem under dynamic demand uncertainty.
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Figure 3: Case Study 1 – Normalized demand profiles for products per scenario.

4.1.2.Case Study 1: Results.

The resulting optimization model consists of 5,947 equations, 3,514 continuous variables and
923 binary variables. A zero optimality gap was reached after 43,202 CPU s. Figure 4 displays
the optimal operational and cleaning plan for the production and utility systems. The utilization
profile of cleaning resources is also shown there. Cleaning resources utilization has its peak in
days 4 and 6 where three cleaning tasks take place in parallel. There are no offline cleaning
tasks for the utility units i1 , i2 and i5 , but a number of online cleaning tasks takes place in

them. For instance, utility unit i1 undergoes its first online cleaning in day 6 and its second
online cleaning in day 11, satisfying the minimum time between two consecutive online

cleanings. A similar case is observed in utility unit i2 where three online cleanings take place

in days 4, 9 and 14. An online cleaning also is observed in day 2 for utility unit i5 . For utility

unit i3 and i4 offline cleaning task option q2 and q3 start in day 3 and 9, respectively. It is

observed that utility unit i4 , which can only generate utility e1 , operates only from day 1 to
day 5. Although this utility unit does not operate again in the remaining planning horizon, an



offline cleaning task takes place in latter periods so as to restore the efficiency of the unit and
meet the terminal constraints related to its maximum degradation level at the end of the

planning horizon. A similar case is observed for production unit i7 . Production units i8 and

i6 undergo offline cleaning tasks q1 that start in day 1 and 4, respectively. As expected, all

offline cleaning tasks for production units start within the predefined earliest and latest starting
time (i.e., day 1 to 9). Finally, it is observed that production unit i6 produces product e3 and
production unit i8 produces product e4 in all their operating periods except for one time
period.
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Figure 4: Case Study 1 – Optimal operational and cleaning plan for production and
utility system and total cleaning resources utilization profile.

Figure 5 displays the normalized operating level profiles for utility and production units for

each scenario, having as a reference the maximum operating level of each unit. In the utility

system, utility unit i1 operates at its maximum operating level for all scenarios throughout the

planning horizon but in day 6 and 11 due to online cleaning (i.e., due to reduced operating

capacity). In general for the scenarios considered, utility unit i2 operates near or at its

maximum operating level for most of the planning horizon but in day 4, 9 and 14 where online

cleanings are observed. For all its operating time periods (i.e., excluding cleaning periods),

utility unit i3 operates at its maximum operating level in the high-demand scenario n2 , but it

operates at its minimum operating level in the low-demand scenario n3 . This has been

expected, since lower demand for products would result in lower requirements for utilities.



Similar observations can be done for the remaining utility units. In the production system,

production unit i6 operates in its maximum capacity in all its operating periods for all

scenarios. Production unit i8 operates near or at its maximum capacity in most of its

operating periods in scenarios n1 and n2 , while many operating level fluctuations are

observed in the low-demand scenario n3 . Production unit i7 operates just half of the planning

horizon and its operating level is near or at its minimum in most of its operating periods for

scenario n1 , and near or at its maximum for the high-demand scenario n2 .
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Figure 5: Case Study 1 – Normalized operating level profiles for utility and
production units per scenario.

Figure 6 displays the normalized total production profiles for each resource (utility or product)
per scenario; calculating the aggregated production of each resource from each unit and
divide it by the maximum production plant capacity for each resource. As expected, the

production peak for resources is observed in the high-demand scenario n2 followed by those

in the medium-demand scenario n1 and low-demand scenario n3 . Generally speaking, the

production level profiles for utilities e1 and e2 follow quite a similar trend at each scenario,

mainly due to the three cogeneration utility units. Since production units could produce at most
one product at a time, the total production profile for one product follows the opposite trend of
that of the other product. In general, production peaks for one product result in production
lows for the other. In all scenarios and for any product, its demand in zero or low total
production periods is exclusively satisfied by the inventories, since no purchases of products
have been reported.
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Figure 6: Case Study 1 – Normalized total production profiles for utilities and products
per scenario.
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Figure 7: Case Study 1 – Normalized inventory profiles for utilities and products per
scenario.

Figure 7 displays the normalized inventory profiles for utilities and products for each scenario,

having as a reference the corresponding maximum inventory level of each inventory tank. For



all scenarios at the end of the planning horizon, the inventory levels for utility e2 and products

e3 and e4 are 10% of their corresponding maximum inventory levels, which is equal to the

lower bound of the imposed terminal constraints. However, the inventory level for utility e1 at

the end of the planning horizon is around 80% of its maximum inventory level for all scenarios.

This is an indirect result of the operation of the cogeneration units i1 to i3 that satisfy the

much higher demand for utility e2 in comparison with that for utility e1 , cogenerating

excessive amount of utility e1 that is eventually stored.
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Figure 8: Case Study 1 – Performance level profiles for utility units for scenario n1 .

Figure 8 shows the performance level profiles for utility units that are subject to condition-

based cleaning for medium-demand scenario n1 . Recall that the performance level of a unit

depends on its cumulative time of operation (first-stage variables) and its cumulative operating

level deviation (second-stage variables). The performance level profile for other scenarios

follows a quite similar trend because the cumulative time of operation is the same for all

scenarios (i.e., scenario-independent) and only the cumulative operating level deviation may

be different among the scenarios. However, the performance level profiles are almost the

same for all scenarios since utility units tend to operate at their maximum load in most their

operating periods (see Figure 5). Utility units i3 and i4 fully recover their performance though

offline cleaning. Also, it can be observed the partial performance recovery of utility units i1 ,

i2 and i5 through online cleanings as shown in: (i) day 6 and 11 for utility unit i1 , (ii) day 4, 9

and 14 for utility unit i2 , and (iii) day 2 and 7 for utility unit i5 . At the end of day 14, the

performance levels of all operating utility units ( i1 , i2 and i3 ) and non-operating utility units

( i4 and i5 ) remain above 25%, satisfying the terminal constraints imposed.
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Figure 9: Case Study 1 – Performance level profile for utility unit i2 per scenario.

Figure 9 shows the performance level profile for utility unit i2 per scenario. The highest

performance level profile for this unit is observed for the high-demand scenario n2 which is

due to its reduced cumulative operating level deviation since it operates at closer or at its

maximum load in most of its operating periods in comparison with the other two scenarios

(see Figure 6). Recall that the reference operating load for any unit is equal to its maximum

operating level.
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Figure 10: Case Study 1 – Cost breakdown comparison per scenario.

Figure 10 shows the cost breakdown comparison among all scenarios. Each cost term for

each scenario is divided by the total cost of high-demand scenario n2 which reports the

highest total cost than the other scenarios considered. The costs terms consist of: (i) fixed and

varied operating cost for utility units, (ii) fixed and varied operating cost for production units,

(iii) extra power consumption cost, (iv) cleaning cost for units, and (v) startup and shutdown

cost. The major cost difference is observed in the operating cost for utility units in scenario n2

which is 25.4% and 30.2% higher than that in scenario n1 and scenario n3 , respectively. In

addition, the operating cost for production units in scenario n2 is 3.7% and 5.3% higher than

that in scenario n1 and n3 , respectively. Extra energy consumption in scenario n2 is 20.0%

and 14.1% than that in scenario n1 and n3 , respectively. Startup/shutdown and cleaning



costs are the same for all scenarios, since they involve only scenario-independent first-stage

decision variables. Total cost in high-demand scenario n2 is 10.9% and 12.6% higher than

that in medium-demand scenario n1 and low-demand scenario n3 , respectively.

4.2. Case Study 2: Integrated Planning of Production and Utility Systems via a Rolling

Horizon Stochastic Programming Approach

This case study presents an application of the rolling horizon stochastic programming

approach proposed in this study for a slight variation of the integrated condition-based

planning of production and utility systems addressed in the previous case study. A two-stage

scenario-based stochastic programming method is followed.

4.2.1.Case Study 2: Description.

The plant layout as well as main parameters and operational costs are the same as in the

previous case study. Terminal constraints, cleaning resources availability and alternative

cleaning options are also the same as before. The initial state of the overall system at the

beginning of planning horizon is the similar to that of Case Study 1 (see Table 1). In contrast

to the previous case study, here all production and utility units are subject to condition-based

cleaning policies. Also here the minimum time between two consecutive online cleanings in a

unit ( on
iγ ) is five and six time periods for utility and production units, respectively. A total

planning horizon of 28 day time periods is considered here. The demand profiles for products

are displayed in Figure 11.
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Figure 11: Case Study 2 – Rolling Horizon Stochastic Integrated Approach: Normalized
demand profiles for products per scenario.



For the rolling horizon approach, a prediction horizon equal to seven time periods and a

single-period control horizon has been used. A total number of 28 iterations has been solved.

For each iteration, the integrated planning problem for the next seven time periods is solved

through the two-stage scenario-based stochastic programming model. After each iteration, a

planning problem for a new prediction horizon is solved by moving forward the planning

horizon by the length of the control horizon considered. Although we obtain solutions for all

scenarios considered, in reality only one can occur after each iteration (under the assumption

that exactly one scenario of the ones considered must occur), and we refer to this as active

scenario. Only the solution of the control horizon of the active scenario of the current

prediction horizon is applied after each iteration, and therefore the initial state of the overall

system for the next prediction horizon is updated according to the solution of the active

scenario in the previous iteration. Note that active scenario is the realized demand scenario of

the control horizon of interest that takes into account the solution of first-stage decision

variables for all scenarios considered in the previous iteration. In this case study, parameters

that need to be updated according to the solution of active scenario are: (i) the level of every

inventory tanks; and (ii) the deviation of the operating level per unit. Other parameters that do

not depend on active scenario are the solution of the first-stage decision variables such as: (i)

the current operating status of each unit; (ii) the startup and shutdown history of units; (iii) the

cumulative time of operation per unit; and (iv) the offline and online cleaning history of units.

We assume that the active scenario of an iteration is not known just before solving the

planning problem of the next iteration. Table 2 presents the active scenario for each iteration

Table 2. Case Study 2: Active scenario per iteration.

Active Scenario Active Scenario
Iteration n1 n2 n3 Iteration n1 n2 n3

1 x 15 x
2 x 16 x
3 x 17 x
4 x 18 x
5 x 19 x
6 x 20 x
7 x 21 x
8 x 22 x
9 x 23 x

10 x 24 x
11 x 25 x
12 x 26 x
13 x 27 x
14 x 28 x

4.2.2.Case Study 2: Results.

On average, each optimization model consists of 4,020 equations, 2,101 continuous variables

and 532 binary variables. The average computational time is 3,274 CPU s. Figure 12 displays

how the final operational and cleaning plan for the 28-day horizon is constructed through the

rolling horizon approach. An illustrative example of the first three iterations is presented. The

last Gantt chart shows the implemented operational and cleaning plan and the total utilization

profile of cleaning resources for the planning horizon considered. Notice that the implemented

Gantt chart is applicable for all scenarios considered, since all binary decisions variables

related to the operational and cleaning status of the units are considered as first-stage

variables in the stochastic programming model. For the first iteration, a planning problem is



solved for time periods 1 to 7 and the solution of the active scenario of the first time period is

saved. For the second iteration, a new planning problem for time periods 2 to 8 is solved by

updating the initial state according to the active scenario of the first iteration. This receding

horizon scheme continues until all 28 iterations are solved.

According to Figure 12, 4 offline and 14 online cleaning tasks for utility and production units

are reported. The maximum total utilization of cleaning resources is observed in time period

14 where: (i) 8 cleaning resources are needed for two offline cleaning options q2 in unit i2 ,

(ii) 3 cleaning resources for offline cleaning option q3 at unit i3 and, (iii) one cleaning

resource for the online cleaning of unit i1 . Simultaneous online cleanings are observed for

utility unit i5 and production unit i6 in the fourth time period. Utility unit i4 , which can only

produce utility e1 operates just from day 1 to 5 because cogeneration utility units i1 , i2 and

i3 could not fully satisfy the demand for utility e1 at this time horizon. Utility unit i5 , which can

produce only utility e2 operates from day 25 to 28 to satisfy the needs for utility e2 because

utility unit i1 is closed on these days. In general, production unit i7 has the highest

operational costs in comparison with the other production units. Since the other two production

units can satisfy the demand for products for the planning horizon considered, production unit

i7 remains idle throughout the planning horizon but not in day 1, where it operates due to the

minimum run constraint (see Figure 12).
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Figure 12: Case Study 2 – Rolling Horizon Stochastic Programming Approach: Plan

generation via rolling horizon and total utilization profile of cleaning resources.
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Figure 13: Case Study 2 – Rolling Horizon Stochastic Programming Approach:
Normalized operating level profiles for utility and production units per scenario.

Figure 13 shows the normalized operating level profiles per scenario for all units. In the utility

system, cogeneration utility unit i1 operates very close or at its maximum operating level until

day 23. Cogeneration utility units i2 and i3 operate at varied operating levels satisfying the

fluctuations of the utilities requirements. Utility unit i4 , which can generate only utility e1 ,

operates (for just five time periods) at its minimum operating level in all scenarios, while utility



unit i5 , which can only generate utility e2 , operates at its maximum operating level at its

limited operating period (from day 25 to 28).
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Figure 14: Case Study 2 – Rolling Horizon Stochastic Programming Approach:
Normalized total production profiles for utilities and products per scenario.



Figure 14 displays the normalized total production profiles for each utility and product for all

scenarios. Similar observations can be made as in the previous case study. Production level

trends are observed for utility resources e1 and e2 for all considered scenarios because there

are three cogeneration utility units (i.e., i1 , i2 and i3 ). In general, the highest production

profiles for both utilities throughout the planning horizon is observed in high-demand scenario

n2 . The production peak for product e3 is observed in day 15 for all considered scenarios,

because two production units (i.e., i6 and i8 ) operating at their high operating levels produce

this product at in this time period. A similar observation can be made for product resource e4

in day 9.
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Figure 15: Case Study 2 -– Rolling Horizon Stochastic Integrated Approach: Normalized
inventory profiles for utilities and products per scenario.

Figure 15 displays the normalized inventory profiles for utilities and products, having as

reference the corresponding maximum inventory level of each inventory tank. Low inventory

levels for utility e1 is observed for all scenarios from day 13 to 15, because of the

simultaneous multiple cleaning tasks in the cogeneration units at those periods (see Figure

12). High inventory levels for utility e2 is reported for all scenarios from day 11 to 18 due to

low utility demand at these time periods, because of the offline cleanings taking place in some

production units (see Figure 12). For all scenarios, low inventory levels for product e3 are

observed from day 16 to 18 because no production of product e3 takes place then. The

inventory level for product e4 reduces from day 11 to 15 due to the very limited production of

product e4 occurs in this time period (see Figure 12 and Figure 14). In general, inventory

levels for both products in the low-demand scenario n3 are slightly higher than those of other

scenarios. It is important to recall that all inventory levels are subject to terminal constraints

(i.e., higher than 10% of the maximum capacity of its inventory tank). For some scenarios, the

inventory level for utility e2 in day 28 is below 10%. It should be clear that this is not a

violation of the terminal constraint. The solution of day 28 (i.e., iteration 28) is derived by

solving the planning problem for a prediction horizon from day 28 to day 34, and for that

planning problem the terminal constraint is satisfied in the last time period of the prediction

horizon considered (i.e, day 34 and not day 28).
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Figure 16: Case Study 2 – Rolling Horizon Stochastic Programming Approach:

Performance level profiles for utility and production units for scenario n3 .



The performance level profiles for utility and production units for scenario n3 are displayed in

Figure 16. Recall that the performance level of a unit depends on its cumulative time of

operation and its cumulative operating levels deviation. Similar to Case Study 1, performance

level profiles for the other scenarios are about the same. The performance of some utility units

(i.e., i2 and i3 ) and production units (i.e., i6 and i8 ) is fully recovered once an offline

cleaning occurs. It is also shown how a unit partially recovers its performance through online

cleaning. For instance, unit i1 partially recovers its performance when online cleanings occur

in day 8, 14 and 20. Note that the performance level of utility unit i2 declines in a slightly

varied rate from day 17 to 18 and 24 to 25 due to its operating level deviation from its

maximum capacity (see Figure 13). Recall unit performance levels are subject to terminal

constraints (i.e., higher than 25% of the maximum performance of each unit). The

performance level of utility unit i1 in day 28 is below 25%, but this is not a violation of the

terminal constraint as already discuss before for the inventory level terminal constraints.
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Figure 17: Case Study 2 – Rolling Horizon Stochastic Programming Approach: Cost

term comparison for each scenario.

According to Figure 17 that shows a comparative cost breakdown among scenarios, total cost

in high-demand scenario n2 is 8.9% and 10.9% higher than that in medium-demand scenario

n1 and low-demand scenario n3 , respectively. Similarly to the previous case study, the

major cost difference is observed in the operating cost for utility units in scenario n2 which is

16.6% and 21.9% higher than that in scenario n1 and scenario n3 , respectively. Extra

energy consumption in scenario n2 is 24.6% and 24.0% than that in scenario n1 and n3 ,

respectively. Finally, the operating cost for production units in scenario n2 is 2.7% and 3.7%

higher than that in scenario n1 and n3 , respectively.
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Figure 18: Case Study 2 – Rolling Horizon Stochastic Programming Approach:

Aggregated total cost comparison.

Figure 18 displays the aggregated total cost for rolling horizon stochastic programming

approach and perfect information solution. The active scenario in the perfect information

solution changes for every time period in the current prediction horizon. The results show that

the total cost of the case study 2 is 48% higher than that of the perfect information solution.

The perfect information solution is the best solution one could obtain. However, in practice this

solution is impossible to be found due to uncertainty in the demand for products. It should be

clear that the obtained solution could be improved, if the accuracy to forecast uncertainty is

improved and the length of prediction horizon increases.

4.3. Discussion on problem size and computational performance

The size of the optimization models depend strongly on the number of time periods
considered that affects directly the computational time of the resulting optimization problems.
Table 3 shows how the computational time increases dramatically by increasing the number of
time intervals, having as a reference Case Study 1 and considering 3 scenarios. However, it
will be impossible to solve the integrated planning problem for a year planning horizon due to
very hard optimization problem without the development of a decomposition method. In
addition, the problem size will grow exponentially with increase number of scenarios because
the model is getting bigger with respect to number of constraints and continuous variables,
although the number of binary variables remains the same (for the same number of time
periods). Notice that, the most appropriate method to solve stochastic problems with increase
number of scenarios over multiple time periods is through multi-stage stochastic programming
approach whereas the number of scenarios in the first time period increases exponentially
with the length of total planning horizon considered. It has been also observed that the
assigned scenario probabilities also affect the computational time.



Table 3. Case Study 1: Computational results for different planning horizons.

Planning
Horizon

Equations Continous Vars Binary Vars CPU s

7 days 3,041 1,807 511 2
14 days 5,947 3,514 923 43,202
21 days 8,838 5,257 1,371 86,400

5. Conclusions

A hybrid reactive/proactive optimization framework for the operational and resource-

constrained condition-based cleaning planning problem of integrated production and utility

systems under uncertainty has been presented in this work. The proposed approach relies on

a two-stage scenario-based stochastic programming model for the problem in question,

applied within a rolling horizon scheme. Improved unit performance degradation and recovery

models based on cumulative operating level deviations and cumulative operating times have

been presented. Terminal constraints for minimum inventory levels for utilities and products as

well as maximum unit performance degradation levels have been introduced too. Although in

the case studies, demand uncertainty has been only considered, the proposed method can

deal with several other types of uncertainty (e.g., price fluctuations). The proposed approach

provides significant support to decision makers, since it can obtain the detailed optimal

operational and cleaning plan of the utility and production system as a whole, and reporting

operating levels profiles for units, performance level profiles for units, total production profiles

for resources, inventory profiles, and total costs. The case studies presented highlighted the

particular features and showed the applicability of the proposed approach as an effective

means of dealing with the integrated planning problem considered under dynamic

environments. Ongoing research activities focus on the modeling of network-based production

systems with multiple stage production processes, mixing and splitting of materials and

recycle flows. Problem decomposition methods are also studied for increasing the

computational efficiency of the proposed approach.
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NOMENCLATURE

Indices / Sets

Ee∈ resources (products and utilities)

Ii∈ units (production and utility)

n N∈ scenarios

Qq∈ offline cleaning task options

Tt∈ time periods

Zz∈ inventory tanks for resources

Superscripts

es earliest

ls latest

max maximum



min minimum

off offline

on online

fix fixed

var variable

PR production system

UT utility system

inlet

outlet

Subsets

iE resources that can be produced in unit i

PRE product resources
UTE utility resources

eI units that can produced resource e
SFI units that are subject to startup and shutdown costs

minSI − units that are subject to minimum runtimes
minFI − units that are subject to minimum shutdown times

PR
eI production units that require utility e to operate

iQ alternative offline cleaning task options for unit i

eZ inventory tanks that can store resource e

iZ units i connected to the input/output of inventory tank z

iCB units i that are subject to condition-based cleaning tasks

iDM units i that are under in-progress offline cleaning at the beginning of the

planning horizon (information carried over from previous planning horizon)

iFM units i that are subject to flexible time-window offline cleaning

iMR units i that are subject to maximum runtime constraints

iPR production units

iUT utility units

Parameters

( , , )i e e
α ′ coefficient for production unit i that provides the variable needs for utility e for

the production of a unit of product e′

( , , )i e e
α ′ coefficient for production unit i that provides the fixed needs for utilities e for

the production of product e′
loss
zβ coefficient of losses in inventory tank

on
iγ minimum time between two consecutive online cleanings in unit i

iδ performance degradation rate for unit i due to its cumulative time of operation



q
iδ performance coefficient related to operating level for unit i due to its

cumulative deviation from its reference operating level
p

nδ probability of occurrence for each scenario n

( , , )e z tε bounds on the total inlet/outlet flow of resource e to/from inventory tank z in

time period t

( ,t)eζ demand for product e in time period t

max
tη limited amount of available resources for cleaning operations in time period t

( , )
off
i qϑ resource requirements for offline cleaning task option q of unit i

on
iϑ resource requirements for online cleaning of unit i

( , )i tκ bounds on the operating level for utility unit ii UT∈ in time period t

( , , )i e tκ bounds on the production level of product e for production unit ii PR∈ in time

period t

( , )
B
e zλ percentage coefficient that determines the minimum level for each resource

inventory tank at the end of the prediction horizon (terminal value)
U
iλ percentage coefficient that determines the maximum performance degradation

level for operating unit i at the end of the prediction horizon (terminal value)

( , ) ( , ),i t i tµ µ sufficient big numbers

( , )i qv duration of offline cleaning task option q that could take place in unit i

( , )e zξ bounds on the capacity of inventory tanks z that can store resources e

iο maximum runtime for unit i

on
iπ percentage modification on the upper operating level of unit i that is under

online cleaning

( , )i eρ stoichiometry coefficient that relates the operating level of the utility unit i with

the generated amount of each cogenerated utility e

rec
iρ recovery factor for unit i due to online cleaning (partial performance recovery)

iτ time information of offline cleaning tasks for unit i

max
iυ extra energy consumption limit for unit i (performance degradation)

φ associated cost coefficients for objective function terms related to utility and

production unit i (i.e., variable and fixed operating cost, utilities and products

purchase prices, startup and shutdown costs, extra energy consumption cost,

online and offline cleaning tasks costs)

iψ minimum shutdown idle time for unit i

iω minimum runtime for unit i



( , )
ref
i tq reference operating level for utility unit i per time period t

,
ref
(i,e t)q reference production level for production unit i that produces product e per

time period t

Parameters (initial state of the overall system)

( , )e zβ initial inventory level of resource e in inventory tank z

on
iγ initial state of utility unit

on
ii CB∈ with respect to its last online cleaning

( , )i tη time periods t for utility unit ii DM∈ that there is a known cleaning resource

requirement (in-progress offline cleaning task from previous planning horizon)

iρ initial cumulative time of operation for unit i

q
iρ initial cumulative deviation from the reference operating level for unit i

iχ~ operating status of unit i just before the start of the current planning horizon

iψ
 total number of time periods at the beginning of the current planning horizon

that unit i has been continuously not operating since its last shutdown

iω total number of time periods at the beginning of the current planning horizon

that unit i has been continuously operating since its last startup

Continuous variables (non-negative)

( , , , )n e z tB inventory level for resource e in inventory tank z at time t for scenario n

( , , , )n e z tB−
total outlet flow of resource e from inventory tank z at time period t for

scenario n

( , , , )n e z tB+
total inlet flow of resource e to inventory tank z at time period t for scenario

n
,

( , , , , )
UT
n e z i tB −

flow of utility e from inventory tank z to production unit i at time period t for

scenario n

( , , )n i tD cumulative operating level deviation for unit i in time period t for scenario n

( , , , )
UT
n e i tNS purchases of utility e to be utilized in production unit

PR
ei I∈ in time period t for

scenario n

( , , )
FP
n e tNS purchases of product e in time period t (or lost sales) for scenario n

( , , )n i tQ operating level of utility unit i in time period t for scenario n

( , , , )n i e tQ production level of resource e from unit i in time period t for scenario n

( , , , )
dev
n i e tQ operating level deviation of the production unit i from its reference operating

level in time period t for scenario n

( , , )
dev
n i tQ operating level deviation of the utility unit i from its reference operating level in

time period t for scenario n

( , )i tR cumulative time of operation for unit i in time period t



( , , )n i tU extra energy consumption (from fully clean condition) of unit i due to its

performance degradation for scenario n

Binary variables

( , )i tX = 1, if a unit i is operating during time period t

( , )i tS = 1, if a unit i starts up at the beginning of time period t

( , )i tF = 1, if a unit i shuts down at the beginning of time period t

( , )i tV = 1, if an online cleaning task for unit
on
ii CB∈ occurs in time period t

( , , )
PR
i e tV = 1, if an online cleaning task for production unit ( )on

i ii PR CB∈ ∩ that produces

product
PRe E∈ takes place in time period t

( , )i tW = 1, if an offline cleaning task for unit ( )off
i ii CB FM∈ ∪ starts at the beginning

of time period t

( , , )i q tH = 1, if the offline cleaning task option iq Q∈ for unit ( )off
i ii CB FM∈ ∪ starts at

the beginning of time period t

( , , )i e tY = 1, if production unit ii PR∈ produces product e in time period t
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SUPPLEMENTARY MATERIAL

SM1. Startup and Shutdown Actions.

The operational status of each unit is then modeled according to:
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The minimum runtime (
iω ) and shutdown time ( iψ ) for any unit subject to minimum runtime or

shutdown restriction are modeled by constraints (1-2) and (1-3), respectively.
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A maximum runtime ( iο ) may be imposed for units ii MR∈ that do not follow a more detailed

performance-based cleaning planning, according to:
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SM2. Cleaning Tasks.

SM2.1 In-progress offline cleaning tasks.

At the beginning of the planning horizon, there may be some in-progress unfinished offline

cleaning tasks for some units (
ii DM∈ ) which are carried over from the previous planning

horizon. These cleaning tasks are modeled according to:

( , ) ( , )0 , : 0i t i i tX i DM t T η= ∀ ∈ ∈ > (2-28)

SM2.2 Flexible time-window offline cleaning tasks.

There may be alternative options for these offline cleaning tasks. And as such, one cleaning

task option need to start within the given time window ,es ls
i it τ τ =   , as given by:
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SM2.3 Condition-based online cleaning tasks.

In any given time period, a unit could be under online cleaning only if the unit is under

operation during this period, as modeled by:
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A unit can undergo an online cleaning task after a minimum time period has passed from the

occurrence of the previous online cleaning task in the same unit, as given by:
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Constraints (2-5) relate the two binary variables for online cleaning tasks for the production

units. These constraints are needed in order to model correctly the modified maximum

operating levels of production units during the period that are under online cleaning.
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SM2.4 Operational constraints for offline cleaning tasks.

Constraints (2-6) and (2-7) ensure that a unit that is under offline cleaning remains closed for

the whole duration of the selected offline cleaning task option, and relate the two binary

variables for offline cleaning tasks.
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For condition-based offline cleaning tasks, earliest and latest starting times should be set

equal to the first and the last period of the planning horizon, respectively.

SM2.5 Resource constraints for cleaning tasks.

A limited amount of available resources for cleaning operations shared by all types of cleaning

tasks is considered, according to:
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