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A B S T R A C T

The growing awareness of climate change and the recognised need to secure energy production has been a
driving force behind the expansion of the offshore wind industry across the world. Benefits from offshore wind
farms (OWFs) may extend further than low CO2 energy production. Wind turbine substructures introduce hard
surfaces that are rapidly colonised by epibenthic marine organisms, altering biomass and biodiversity within the
local ecosystem. Biodiversity plays a critical role in supporting ecosystem processes and functions that maintain
ecosystem services. As offshore wind development continues to grow and modify marine habitats, changes in
biodiversity could affect the provision of ecosystem services. In this context, this review sets out to capture the
current understanding of epibenthic biodiversity change following the installation of OWFs and attempt to link
these changes in biodiversity with marine ecosystem services through the associated processes and functions.

1. Introduction

A growing awareness of the effects of climate change and concerns
over energy security have been driving forces for renewable energy
(Mangi, 2013; Szulecki et al., 2016; Voormolen et al., 2016). Owing to
much larger installed turbines, as well as the stronger, more consistent
winds offshore, offshore wind farms (OWFs) have a higher potential to
harness renewable energy than their terrestrial counterparts (Petersen
and Malm, 2006; Lange et al., 2010). As a result, the offshore wind
energy industry has seen considerable investment. In European waters,
the cumulative installed capacity of OWFs rose from 0.8 GW in 2006 to
12.6 GW by the end of 2016 (Corbetta and Miloradovic, 2016). The
European offshore wind industry is expected to continue to expand and
may contribute more than 10% of Europe’s energy (around 140 GW) by
2030 (Zervos et al., 2009; Langhamer, 2012). Growth has been slower
outside of Europe, but substantial expansion is still expected. Japan’s
cumulative installed offshore wind capacity was 59.6 MW by the end of
2016 with around 2.5 GW more in various stages of development
(GWEC, 2016). In China and North America, offshore wind capacity is
expected to achieve 5 GW (up from 1.6 GW in 2015) and 10 GW by
2020 respectively (GWEC, 2016; Zhao and Ren, 2015; Lü et al., 2017).
That expansion is set to increase in North America to 54 GW by 2030
(Zhao and Ren, 2015).

Whilst it is largely accepted that OWFs provide net benefit to the

global environment by reducing direct CO2 emissions, it is not clear
how large-scale installation of OWFs may influence local ecosystems.
Modification of marine habitat following the installation of an OWF is
expected to change local and regional biodiversity. Key ecosystem
processes are supported by biodiversity, which are crucial to the de-
livery of multiple functions that affect the provision of ecosystem ser-
vices (Wilhelmsson and Malm, 2008; Mace et al., 2012; Snelgrove et al.,
2014). Ecosystem services are goods and benefits humans derive from
nature, emphasised as components of wealth, well-being and sustain-
ability (Mace et al., 2012; Carpenter and Turner, 2000; Liquete et al.,
2013; Costanza et al., 2014). Identified as provisioning (e.g. food),
regulating (e.g. carbon sequestration), cultural (e.g. tourism and re-
creation) and supporting (e.g. nutrient cycling) (Millennium Ecosystem
Assessment, 2005; Beaumont et al., 2007); they are, in essence, by-
products of ecosystem processes and functions that are recognised as
being beneficial to people, particularly in relation to health and well-
being (Sandifer et al., 2015). Such processes and functions are sup-
ported by biodiversity at local and regional scales.

It is generally considered that high biodiversity supports high eco-
system functionality, with declines in biodiversity having a negative
effect on ecosystem functions (Loreau, 2001; Hooper et al., 2005;
Balvanera et al., 2006; Cardinale et al., 2012; Lefcheck et al., 2015;
Gamfeldt et al., 2015). For instance, ecosystems with high biodiversity
typically have greater resistance to disturbance (Purvis and Hector,
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2000; Tilman et al., 2006; Isbell et al., 2015). Worm et al (Worm et al.,
2006) support this observation; they demonstrated that lower rates of
collapse and higher rates of recovery in commercially important fish-
eries occurred where there was higher regional species richness. It has
been suggested that the presence of species with similar ecological roles
and traits effectively provides biological redundancy and protects
against changes to ecosystem function (Levin, 1999; Duarte, 2000;
Palumbi et al., 2009). Thus, a reduction in species richness could result
in an ecosystem that is less resilient. Whereas increased biomass and
biodiversity due to introduced hard substrate may create resilience in
epibenthic populations, which may further support higher trophic le-
vels.

In recent decades, ecosystem services have become a major area of
research, development and policy attention in terrestrial systems
(Naidoo et al., 2008). In marine environments however, ecosystem
services have received less attention, beyond fisheries and related in-
dustries (Liquete et al., 2013; Gee and Burkhard, 2010) and only re-
cently have the effects of OWFs on the delivery of ecosystem services
been studied (Mangi, 2013; Busch et al., 2011; Hattam et al., 2015;
Wilding et al., 2017). However, linkages have not been made between
biodiversity, ecosystem functions, and ecosystem services. With the
evident expansion of offshore wind energy across the world there is a
common need to consider how the associated large-scale habitat mod-
ification, through the installation of OWFs, and subsequent changes to
biodiversity, could affect the provision of ecosystem services. De-
termining how changes in biodiversity would impact processes and
functions is central to determining the effect of OWFs on the delivery of
associated ecosystem services. As such, this review aims to specifically
link changes to biodiversity, in relation to OWFs with ecosystem ser-
vices through associated processes and functions.

2. Habitat modification by offshore wind farms

By introducing hard substrate in the form of the turbine towers,
foundations, cables and scour protection, OWFs increase the complexity
of the seabed and the water column and present opportunities for food
and shelter for benthic associated organisms at various life stages
(Petersen and Malm, 2006; Langhamer, 2012; Coates et al., 2011).
Thus, in effect OWFs act as artificial reefs, increasing local biomass and
promoting biodiversity (Mangi, 2013; Langhamer, 2012). This is not
unexpected; hard substrate in the marine environment, such as OWFs
and oil and gas platforms, have been shown to be rapidly and in-
tensively colonised by epibenthic species (Connell and Slatyer, 1977;
Kerckhof et al., 2009, 2010; Degraer et al., 2012; Kerckhof et al., 2012).
Indeed, artificial structures, including shipwrecks, sea walls, oil and gas
platforms and purpose built artificial reefs, have been shown to support
diverse reef communities (Zintzen and Massin, 2010; Lengkeek et al.,
2011; Schrieken et al., 2013; Lengkeek et al., 2013; Whomersley and
Picken, 2003; Wolfson et al., 1979; Forteath et al., 1982; Guerin et al.,
2007; Mallat et al., 2014). In the southern North Sea, up to 250 taxa
have been recorded on shipwrecks, which was similar to the species
richness recorded by soft substrate surveys of the entire Dutch con-
tinental shelf (Lengkeek et al., 2011; Schrieken et al., 2013; Daan and
Mulder, 2006). In addition, fish species are known to aggregate around
hard-structures largely due to the provision of food through the de-
velopment of species rich epifauna-communities (Reubens et al., 2011;
Svane and Petersen, 2001). Atlantic cod, Gadus morhua, have shown a
preference for hard substrate habitats and it has been noted that close
proximity to shipwrecks provides protection from bottom trawl fish-
eries (Lengkeek et al., 2013).

Fish, including commercial species, have been shown to aggregate
around wind turbine foundations (Reubens et al., 2013, 2011), which
may have added benefits for exploited populations. As offshore wind
turbine foundations present a hazard to fishing gear they may, over
time, encourage recovery of commercially exploited fish stocks and lead
to over-spill to surrounding areas (Langhamer, 2012; Busch et al., 2011;

Lengkeek et al., 2013). However, evidence of benefits of OWFs to
fisheries have so far been inconclusive. In the North Sea, reported
catches before and after the construction of Kentish Flats and North
Hoyle wind farms showed no significant changes, although catch per
unit effort (CPUE) from survey trawls within the Kentish flats wind farm
were higher for all species except sole (Mangi, 2013).

Typically, wind turbines have been installed in regions char-
acterised by a soft sandy benthic environment, such as the North Sea,
where hard substrate and intertidal regions are uncommon (Hooper
et al., 2015; Kerckhof et al., 2011; Mangi, 2013; Lengkeek et al., 2013).
Therefore, OWFs represent a large-scale increase in local habitat het-
erogeneity that may lead to a regional shift from sediment associated
benthic to hard bottom and intertidal communities (Kerckhof et al.,
2011; Mangi, 2013; Lengkeek et al., 2013). Indeed, several studies have
indicated that epifauna assemblages found on artificial reefs, including
wind turbine piles, differ from those on nearby reefs and natural sub-
strate (Connell and Glasby, 1999; Petersen and Malm, 2006). Moreover,
there is evidence artificial reefs may act as stepping stones for non-
native species (De Mesel et al., 2015; Gill, 2005; Glasby et al., 2007).
Kerckhof et al (Kerckhof et al., 2011) demonstrated that OWFs in the
Southern North Sea were rapidly colonised by non-indigenous species,
particularly in the intertidal region.

The introduction of epibenthic assemblages can also modify the
local hydrodynamic regime, biochemistry and benthic sediment com-
position (Boehlert and Gill, 2010; Coates et al., 2011; Miller et al.,
2013; Vaissière et al., 2014). Hiscock et al (Hiscock et al., 2002) sug-
gested that alteration of local hydrodynamic regimes may lead to tur-
bulences that cause resuspension of fine sediments, reducing light pe-
netration and smothering existing benthic communities.

There is concern around the potential for this large-scale reef effect
to modify marine ecosystems (Petersen and Malm, 2006; Langhamer,
2012) as OWF developments introduce an significant hard substrate
surface area to a previously open water and an often sedimentary sea
bed habitat (Boehlert and Gill, 2010; Coates et al., 2011). To date, on
European coastlines, more than 3500 turbines have been installed
(Byrne et al., 2017). It is important to note that OWFs differ from other
structures in that modification of the local environment spans multiple
devices. Expressly, rather than a single large reef, an OWF represents a
network of interconnected smaller artificial reefs. A single turbine has a
relatively small ecological footprint. To illustrate, recent monopile de-
signs have a diameter of 8m (Byrne et al., 2017), leading to a footprint
on the seabed of 50.3 m2 (not including scour protection). Jacket
foundations have a larger footprint. For example, a foundation with a
base of 20m (Seidel, 2007) would have a footprint of 400m2. However,
this remains relatively small when compared with that of an OWF
array, which may be several square kilometres with turbines separated
by distances of 500–1000m (Snyder and Kaiser, 2009). Many of the
proposed larger developments with hundreds of turbines will have
footprints of several hundred square kilometres (Boehlert and Gill,
2010; Gill, 2005).

Changes to the habitat on the scale of a single turbine may have
minor effects in isolation, but cumulative effects across the scale of an
OWF may be substantial and are, at present, highly uncertain (Willsteed
et al., 2017). The level of complexity and variation would make scaling
ecosystem services across OWFs and estimating cumulative impacts
very challenging. There would be variations in local conditions, such as
hydrodynamic regime. Additionally, the installation of OWFs span
across seasons. As a result, the oceanographic conditions and species
richness in the water column would vary between turbine installations.
As such, it is likely that multiple stages of development may be seen on
turbine substructures within a single OWF. Further, as with any natural
reef, communities on turbine substructures will change and adapt over
time. Therefore, it is not unreasonable to expect the delivery of eco-
system services to vary over the lifespan of turbines.

Based on existing evidence it is expected that the OWFs would
dramatically change local biodiversity, and hence the associated
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ecosystem processes and functions. It is important to understand the
causes and effects that lead to these changes which manifest themselves
in terms of their biological or ecological significance to truly determine
the impact on the local environment. However, determination of the
significance of the environmental impacts related to these changes are
often not fully realised (Boehlert and Gill, 2010).

3. Offshore wind farms and benthic ecosystem dynamics

Epibenthic colonisation is a multistage process that begins at the
microbial scale. Immediately following immersion dissolved macro-
molecules adhere to the substrate, forming a thin conditioning film
(Cooksey and Wigglesworth-Cooksey, 1995; Melo and Bott, 1997; Qian
et al., 2003; Dobretsov et al., 2006). Within hours bacteria attach to the
adsorbed layer of organic material (Melo and Bott, 1997). These are
followed by microscopic eukaryotes, such as diatoms, fungi and other
heterotrophic eukaryotic organisms which, along with bacteria, begin
to form biofilms (Dobretsov et al., 2006; Qian et al., 2007). The pre-
sence of biofilms has been described as a cue for colonisation, in that
may encourage or deter larval and spore settlement (Qian et al., 2007;
Dobretsov, 2010).

Colonisation is spatially dynamic, influenced not only by environ-
mental variability but also structural characteristics of the substrate (De
Mesel et al., 2015). It has long been understood that marine organisms
occupy distinct bands above and below the waterline (Whomersley and
Picken, 2003; Stephenson and Stephenson, 1949; Southward, 1958).
This pattern of zonation is a result of localised environmental char-
acteristics forming fine scale habitats. Similar patterns have been found
on existing offshore structures, such as offshore oil and gas platforms
where studies of epibenthic communities have described patterns of
zonation in relation to depth (Wolfson et al., 1979; Forteath et al.,
1982; Guerin et al., 2007; Mallat et al., 2014). Not unexpectedly, recent
studies have also described zonation on offshore wind turbine foun-
dations (De Mesel et al., 2015; Kerckhof et al., 2009).

Spatial orientation is considered a major determinant of hetero-
geneity in colonising communities (Bourget et al., 1994; Bulleri and
Chapman, 2004; Glasby, 2000; Glasby and Connell, 2001; Moura et al.,
2008). Indeed, epibenthic assemblages have been shown to differ with
spatial orientation on natural rocky substrate and artificial surfaces,
including panels, shipwrecks, pontoons, pilings, and oil and gas plat-
forms (Connell and Glasby, 1999; Forteath et al., 1982; Fuller, 1946; RG
and CH, 2001; Todd and Turner, 1986; Wendt et al., 1989; Baynes,
1999; Connell and Anderson, 1999). Moreover, there is evidence that
some species preferentially settle, or have greater survival rates, on
surfaces with particular orientation. Moura et al (Moura et al., 2008)
found that on horizontal surfaces of experimental cubes the sessile
epibenthic assemblages were dominated by cirripeds, predominantly
Amphibalanus amphitrite (previously reported as Balanus amphitrite by
Moura et al (Moura et al., 2008). Similarly, (Connell and Glasby, 1999)
found that assemblages on vertical surfaces of pontoons differed from
those attached to horizontal undersides (Connell, 1999). Several studies
have also shown barnacles, bryozoans, and some sponges tend to be
more abundant on suspended substrata, whereas algae are more
dominant on fixed substrata (Glasby and Connell, 2001; Fuller, 1946;
RG and CH, 2001).

Several wind turbine foundation designs are in commercial use,
which vary in shape, size and materials. Variation in substratum
characteristics between structures may create different initial condi-
tions for biofilm development, which is likely to influence the sub-
sequent stages of colonisation (De Mesel et al., 2015). Additionally,
scour protection used around wind turbine foundations add complexity
and provide further habitat.

Table 1 compares epibenthic communities found on a monopile and
jacket substructure from published literature (Hiscock et al., 2002;
Bouma, 2012; Krone et al., 2013). It should be noted, however, that
structures included in these studies differed not only in foundation type

but also age, location and installation season; factors that can also in-
fluence the development of epibenthic communities. Nonetheless the
choice of foundation for turbines may create different opportunities for
colonising organisms within an OWF. Indeed, greater complexity in
jacket foundations, with structures in multiple orientations, as well as
sheltered and shaded surfaces, is likely to provide a very different ha-
bitat from monopiles.

Floating turbines are an emerging technology that has not reached
the commercial market. Empirical and monitoring data from colonising
communities are absent. As such the illustration in Table 1 was pro-
duced using published data from buoys and deep water oil rigs
(Forteath et al., 1982; Macleod et al., 2016; Southgate and Myers,
1985).

Although a floating spar may appear similar in shape to a monopile
there are key differences in the habitat they create. As a floating
structure that rises and falls with the tide, a spar would not introduce a
true intertidal zone. Therefore, it is unlikely that substantial intertidal
community would be present above the water line. Although there
would be a splash zone and those species present would be able to
survive long periods of desiccation. In addition, as the structure is not in
contact with the benthos scour protection would not be required.
Rather, the spar would be kept in place through moorings. However,
mooring lines and the cables would also be colonised by epibenthic
organisms.

Over a large OWF the foundation type could have important im-
plications for habitat modification, which would affect biodiversity,
ecosystem function, and subsequently the delivery of ecosystem ser-
vices.

4. Biodiversity and ecosystem function

Maintaining marine ecosystem health and function is essential to
underpin our planet’s life support systems (Mangi, 2013). Multiple di-
rect and indirect effects on ecosystem processes and functions are ex-
pected following OWF installation (Gill, 2005). These can be linked to
the delivery of ecosystem services. Fig. 1 presents a conceptual sche-
matic illustrating such relationships.

Direct effects include physical changes to the habitat from the in-
stallation of turbines and other structures. In Fig. 1, the blue dashed
boxes on the left cover changes in hydrodynamic regime (Matutano
et al., 2016), benthic habitat loss or gain and the provision of shelter
from fishing and predation (Gill, 2005; Miller et al., 2013; Wilson and
Elliott, 2009; Wilson et al., 2010).

Indirect effects, linked to the direct effects, include modification to
processes and functions, and are shown by the series of boxes and ar-
rows in the central, red section of Fig. 1. For example, complex epi-
benthic communities colonise turbine substructures forming artificial
reefs (Table 1) which can alter biodiversity and community structure,
influencing processes and functions (Hooper et al., 2005; Schleuning
et al., 2015). This reef effect can be linked to ecosystem services
through several channels, indicated by the green dashed boxes on the
right of Fig. 1. For instance, littoral fall, which is the deposition of
faecal and other organic matter by epibenthic organisms colonising the
turbine substructure, may enrich sediments, supporting soft-sediment
communities (Coates et al., 2011; Köller et al., 2006; Maar et al., 2009;
Coates et al., 2014). Feeding and bioturbation by benthic infauna
contributes to the transfer of organic matter in to sediments and in-
fluences the rates of remineralisation and inorganic nutrient efflux
(Hansen and Kristensen, 1997; Christensen et al., 2000; Aller, 2017;
Welsh, 2010; Kristensen, 2000; Lohrer et al., 2004). Inorganic matter
returned to the water column by bioturbating organisms influences
primary productivity. Coates et al (Coates et al., 2011) recorded higher
Chlorophyll-a concentrations around a gravity based turbine than had
been found in similar sandy-sediments. They noted that, in combination
with a slight decrease in median grain size, increased productivity may
enhance larval settlement and survival of certain macrobenthic species.
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This higher productivity and nutrient cycling are likely to have positive
effects on the availability of food to higher trophic levels (Fig. 1), in-
cluding commercially important species. Hence, changes in benthic and
epibenthic biodiversity may well have knock on effects to food provi-
sion and cultural experience of iconic species, such as marine mammals
or birds.

In the case of floating OWFs, owing to the greater operational
depths, the time taken for organic matter from epibenthic communities
to reach the seabed would increase. This is likely to result in the tidal
currents spreading organic matter across a wide area and in a finer
layer over the seabed. Thus, the localised effect of increased benthic
habitat associated with floating OWFs may not be as pronounced as for
their fixed counterparts. Alternatively, given consistent littoral fall, in
time similar effects to organic matter deposition from fixed offshore
wind turbines may become apparent over a wider area.

A further feature of the reef effect is the establishment of secondary
or biologically mediated habitat (Fig. 1). For instance, mussel beds
provide secondary habitat, increasing environmental complexity and
providing further opportunities for feeding and shelter for motile spe-
cies (Wilhelmsson and Malm, 2008; Krone et al., 2013; Chapman et al.,
2005; Krone et al., 2013; People, 2006; Wilhelmsson and Malm, 2008;
Witman, 1985). (Witman (1985) found that outside of mussel beds
population densities in benthic communities were reduced by 79%.
Further there was a reduction in species richness and diversity in all
functional groups except mussel bed infauna (Witman (1985).

Although valued for its ability to support other goods and services,
biodiversity is culturally appreciated for its existence irrespective other
benefits derived from it (Mace et al., 2012). Determining the ecosystem
service value of biodiversity may be unclear, but it intrinsically has
plausible benefits, and this may then bring a new aspect to considering
the advantages of OWFs. Busch et al (Busch et al., 2011) illustrated
possible benefits to human wellbeing from significant wind farm de-
velopment. Interestingly, they identified conflicting views between
stakeholders and highlighted ambiguity within the ecosystem services

concept. Whilst installation of a physical structure also creates shelter
from predation, turbine substructures are also an obstruction to fishing.
Busch et al (Busch et al., 2011) reported that the fishing community
viewed OWFs as an barrier to fishing, whilst conservationists felt that,
by reducing fishing access, OWFs could encourage the recovery of
commercially exploited species (Federal Agency for Nature
Conservation, 2004; Busch et al., 2011). In providing protection for
migratory populations and juveniles, OWFs could support upper trophic
biodiversity and allow overspill from commercially exploited popula-
tions to surrounding fisheries. This would support food provision to
humans and cultural experiences, such as fishing or the enjoyment of
wildlife (Fig. 1).

There has been suggestion of co-use of OWF for aquaculture of blue
mussels (Mytilus edulis), oysters (Ostrea edulis and Crassostrea gigas) and
algae (Laminaria saccharina and Palmaria palmata) (Miller-Cieluch et al.,
2009; Buck et al., 2004). It has been noted that without the foundations
of wind turbines as anchor points, extensive aquaculture in the high-
energy environment of the North Sea would not be possible (Buck et al.,
2004). Although currently a concept, should such co-use become a
reality it may help change the attitudes of the fishing community to-
wards OWFs.

Changes in epibenthic biodiversity are likely to be strongly linked
with climate regulation and waste treatment (Fig. 1). Increased biodi-
versity and biomass due to the reef effect around wind turbine sub-
structures and scour protection may lead to greater storage of organic
carbon (Lange et al., 2010). Through increased carbon storage OWFs
could result in bottom up effects on climate regulation. Moreover,
changes in biomass and biodiversity, such as the introduction of mussel
beds, are likely to locally enhance water quality and waste treatment
due to filter feeding (Lange et al., 2010; Hooper et al., 2017). Yet, at
present, the extent to which climate regulation and waste treatment
may be altered by the introduction of OWFs is not known. Along with
understanding chlorophyll-a as a measure of primary production, there
is a need for empirical measurements of nutrient concentrations and the

Fig. 1. Biodiversity mediated linkages between habitat modification, ecosystem processes and functions, and the provision of ecosystem services in relation to
offshore wind farm structures. Zones represent direct changes (blue hatching – left), secondary changes effecting processes and functions (red – centre), and linked
ecosystem services (green hatching – right) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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biomass of filter feeders in epibenthic communities on and around wind
turbine substructures. A comparison of the cause-effect pathways
leading to changes in primary productivity, nutrient concentration and
filter feeding between OWFs and natural habitats, such as portrayed in
Fig. 1, would go a long way towards elucidating these effects.

5. Conclusion

By linking changes in biodiversity with ecosystem services we have
attempted to highlight potential benefits from OWFs beyond low CO2

energy production. However, whether changes in biodiversity will have
positive, negative or neutral effects on ecosystem services is unclear, as
is the magnitude and extent of such effects.

As the offshore wind industry continues to expand we can expect
further large-scale modification of the marine environment. Empirical
evidence is needed to gauge the scale of the effects of OWFs on biodi-
versity. However, it should be appreciated that ecosystem services are
largely a product of natural processes and functions. Thus, to better
understand how OWFs influence ecosystem services we must first
consider their effects on functional diversity. Such insight could provide
a mechanism for environmental monitoring programmes that are in-
clusive of ecosystem services and have clear objectives to predict po-
sitive as well as the negative impacts.
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