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Abstract

Channel availability probability (CAP) and channel quality (CQ) are two key
metrics that can be used to efficiently design a channel selection strategy in
cognitive radio networks. For static scenarios, i.e., where all the users are im-
mobile, the CAP metric depends only on the primary users’ activity whereas
the CQ metric remains relatively constant. In contrast, for mobile scenarios,
the values of both metrics fluctuate not only with time (time-variant) but also
over different links between users (link-variant) due to the dynamic variation
of primary- and secondary-users’ relative positions. As an attempt to address
this dynamic fluctuation, this paper proposes L-CAQ: a link-oriented channel-
availability and channel-quality based channel selection strategy that aims to
maximize the link throughput. The L-CAQ scheme considers accurate estima-
tion of the aforementioned two channel selection metrics, which are governed by
the mobility-induced non-stationary network topology, and endeavors to select
a channel that jointly maximizes the CAP and CQ. The benefits of the proposed
scheme are demonstrated through numerical simulation for mobile cognitive ra-
dio networks.
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1. Introduction

Channel selection is one of the important tasks in Cognitive Radio Networks
(CRNs) to enable a Cognitive User (CU) to communicate with its neighbors.
A common purpose of this task is to select the “best” channel among the list
of available channels that maximizes the throughput and minimizes the inter-
ference to Primary Users (PUs). In the literature there exist two prominent
metrics that are widely used for channel selection, namely Channel Availability
Probability (CAP) and the Channel Quality (CQ). Herein the CAP corresponds
the probability of a channel licensed to a PU being available for communications
of unlicensed users [1] whereas the CQ is associated with the maximum amount
of data per unit time that can be reliably delivered over the given channel [21].
Accurate acquisition of these features will enable the design of throughput-
efficient channel selection that allows the CU to maximize the communication
opportunities.

In static scenarios, referred to as Static CRNs (SCRNs) where all PUs and
CUs are fixed and immobile, the first feature, namely CAP, depends only on the
PU activity probability, i.e., the probability of the channel being occupied by
the PU transmission, which can be estimated using the past channel occupancy
history [1, 29]. On the other hand, the second feature, namely CQ depends on
several factors such as the channel bandwidth, transmit power, overall medium
attenuation and interference. In static scenario CQ remains relatively constant
and similarly to CAP, the CU can also estimate CQ through the past channel
history [3].

In mobile scenarios, referred to as Mobile CRNs (MCRNs) where the PUs
and/or CUs are mobile, however, both the CAP and CQ vary not only with time
but also with link.1 In order to better illustrate this time and link variation,
consider an example of MCRNs in Fig. 1. In Fig. 1 (a), at time t0, the i-th CU,
ui is inside the critical range2 of the l-th PU, vl, hence the CAP depends on
the l-th PU activity probability. Due to the mobility of PU, the CU is outside
the critical range at time t, therefore, the channel availability is independent
whether the l-th PU is active or not. Mobility can thus change the dependency
of CUs on the activity of existing PUs, leading to the time-variant CAP for
each CU. In mobile scenarios, the CAP is time variant as shown and analyzed
in [1] and a channel selection strategy based on this time-varying CAP has been
proposed in [2].3 Another impact of mobility in CRNs is link diversity, which
leads to link-variant CAP. For example, in Fig. 1 (b), we note that, at time t,
the i-th and j-th CUs ui and uj are outside the critical range of any PU, but
the k-th CU uk is inside the critical range. In this case, the channel availability

1Herein, the notion “link” refers to connection between a pair of communicating users.
2The CUs are able to detect active PUs within a range, referred to as critical range,

determined by the PU transmission range and by the CU interference range [5, 6]. This range
might vary for each CU especially in heterogeneous networks.

3See Section 2 for further discussion.
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(a) CAP is not only time variant but also
link varianr

(b) CQ measurement is also link variant

Figure 1: Channel availability and channel quality are time and link variant in MCRNs.

for the link between ui and uj does not depend on the PU activity probability
whereas the channel availability for link between ui and uk, depends on the PU
activity probability.

The availability of a channel for communication between a pair of CUs does
not directly imply that the channel is of sufficient quality for data transmission.
If the two nodes are communicating and if either one or both of them is/are
mobile, then their CQ will be time variant. This is particularly due to the
variation of relative distances between the nodes and changing of scattering
objects in the environment, which lead to time-varying attenuation due to path
loss and channel fading, respectively. Using the same reasoning as the link-
variant CAP, the CQ also varies from one link to another due to a diverse
mobility pattern. It is therefore crucial to incorporate both the time-varying
CAP and CQ parameters to design a channel selection strategy that aims to
maximize the rate of reliable data delivery.

In this paper, we propose a mobility-aware channel selection technique by
jointly accounting for the parameters of time- and link-variant CAP and CQ
for MCRNs. Underpinning this novel technique, the contributions of this work
include the following.

i) We derive link-based CAP (L-CAP) estimation based on the relative dis-
tances among PUs and CUs in a given temporal interval;

ii) We obtain a mathematical expression that captures estimation of the link-
based CQ (L-CQ) in mobile scenarios;

iii) We propose a Link-oriented Channel-Availability and channel-Quality (L-
CAQ) based channel selection strategy that aims to maximize the link
throughput by taking into account two prominent channel selection metrics,
namely L-CAP and L-CQ, which are governed by the non-stationarity of
the network topology induced by the user mobility;
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Acronym Full Name

CRNs Cognitive Radio Networks
CU Cognitive User
PUs Primary Users
CAP Channel Availability Probability
CQ Channel Quality

SCRNs Static Congitive Radio Networks
MCRNs Mobile Congitive Radio Networks
L-CAP Link-Channel Avaliblity Probability
L-CQ Link-Channel Quality
L-CAP Link-Channel Avalibility Probability
RWPM Random WayPoint Mobility
LUP Location Update period

Table 1: List of frequently-used acronyms.

iv) We demonstrate the benefits of the proposed strategy using numerical sim-
ulation for MCRNs.

The rest of the paper is organized as follows. For ease of reference, we provide
the list of frequently-used acronyms in Table 1. In Section 2, we critically
review and discuss related works. In Section 3, we state and formulate our
approach to the problem of channel selection in MCRNs. In Section 4, we
describe the network model of MCRNs. In Section 5, we present and discuss our
main contribution of the L-CAQ strategy for channel selection. In Section 6,
we evaluate the performance of this proposed scheme against the benchmark
schemes through numerical simulation. Finally, Section 7 summarizes key points
from this paper.

2. Review of Existing Works

Channel selection constitutes an important task for initiating communica-
tion in CRNs, which in turn is crucial for optimizing the network performance.
Several works in the literature have emphasized the crucial roles of CAP and
CQ in selecting an optimal channel from an available channel set. Most of the
works, however, do not consider the impact of mobility on CRNs.

In [26], the authors proposed a method for channel availability analysis of
the primary network by considering the Idle Probability of Consecutive Time
Slots (IPCOTS) to be utilized in the sensing channel selection in CRNs. Based
on discrete-time Markov model, the authors acquired the IPCOTS for every
specific channel, according to a condition that its status in the primary network
is distributed evenly. The sensing order of channel selection draws a subopti-
mal state-dependent policy, which is referred to as the IPCOTS policy. The
channel analysis under the IPCOTS framework can provide extra information
about the channel occupancy state in the primary network. Moreover, by using
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the IPCOTS policy the proposed channel selection technique can minimize the
predicted number of channel switching to achieve the initial objective.

In [27], the authors exploited the spectrum hole and channel characteris-
tics, and proposed a multi-channel selection algorithm to enable the prediction
of spectrum hole in order to minimize the CU’s interfering period to the pri-
mary network and boost channel utilization. This scheme has jointly considered
the interference range and channel capacity in order to reduce the interference
to primary network and improve the system performance. Through a simple
amendment of statistical parameters over the channel quality, the scheme can
achieve a higher throughput while reducing the collision rate.

In [22], the authors proposed an opportunistic sensing strategy, where the
reward is adapted to the PU-link channel state information (CSI) prior to sens-
ing. To achieve effective collision resolution, this strategy is integrated with a
novel multi-channel first-come-first-served medium access control scheme. Both
the individual and network throughputs were shown to improve by the afore-
mentioned adaptive technique prior to sensing and randomization of sensing
decisions.

Several channel selection techniques are presented in literature [28] - [37].
In [28], A channel selection technique was proposed using a fuzzy logic based
decision making algorithm . In [35], a Markovian-based cooperative spectrum
sensing policy was studied. In [29], the authors introduced a routing metric
that aims to minimize the interference of the CUs to the PUs by estimating the
channel availability through the channel history. In [30], the authors presented a
channel selection algorithm based on the ON-OFF time distribution in cognitive
radio networks. The channel selection algorithm aims to let the secondary user
to discover the empty channel and reduce the rate of channel switching in an
efficient way. Through observing and calculating the heavy-tailed OFF times
for the primary users, the channel selection algorithm can show a significant
decrease in channel switching rate and save the energy consumption.

As discussed in the above works, CAP is more prevalent for channel selection
in static scenarios of the CRNs due to time-invariant CQ. In such a case, the
selection problem can be projected as selecting a CAP entry (entries) from a
weighted CAP vector where the weights are determined by fixed CQs within a
set of available channels.

A limited number of works have addressed channel selection in the CRNs
with mobility scenarios. In [3], the authors proposed an optimal routing metric
for both static and mobile CRNs. However, consideration of the channel avail-
ability depends solely on the channel occupancy history, which is less accurate
for MCRNs. In [1], a channel availability model was designed by taking into
account the PU mobility. Considering the same model, a mobility aware chan-
nel selection technique is proposed in [2]. However, considering only the PU
mobility is deemed insufficient to capture diverse possibilities of MCRNs where
both the PU and CU may have non-stationary characteristics.

Pushing further these aforementioned works, in this paper we propose a
channel selection technique that considers the impact of both PU and CU mo-
bility. We first formulate the network model of MCRNs and establish precise
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mathematical expressions of the CAP and CQ that encapsulate time- and link-
variant characteristics of the network. Using these mathematical expressions,
we then propose a channel selection algorithm and evaluate its performance
against a number of benchmark schemes to demonstrate its superiority.

3. Problem Statement

When an arbitrary cognitive node ui wants to communicate with one of its
neighbor nodes uj , then ui needs to select the best channel among the list of
licensed channels. A widely-used criterion for determining the “best channel” is
the link throughput, ψm

ij that corresponds to the amount of data per unit time
that ui can successfully transmit to uj through an arbitrarily given channel m.
At any given time t, based on the acquired values of CAP and CQ, user ui can
approximate its link throughput to user uj at channel m using the estimate

ψ̄m
ij (t) = CAPm

ij (t)× CQm
ij (t)× ψm (1)

where CAPm
ij (t) ∈ [0, 1] is the channel availability probability for channel m

at time t that equals to the PU inactive probabilities, denoted as Pm
off (t);

CQm
ij (t) ∈ [0, 1] is the (normalized) channel quality of channel m; and ψm

is the ideal link throughput for channel m, i.e., when CAPm
ij (t) = CQm

ij (t) = 1.
In static scenarios, the instantaneous values of the CAP and CQ can be

a priori known (when, e.g., the propagation environment and PUs’ traffic are
stationary) or simply estimated according to the channel occupancy and link
quality history, respectively [29, 3]. Throughout the rest of the paper, we refer
to a method of estimating ψ̄m

ij (t) via a priori available information or chan-
nel occupancy/quality history as the Traditional Method. It is customary that
for the static scenarios with stationary environment and data traffic, both the
CAP and CQ are time- and link-invariant (such that CAPm

ij (t) = CAPm and
CQm

ij (t) = CQm) and the link throughput solely depends on the activity of PUs
across different network regions.

In mobile scenarios, the CAP and CQ are both time- and link-variant. There-
fore, unlike the Traditional Method, the link throughput ψm

ij (t) depends on three
factors, namely: i) the Link-based CAPm(t), which will further depend on two
factors, i.e., the PU inactive probabilities Pm

off (t) and probability that a pair
of CUs (e.g., ui and uj) communication does not interfere with the active PUs,
denoted as NAm

ij ; ii) Link-based CQ
m
ij (t); and iii) ideal channel throughput ψm.

In order to clarify this issue, we consider an example shown in Fig. 2. The
three PUs at time t are vl(t), vn(t) and vm(t) and they are active on channel a,
b and c, respectively. The three CUs at time t who want to communicate one
another are ui(t), uj(t) and uk(t) and their critical range are Ri, Rj and Rk,
respectively.

For the sake of simplicity, we assume that the ideal channel throughput of
channel a, b and c are 1 Mbps and the channel quality for all the links at time
t are the same as depicted in Fig. 2. If we estimate the link throughput of link
ui ↔ uj and ui ↔ uk at time t for each channel using the Traditional Method,
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Figure 2: Channel selection in MCRNs.

then for both the links, we have ψ̄a
ij(t) = ψ̄a

ik(t) = 0.24 Mbps, ψ̄b
ij(t) = ψ̄b

ik(t)

= 0.24 Mbps and ψ̄c
ij(t) = ψ̄c

ik(t) = 0.35 Mbps. The best channel at time t
according to this method is channel c. On the other hand, if we estimate the
link throughput at time t for each channel considering the mobility of users, we
have that:

• For link ui ↔ uj : ψ̄
a
ij(t) = [P a

off + (1−P a
off )NA

a
ij ]×CQm

ij (t)×ψa = 0.4

Mbps, ψ̄b
ij(t) = 0.24 Mbps and ψ̄c

ij(t) = 0.35 Mbps

• For link ui ↔ uk: ψ̄
a
ik(t) = [P a

off +(1−P a
off )NA

a
ik]×CQ

m
ik(t)×ψ

a = 0.24

Mbps, ψ̄b
ik(t) = 0.6 Mbps and ψ̄c

ik(t) = 0.35 Mbps.

According to this refined method, the best channel at time t for both links
ui ↔ uj and ui ↔ uk are channels a and b, respectively, not channelc.

The aforementioned example demonstrates that in MCRNs, the CAP is not
only time variant but also link variant, hence we refer to it as Link-based CAP
(L-CAP). In addition to its time-variant nature due to changing distance and
multipath propagation, the estimated channel equality will also be link-variant
depending on the instantaneous distances of the CUs to the PUs. We therefore
refer to this channel quality measure as Link-based Channel Quality (L-CQ)
due to mobility variation of different CUs. We therefore envision to design a
new channel selection strategy by exploiting both the L-CAP and L-CQ features
that comprehensively capture the mobility characteristics of the network.

4. Network Model

We consider an MCRN where a set of CUs and PUs are mobile, denoted as
ui ∈ U and vl ∈ V , respectively. For the sake of simplicity, we assume that the
CUs and PUs move according to the well-known Random WayPoint Mobility
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Figure 3: CU time organization related with location update interval (LUP).

(RWPM) model [11] inside a square network region A. The vector vl(t) denotes
the two-dimensional position of the l-th PU at time instant t. The l-th PU traffic
on the m-th channel is modeled as a two-state birth-death process [5, 12, 13]
with death rate αl,m and birth rate βl,m. In the on state, the l-th PU is active
on channel m, and the active probability can be calculated using

P on
l,m =

βl,m
(αl,m + βl,m)

(2)

whereas in the off state it is inactive on channel m and the inactive probability
can be computed using

P off
l,m = 1− P on

l,m. (3)

The vector ui(t) denotes the two-dimensional position of the i-th PU at time
instant t. We consider more realistic PU spectrum occupancy models where
different PUs roaming within the network region share the same channel [12].

As depicted in Fig 3, the CU activity is organized into fixed-sized frames
with each having duration of T . Each frame interval T is further divided into a
sensing period Tsen [19, 20], which measures the portion of the time slot assigned
to the spectrum sensing, and a transmission period Ttx, which measures the
portion of the time slot devoted to the CU data transmission.

A pair of CUs can communicate with each other through licensed spectrum,
which is organized in N distinct bands/channels. More specifically, at time t,
an arbitrary node ui communicates with another arbitrary node uj through a
channel m ∈ {1, . . . , N}. In order to select the best channel for communication,
at time t, the CU ui makes an attempt to estimate the link throughput ψm

ij (t)
for the link labelled by emij . This link throughput jointly accounts for two main
metrics, namely L-CAP and L-CQ of the specified channel. These metrics are
both time- and link-variant due to the mobility of PUs and CUs. As a conse-
quence, in order to obtain the link throughput estimate ψ̄m

ij (t), we assume that
CU ui is able to get the locations of its neighbors and the PUs periodically,
which is governed by the Location Update period (LUP) τ as illustrated in
Fig 3.4

4It is reasonable to assume that the CU cannot obtain the locations of its neighbors and
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5. L-CAQ based Channel Selection Technique in MCRNs

In this section we analyze the mobility characteristics of the PUs and CUs
to approximate the best channel that will enable communication between a pair
of nodes. Since both the L-CAP and L-CQ are crucial for such a selection tech-
nique, we first discuss the estimation procedures of the L-CAP and L-CQ in mo-
bile scenarios. We then discuss our proposed Link-oriented Channel-Availability
and channel-Quality (L-CAQ) based channel selection technique for MCRNs.

5.1. L-CAP Estimation in MCRNs

As discussed in Section 4 and Fig. 3, the CU activity is organized into
fixed-sized frames of T duration, which is further divided into a sensing period
Tsen and a transmission period Ttx. We also assume that, each CU is able to
update the locations of its neighbours and PUs every LUP τ = qT . Due to the
timing constraint of location acquisition, it is sensible to compute the L-CAP
for every LUP. More specifically, with reference to Fig. 3, in order to estimate
the L-CAP for a pair of nodes (e.g., ui and ui) in the next temporal period,
i.e., [nτ , (nτ + τ)), ui has to take into account the impact of PUs activity on
both nodes. For this purpose, we first precisely define the L-CAP parameters
follows.

Definition 1 (L-CAP). Link-based CAP (L-CAP) is the probability of a chan-
nel licensed to PU/PUs being available for the communication of a pair of neigh-
bouring CUs over a given LUP τ .

Computing the exact value of L-CAP for each LUP requires knowledge of
the exact users positions at every frame 0, . . . , q, which is not directly available.
Approximating these positions can be facilitated using the distance estimation
procedure as outlined in Fig. 9 and detailed in Appendix 9.1. Based on the
estimated distances among pairs of PUs and CUs, we obtain the probability of
an arbitrary channel m being available to CUs at frame k ∈ {0, . . . , q− 1} as in
the following proposition.

Proposition 1. At the time instant t0 = nτ , the i-th CU estimates the proba-
bility pij,m,L(Tk) of channel m that is licensed to a set of PUs L being available
for a pair of i-th and j-th CUs in the next time slot Tk = [nτ+kT, nτ+(k+1)T )
for any k ∈ {0, . . . , q − 1} as

p̃ij,m,L(Tk) =















1, if (d̃i,l(t) > Ri,l) AND (d̃j,l(t) > Rj,l), ∀l ∈ L,

∏

l∈L
P off
l,m , otherwise,

(4)

PUs at every single time instant t due to time-varying user locations in MCRNs and process-
ing complexity. The PU location can be typically obtained through either location estimation
algorithms or dedicated databases [18] while the CU location can be estimated either di-
rectly via dedicated positioning systems (e.g., GPS), or indirectly through location estimation
algorithms [14]. Analysis of these localization techniques is beyond the scope of this paper.
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for all t ∈ Tk where Ri,l and Rj,l denote the critical ranges of the l-th PU with

respect to i-th CU and j-th CU, d̃i,l(t) and d̃j,l(t) denote the estimated distances
between the i-th CU and l-th PU, and the j-th CU and l-th PU at time t ∈ Tk,
respectively. These estimated distances are all computed at time t0.

Proof. The proof follows similar steps in [1] by modifying the distance estimation
process among as discussed in Appendix 9.1 as well as considering the time- and
link-varying nature of the connection between a pair of CUs i and j.

The L-CAP metric for every LUP can then be expressed in the following propo-
sition.

Proposition 2. At the time instant t0, the L-CAP CAPm
ij (t) for (i, j)-th link

for time interval t ∈ [nτ, nτ + τ) is given by the estimate of the probability of
channel m that is licensed to a set of PUs L being available in the next LUP
τ = [nτ, nτ + τ) as

CAPm
ij (t) =

1

q

q−1
∑

k=0

p̃ij,m,L(Tk) (5)

where p̃ij,m,L(Tk) has been given in equation (4).

Proof. This L-CAP expression follows from averaging p̃ij,m,L(Tk) given in Propo-
sition 1 over all frames k = 0, . . . , q − 1 within the LUP.

5.2. L-CQ Estimation in MCRNs

Consider two CUs ui and uj separated by distance di,j that communicate
over an arbitrary channel m with bandwidth W . The channel quality of the
link between ui and uj can be associated with the amount of data per unit
time (in bits/s) that can be reliably transmitted over the given channel. Such a
reliable transmission rate depends on not only channel characteristics, but also
transceiver processing including coding and modulation techniques.

For a given specific modulation signal set X that may represent practical
modulation techniques such as phase-shift keying (PSK), quadrature amplitude
modulation (QAM) and pulse-amplitude modulation (PAM), the ultimate data
rate for wireless information transfer over bandwidth W can be well character-
ized by the instantaneous mutual information [21]

I(SNRm, gm) =

W ·

(

log2 |X | −
1

|X |

∑

x∈X
E

[

log2
∑

x′∈X
e−|gm

√
SNRm(x−x′)+Z|2+|Z|2

])

(6)

where the expectation E[·] is evaluated over Z ∼ NC(0, 1). Herein |X | denotes
the cardinality of X , gm is the complex-valued small-scale fading gain at channel
m and SNRm denotes the signal power to noise ratio

SNRm ,
P rx
m

N0W
, (7)
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where P rx
m is the received signal power (watt) at channel m and N0 is the noise

spectral density (watt/Hz).
Mobility of users leads to variation in both the small-scale fading gain gm

and the strength of P rx
m that is determined by the large-scale fading gain. The

time-variation of gm is mainly due to the change of scattering configuration
can usually be captured by Rayleigh fading distribution in the rich scattering
environments [23]. The time variation P rx

m can be captured by linking its value
with the transmit power P tx as [23]

P rx
m = P tx × C0 × f−2

m × d−2
i,j (8)

where C0 × f−2
m × d−2

i,j characterizes the path loss at a distance di,j and carrier
frequency fm of channel m for some positive constant C0. It is clear from (8)
that unlike static scenarios, P rx

m varies with time due to variation in distance
di,j and directly depends on the operating frequency of the given channel m.

It is widely understood that (see, e.g., [23]) temporal magnitudes of the
small- and large-scale fading vary at different rates of change. Small-scale fading
gm rapidly varies within a small period of time (short distance) whereas large-
scale fading (path loss) fluctuates over a longer travel distance. We can thus
reasonably assume for a mobile communication with frame structure in Fig. 3
and certain mobile speeds that the large-scale fading changes every Tk = T and
the small-scale fading changes B times for each Tk, k = 0, . . . , q− 1. Therefore,
the maximum data rate that can be reliably transmitted over a single sensing
frame is given by the average mutual information of the block-fading channel
with block size B, namely

Ri,j(SNRm;k, gm,k) =
1

B

B
∑

b=1

I(SNRm;k, gm;k,b) (9)

where I(·, ·) has been defined in (6) and SNRm;k = P rx
m (k)/(N0W ) is the effective

receive SNR at frame time Tk, which depends on

P rx
m (k) = P tx × C0 × f−2

m × d−2
i,j (Tk), (10)

where di,j(Tk) is the distance between CUs i and j at frame time Tk.
5 In equa-

tion (9), we have also defined gm;k , [gm;k,1, . . . , gm;k,B ] as the B realizations of
the small-scale fading over time Tk. Note that the block size B in equation (9)
is closely related to the vehicle speed as each fading block b ∈ {1, . . . , B} can
be defined by the coherence time of the channel, which is inversely proportional
with the relative speed between two communicating devices [21, 24]. The faster
the relative mobility, the value of B will be larger (i.e., channel changes quickly
within a frame) and vice-versa.

5Herein we assume that the distance between (i, j)-th CUs is approximately the same for
a single frame of duration T .
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The average mutual information (9) well characterizes the instantaneous
reliable transmission rate supported by the channel, taking into account the
mobility of devices that induces fading. Based on this metric, we can define the
L-CQ as follows.

Definition 2 (L-CQ). The link-based CQ (L-CQ) per LUP τ = qT is defined
by the average (normalized) mutual information over a period [t0, t0 + τ ] where
t0 is the starting time of the LUP.

A pair of communicating CUs ui and uj can then approximate their L-CQs
over all unoccupied channels by estimating their corresponding channel states
(based on the model in [25]) and distance, and calculating the average mutual
information. Approximation of their L-CQ for channel m is discussed in the
following.

As discussed in Section 5.1, each CU is able to accurately inform its neigh-
bors and PUs locations at time t0, namely the beginning of LUP τ = qT . Based
on a predefined mobility pattern and initial positions at time t0, a communi-
cating pair of (i, j)-th CUs can estimate their distance d̃i,j(t0 + kT ) for each
transmission frame k = 0, . . . , q − 1 within a LUP (see Appendix 9.2). Based
on this estimated distance, we can then estimate the effective receive SNR for
frame k as

˜SNRm;k =
P tx × C0 × f−2

m × d̃−2
i,j (t0 + kT )

N0W
. (11)

In addition to this SNR estimate, each CU is assumed to be capable of acquiring
small-scale fading information during the sensing time for each frame (cf. Fig
3) through pilot-aided channel estimation [38]. At frame k and fading block
(coherence time) b, this estimation yields noisy channel estimate for channel m,
which is a function of the actual fading gm;k,b [25]

g̃m;k,b = gm;k,b + em;k,b (12)

where em;k,b is the channel state error term that is distributed according to
NC(0, ǫ) for some error variance ǫ > 0.

In a single LUP, the CUs ui and uj can then approximate their L-CQ at
channel m by computing the average mutual information of (9) using the es-
timated values ˜SNRk and g̃k,b;m. By accounting for the effective time for data
transmission, we state our L-CQ metric to compute the link quality in the fol-
lowing proposition.

Proposition 3 (L-CQ). The L-CQ at channel m, CQm
ij (t) ∈ [0, 1], where t ∈

[t0, t0 + τ ] is given by the following expression

CQm
ij (t) =

T − Tsen
T ×W × log2 |X |

·
1

q

q−1
∑

k=0

Ri,j( ˜SNRm;k, g̃m;k) (13)

where T and Tsen are single frame time and sensing time, respectively (cf. Fig.
3), W is the bandwidth of channel m, X is the modulation signal set and q is the
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number of frames per location update interval. In the above (13), Ri,j( ˜SNRk, g̃k)

is the computed rate per frame (9) estimated using ˜SNRm;k in (11) and g̃m;k =
[g̃m;k,1, . . . , g̃m;k,B ] where gm;k,b has been given in (12).

Remark 1. Here the estimated ˜SNRm;k is time variant because of its one of

the key parameters d̃i,j is time variant. The estimation process of d̃i,j at time t
is discussed in Appendix 9.2.

5.3. Proposed L-CAQ Channel Selection
In the following we describe our proposed Link-oriented Channel-Availability

and channel-Quality (L-CAQ) based channel selection strategy for MCRNs. In
order to understand the concept of L-CAQ, we first define the term efficient
channel, which is required for optimizing communication between a pair of CUs.

Definition 3 (Efficient Channel). An arbitrary channel m is said to be an
efficient channel that is chosen by an arbitrary CU ui to communicate with its
neighbour uj during the period [nτ, nτ + τ), if the estimated link throughput
ψ̄m
ij (t) of channel m is the highest compared to those of other available channels.

Note that estimation of the link throughput ψ̄m
ij (t) is performed within the

interval [nτ, nτ + τ), n ∈ R
+ by taking into account the estimated L-CAP in

Proposition 2 and estimated L-CQ in Proposition 3. The L-CAQ strategy then
selects the efficient channel from the list of available channels as formalized in
the following proposition.

Proposition 4. At the time instant nτ , the i-th CU ui selects an efficient
channel mij

eff(nτ) based on the estimated link throughput, ψ̄m
i,j(τ) in order to

communicate with its neighbour uj by jointly incorporating the estimated L-
CAP and L-CQ during the interval τ = [nτ, nτ + τ) according to equation (1),
i.e.,

mij
eff(nτ) = argmax

m
ψ̄m
i,j(τ) = argmax

m
CAPm

ij (nτ) · CQ
m
ij (nτ) · ψ

m (14)

where CAPm
ij (·) and CQm

ij (·) have been given in Propositions 2 and 3, respec-
tively, and ψm is the ideal link throughput of channel m.

In the following section we demonstrate that by exploiting the dynamic variation
of the L-CAP and L-CQ caused by the PUs and CUs mobility, the proposed
L-CAQ is able to outperform the existing methods. The simulation results
highlight the benefits of using the proposed technique for channel selection in
the presence of mobile PUs and CUs.

6. Simulation Results

In this section we discuss several numerical experiments to prove the effec-
tiveness of both the L-CAP and L-CQ as metrics that are closely associated
with the channel throughput as well as evaluate the proposed L-CAQ based
channel selection technique in MCRNs for establishing communication between
a pair of CUs. We numerically measure the performance of L-CAP, L-CQ and
L-CAQ through 106 Monte Carlo runs.
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Figure 4: Estimated CAP versus PU critical range.

6.1. Effectiveness of L-CAP

In the following we demonstrate the effectiveness of our proposed L-CAP es-
timation (i.e., the estimated probability of a channel licensed to PU/PUs being
available for the communication of a pair of neighboring CUs over a given inter-
val) compared to the existing methods. Specifically, we consider four methods
for estimating the CAP, namely : i) static estimation (i.e., based on only PU
activity [29]), ii) Mobility-aware Channel-Availability probability based Chan-
nel Selection Technique (MCAST) [1], [2], iii) Proposed L-CAP with perfect
knowledge of distance between i-th CU and l-th PU at time t, and iv) Proposed
L-CAP with estimated distance between i-th CU and l-th PU at time t as ob-
tained in Proposition 1. Both PUs and CUs move in a network region with area
of 1000 m2 according to the RWPM model with velocity uniformly distributed
in the interval [5, 10] m/s. The considered simulation set is as follow: sensing
time Tsen = 1 s, transmission time Ttx = 3 s, location update period τ = 20,
PU inactive probability = 0.6.

In Fig. 4, we analyze CAP by varying the normalized PU critical range.
We can observe that CAP estimation based on the PU inactive probability,
referred to as Static-CAP, does not depend on the PU critical range. In con-
trast, the other three estimation methods are significantly affected by the PU
critical range. This is so because all these three methods are designed by tak-
ing into account the mobile nature of the network. Apart from the Static-CAP
method, we notice that the estimated CAP value decreases while the PU critical
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Figure 5: RMSE versus q for different mean velocities. Note that q herein is used to define
variation in the LUP τ = qT .

range increases. When all the network area is covered by the PU critical range
(i.e., when the critical range = 1), then all four estimation methods produce
similar CAP values. We further notice that our proposed L-CAP estimation
method provides less error compared to the other mobility-aware CAP estima-
tion method, namely MCAST-CAP that was proposed in [1], [2]. This is sensible
because the proposed method takes into account the link-oriented CAP rather
than the node-based CAP, as captured by Proposition 2.

The impact of localization error on CAP estimation is exhibited in Figs. 5
and 6 by adopting a similar simulation set to Fig. 4. There is an inherent
trade-off between the network overhead and estimation error, i.e., the larger the
time interval of the LUP τ is, the lower will the PU and CU position update
rate be. Nevertheless, the larger τ causes a higher distance estimation error
(see Appendix 9.1) that can be assessed by means of Root Mean Squared Error
(RMSE). The estimation error can be further affected if the velocities of the PU
and CU increase and/or the relative distance of the CUs for each link increases.
In both cases, however, our proposed L-CAP estimation has comparatively less
RMSE values than the MCAST-CAP, as shown in Figs. 5 and 6, respectively.
This is so because the MCAST-CAP does not fully consider both the PU and
CU mobility in the distance estimation procedure.

6.2. Effectiveness of L-CQ

The proposed L-CQ measure in Proposition 3 mainly depends on the accu-
rate estimation of the received SNR and small-scale fading parameter. In Fig. 7,
assuming no localization error (the computed distance is accurate), we verify the
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sensitivity of L-CQ with respect to variation in distance and carrier frequency.
As captured by equation (10), the link quality decreases exponentially with the
increases in both distance and carrier frequency. A larger distance implies a
significant attenuation in transmit signal power and a higher frequency leads to
a shorter transmission range.

The small-scale fading parameter represents rapid-fluctuation (in the order
of milliseconds) of transmit signal due to Doppler-induced mobility. The er-
ror in fading estimation (12) is directly proportional to the Doppler/terminal
speed [38]. In order to maintain the same level of estimation accuracy, the time
resources for channel estimation will need to increase linearly with the mobil-
ity speed, which lead to reduction of the amount of data that can be reliably
transmitted. This latter point implies a lower L-CQ for a higher mobility speed.

6.3. Effectiveness of L-CAQ

In the following we demonstrate the effectiveness of our proposed L-CAQ
method in Proposition 4 compared to the existing mobility-aware channel selec-
tion strategy, namely MCAST which selects the channel based on the maximum
channel availability probability (MAX-CAP) metric. As argued in Sections 2
and 3, however, MAX-CAP may be insufficient in order to the select the best
channel under mobile scenarios due to both the time- and link-variation of the
channels. Instead, we envisage to select the best channel that has the highest
link throughput ψm

i,j(t). In practice the time- and link-variant nature of the
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Figure 7: Normalized L-CQ vs Distance with the varying of channel frequency.

channel implies that computing the exact ψm
i, is challenging due to unavailabil-

ity of required prior information. Our approach in this paper is to estimate the
ψm
i,j by individually estimating and subsequently multiplying the L-CAP and

L-CQ values according to equation (1), which is possible through exploitation
of LUP and sensing time per frame. In this way both the L-CAP and L-CQ
are jointly taken into account when devising a channel selection strategy. For
the purpose of comparison, we adopt the following simulation set: Number of
PUs = 10; number of channels = 5 where 2 PUs are licensed on each chan-
nel, i.e., Multiple PUs for Channel [5]; PU inactive probability and ideal link
throughput (ILT) for channels {1, 2, 3, 4, 5} are given by {0.6, 0.2, 0.3, 0.5, 0.4}
and {2, 2.5, 5, 7.5, 10}, respectively; sensing time Tsen = 1 s; transmission time
Ttx = 3 s; and LUP τ = 20.

Four strategies for estimating the normalized link throughput (i.e., keeping
the value of Link Throughput in between 0 to 1) are compared in Fig. 8, namely:
i) Channel selection technique based on the highest ILT (labelled as MAX-ILT ),
ii) Channel selection technique in MCAST [1],[2], iii) Proposed channel selection
technique with perfect knowledge of distance between (i, j)-th CUs and l-th PU
at time t (labelled as Exact), and iv) Proposed channel selection technique
with proposed estimated distance between (i, j)-th CUs and l-th PU at time t
(labelled as Proposed). We note that the link throughput decreases with the
increase of PU critical range in all the channel selection strategies due to a
similar reasoning to that in Fig. 4. In the case of MCAST, the estimation error
(i.e., its gap from the Exact method that indicates the actual link throughput)

17



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized PU critical range

E
s
ti
m

a
te

d
 N

o
rm

a
liz

e
d

 L
in

k
 T

h
ro

u
g

h
p

u
t

 

 

Exact

Proposed

MCAST

MAX−ILT

Figure 8: Estimated Normalized Link throughput versus PU critical range.

is large since it selects the channel according to only the node-based CAP. The
MAX-ILT method is neither accurate to capture the actual link throughput
as the ILT criterion does not take into account the impact of users mobility
to the time- and link-variant nature of the channel. On the other hand, joint
consideration of both the L-CAP and L-CQ in the design of channel selection
makes our proposed method attractive since it provides the most accurate link
throughput estimate. This can be observed from a small gap between two curves
in Fig. 8, namely the Exact and Proposed curves.

7. Conclusion

In this paper we have proposed a joint L-CAQ based channel selection tech-
nique for MCRNs. Based on the relative distances among PUs and CUs in
a given temporal interval, we have first derived an estimate of the link-based
channel availability probability (L-CAP). We have then obtained a mathemat-
ical expression that estimates the link-based channel quality (L-CQ) in mobile
scenarios. By incorporating both the L-CAP and L-CQ metrics that are gov-
erned by the non-stationarity of the network topology in MCRNs, we have
designed an effective channel selection strategy that maximizes the estimated
link throughput. Numerical results have revealed the effectiveness of adopting
the proposed scheme in MCRNs.
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Figure 9: Distance estimation procedure.
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9. Appendix

9.1. PU-CU Distance Estimation and Connection to Channel Availability

At time t0 = nτ , CUs ui and uj estimate the trajectory of PU vl for the
time interval [t0, t0+ τ) by exploiting to locations of these PU and CUs at time
instant t0− τ and t0 and assuming that the PU does not change its direction in
this interval. This assumption is reasonable because of the considered mobility
model (RWMP) and the small value of the LUP τ [1].

The distance estimation procedure at time t ∈ [t0, t0 + τ) is depicted in
Fig. 9. At time t, ui estimates d̃i,l(t) by applying the law of cosine to the △:
ui(t0 − τ), ui(t) and vl(t), i.e.,

d̃i,l(t) =
√

g2 + (d+ h)2 − 2g(d+ h) cos(θ4) (15)
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where

• g can be achieved by applying the law of cosine to the △: ui(t0− τ), vl(t)
and vl(t0 − τ), i.e.,

g =
√

(a+ f)2 + (b)2 − 2(a+ f)b cos(θ1) (16)

where θ1 = cos−1(a
2+b2−c2

2ab ) and f = a(t− t0)/τ ;

• h = d(t− t0)/τ ;

• θ4 = θ2−θ3 where θ2 and θ3 can be acquired from the △: ui(t0−τ), vl(t0)
and ui(t0) as well as the △: ui(t0 − τ), vl(t0) and vl(t), respectively;

• a, b, c, d, and e can be directly calculated using the locations information.

At time t, uj estimates d̃j,l(t) by applying the law of cosine to the △: uj(t0−τ),
uj(t) and vl(t), i.e.,

d̃j,l(t) =
√

g21 + (d1 + h1)2 − 2g1(d1 + h1) cos(θ8) (17)

where a1, b1, c1, d1, e1, f1, g1, h1 and θ8 can be obtained using similar steps to
compute g, h and θ4, respectively, as outlined for the case of d̃i,l(t) in equation
(15).

After getting the estimated distances d̃i,l(t) and d̃j,l(t), if both d̃i,l(t) > Ri,l

and d̃j,l(t) > Rj,l, then the CUs ui and uj can use the channels licensed
for the PU vl since both the CUs are outside the critical range of vl (i.e.,
p̃ij,m,L(Tk) = 1), otherwise, ui and/or uj are inside the critical range of PU

(i.e., p̃ij,m,L(Tk) =
∏

l∈L P
off
l,m ). This approach is sensible since it aligns with

the policy of minimizing the interference on the PU transmission.

9.2. Distance Estimation between a Pair of CUs

The distance between CUs i and j, i.e., di,j(t), can be estimated by exploiting
the CUs locations at time t0 = nτ and t0 − τ and assuming that the CUs do
not change their direction within the interval [t0, t0 − τ ]. This is reasonable for
the same reasoning as in Appendix 9.1.

From Fig. 9, let us consider that at time t0 and t0− τ , the exact locations of
CUs ui and uj are given by (uxi (t0); u

y
i (t0)) and (uxj (t0); u

y
j (t0)), and (uxi (t0−τ);

uyi (t0−τ)) and (uxj (t0−τ); u
y
j (t0−τ)), respectively. If we know the two locations

of node ui at two different time instants t0 and t0−τ , we can then draw a Right-
Angle-Triangle, as shown in Fig. 9, and obtain the angle between hypotenuse
and adjacent from the following equation, i.e.,

θh,a = cos−1

(

uxi (t0)− uxi (t0 − τ)

d

)

. (18)

Since we assume that the CUs do not change their direction from t0 − τ to
t0 + τ , the new position of the ui at time t can therefore be estimated as uxi (t)
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= cos θh,a × (d + h) and uyi (t) = sin θh,a × (d + h). The position of uj at time
t can also be estimated by invoking the same steps. After approximating both
the positions of CUs ui and uj at time t, the estimate of di,j(t) can then be
obtained by using the following equation

d̃i,j(t) =
√

(uxi (t)− uxj (t))
2 + (uyi (t)− uyj (t))

2. (19)

References

[1] A.S. Cacciapuoti, M. Caleffi, L. Paura and M. A. Rahman, Channel avail-
ability for mobile cognitive radio networks. Journal of Network and Com-
puter Applications, Volume 47, Pages 131–136, 2015.

[2] M. A. Rahman, R. Savoia and M. M. Uddin, MCAST: Mobility-aware
channel-availability based channel selection technique. The Eleventh Inter-
national Conference on Networking and Services, 2015.

[3] M. Caleffi, I. F. Akyildiz and L. Paura, OPERA: Optimal routing metric
for cognitive radio ad hoc networks. IEEE Transactions on Wireless Com-
munications, Volume 11, Issue no. 8, Pages 2884–2894, 2012.

[4] S. Abdelaziz and M. ElNainay, Metric-based taxonomy of routing protocols
for cognitive radio ad hoc networks. Journal of Network and Computer
Applications, Volume 40, Pages 151–163, 2014.

[5] A. S. Cacciapuoti, I. F. Akyildiz and L. Paura, Optimal primary-user mo-
bility aware spectrum sensing design for cognitive radio networks. IEEE
Journal on Selected Areas in Communications, Volume 31, Issue no. 11,
Pages 2161–2172, 2013.

[6] A. Ghasemi and E. S. Sousa, Optimization of spectrum sensing for oppor-
tunistic spectrum access in cognitive radio networks. Proc. of IEEE Con-
sumer Communications and Networking Conference (CCNC), 2007.

[7] S.C. Jha, U. Phuyal, M.M. Rashid and V.K. Bhargava, Design of OMC-
MAC: An opportunistic multi-channel MAC with QoS provisioning for dis-
tributed cognitive radio networks. IEEE Transactions on Wireless Commu-
nications, Volume 10, Issue no. 10, Pages 3414–3425, 2011.

[8] D. Xue, E. Ekici and X. Wang, Opportunistic periodic MAC protocol for
cognitive radio networks. Proc. of IEEE Global Telecommunications Con-
ference (GlobeCom), 2010.

[9] H. B. Salameh, O. S. Badarneh, Opportunistic medium access control for
maximizing packet delivery rate in dynamic access networks. Journal of
Network and Computer Applications, Volume 36, Pages 523–532, 2013.

21



[10] A. C. Talay and D. T. Altilar, Self adaptive routing for dynamic spectrum
access in cognitive radio networks. Journal of Network and Computer Ap-
plications, Volume 36, Pages 1140–1151, 2013.

[11] T. Camp, J. Boleng and V. Davies, A survey of mobility models for ad
hoc network research. Wireless Communications and Mobile Computing,
Volume 2, Issue no. 1, Pages 483–502, 2002.

[12] A. S. Cacciapuoti, I. F. Akyildiz and L. Paura, Primary-user mobility im-
pact on spectrum sensing in cognitive radio networks. Proc. of IEEE Sym-
posium on Personal, Indoor, Mobile and Radio Communications, 2011.

[13] Won-Yeol Lee and I.F. Akyildiz, Optimal spectrum sensing framework for
cognitive radio networks. IEEE Transactions on Wireless Communications,
Volume 7, Issue no. 10, Pages 3845–3857, 2008.

[14] S. Liu, Y. Chen, W. Trappe and L.J. Greenstein, Non-interactive localiza-
tion of cognitive radios based on dynamic signal strength mapping. Proc. of
IEEE International Conference on Wireless On-Demand Network Systems
and Services (WONS), 2009.

[15] S. Parvin, F. K. Hussain, O. K. Hussain, S. Han and B. Tian, Cognitive
radio network security: A survey. Journal of Network and Computer Ap-
plications, 2013.

[16] Z. Ning, Q. Song, Y. Huang and Lei Guo, A channel estimation based
opportunistic scheduling scheme in wireless bidirectional networks. Journal
of Network and Computer Applications, Volume 39, Pages 61–69, 2014.

[17] A. Avokh and G. Mirjalily, Interference-aware multicast and broadcast rout-
ing in wireless mesh networks using both rate and channel diversity. Com-
puters and Electrical Engineering, Volume 40, Pages 614–640, 2014.

[18] M. Caleffi and A. S. Cacciapuoti, Optimal database access for TV white
space. IEEE Transaction on Wireless Communications, Volume 64, Issue
no. 1, Pages 83–93, 2016.

[19] A. S. Cacciapuoti, M. Caleffi, L. Paura and R. Savoia, Decision maker
approaches for cooperative spectrum sensing: Participate or not participate
in sensing?. IEEE Transactions on Wireless Communications, Volume 12,
2013.

[20] A.S. Cacciapuoti, M. Caleffi, D. Izzo and L. Paura, Cooperative spectrum
sensing techniques with temporal dispersive reporting channels. IEEE Trans-
actions on Wireless Communications, Volume 10, 2011.
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