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There is still no satisfactory understanding of the factors that enable soil microbial
populations to be as highly biodiverse as they are. The present article explores in silico
the hypothesis that the heterogeneous distribution of soil organic matter, in addition to
the spatial connectivity of the soil moisture, might account for the observed microbial
biodiversity in soils. A multi-species, individual-based, pore-scale model is developed
and parameterized with data from 3 Arthrobacter sp. strains, known to be, respectively,
competitive, versatile, and poorly competitive. In the simulations, bacteria of each
strain are distributed in a 3D computed tomography (CT) image of a real soil and
three water saturation levels (100, 50, and 25%) and spatial heterogeneity levels (high,
intermediate, and low) in the distribution of the soil organic matter are considered. High
and intermediate heterogeneity levels assume, respectively, an amount of particulate
organic matter (POM) distributed in a single (high heterogeneity) or in four (intermediate
heterogeneity) randomly placed fragments. POM is hydrolyzed at a constant rate
following a first-order kinetic, and continuously delivers dissolved organic carbon (DOC)
into the liquid phase, where it is then taken up by bacteria. The low heterogeneity
level assumes that the food source is available from the start as DOC. Unlike the
relative abundances of the 3 strains, the total bacterial biomass and respiration are
similar under the high and intermediate resource heterogeneity schemes. The key result
of the simulations is that spatial heterogeneity in the distribution of organic matter
influences the maintenance of bacterial biodiversity. The least competing strain, which
does not reach noticeable growth for the low and intermediate spatial heterogeneities
of resource distribution, can grow appreciably and even become more abundant than
the other strains in the absence of direct competition, if the placement of the resource
is favorable. For geodesic distances exceeding 5 mm, microbial colonies cannot grow.
These conclusions are conditioned by assumptions made in the model, yet they suggest
that microscale factors need to be considered to better understand the root causes of
the high biodiversity of soils.

Keywords: soil, pore scale, organic matter, resource allocation, bacteria, biodiversity, agent-based modeling

Frontiers in Microbiology | www.frontiersin.org 1 July 2018 | Volume 9 | Article 1583

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.01583
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.01583
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.01583&domain=pdf&date_stamp=2018-07-27
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01583/full
http://loop.frontiersin.org/people/386588/overview
http://loop.frontiersin.org/people/572477/overview
http://loop.frontiersin.org/people/117629/overview
http://loop.frontiersin.org/people/89930/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01583 July 25, 2018 Time: 16:39 # 2

Portell et al. Resource Heterogeneity and Soil Biodiversity

INTRODUCTION

During the last decade, soils have become increasingly central to
a number of crucial debates on issues of great societal concern
(e.g., Baveye et al., 2018). Because soils contain a very large stock
of carbon, there is a risk that, with rising ambient temperatures
associated with global climate change, soils will release vast
amounts of greenhouse gases and thereby accelerate change.
Biodiversity losses have also emerged as a major concern in many
parts of the world. In this context, it is not surprising that in
recent years, there has been a significant surge of interest into
the biodiversity of soils, and the effect it has on traditional soil
functions (Nannipieri et al., 2003).

Many aspects of the biodiversity of soils have proven very
difficult to understand. Soils are highly complex media in which
a huge number of bacteria, archaea, and fungi live. In a single
gram of soil, it is not exceptional to find as many as 1010

bacterial cells and 5 × 104 species (Roesch et al., 2007), with
commensurate numbers found for other microorganisms. To
the extent that many microorganisms (an estimated 98.5% in
the case of bacteria) have never been isolated or characterized,
the measurement of soil biodiversity itself raises a number of
fundamental questions (e.g., Nannipieri et al., 2003; Baveye et al.,
2016a,b, 2018). Functionally, it is not clear at all to what extent
this very large diversity of soil microbial populations is crucial
and whether it needs to be preserved at all cost. Experimental
results are contradictory in this respect. Whereas, e.g., Philippot
et al. (2013) show that the loss of biodiversity in soils decreases
denitrification activity and nitrogen cycling, the experimental
results of Werts et al. (2006) suggest on the contrary that
biogeochemical functions of soil such as carbon mineralization
and denitrification are not impacted by a reduction of microbial
diversity. Powlson et al. (2017) have recently described as an
unresolved 60-year old paradox the fact that CHCl3 fumigation,
wiping out 90% of the soil microbial population and modifying
drastically its diversity, does not appear to have an effect on soil
organic carbon (SOC) mineralization in soils that have a pH
above 5.5. SOC mineralization continues at the same rate, after
fumigant removal, once the initial decomposition flush is over
(Powlson et al., 2017).

A similarly high uncertainty surrounds the features of soils
that allow such a large microbial diversity to exist in the
first place. Some researchers consider that diversity is mainly
caused by biotic interactions between cells (Hanson et al.,
2012), but experimental observations increasingly suggest that
a high biodiversity is associated with soil spatial heterogeneity
(Rainey and Travisano, 1998) and is caused by biotic and
abiotic interactions taking place in the soil architecture. Yet the
exact mechanisms involved remain elusive. The often advocated
explanation that the heterogeneous, disconnected distribution
of moisture in unsaturated soils causes distinct groups of
microorganisms to be physically isolated from each other (Treves
et al., 2003; Long and Or, 2009) is appealing, but it does not
apply to fungi or filamentous bacteria (Baveye et al., 2016b)
and cannot account by itself for the biodiversity of soils that
are periodically saturated after rainfall events. At this point,
there is no real, satisfactory explanation of how the spatial

heterogeneity of soils might foster the biodiversity of their
microbial populations.

In this general context, the key objective of the present
article is to explore the hypothesis that the heterogeneous
distribution of the basic nutrient resources used by bacteria in
soils can account to some extent for their diversity. The spatial
distribution of organic matter in soils is known to be highly
heterogeneous. Incorporation of plant residues by tillage results
in patchy distribution at the centimeter scale (e.g., Elyeznasni
et al., 2012) while at smaller millimeter scales, heterogeneous
distribution of soil organic matter has been visualized by Peth
et al. (2014) and Kravchenko et al. (2014). On the basis of these
microscale observations, the effect of the heterogeneity of the
spatial distribution of soil organic matter and of the connectivity
of the aqueous phase on bacterial biodiversity was examined in a
series of scenarios using a 3D pore-scale carbon dynamics model.
Bacterial cells of three strains of the Arthrobacter sp. including
highly competitive-, generalist-, and poorly competitive-strains,
were randomly placed within the 3D pore space of a small soil
sample (of volume size of 314 mm3) imaged at a resolution of
68 µm, suitable to visualize meso- and macro-pores.

MATERIALS AND METHODS

Soil Image
Undisturbed soil cores were sampled in the surface horizon
of a cultivated soil, a silty loamy (19% clay, 75% silt, 6%
sand) Albeluvisol (Vogel et al., 2015). 3D images of the
samples were obtained using an X-ray CT scanner (HMX 225,
NIKON metrology, Tring, United Kingdom). A global threshold
according to Elyeznasni et al. (2012) was used to obtain binary
images in which the voxels of the gray CT image were classified
either as soil or void voxels. We selected one sub-image (called
G6 in Vogel et al., 2015) of 1003 voxels size out of the set
of segmented CT images. The voxel-resolution of the image is
68 µm, so that the pore space explored in this study encompasses
most of the structural porosity made of meso- and macro-pores.
This image corresponds to a volume size of about 314 mm3,
and it has a porosity of 18.82%. This number is undoubtedly
smaller than the actual porosity of the soil, because of the fact
that sub-resolution pores are ignored (Baveye et al., 2017).

The localization of the fluid and gas voxels corresponding to a
given water saturation index, Sw (the proportion of the pore space
filled with water), is calculated using a two-phase two-relaxation-
times (TRT) lattice-Boltzmann model (LBM) as described by
Genty and Pot (2013) and Pot et al. (2015). Three levels of
water saturation of the CT-visible porosity are assumed in the
present work, Sw = 1.00, Sw = 0.50, and Sw = 0.25. After a visual
inspection of the 3D distribution of the gas phase in the images,
we selected a few of the smallest visible pores containing gas
and recalculated from the Young-Laplace law a rough estimate
of the matric potential for Sw = 0.25 and Sw = 0.50. The matric
potentials estimated in this manner are about -0.6 and -0.3 kPa,
respectively. Therefore, even though a water saturation level of
0.25 would suggest that the soil is relatively dry, the fact that this
number refers only to the CT-visible pore space means that the
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scenarios reported in the present contribution correspond to wet
conditions.

The image offers a tradeoff between resolution and sample
size (constrained by X-ray computed tomography). It is a
compromise that presents the advantage of reproducing the
millimeter-scale variability of the microbial activity, as reported
by Vieublé-Gonod et al. (2006), and of enabling us to work with
a soil volume that is large enough for carbon mineralization to be
measured in practice.

Model Description
The description below of the Ib-LBioS-Comp model follows
the overview, design concepts, and details (ODD) protocol
(Grimm et al., 2006, 2010), which was especially developed to
communicate the features of agent and individual-based models.

Purpose
Ib-LBioS-Comp, which stands for Individual-based LBM for
biodegradation affected by soil structure and competition, is a
pore scale modeling approach developed to study the impact
of the soil structure or, more appropriately, architecture (see
discussion in Baveye et al., 2018), molecular diffusion, spatial
heterogeneity of resource distribution, and competition among
bacterial species on the biodegradation dynamics of organic
matter in the soil.

Entities, State Variables, and Scales
Ib-LBioS-Comp combines a lattice-Boltzmann solute diffusion
model and an individual-based biological module describing
bacterial activity. The model involves single bacterial cells (biotic
agents) of up to three different species or strains, dissolved
organic carbon or DOC (abiotic lattice-Boltzmann populations),
and particulate organic matter (POM, abiotic agents). Bacterial
cells and DOC are distributed in the 3D volume of the soil pore
volume and POM is distributed in the 3D volume of the soil solid
matrix. Enzymatic hydrolysis of POM is assumed to continuously
supply DOC to the liquid phase. Then DOC diffuses through the
liquid phase toward the microenvironments where it is taken up
by bacteria and used as nutrient source. The diffusion and uptake
of oxygen are not accounted for explicitly in the model at the
moment and are assumed not to limit microbial activity.

The simulated space is divided into a regular 3D grid made of
cubic voxels that can be either solid or filled with a fluid (air or
water).

A bacterial cell or individual (Ii) is defined by the variables
5i, identifying its position in the domain, its species ji, its mass
mi (mg C), its specific uptake rate υDOC,i (tu−1), and its mass
at reproduction mR,i (mg C). All masses in Ib-LBioS-Comp are
expressed in terms of mass of carbon. Letting P = I(t) denote
the number of bacteria at time t, one obtains for the state of the
population at time t:

Pn = {Ii[5i, ji,mi, υDOC,i,mR,i]}i=1,2,...,n(t) (1)

where i is the index of individual bacteria and n(t) the total
number of cells at time t.

A POM agent (Al) is defined by a variable indicating its
position in the domain, 5l, and its carbon mass, mPOM,l

(mg C). Letting A(t) denote the number of POM agents, the POM
population state at time t is:

POMm = {Al[5l,mPOM,l]}l=1,2,...,m(t) (2)

where l is the index of the POM agents and m(t) the total number
of POM agents at time t.

The DOC solute is simulated by microscopic lattice-
Boltzmann populations, fq, that are microscopic solute entities
defined in the Q microscopic directions at each liquid node of
the 3D grid. The Q directions are defined by the unit microscopic
velocity vectors,

−→
Cq = {Cqα}q=0,...,Q−1;α=1,...,d where d is the

dimension of the grid or lattice. We used the model D3Q7.
The DOC concentration in the liquid phase, CDOC (t) (mg C

lu−3) can be calculated at each liquid node of the grid as the sum
of the fq populations:

CDOC =
1

MVxyz

Q−1∑
q=0

fq (3)

with MVxyz the volume of one voxel expressed in lu3 where lu
is the spatial unit of the lattice, in our case determined by the
scanning resolution so that 1 lu = 68 µm.

The temporal evolution of the system is divided into equal
intervals associated with time steps or units (tu) of a time
step length dictated by the lattice-Boltzmann submodel. The
temporal extent of the simulations was set to 10 days according
to previous simulations made by Vogel et al. (2015) in which
exponential growth and decline of biomass were observed within
this duration. The time step length is 3.44 s (see Sections “Abiotic
Processes” and “Model Parameterization”).

Process Overview and Scheduling
Global simulation comprises three sections (Figure 1): (i)
the initialization of the simulated system, (ii) the time step
loop, which is repeated until the end of the defined time
steps, and (iii) the model output section, where the system-
level (aggregated) and individual-level (non-aggregated) data
are saved in files. Initialization of the system includes: reading
of model parameters, initialization of the bacterial agents, and
initialization of the LBM parameters and DOC populations.
The time step loop includes, chronologically: (ii.i) storage of
the simulation state in temporary data structures, (ii.ii) the
POM agents actions loop, (ii.iii) the bacterial actions loop
(Figure 2), and (ii.iv) the lattice-Boltzmann actions. Output files
of aggregated and state variables are created from the temporary
data structures saved previously.

At each time step, bacterial cells perform the following set of
actions: uptake, metabolism, reproduction, and mortality. The
order in which bacteria act is changed randomly every time
step to avoid privileging always the same first-acting bacteria.
At each time step, the existing POM agents undergo hydrolysis
to produce DOC. The DOC lattice-Boltzmann populations, fq,
are then updated through the following set of actions: collision,
propagation, and bounce-back when they encounter a solid or a
gas neighbor. This last action is motivated by the premise that
DOC occurs only in the water phase.
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FIGURE 1 | General workflow of the Ib-LBioS-Comp model.

Design Concepts
Emergence
Bacterial processes (uptake, metabolism, reproduction,
mortality) are defined at a single-cell level and the population
or system level behavior emerges from the interactions among
individuals and between the individuals and the media. The main
population-level emerging characteristics are the population

density (bacteria present in the media), the population biomass,
the DOC taken up by the population, the CO2 produced by the
population and the bacterial size distribution. Solute diffusion
processes (collision, propagation) are defined at the microscopic
level of the Q directions of the lattice, and the solute behavior
(diffusion) emerges from the interactions among the solute
lattice-Boltzmann populations.
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FIGURE 2 | General workflow of the bacterial agents loop of the
Ib-LBioS-Comp model.

Interaction
Bacteria are considered to be immobile but they compete directly
for space through the maximum carrying capacity of a voxel.
Therefore, the presence of other bacterial cells in the local
space can directly affect the fate of new-born bacteria. Indirect
interactions among individual bacteria arises from competition
for the DOC available in the local environment.

Stochasticity
Randomness is considered when the rules are applied to
individuals by using probabilistic distributions to deal with or
manage individual events. Random processes or events include
the assignment of the position of new-born bacteria in the
physical domain near the mother when the grid element of the
mother reached maximum occupancy, and the occurrence for cell
death. The sequence of actions of the simulated bacteria changes
randomly at each time step to avoid privileging one over the
others. The model can also introduce further stochasticity when
setting the mass of the initial individuals, the individual specific
uptake rate, and the mass at reproduction of the individual
bacteria using folded normal distributions, but this is not
considered in the current study.

Observation
Global and single-cell outputs are recorded at the beginning of
the simulation, at regular intervals during the simulation, as well

as at the end of the simulation. Global variables calculated at
the scale of the entire domain include: mass of DOC, POM, and
CO2 produced in the media, and, for each of the three bacterial
species, the number of bacteria, and total bacterial biomass. The
state of all the individual bacteria is saved at sampling times.
These single-cell data include the position within the domain,
species, mass, uptake rate, and mass at reproduction of the
individuals. The carbon mass and position of all the POM spots
(abiotic agents) are also saved at sampling times. The DOC
concentration of the liquid voxels holding at least one bacterium
is also recorded at sampling times. The final DOC concentration
of all the liquid grid cells of the domain is recorded at the end of
the simulation.

Initialization
The specific uptake rate (vDOC,i), and the reproduction mass
(mR,i) of the initial individuals (i = 4, ...,NB0) are assumed to be
specific for each jth species. For the individuals of each species
j, these properties are set using the model parameters vjDOC
and mj

t0, respectively, for the uptake rate and the reproduction
mass. No intraspecific variability is considered in the present
study. Similarly, the initial mass of the individuals starting
the simulations (mi) is initialized according to the model
parameters mj

t0.
Since it is generally assumed that bacteria in soil

microenvironments tend to be sorbed to, or be at least very
near, solid surfaces, the model assumes that bacteria can be
located only in liquid voxels having at least one solid neighbor.
What defines a neighbor here is the particular lattice-Boltzmann
connectivity that is adopted in the calculations (D3Q7 in this
case). The initial NB0 bacterial cells are randomly distributed
among a number of bacterial spots (NSP0T) that, in turn, are
randomly chosen, with replacement, from the liquid voxels
having one or more solid neighbors.

The POM agents are situated in the solid matrix of the soil. The
initial POM agents are randomly distributed among solid voxels
that have at least one liquid neighbor.

An initial amount of dissolved organic carbon, DOC0, is
distributed homogeneously among the liquid voxels of the
image.

Input Data
The model uses soil structural data as described in see Section Soil
Image.

Biological Processes
Several separate submodels describe quantitatively the uptake,
metabolism, reproduction, and mortality, respectively, of
individual bacteria.

In the Uptake submodel, the uptake (Ui) of carbon substrate by
bacterium i, belonging to the species j = ji, is given by the equation
depending on the mass mi (t) of the bacterium

Ui(t) =
vDOC,i C

(t)
DOC

C(t)
DOC + kjDOC

mi(t) (4)
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where vDOC,i is the specific uptake rate of the ith bacterium
(tu−1), and the parameter kjDOC is the half saturation constant
(mg C lu−3) of the jth species.

In the Metabolism submodel, the mass of carbon taken up is
used by the cell to create new biomass. Since catabolic reactions
need energy, due to the respiration process, a fraction of the
carbon that is taken up is released again to the media in the form
of CO2 emissions. Accordingly, the growth of the bacterial cell is
modeled using the following equation:

mi(t + 1) = mi(t)+ Ui(t)− kjrmi(t) (5)

where kjr is the respiration rate (tu−1) of the species j. Equations
(4) and (5) assume that growth respiration (traditionally
calculated as a function of substrate during uptake) and
maintenance respiration (proportional to the biomass) are not
distinguished.

The Reproduction submodel adopts a simple bipartition
condition (Banitz et al., 2015) according to which the bacterial
cell has to attain a specific individual reproduction mass before
dividing. Every time step, the mass of a bacterium is compared
to mR,i (mg C), the reproduction mass of the ith individual.
If mi(t + 1) > mR,i, the mass of the bacterium is halved, and
simultaneously a daughter cell of the same mass is created. If
the number of bacteria occupying the voxel of the mother cell
is less than NVOX , the maximum carrying capacity of a voxel,
the cell is created in the current voxel. Otherwise, the simulator
chooses randomly a voxel that has not attained the maximum
carrying capacity. The searching algorithm looks progressively
to neighbors situated at increasing distances (in voxels) from
the mother’s voxel of origin, until all the tridimensional space is
inspected. If all the voxels reach the maximum carrying capacity,
the simulation stops. The daughter cell remains active but does
not act until the next time step is reached. The specific uptake rate
of the new-born individual (vDOC,i) and its mass at reproduction
(mR,i) are inherited from the mother.

Finally, the Mortality submodel accounts for bacterial cell
death derived from internal and external events (e.g., predation
by other organisms). The cell cannot survive anymore due to
internal events when the cell size decreases below the minimal
cell size characteristic of its species j,mj

MIN which can be attained
due to a starvation process. Cell death due to external events is
accounted by a probability, pjM(dimensionless), independent of
the cell state. At every time step, the submodel compares rp with
pjM , where rp is a random realization coming from a uniform
distribution between 0 and 1. If rp > pjMthe individual bacterium
dies. The cell carbon lyses and creates new DOC in the current
voxel.

Abiotic Processes
The main abiotic processes simulated by the model are the
hydrolysis of POM and the diffusion of DOC in the 3D pore
space. No convective movement of DOC was considered in the
model. POM agents release DOC, decreasing as a result the mass
of the POM agent. The model assumes only one homogeneous
fraction of POM with a unique hydrolysis rate. The hydrolysis
process is modeled assuming a first order kinetics of constant

rate, kPOM . The underlying hypothesis is that exo-enzymes are
ubiquitous in soil (Folse and Allison, 2012). Nannipieri et al.
(2003) reported that newly produced exo-enzymes by bacterial
cells are short-lived molecules because, for instance, proteases can
degrade them. Thus, the ubiquitous enzymes are probably those
physically protected though their adsorption to clay particles or
humic molecules (Burns, 1982). Burns (1982) considers it a likely
scenario that these enzymes become active when a POM fragment
comes into contact with them. Then, the DOC released by the
agent is distributed equally among the liquid voxels neighboring
the solid voxels containing the POM agent.

We implemented the TRT lattice-Boltzmann approach
of Ginzburg (2005). The evolution equation of the DOC
microscopic entities at the liquid nodes (grid cell with k = lq),
−−→
Vxyz from time t to t+ 1 is given by:

fq(
−−→
Vxyz +

−→cq , t + 1)− fq(
−−→
Vxyz, t)

= λe[f+q (
−−→
Vxyz, t)− e+q (

−−→
Vxyz, t)] + λo[f−q (

−−→
Vxyz, t)

− e−q (
−−→
Vxyz, t)] + Sq (6)

in which the collision and propagation steps are described,
respectively, by the two first terms of right hand side and left
hand side of (7), respectively. The sink/source term of DOC,
Sq, is calculated from the hydrolysis and bacterial processes. In
the TRT scheme, the microscopic entities fq are decomposed
into symmetric, f+q and antisymmetric components, f−q along their
opposite velocities −→cq = −−→c q (Ginzburg, 2005). During the
collision step, the relaxation of moments resulting from the
entities’ distribution at time t toward an equilibrium state eq =
e+q + e−q governs the reorganization of the entities. The relaxation
parameter λe is a free parameter and the relaxation parameter λo
is related to the molecular diffusion coefficient, DLBM

m (lu2tu−1)
along:

DLBM
m =

−1
3

(
1
2
+

1
λo

)
(7)

Both parameters must be comprised between -2 and 0 for
stability. The rescaling of lattice Boltzmann time units (tu) in real
time units [T] is made through the relation:

TR =
DLBM
m LR2

DR
mL

2
LBM

TLBM (8)

where TLBM and LLBM are the space and time in lattice units
(respectively, tu and lu) and TR and LR are their corresponding
time and space units in real units [respectively (T) and (L)].

Model Parameterization
Typical parameters for the three different strains 3R, 7R, and 9R
of Arthrobacter sp. (see Table 1) were taken from the literature.
The specific uptake rate, ν

j
DOC, the half saturation constant of

the uptake rate, kjDOC, and the respiration rate, kjr , of the three
species were directly taken from Monga et al. (2014), while
the population mortality rate, provided by the same authors,
was reinterpreted as probability, Pjm, dependent on the duration
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TABLE 1 | Model parameters values used in the simulations. See text for an explanation of the computations and the bibliographic references used.

Symbol Definition Unit Strain

j = 3R j = 9R j = 7R

BACTERIAL PARAMETERS

ν
j
DOC Maximal uptake rate d−1 17 9.6 8.0

kj
DOC Half saturation constant mg C cm−3 water 5.0 × 10−4 1.0 × 10−3 1.4 × 10−4

kj
r Respiration rate d−1 0.2 0.2 0.3

mj
R Reproduction mass mg C 1.32 × 10−10 1.32 × 10−10 1.32 × 10−10

Pj
m Mortality probability – 1.5 0.5 1.0

mj
MIN Min bacterial mass mg C 0.1 mR 0.1 mR 0.1 mR

mj
t0 Initial mass of the bacterial cells mg C 5.39 × 10−11 5.39 × 10−11 5.39 × 10−11

Nj
B0 Initial bacterial number Cells 230 230 230

Unit Value

BIOTIC PARAMETERS

NVOX Voxel Max. carrying capacity Cells 751,423

ABIOTIC PARAMETERS

kPOM POM decay rate d−1 0.25

DM DOC mol. diff. coeff. cm2 .s−1 6.73 × 10−6

of the time step. These strains have different growth patterns,
with 3R expected to be the fastest growing strain and strain 9R
the least competitive one due to its highest value of the half
saturation constant of the uptake rate. Strain 7R is supposed to
be representative of a more generalist strain.

The maximum carrying capacity of a lattice-Boltzmann node,
NVOX , was calculated from the volume of a single image voxel
(683 µm3) and the mean cell volume of a bacterial cell. The
mean volume of an Arthrobacter cell was calculated to be
0.418 µmł according to data from Erlebach et al. (2000), assuming
a spherical shape for the bacterial cell. We used this mean volume
for the three strains of Arthrobacter sp. The mean reproduction
diameter (i.e., the diameter attained by the cell before division)
was also estimated from Arthrobacter cell size distributions
(Erlebach et al., 2000) and assumed to be in the range 1.25
± 0.15 µm, which includes the biggest diameters of the size
distribution measured with a Coulter counter. The central value
of 1.25 µm has been used in the present study.

Then, the mean carbon content of a single cell (mj
t0, Table 1)

and the value for the reproduction mass, mj
R, were calculated

from the mean cell volume and the mean reproduction volume
calculated earlier, assuming a density of 1.1 g/cm3, a ratio of dry
to wet cell weight of 0.25, and a carbon content of 0.47 g C per
gram of dry cells (Gras et al., 2011).

The value of the decay rate of the POM agents, kPOM , was
set to 0.25 day−1 as reported by Iqbal et al. (2014) for the
decomposition rate of maize (Zea mays) stem residues. These
authors found “optimal decomposition conditions similar to
those obtained with ground material” for fragments of POM of
0.02 cm length. Assuming a density of POM of 0.12 g cm−3

(Iqbal et al., 2013) and a volume of POM residue of about
0.02 cm × 0.02 cm × 0.01 cm, we calculated an initial POM
mass of carbon, POM0, of 1.92 10−4 mg C. We translated this
fragment of POM into four fragments of parallelepiped shape

(1× 1× 3 voxels), located at the solid/liquid interface (Figure 3).
When the POM hydrolyses, the DOC produced is included in the
neighboring fluid site.

The molecular diffusion coefficient in lattice-Boltzmann units,
DLBM
m , is fixed to 0.5 lu2tu−1 (Vogel et al., 2015, 2018). Since the

DOC molecular diffusion coefficient, DR
m, is 6.73 10−6 cm2s−1

(Weast et al., 1986) and 1 lu = 68 µm, the rescaling equation (8)
gives 1 tu = 3.44 s.

Simulation Scenarios
The scenarios were designed to investigate the effect of the local
micro-environments of bacteria on the strains abundance. For
all scenarios we randomly placed 230 bacteria of each strain
in the medium which resulted in 690 bacterial spots. In one

FIGURE 3 | 2D view of the POM initialization scheme used in the scenarios. In
the figure, the POM (red), the DOC (yellow), the soil solid matrix (black), and
the pore space (white) are depicted. In (a), POM disaggregated, four
parallelepiped POM fragments of 1 × 1 × 3 image voxels, were assumed to
be present and connected to the pore space through a single voxel. In (b),
POM aggregated, a single 3D POM fragment of 4 × 4 × 3 was assumed to
be present and connected to the pore pace through 4 of its voxels.
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particular scenario (S4) the three strains systematically co-exist
in the same bacterial spot, so that only 230 bacterial spots were
generated. The local micro-environments of these bacterial spots
were modified by introducing heterogeneity in the placement of
the resource (POM and DOC) in the medium. The water content
level was also modified. Table 2 summarizes the characteristics
of the different scenarios. Scenarios S1, S2, and S3 test the effect
of the spatial distribution of organic matter on the global organic
matter degradation and strain abundance. Scenario S4 tests the
effect of the direct interspecific bacterial competition on strain
abundance, whereas scenarios S5 and S6 are designed to test the
effect of the water saturation level on organic matter degradation
and strain abundance. Details of these scenarios are given below.

Scenario S1
The initial 690 bacteria were distributed among 690 randomly
selected liquid voxels neighboring the soil solid matrix. Four
POM fragments were randomly distributed in the medium
(Figure 3a). Ten replicated simulations were performed with the
position of POM fragments controlled by a random seed. The
positions of the 690 bacterial spots were left unchanged for the ten
replicated simulations. The water saturation level, Sw, was 0.50.

Scenario S2
The four fragments of POM were gathered in one fragment made
of 2 × 2 × 3 voxels with the base 2 × 2 voxels being contiguous
solid sites neighboring 2 × 2 fluid sites (Figure 3b). Bacteria
were located in the same 690 positions as for scenario S1 and
the same water saturation level, Sw = 0.50, was adopted. Ten
replicated simulations were again performed with the position
of POM fragments controlled by a random seed Comparison of
scenario 1 and 2 made it possible to assess the effect of the degree
of spatial heterogeneity of POM.

Scenario S3
We assumed that all the carbon that can, potentially, be
hydrolyzed and released to the liquid phase of the soil in the
scenarios S1 and S2, was already homogeneously distributed
in the liquid phase of the medium at the beginning of the
simulations as a DOC. A water saturation index of Sw = 0.50
was also adopted. In ten replicated simulations, a random seed

controlled the position of 690 bacterial spots. This resulted in 9
extra configurations of the 690 bacterial positions tested in S1
and S2. Comparison of S3 with S2 and S1 allowed us to evaluate
the impact of homogenously- vs. heterogeneously distributed C
within the soil.

Scenario S4
This scenario was aimed at the effect of direct interspecific
competition on strain abundance. Two simulations (identified as
S4a and S4b) involved 3 bacteria, one of each strain, in selected
230 bacterial spots. In S4a, we took one particular repetition of
scenario S2 in which the three strains had a noticeable growth
(repetition S2r2) and we classified the 690 spots according to
the amount of biomass growth of the colony in a descending
order. The first 230 bacterial spots were selected and used to
place the initial bacteria. In S4b, we took the repetition S2r2 but
we just selected the 230 bacterial positions occupied by the less
competitive strain (9R). In each of these spots, we placed initially
3 bacteria, one of each strain.

Scenarios S5 and S6
These scenarios are identical to scenario S2 except for the water
saturation level that was fixed to 1.00 (S5) and 0.25 (S6). Because
the positions of the 690 bacterial spots are left unchanged, in
scenario S6 there were 165 bacterial spots that were found to be in
the gas phase, and thus did not grow. In the 525 spots still placed
in water filled grid cells, the three strains were found to be equally
distributed as 178 cells of strain 3R, 172 cells of strain 9R and 175
cells of strain 7R.

RESULTS AND DISCUSSION

Effect of Spatial Distribution of Organic
Matter on Global Organic Matter
Degradation and Strain Abundance
Simulation scenarios S1 and S2 assume that the soil organic
matter is found in a number of POM fragments that are
distributed (S1) or aggregated (S2). In the proposed scenarios,
the hydrolysis rate of POM is set to a constant value, so that

TABLE 2 | Simulation scenarios overview.

Scenario POM0 DOC0 NB
SPOT NPOM

SPOT Sw Randomness

mg C mg C Spots Spots [−]

S1 1.92 × 10−4 0.0 690 4 0.50 POM spots

S2 1.92 × 10−4 0.0 690 1 0.50 POM spots

S3 0.0 1.92 × 10−4 690 0 0.50 Bacterial spots

S4a 1.92 × 10−4 0.0 230 1 0.50 –

S4b 1.92 × 10−4 0.0 230 1 0.50 –

S5 1.92 × 10−4 0.0 690 1 1.00 POM spots

S6 1.92 × 10−4 0.0 690 1 0.25 POM spots

In the table: POM0 is the initial carbon mass of POM, DOC0 is the initial carbon mass of DOC, NB
SPOT is the number of bacterial spots, NPOM

SPOT is the number of POM spots,
and Sw is the saturation level of the media. Randomness indicates whether the POM fragments or the bacterial spots are randomly changed to generate 10 replicated
simulations. The letter “a” denotes that the 230 bacterial spots are selected from the highest growing bacterial spots of repetition 2 of S2, while “b” denotes that the 230
bacterial spots occupied by the strain 9R in the repetition 2 of S2 are used.
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FIGURE 4 | Global biodegradation kinetics (left) and strains abundance (right) of scenarios with dispersed POM fragments (S1) and aggregated POM fragments (S2).
M/M0 is the ratio of the carbon mass (mg C) of each output over the total initial carbon mass M0.

for kPOM = 0.25 d−1, about 92% of the initial mass of carbon of
the POM fragments is hydrolyzed at the end of the simulations.
The predicted time evolutions of the POM, DOC, total biomass
(B), and CO2 are shown in Figure 4. At the beginning of the
simulations, the carbon hydrolyzed from the POM particles
cannot be totally consumed and accumulates in the liquid phase.
After one day, when exponential growth of bacteria starts, the
major part of the dissolved organic carbon is metabolized by the
cells. At the end of the simulations, the CO2 emitted has not yet
reached a plateau although the slope of its cumulated increase
begins to decrease. Except for one repetition of scenario S2, no
differences are observed in the time evolutions of the POM, DOC,
total biomass, and CO2 between the two POM distributions.

Although the global model outputs are similar for both spatial
distributions of POM, differences in the strains abundance are
observed (Figure 4, right). When the POM is fragmented into 4
pieces, the less competitive strain 9R cannot grow significantly
(Figure 4, scenario S1). The fastest growing strain 3R experiences
an exponential growth up to two days before starting to decline.
The more generalist strain 7R has a much smoother exponential
increase compared to 3R, and even surpasses the biomass of 3R

after five days, before starting to decline after about the day seven.
When the POM fragments are gathered into a single piece, 3R has
the same overall dynamics, with comparable mean abundances
but with higher dispersion between replicates. The coefficient of
variation (CV) of the abundance peak is 0.03 for S1 and 0.10 for
S2. The strain 7R has also the same dynamics as in scenario S1
but with a lower mean abundance peak that does not exceed 78%
of the 7R mean abundance peak observed for the scenario S1.
Again, the CV is highest in scenario S2 compared to S1 with the
values of 0.24 and 0.10, respectively. On the contrary, the strain
9R shows a much higher growth variation among replicates when
the POM is aggregated in a single piece of POM. In particular,
two replicates (S2r2 and S2r5) show growth kinetics similar to
those of strain 7R. In three other replicates, 9R grows without
exceeding the abundance of the other species. In the last five
replicates, 9R presents a similar growth as in the case of POM
fragmented. The S2 replicate with lower global total biomass
and emitted CO2 (S2r9) corresponds to the lowest abundances
of the strains 3R and 9R, and to the highest abundance of 7R.
In that case, the highest abundance of 7R does not compensate
the low abundances of strains 3R and 9R, while compensation
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is observed for the other replicates at the scale of the whole soil
sample.

A very different biodegradation kinetics is observed when the
DOC is homogeneously distributed in the pore space (Figure 5,
scenario S3). The global growth of the total biomass is much
faster (Figure 5, left) with a maximum peak reached at day
one. The value of the peak is 4.5 times higher than the peaks
reached by the total biomass in scenarios with POM fragments.
The higher amount of DOC available initially permits a higher
bacterial uptake that translates into a faster growth of the bacteria.
As a result, the amount of DOC quickly decreases within the
same time interval (one day) and the cumulated CO2 emitted is
higher, with values of about 72% (Figure 4) and 91% (Figure 5),
respectively. The different picture shown by the biodegradation
kinetics has relevant implications for the species abundance
(Figure 5, right). The most competitive 3R strain dominates from
the very beginning. The high value of its maximal uptake rate
(Table 1) makes 3R cells benefit more from the larger initial DOC
concentration, and experience a quick and large exponential
growth. This strain shows a more pronounced decline phase than
in scenarios with POM fragments. Only when DOC becomes
scarcer, the more generalist strain 7R with the lowest kDOC
values succeeds to grow at about the same extent as observed
in previous scenarios with POM fragments. The strain 9R with
intermediate growth rate but with a higher kDOC value is not
competitive enough to grow. A probable explanation is that,
after two days, the DOC concentration at the local microbial
habitat of strain 9R remains always lower than in the case of
the POM fragments. In the latter case, some microbial habitats
of strain 9R that are located close to the POM fragments can
still benefit from a sufficient DOC concentration for them to
grow. On the contrary, the more generalist strain 7R is not
impacted by the lower DOC concentrations. Figure 5 also
shows that the position of the bacterial spots does not affect
the predicted model outputs, and the ten replicated simulations
almost overlap. Simulation scenario 3 is consistent with the
nutritional state of the soil after a sudden flush of nutrients,
which is typical of the anthropic addition of fertilizers to

agricultural land, or as observed after rainfall following a period
of drought.

Effect of Spatial Distribution of Organic
Matter on Spatial Distribution of Strain
Abundance
The spatial distribution of the abundances of the different strains
in the scenarios S1 and S2 reveals a number of interesting
patterns. In terms of the biomass in each of the 690 spots, we
observe that the maximum peak abundance reached in the spots
is 2.43 ± 1.01 higher in the case of scenario S2 compared to
scenario S1 (Figure 6). In both scenarios, a few spots containing
cells of the less competitive strain 9R can surpass spots of strain
3R and 7R and even be the most active spots (simulations
S2r5 Figure 6, and simulation S2r2, not shown). When POM is
fragmented, some spots containing 9R cells also end up with an
amount of biomass that is similar to what is found with the strains
3R and 7R (simulations S1r2 and, to a lesser extent, simulation
S1r9, Figure 6) showing that the global, per strain representation
displayed in the graphic at right in Figure 4 hides the very large
dispersion of kinetics at the local scale (that of the microbial
habitat).

A closer look at the microbial habitats suggests that 10 ± 1%
of the spots do not experience any bacterial growth in scenarios
S1. Among those spots, about 45% contain one initial bacterial
cell of strain 3R, while 21% contain one initial 9R cell, and 34%
contain one initial 7R cell. A higher proportion of non-active
spots is found in scenario S2, 18.5± 5%. A similar distribution of
strains among those spots is observed for the scenario S1. When
it comes to the active spots, when POM is fragmented in four
pieces, only at 9.5 ± 4.0% of the spots does biomass exceed 10%
of the maximum biomass registered among all the spots. Among
these spots, about 60% contain 3R cells, 38% contain 7R cells and
only 2% contain 9R cells. When POM is present in a single piece,
the proportion of active spots exceeding 10% of the maximum
simulated biomass, drops to 4.2 ± 2.4%. Among those spots,
about 58% contain 3R cells, 33% contain 7R cells, and 8% contain

FIGURE 5 | Global biodegradation kinetics (left) and strains abundance (right) of the scenario with the C available as DOC and a water saturation level of 0.5 (S3).
M/M0 is the ratio of the carbon mass (mg C) of each output over the total initial carbon mass M0.
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FIGURE 6 | Biomass growth kinetics of the three strains (3R, 9R, and 7R) of each of the 690 spots in scenarios of dispersed POM fragments (S1, Top figures) and
aggregated POM fragments (S2, Bottom figures). M/M0 is the ratio of the carbon mass (mg C) of the cells over the total initial carbon mass M0. For each scenario,
the replicate having the minimal, mean and maximum biomass growth is displayed from left to right.

9R cells. The higher proportion of 9R cells spots among the most
active spots in scenario S2 compared to scenario S1 explains the
observed higher abundance of this strain.

The general trend suggested by these results is that when
POM is gathered into one piece, significantly fewer microbial
habitats (almost half) are prone to grow, and a larger dispersion
of the abundance is found compared to scenarios in which
POM is fragmented. Therefore, under these conditions, it is
not surprising that similar biomass growth is observed at the
scale of a soil sample (Figure 4, left). In our scenarios, since
the POM hydrolysis is constant and independent of the spatial
position of bacteria, a lower amount of dissolved organic carbon
is produced locally compared to the aggregated POM fragments
when there are 4 fragments. Even if the probability of having
more spots closer to these local sources of DOC is higher with
dispersed POM, the available DOC concentration remains lower.
Gaillard et al. (1999) show that an aggregated distribution of
organic matter mineralized a lower amount of carbon than a
dispersed distribution. They explain their results on the basis of a
higher exchange surface with soil of the dispersed distribution.
The simulation scenarios performed in this contribution were
designated to create a similar contact surface area between the
soil solid and liquid phases and, therefore, cannot account for
the reported outputs. Nevertheless, in general, differences in the
contact area still constitute a plausible explanation for differences
in mineralization rate in soils.

Using an algorithm developed by Dijkstra (1971) and based
on the 6-connexity of the lattice-Boltzmann grid, we further
calculated the geodesic distance between each of the 690 spots

and the POM fragments in order to relate biomass growth
of the microbial habitats to their spatial remoteness of POM.
The geodesic distance is the shortest pathway included in
the liquid phase that connects two points in the pore space
(Gommes et al., 2009). Divided by the Euclidian distance, the
direct pathway between the two points, it gives the geometrical
tortuosity as defined by Clenell (1997). Geometrical tortuosity
and constriction are often considered to be good descriptors of
the diffusive transport of solutes in complex pore spaces (Berg
and Held, 2016). The mean geodesic distances of the bacterial
spots to the POM fragments are about 1.6 times longer when
POM fragments are gathered with 5,041± 3,190 µm and 8,144±
3,983 µm for scenarios S1 and S2, respectively. The mean smallest
geodesic distances are 252 ± 111 µm and 490 ± 262 µm for S1
and S2, respectively. Within one replicate of either scenario, the
most active spots are those having the shortest geodesic distance
(Figure 7), however, when comparing the repetitions within a
scenario it appears that spots where growth is maximum (S1r2)
has a longer or similar minimal geodesic distance than spots
having lower growth (S1r9 and S1r4). A large number of spots
that do not have significant growth can have a very large range
of geodesic distance values (Figure 7), which is an unexpected
result. In some cases, the geodesic distance can even be close to
the shortest values. However, when geodesic distances are longer
than about 5000 µm in the case of S1 and about 7500 µm in
the case of S2, the spots do not noticeably grow. When POM
fragments are dispersed, the geodesic distances are shorter but
also the DOC concentration that is emitted from the POM spots
is lower.
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FIGURE 7 | Total biomass growth of each of the 690 spots against the geodesic distances between the spots and the POM fragments of scenarios S1 (Top figures)
and S2 (Bottom figures). M/M0 is the ratio of the carbon mass (mg C) of the cells over the total initial carbon mass M0. For each scenario, the replicate having the
minimal, mean and maximum biomass growth is displayed from left to right.

To our knowledge, it is the first time that geodesic distances
between the nutrient resource and microbial habitats are
calculated in 3D modeling scenarios of soil carbon dynamics.
They reveal that beyond a distance of 5 mm to the POM
fragments, the microbial colonies cannot grow. Interestingly,
Euclidian distances of around 4 mm from straw labeled with
13C have been reported to hold the sites of higher microbial
assimilation and referred as “residusphere” (Gaillard et al., 1999).
However, although the most active microbial spots are correlated
with the lowest geodesic distances, a low geodesic distance is
not a sufficient condition for the microbial colony to grow. We
suggest that the size of the pores also matters (e.g., discussion in
Baveye et al., 2018). Large cavities can dilute the concentration
of DOC that reaches the bacteria, impacting ultimately the
growth in the microbial habitat. Therefore, a bacterial spot
can experience a microscale environment promoting more the
bacterial growth than a spot placed at a shorter geodesic distance
to the POM. Calculation of constriction in addition to diffusion
length would be more appropriate. More effort is thus needed
to calculate other metrics of importance for diffusive transport
such as the constriction factor and the diffusion length in order
to characterize and fully understand species abundance and
functioning at pore scale.

Effect of Direct Interspecific Competition
on Strain Abundance
Simulation scenarios S1, S2, and S3 suggest that when the strain
9R is closely competing with 3R or 7R, growth of 9R can occur
only when it is located in an advantageous point with respect to

a sufficient source of DOC (for instance in the case of gathered
POM fragments, Figure 4, scenario S2). To test this hypothesis,
we chose one replicate of the scenario S2 (S2r2) in which a
few 9R microbial habitats experienced growth, and we initially
placed three cells in now 230 spots, one of each strains. The
global outputs of the model are similar (Figure 8, left), but the
strain abundances are very different (Figure 8, right). When the
three strains co-exist in the same microbial habitat, the strain 9R
cannot grow, even when it is located in the spots close to the
POM fragments. The most competitive strain 3R grows to a much
higher extent and the strain 7R has a delayed growth. There are no
prominent differences observed between scenario S4a and S4b.

Effect of Water Saturation Level on
Organic Matter Degradation and Strain
Abundance
The role of the water saturation level of the pore space on the
carbon dynamics was investigated in the scenarios S5 and S6.
The global model outputs are similar when the pore space is
fully saturated with water (Sw = 1.00, Figure 9, scenario S5).
As mentioned in Section Entities, State Variables, and Scales,
oxygen limitations are not yet considered in Ib-LBioS-Comp,
so that the different water saturation levels do not impact
the role of oxygen in the bacterial activity in these scenarios.
Furthermore matric potentials considered in the scenarios S2
and S6 are very close (about -0.3 and -0.6 kPa, respectively) so
that oxygen limitations are not expected to happen under the
tested conditions. Since the local positions of the aggregated
POM fragments and the 690 microbial habitats are not changed,
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FIGURE 8 | Global biodegradation kinetics (left) and strains abundance (right) of replicate 2 of the scenario with aggregated POM fragments (S4) in which the three
strains are initially alone in the spots (S2r2, solid lines) or gathered in the spots (S4a dotted lines and S4b dashed lines). M/M0 is the ratio of the carbon mass (mg C)
of each output over the total initial carbon mass M0. Simulation outputs obtained in the second repetition of the scenario S2 (solid lines) are compared to the two
simulations of the scenario S4 (dashed lines).

FIGURE 9 | Global biodegradation kinetics (left) and strains abundance (right) of the scenario with aggregated POM fragments and a water saturation level of 1.0
(S5). M/M0 is the ratio of the carbon mass (mg C) of each output over the total initial carbon mass M0.

the only effect of the higher water saturation is to decrease the
DOC concentrations. However, the diffusive transport of DOC is
also accelerated because all the pore space is now connected. The
strain abundances are rather similar although this environment is
comparatively more favorable for the generalist strain 7R, which
becomes the most abundant strain after day 6. The establishment
on the system for the simulations showing a noticeable growth
of the less competing strain appear mostly driven by the spatial
heterogeneity of POM distribution.

When the water saturation level decreases, the pore space
filled with air increases and more disconnected aqueous regions
appear. Consequently, some POM spots may not hydrolyze
resource to the liquid phase, and, some bacterial microhabitats
may not have access to the DOC hydrolyzed by the connected

POM agents. In particular, when the water saturation is divided
by two (from Sw = 0.50 to Sw = 0.25), 525 of the original bacterial
spots are still in the aqueous phase. In spite of that, five of the
replicates (S6r2, S6r4, S6r5, S6r6, and S6r10) produced global
model outputs similar to the ones observed for higher water
saturation levels (Figure 10, upper panel). In one replicate (S6r1),
the aggregated POM fragments are located in solid voxels whose
neighbors are disconnected from the aqueous phase, preventing
the release of DOC, and thus bacterial growth (Figure 10, lower
panel). In three other replicates (S6r3, S6r7, and S6r9) one of
the four gathered solid voxels containing the aggregated POM
fragments also has a dry neighbor voxel. Furthermore, for two
of them (S6r7 and S6r9), and for the replicate S6r8, no bacterial
growth is recorded, resulting in the accumulation of DOC in
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FIGURE 10 | Global biodegradation kinetics (left) and strains abundance (right) of the scenario with aggregated POM fragments and a water saturation level of 0.25
(S6). M/M0 is the ratio of the carbon mass (mg C) of each output over the total initial carbon mass M0. The repetition number generating the trends depicted are
detailed in the figure.

the liquid phase (Figure 10, bottom left). In these three last
situations, spatial disconnections between the microbial spots
and the POM fragments are made possible by the aqueous
phase fragmentation. Spatial disconnections are also observed
in the repetition S6r3 where total biomass growth is very small
(Figure 10, bottom). The strain abundances in the active spots
are very similar to those observed when the water saturation is
0.50. In one repetition, the growth of strain 9R of all microbial
spots surpasses the growth of strain 7R (Figure 10, upper right).

It is known that lack of competition resulting from spatial
disconnection of soil microhabitats may promote biodiversity
(Kim et al., 2008; Vos et al., 2013). Complete or partial
spatial separation due to disconnection of liquid soil volumes
in unsaturated soils is a common hypothesis used to explain
biodiversity. For instance, one study using experimental setups
with two bacterial strains competing for a dissolved resource
in sand showed dominance of the more competitive strain
under water-saturated conditions while drier conditions allowed
the less competitive bacteria to establish (Treves et al., 2003).
Regardless of the high variability on the model outputs found
for the drier conditions (Sw = 0.25), our scenarios do not show

a clearly improved establishment of the less competing strain.
Another study (Zhou et al., 2002), based on an rRNA-based
cloning approach, reported differing biodiversity distributions in
the microbial communities living in four geographically distinct
sites at different soil depths. A uniform biodiversity distribution,
which is thought to arise from a lack of microbial competition,
was obtained for the saturated subsurface of both high and low
carbon soils. Since the hypothesis of resource disconnection is
difficult to hold under water-saturated conditions, the authors
explain their observed pattern by a lack of competition due to
specialization for different substrates. Although this hypothesis
remains plausible, our simulations suggest that the spatial
heterogeneity of the resource placement could also explain part
of this biodiversity.

CONCLUSION

We have coupled a multi-species individual-based model
describing bacterial growth to a 3D lattice-Boltzmann diffusion
model to simulate organic matter dynamics in soil pore space.
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The resulting model, Ib-LBioS-Comp, has been used to study
the influence of the spatial heterogeneity of a nutrient source
on the organic matter degradation and species abundance
of a competitive-, a generalist-, and a poorly-competitive
bacterial strain. The scenarios used three resource placements
showing a gradient in the spatial heterogeneity of its
distribution: organic matter dissolved in the aqueous phase (low
heterogeneity), four fragments of organic matter (intermediate
heterogeneity), and a single fragment of organic matter (high
heterogeneity).

A number of results can be highlighted from the modeling
scenarios performed: (i) In general terms, the greater the
spatial heterogeneity of the location of the resource, the
greater the variability in the output at the level of the
soil volume imaged; (ii) When the resource is found as
particulate organic matter, the fastest growing strain tends
to dominate at first but then, when the resources becomes
scarcer, it is overtaken by the generalist strain, showing that
the spatial distribution of organic matter affects bacterial
succession; (iii) the global bacterial growth is faster when
the nutrient resource is available in the liquid phase at the
beginning of the simulation. Under these circumstances, the
fastest growing strain is able to reach much higher relative
abundances, having a negative effect on biodiversity; (iv)
When the resource is present as particulate organic matter,
the total biomass created does not differ noticeably between
the intermediate and high spatial heterogeneity schemes but
in contrast the species abundance is impacted; (v) The least
competing strain, which does not reach noticeable growth
for the low and intermediate resource spatial heterogeneity
schemes, is able to grow appreciably in the absence of direct
competition, if the position of the nutrient resource is favorable.
According to this observation, heterogeneity of the spatial
distribution of the organic matter in soil would promote
microbial diversity; (vi) the geodesic distance among the nutrient
resources and the bacteria alone is not sufficient to explain
this phenomenon; and, (vii) In the scenarios tested, the water
saturation level does not seem to change much the observed
biodiversity.

As a cautionary note, one needs to remember that the
various predictions made in this article emanate from a
relatively simple model, which ignores many different aspects
of soils. In actual soils, microbial diversity and growth are
potentially affected by a myriad of factors (e.g., resource
quality, different nutritional requirements of individual bacteria,
mutation, predation, transport by soil fauna, toxin production).
In particular, bacterial motility and the diffusion of oxygen in the
pore space are likely to have a significant influence on microbial
activity. Subresolution pores, too small to be visible in X-ray
CT images, are most probably playing a role in this context as
well, especially in the dry range of the hydrological regime of
soils. Future research will determine if the relationship between
bacterial diversity and the spatial heterogeneity in resource
distribution, highlighted in the present article, still holds when
some of the assumptions of the model are lifted. It is possible
that the same relationship will be observed, or that other, more
complex behaviors will unfold.
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