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Even if it is based on innovative measuring, analysing, modelling and communication 

techniques, SHM shares the same goals as traditional monitoring methods. In fact, diagnostic 

monitoring can be considered as an extension of the well-established investigation practices 

since it integrates these novel technologies into a unique smart system. SHM tries to overcome 

the limitations of traditional visual inspections. 

The traditional survey methods are affected by a large series of technical drawbacks. Visual 

inspections are generally not performed frequently enough, which risks affecting their predictive 

nature. Moreover, they are neither exhaustive, because they do not allow the hidden defects or 

the invisible effects of an on-going damage process to be detected, nor are they objective, 

because the estimation is related to the subjective judgement of an expert who can be fallible. 

More specific and accurate non-destructive testing (NDT) techniques are carried out off-line and 

usually only after the damage has been located (Shull, 2002). This means that, in the meanwhile, 

an excessive level of deterioration could have been reached. Moreover, non-destructive 

evaluations are often performed in a local manner and so provide information that only refers to 

a limited portion of the structure. 

Modern diagnostic monitoring systems are created with the prerogative of overcoming these 

limitations by providing an exhaustive depiction of the structural health state and easing the plan 

of maintenance and restoring interventions. Among NDT techniques which can be easily 

implemented for online monitoring, we can start by mentioning the geometric control. In fact, 

techniques such as laser scanner or photogrammetry easily allow for online monitoring of the 
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Whatever the monitoring approach and technique, when designing a SHM system, it is necessary 

to first perform an accurate analysis of the structural behaviour, in order to monitor the most 

expressive and sensitive parameters. 

The intent of the present paper is a methodological discussion by way of a number of recent 

experiences on modal testing that shared the same approach, and whose common matrices are:  

the process of documentation, the numerical modelling, the test design, the testing campaign 

(acceleration measurements under ambient excitation), and the model updating. In spite of being 

heterogeneous from both the morphological and the typological point of view, three buildings 

were subjected to a typical model-driven vibration-based SHM, which included extensive 

surveying operations, ambient vibration dynamic investigations and numerical model calibration 

and verification. 

2. VIBRATION-BASED STRUCTURAL HEALTH 

MONITORING FOR CULTURAL HERITAGE 

Dynamic tests have been confirmed as an efficient investigative tool: they allow us to go back to 

the structural behaviour of the building system with reduced costs and minimally invasive 

actions, which is important when the necessity to preserve the material integrity becomes truly 

significant; moreover, in comparison with other investigation techniques, they provide 

information on the global behaviour of a structure. According to Farrar and Worden (2007) 

vibration-based SHM approaches may be classified in to two main groups, the data-driven and 

the model-driven. 
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dome (10 x 15 x 4.5 meters) supported by a 7 meters high drum. The building includes also a 

small atrium and an apse that communicates with the annexed choir body. The dome, supported 

by 8 masonry arches and by as many buttresses, presents a frescoed interior with an evident 

deterioration process. Over the dome, a slender 5 meters high lantern stands on 8 masonry 

pillars, one for each buttress, recalling the main structure, and it is finally covered by another 

little masonry dome. The facade, one of the most richly decorated elements, juts out from the 

church body of about 6 meters. The old choir building (10 x 22 meters) is covered by a barrel 

vault, supported by regularly spaced round arches in correspondence to the columns and 

reinforced with metal ties. The whole structure is realised in masonry. Only visual inspections 

were allowed on this building: thanks to a special spider platform also inaccessible parts were 

accurately examined. The survey confirmed that material degradation and cracks were limited to 

few portions of the building. 

The Cathedral of S. Giovenale in Fossano (Cuneo province), a neoclassical building designed by 

Quarini in 1771, has a bell tower in a different style, because it is the only survived part of the 

earlier church, built in the Thirteenth century. In this case the geometry (Figure 5) is simpler than 

the previous experience, and the main complexity lies in its large size. The belfry, with a square 

base up to 35 m in height, is composed by masonry walls of the average thickness of 1.5 meters 

that contained the old passages for the stairs collocation, partially closed during the early 

Twentieth century, replacing the vertical connection structure with other internal ones made of 

wood. Three ceilings are interposed to the stairs system: the first one at a height of 9.9 meters, 

made of masonry, is supported by the Thirteenth century groined vault; the second one, built of 

wooden elements, is at a height of 28.2 meters, while the last one was built 32 meters high, with 
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roof trough the bell tower that does not rest upon the ground. The neoclassical façade (12.5 

meters high) is the most decorated element and juts out the ledge level (9.36 m). Visual 

inspections confirmed that the masonry of the church is interested by a generalized cracking, in 

particular a severe crack pattern has been found in the main oval vault and at the connection 

between the façade and the lateral walls. 

4. DYNAMIC INVESTIGATION TESTS 

The behaviour of the three structures was investigated through dynamic tests. In particular, the 

pursued model-driven approach may be described in the following phases: the realisation of both 

a reference geometrical and a mechanical model; designing the test; on-site testing; signal pre-

processing; structural identification; model-based diagnosis/prognosis/decision. Although the 

approach is the same for each application, in practice the marked architectural differences among 

the cases required specific solutions, especially for the design of the test campaigns. 

4.1 Preliminary model 

Firstly, a simplified geometrical model was built on the basis of the information obtained from 

the survey activities. Geometric information must not be too detailed because of the 

computational intensiveness of mechanical models; therefore the unnecessary geometric 

particulars are not to be included, since they are unnecessary for the solution of the problem 

(Figure 7). Moreover, when the geometric data are assimilated by finite element (FE) mechanical 

models, the required homogenisation of material properties nullifies any possible improvement 
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amplification of signals, which in turn were sent to the laptop hard-drive, where the acquisition 

software is installed. The signals acquired in the three examples are related to the response of the 

structure to ambient noise excitation, produced by external stochastic forces (e.g. vehicular 

traffic, wind, micro-tremors, etc.). 

Sensors are often in insufficient number to test the whole structure in a single step because of the 

morphological complexity or the size: for example, both for the S. Caterina church and the 

Fossano bell-tower the testing campaigns required to design four setups. In these cases, one of 

the setup has to be always online, permitting to assemble the acquired data during the signal 

processing phase, while the other setups concern the different parts of the structure (such as the 

lantern and the facade  of  S. Caterina, as suggested by preliminary FE model studies). In order 

to merge the eigenmodes identified on different setups, a subset of "link" sensors (typically from 

4 to 6 accelerometers per setup) has to be kept fixed during dynamic tests. 

Often the considerable size of historical buildings requires also some specific practical solution 

to place the sensors during the testing campaign: for instance, in the case of S. Caterina two 

different spider platforms were employed to reach the less accessible points (Figure 10). 

Generally a trial acquisition proves necessary to test that the equipment is fully functional. It is 

also appropriate to annotate the serial numbers and to choose the directions of the sensors in a 

methodical way. Moreover, it is recommended a careful preparation, numeration and connection 

of the cables; indeed, it was shown by the experience that often inaccuracies in the execution of 

tests may affect the quality of the results. These last operations prove to be useful also with the 

perspective that the experimental data want to be made usable by operators who have not directly 
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participated in the experience. In periodical monitoring activities, all sensor locations need to be 

photographed and archived. 

The choice of the sampling frequency must allow capturing the response of the main vibration 

modes of the structure. In the three mentioned cases, the acquisition of the signals was carried 

out using a sampling frequency of 400 Hz, which corresponds to a useful band which spans from 

0 to 200 Hz (according to the Nyquist criterion), whilst the main modes were confined in the 20 

Hz. Since the acquired signals in all cases were generated by ambient excitation, their length is 

of great interest because it is necessary to perform numerous segmentations in order to improve 

system identification robustness. A signal of 500000 samples (approximately 20 minutes with 

sampling frequency equal to 400 Hz) can be considered sufficient for structures which typically 

have a range of fundamental periods lower than 1 s. 

Preferably, a first experimental modal analysis from acquired signals should be executed on site, 

this allowing for a further optimisation of the setups, as well as for checking the correct working 

of the measurement system. 

4.3 Structural Identification 

Interest in output-only identification techniques mostly arises from the difficulties encountered in 

producing, and measuring, proper excitations in large-sized structures. In recent years, time 

domain techniques have been pursued rather successfully, also thanks to the great spectral 

resolution offered in the analysis of complex systems, and thanks to their modal uncoupling 
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values that match what was recorded by the experimental evidence. In order to take into account 

the spatial distribution of mass and stiffness, the FE model is usually subdivided in macro-

elements, with different materials, as shown by the example in Figure 14. 

In the three reported examples, the elastic moduli were initialized to uniform the values for each 

element. Then the model updating procedure was based on the synergistic use of ANSYS and 

MATLAB software, employing an algorithm that investigates the minimum of a cost function, 

by varying the parameters associated with the macro-elements within a predetermined range. 

The choice of the most suitable optimisation algorithm is not always a trivial task. A distinction 

can be made mainly between local and global search methods. The first type of methods requires 

a starting point to initialise the minimisation procedure. This constraint can be an advantage if an 

approximate evaluation of the parameter value has been made (i.e. experimental campaign or a 

previous optimisation). Among the types of methods it is worth mentioning the widely used 

quasi-Newton methods (Nocedal and Wright, 2006) or derivative-free algorithms such as direct 

search methods (Lewis et al., 2000). On the other hand, one may have a great degree of 

uncertainty on the starting value of the parameters: in such a case, stochastic optimisation 

methods are probably more suitable. Genetic algorithm (Michell, 1996) is probably the best 

known of the stochastic methods. When dealing with these algorithms it is advisable to rerun the 

optimisation process a few times in order to be sure that the global minima of the function has 

been found. 

The results coming from the optimisation procedure should be carefully checked and compared 

with literature and reference values, as success in the optimisation procedure does not directly 
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(Saltelli et al., 2000) to more general global methods (Saltelli et al., 2008). Using the results of 

the sensitivity analysis one can limit the parameters to be optimised to an acceptable number. 

Constraints on the parameters should be added to the optimisation problem in order to limit the 

search space of the function. For instance, implausible values of the masonry elastic moduli have 

been excluded in the three examples (i.e. 1e8 Pa<Ei<1e10 Pa). 

Downstream the described optimization process, generally constituted by several model-updating 

steps, the output data consist of a modified set of parameters related to the macro-elements of the 

different buildings, which reconciles the FE model to the experimental evidence, as exemplified 

in Figure 14 and Figure 15, in the three case studies. In Table 2 in particular, the comparison 

between the experimental modes and those provided by the updated FE model is expressed in 

terms of MAC matrix (for modal shapes) and per cent errors (for modal frequencies). 

6. PREDICTION AND DIAGNOSTIC 

CAPABILITIES OF THE UPDATED MODELS 

Updated models, as illustrated in the previous section, allow a reliable estimation of the 

mechanical properties of the materials. The elastic parameters, as related to the different macro-

elements of the structure, provide direct evidence of anomalies affecting the structural behaviour, 

such as local weakening, cracking, dislocations etc., so helping a diagnosis and possibly a 

prognosis (e.g. in terms of residual life without interventions). 
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stationarity assumptions. Whilst in frequency estimates all methods retain a satisfactory degree 

of accuracy, giving errors mostly below 1%, the assessment of damping is more critical, as the 

estimate of damping results as being unstable (with errors, in some cases, of over 100%). In 

actual practice, several sets of data need to be treated and statistically analysed. This 

notwithstanding, errors in damping estimation of current output-only techniques range between 

15% (SSI) and 50% with virtually stationary response signals, and tend to increase with the level 

of  non-stationarity (Ceravolo and Abbiati, 2013). 

A numerical model is usually updated on the grounds of the identified parameters by using 

indirect procedures (typically recursive minimization of a penalty function). The parameters to 

be calibrated should be a limited number and should reflect the quantities with a clear physical 

significance (interaction with soil or other bodies, elastic moduli, masses, crack patterns, joints 

etc.).  The results coming from the optimisation procedure should be compared with literature 

and reference values, because success in the optimisation procedure does not directly imply that 

the model is verified. Any possible damage or weakening should be properly simulated by the 

model and should then be confirmed by physical evidence or by more specific local 

investigations. 

If all the assumptions and limitations are taken into account, vibration-based monitoring can 

contribute to the identification of the parameters that influence the structural response of the 

asset, can support a further stage of local investigations, and can significantly reduce the number 

of destructive tests, also in the light of modern approaches to the structural assessment of 

architectural heritage (Lagomarsino et al., 2012). 
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8. CONCLUSION 

This paper has presented a methodological approach, which has been successfully pursued in the 

application of experimental modal analysis to cultural heritage structures via three very different 

case studies. The different phases involved in vibration-based monitoring, model updating and 

results interpretation have been reviewed, highlighting the peculiarities and difficulties that one 

may encounter when dealing with architectural heritage structures. The quality of the results 

achieved has been confirmed by extensive traditional tests, especially in the case of the Fossano 

bell-tower. Finally, the paper stresses the importance of having an updated FE model, even if 

linear, which can help the structural engineer in taking difficult decisions regarding the 

conservation of the structure. 
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Figure 1. Structural Health Monitoring: Data Driven Approach 
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Figure 2. Structural Health Monitoring: Model Driven Approach 
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Figure 9. Dynamic tests setup: (a) preliminar modal analysis using a not calibrated FE model, 
(b) accelerometric setup design, using 18 channels, (c) MAC between modes in order to assess 
the decoupling capabilities of the setup.  
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Figure 11. (a)-(b) The software interface used for dynamic identification, 
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