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ABSTRACT 

Increasing CO2 emissions from the energy and industrial sectors are a 

worldwide concern due to the effects that these emissions have on the global 

climate. Carbon capture and storage has been identified as one of a portfolio of 

technologies that would mitigate the effects of global warming in the upcoming 

decades. 

Calcium looping is a second generation carbon capture technology aimed at 

reducing the CO2 emissions from the power and industrial sectors. This thesis 

assesses the improvement of the calcium looping cycle for CO2 capture through 

enhanced sorbent production and testing at lab-, bench- and pilot-scale, and a 

new operational mode with high oxygen concentrations in the calciner through 

experimental campaigns in Cranfieldôs 25 kWth pilot unit. 

Novel biomass-templated sorbents were produced using the pelletisation 

technique and tested at different conditions in a thermogravimetric analyser 

(TGA) and a bench-scale plant comprising a bubbling fluidised bed (BFB) 

reactor. Moreover, the effects of sorbent poisoning by SO2, and the influence of 

steam were studied in order to explore the effects of real flue gas on this type of 

material. In addition to the chemical performance, the mechanical strength, i.e. 

resistance to fragmentation of these materials was tested. 

In additon, two different kinds of enhanced materials were produced and tested 

at pilot-scale. Namely, calcium aluminate pellets and HBr-doped limestone were 

used in experimental campaigns in Cranfieldôs 25 kWth pilot plant comprising a 

CFB carbonator and a BFB calciner. The suitability of these materials for Ca 

looping was assessed and operation challenges were identified in order to 

provide a basis for synthetic sorbent testing at a larger scale. 

Lastly, a new operational mode was tested, which is aimed at reducing the heat 

provided to the calciner through high oxygen concentration combustion of a 

hydrocarbon (in this case natural gas) in the calciner. This approach reduces or 

even eliminates the recirculated CO2 stream in the calciner. In consequence, 

this results in a lower capital (reduced size of the calciner) and operational cost 



ii 

(less oxygen and less fuel use). Several pilot plant campaigns were performed 

using limestone as solid sorbent in order to prove this concept, which was 

successfully verified for concentrations of up to 100% vol oxygen in the inlet to 

the calciner. 

Keywords: Carbon capture, high temperature solid looping, enhanced CaO-

based materials, pilot plant testing, CO2 capture performance, fragmentation 
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1 INTRODUCTION 

1.1 Background and motivation 

According to the Intergovernmental Panel on Climate Change [1], the global 

system is exhibiting unambiguous proof of warming; many of these alterations 

are unique over decades to millennia. Some examples of the consequences of 

climate change are: the higher average air and ocean temperatures, the 

augmented sea level and the decline in the quantities of terrestrial snow and 

ice. These changes have not only been experienced in natural systems, but are 

also increasingly affecting human activities. 

The land and ocean temperatures and global average sea level are shown in 

Figure 1-1, which illustrates the extraordinary growth of the temperatures as 

well as the sea level over the past decades, as a consequence of climate 

change. 

 

Figure 1-1: (a) Annually and globally averaged combined land and ocean surface 

temperature relative to the average over the period 1850-2012 (b) Annually and 

globally averaged sea level change relative to the average over the period 1900-

2012 (colours indicate different data sets) [1] 
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These increases are attributed to the rising concentrations of greenhouse gases 

due to the widespread use of fossil fuels. Carbon dioxide is the gas that makes 

the largest contribution [2]; global CO2 concentrations have increased from 280 

ppmv in the pre-industrial era to more than 400 ppmv for the first time in May 

2013 [3, 4] and to 403.95 ppmv in January 2017 [5]. 

 

Figure 1-2: Recent Global monthly mean CO2 concentration over the past five 

years (the red line represents the monthly average, whilst the black line 

represents the monthly trend) [5] 

Mitigation measures are necessary in order to restrict the increasing 

concentration of greenhouse gases, specifically for CO2 to the level of 450 ppmv 

to avoid excessive climate change consequences. The current predicted trend 

is that the energy demand will increase by 34% between 2014 and 2035 [6]. As 

a result, it is reasonable to expect that fossil fuels will play an important role in 

the short- to medium-term due to the slow deployment of low-carbon and 

renewable technologies that can take up to 30 years to become the dominant 

sources of thermal energy [7]. 

It is essential for fossil fuel-fired power plants to be decarbonised if the CO2 

concentration is to be limited to the aforementioned level. Carbon capture and 

storage could provide a mitigation option for CO2 emission from the power 

generation and industrial sectors, which are particularly carbon intensive. These 
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technologies can offer a short- to medium-term solution while the infrastructure, 

policies, markets and distribution networks are deployed for the widespread 

introduction of low carbon technologies [7]. According to the European 

Commission (EC), emissions in the developed countries should be reduced by 

30% in 2020 and by 60-80 % in 2050 in order to reach the goal of the two 

degree scenario (2DS) [8]. The EC has also stated that these aims cannot be 

accomplished without the implementation of CCS, and suggests that CCS 

should account for 13 % of the cumulative CO2 reductions, compared to 30% 

for renewable energy technologies [9, 10]. According to these data, the rapid 

deployment of the CCS technologies is of vital importance. 

There are several challenges associated with CCS technologies, including the 

financial cost and the energy penalty associated with the whole chain. 

Currently, the technology that is closest to the market is post-combustion 

solvent scrubbing, with solvents such as monoethanolamide (MEA) [11]. 

Nevertheless, there are some challenges associated with this technology, 

namely, solvent poisoning (by SO2 or O2 [12-14]), solvent degradation and high 

solvent cost [15]. Another technology that is reasonably close to the market is 

oxy-fuel combustion; in this system fuel is burnt in a mixture of O2 and CO2, 

where a portion of the outlet gas is recycled to the combustion chamber in order 

to control the flame temperature. Unfortunately, this process requires an air 

separation unit (ASU) in order to provide the large quantities of O2 demanded. 

The challenges mentioned here have motivated researchers to explore other 

CO2 capture technologies, such as membrane separation or high temperature 

solid looping cycles. The work presented in this thesis is focused on calcium 

looping, which utilises two reactors wherein the reversible 

carbonation/calcination reaction between CaO and CO2 operates. The 

advantages of this process are: 

-The production of high-grade heat from the carbonation reaction, which can be 

used to run an additional steam cycle; 

-The use of CaO, which is a cheap, environmentally friendly and widely 

available material; 
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-The synergy with the cement industry, as the spent sorbent can be used in the 

kiln as a source of CaO, potentially decarbonising both industries; 

-This process can be applied in post-combustion or pre-combustion scenarios 

for CO2 capture; and 

-Fluidisedïbed reactors are a mature technology. 

Taking into account all the advantages mentioned above, calcium looping can 

result in efficiency penalty reduction and economic savings when compared to 

the other technologies, such as amine scrubbing or oxy-fuel combustion [16]. 

The main part of the research in this area is focused on sorbent deactivation 

and how to mitigate this reactivity decay over increasing number of cycles. 

Several methods and techniques have been developed to enhance natural 

materials, to produce new synthetic materials and to reactivate spent sorbent. 

Another crucial line of research is the scale-up of this technology going from 

TGA and lab-scale experiments to pilot- and demonstration-scale units in order 

to prove the concept completely before commercialisation.  

1.2 Aims and objectives 

The aim of this PhD is to contribute towards the body of knowledge of calcium 

looping for CO2 capture focusing on scaling-up and improvement of solid 

sorbents as well as the effects of high oxygen concentrations in the calciner in 

the overall process through experimental work. In consequence, there are two 

linked aims taking part in this PhD project: 

Aim 1: Demonstrate the capture performance and fragmentation resistance of 

enhanced sorbents at TGA and lab-scale. 

Objective 1a  Conduct a detailed review of the developments in sorbent 

production for the calcium looping cycle. 

Objective 1b  Demonstrate the scalability of the pelletisation and doping 

techniques for particle production. 
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Objective 1c  Assess the CO2 performance of biomass-templated pellets 

using flour as a cheap biomass source through TGA experiment and bench 

scale experimental campaigns. 

Objective 1d  Assess the effect of SO2 and steam on the capture 

performance of the biomass-templated sorbents. 

Objective 1e  Evaluate the fragmentation behaviour of the produced 

materials as a measure of their mechanical stability.  

Aim 2: Study the effects of high oxygen concentrations in the calciner and the 

performance of enhanced sorbents in Cranfieldôs 25 kWth calcium looping pilot 

plant. 

Objective 2a  Assess the effect of high oxygen concentrations in the 

calciner in the 25 kWth pilot plant with limestone. 

Objective 2b  Test enhanced sorbents in the 25 KWth pilot plant under 

high oxygen concentrations. 

1.3 Novelty and linkage of project outputs 

In order to reach the objectives established for this research project, a number 

of contributions have been made to the scientific body of knowledge. These 

have been reported in four published journal publications and an unpublished 

manuscript; the linkage among them is presented in Figure 1-3. 
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Publication 1
Calcium looping sorbents for 

CO2 capture

Publication 3 
Fragmentation of biomass-

templated calcium aluminate 
pellets

Publication 2
Effects of SO2 and steam on CO2 

capture performance of 
biomass-templated calcium 

aluminate pellets

Publication 4
Operation of a 25 kWth calcium 

looping pilot plant with high-
oxygen concentration in the 

calciner

Manuscript 1
Pilot plant testing of enhanced 
sorbents for Calcium looping 

New possible research routes 
were discovered for the scaling up
 and improvement of solid sorbents

The review provided a basis for the sorbents
 to use in the pilot plant campaigns

The review provided an 
in-depth knowledge

 of deactivation mechanisms
 and particle breakage

The pellets used in Manuscript 2 
were selected in accordance with the results of Publication 2

The pilot plant was commissioned after the redesign using limestone 
in Manuscript 1 to reach stable operation, before testing the enhanced materials in Manuscript 2

The effect of fragmentation
 of the particles was studied

 in Publication 3 

Objective 1a

Objective 1c
Objective 1d

Objective 1e

Objective 2a

Objective 1b
Objective 2a
Objective 2b

 

Figure 1-3: Interconnections of the project outputs and manuscripts presented in 

this thesis 

As a basis for this thesis, an extensive literature review on sorbent performance 

was undertaken in the form of Publication 1 [17]. This publication explored the 

deactivation mechanisms for calcium looping sorbents, modifications of natural 

sorbents for enhanced performance, and the types of synthetic materials that 

have been recently researched. After the literature review, promising and viable 

solutions were identified for the production of CaO-based, improved solid 

materials for CO2 capture. The results of the CO2 capture performance 

experiments and the experiments on the fragmentation of the synthetic sorbents 

prepared can be found in Publications 2 and 3 [18, 19]. The effects of SO2 and 

steam on capture performance can also be found in Publication 2. These 

publications are highly linked since they study almost the same materials but in 
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two different aspects: the reactivity and the mechanical stability of the 

manufactured particles. 

Moreover, the results from Publications 2 and 3 led to the use of calcium 

aluminate pellets in the section 7.3.3 of Manuscript 1, since these showed the 

most promising results with regards to both reactivity and mechanical stability. 

Publication 4 describes the efforts to develop an operating procedure that was 

used for the experiments presented in Manuscript 1. In other words, these 

manuscripts are also highly connected as the experimental procedure used 

during all of the pilot plant campaigns was developed using limestone in the 

experiments described in Publication 4 [20]. 

1.4 Outline of PhD Thesis 

The structure of this doctoral thesis with a brief description of the content of 

each chapter is detailed below: 

¶ Chapter 1 the background and motivation of this research project are 

detailed in this chapter, as well as the aims and objectives and an overview of 

the novelty and how the publications are linked with the aims and objectives. 

¶ Chapter 2 a general literature review is presented in this chapter with a 

focus on carbon capture and storage as a chain and more specifically on 

calcium looping as a post-combustion technology for CO2 capture. 

¶ Chapter 3 an in-depth literature review is presented in this chapter 

describing the developments in calcium looping sorbents. Namely, it discusses 

natural sorbents, enhanced sorbents, synthetic sorbents and re-activation 

techniques, giving recommendations for future research.  

¶ Chapter 4 presents the methodology and results on CO2 capture 

performance of four different types of synthetic materials in a thermogravimetric 

analyser (TGA) and a bench-scale fluidised-bed reactor. It also discusses the 

effects that SO2 and steam have on the overall performance of these solid 

sorbents.  
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¶ Chapter 5 describes the methodology and results with regard to particle 

fragmentation of three synthetic materials as well as an in-depth particle 

characterisation section. 

¶ Chapter 6 offers insights to the operational experience gained through 

several experimental campaigns in the 25 kWth calcium looping pilot plant 

operated with high oxygen concentration in the calciner.  

¶ Chapter 7 details the results from the experimental campaigns of 

Cranfieldôs 25 kWth reactor configuration when using enhanced sorbents for 

CO2 capture. 

¶ Chapter 8 presents a general discussion of all the work done through the 

course of this research linking all the chapters together. 

¶ Chapter 9 deals with concluding remarks, contributions to existing 

knowledge and recommendations for future research based on the outcomes 

detailed in this thesis. 
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2 GENERAL LITERATURE REVIEW 

2.1 Climate change and greenhouse gas emission 

The IPCC refers to climate change as an alteration in the state of the climate; 

this variation can be recognised by changes in the variability and/or mean of 

climatic properties (e.g. average temperature, rain fall and weather patterns, 

among others). Additionally, these alternations need to persist for a long period 

of time, usually decades or longer, to be considered as climate change [1].  

To understand how global warming works, an understanding of Earthôs radiation 

balance is necessary. Radiation coming, primarily from the Sun, enters the 

atmosphere, mostly as visible light. Since the Earthôs temperature has been 

relatively stable for centuries, the solar radiation entering the atmosphere 

should balance the outgoing radiation. As represented in Figure 2-1, around half 

of the incoming shortwave radiation (SWR) is absorbed by the Earthôs surface, 

about 30% is reflected back to space and 20% is absorbed by the atmosphere 

[2]. The longwave radiation (LWR) emitted by the Earthôs surface (albedo) is 

mainly absorbed by greenhouse gases and clouds, both of which emit infrared 

radiation in all directions. The LWR emitted to the Earthôs surface, by the clouds 

and greenhouse gases, heats the lower layers of the atmosphere, causing what 

we call the greenhouse gas effect. Therefore, if there is an increased 

concentration of these gases in the atmosphere, they will emit more LWR, 

consequently increasing the heat received by the Earthôs surface. 
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Figure 2-1: Main drivers of climate change. The radiative balance between 

incoming solar shortwave radiation (SWR) and outgoing longwave radiation 

(OLR) [2] 

It is now accepted that the effects of anthropogenic global warming are the 

result of an increase in greenhouse gas (GHG) emissions produced primarily 

from fossil fuel combustion. Figure 2-2 shows the rise in the concentration of 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) since 1750 (40%, 

150% and 200% increase, respectively), with the increase in the concentration 

of CO2 being the most rapid of the decade with 2 ppm/year since 2011 [3, 4]. 

However, not all of these gases have the same greenhouse potential, with N2O 

and CH4 having 265 and 28 times greater warming potential than CO2, 

respectively. Nonetheless, as can be seen in Figure 2-2, they are only present 

at ppb-level in the atmosphere compared with the ppm-level CO2 

concentrations. Moreover, the concentration of these gases has not increased 

at the same rate. A representation of this rate can be seen in Figure 2-3. 
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Figure 2-2: Observed changes in atmospheric greenhouse gas concentrations 

(CO2, CH4, N2O) [3] 

 

Figure 2-3: Global anthropogenic GHG emissions by gases from 1970-2010 [5] 

According to Figure 2-3, carbon dioxide is the most emitted greenhouse gas 

and contributes about 76% of the total emissions. Economic and population 

growth are the main drivers for the increase of CO2 emissions over time. 

However, it should be noted that population growth between 2000 and 2010 has 
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remained the same when compared to the previous three decades, whilst the 

impact of economic growth has increased considerably. 

The effects of CO2 on global warming were first discussed by Tyndall in 1859 

[6]. Furthermore, Arrhenius did the first calculations on the repercussions of 

carbon dioxide emissions on global warming in 1896 [7], and he noticed that the 

changes of atmospheric CO2 concentration may cause long-term variations in 

the climate system. 

Climate change caused by anthropogenic emissions will have other 

environmental implications; these implications are given the name of climate 

change indicators. These include sea level increases, which will cause inland 

inundation of areas close to sea level. Another indicator is ocean acidification as 

a result of the increased concentration of CO2 in sea water, which poses great 

risk to ocean ecosystems due to changes in nutrients and food chains. The last 

indicator is the ice melting, especially in the Artic, sea ice has been thinning and 

its volume has reduced [8, 9], which contributes to the increase in sea level as 

well. These effects combined with extreme weather may lead to floods, 

desertification and drought, which will result in crop failure, low water supplies, 

human migration, spreading of diseases and extinction of vulnerable species. 

All of this will result in greater population in the areas that are fit for human 

inhabitation, which will raise the stress on the resources and lead to potential 

human conflicts. 

In conclusion, mitigation options to limit the effects of climate change are 

needed. It is important to note that most of the CO2 emissions come from the 

power generation sector and the industrial sector [10]. Figure 2-4 shows the 

global electricity generation prediction by source. It can be seen that the total 

share of fossil fuel generation falls from 68% in 2012 to 55% in 2040, whilst the 

electricity generation increases over three-quarters between 2012 and 2040. 

Coalôs share drops from 41% to 31% during this period, oilôs share also 

decreases from 5% to 1%. However, the share of natural gas is the only one 

among all fossil fuels that sees an increment from 22% in 2012 to 38% in 2040. 

Nuclear remains almost stable with a small boost of 1% during this period, in 
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contrast, the share of all the renewable energy sources increases to more than 

double, attaining around one-third of the global electricity generation in 2040. All 

of this growth comes from non-hydro sources, with wind power accounting for 

more of half of this boost. 

 

Figure 2-4: World electricity generation by source [11] 

It is important to highlight that a portfolio of low-carbon technologies needs to be 

deployed in order to decarbonise the energy sector. It should be noted that 

more than a third of the greenhouse gases emissions in 2010 came from the 

power sector [12]; therefore, its decarbonisation can make a significant 

contribution towards achieving the 2DS emission reduction targets. However, it 

must also be remembered that the industrial sector accounts for one fifth of the 

global CO2 emissions [13], and its decarbonisation is equally important in order 

to meet the specific targets agreed by governments. 

2.2 Carbon capture and storage 

Carbon capture and storage (CCS) involves a chain of processes designed to 

reduce the CO2 emissions from large sources of combustion and other chemical 

reactions, e.g. large-scale power plants and industrial sources. The chain 

comprises the CO2 capture, compression, transport, storage and/or utilisation 

and monitoring. These processes can be seen in Figure 2-5. 
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Figure 2-5: Schematic diagram of possible CCS systems showing the sources for 

which CCS might be relevant, transport of CO2 and storage options [14]  

Plants with integrated CCS systems need between 10-40% more energy to 

operate the CCS proceses. Most of this energy is used in the CO2 capture and 

compression stages. This increases CO2 production, which can be seen in 

Figure 2-6, and the net result of adding the CCS system is that the CO2 

emissions drop 80-90% (CO2 avoided) when compared with a reference plant 

[14].  

 

Figure 2-6: CO2 emitted, captured and avoided [14] 
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2.2.1 CO2 capture technologies 

There are three paths for CO2 capture in the power generation systems as can 

be seen in Figure 2-7. These are: post-combustion, pre-combustion and oxy-

fuel combustion, which are detailed below. 

 

Figure 2-7: Schematic of CO2 capture processes for power generation [15] 

2.2.1.1 Post-combustion CO2 capture 

In these processes, flue gas is treated in order to capture CO2 after the 

combustion takes places. The flue gas generally contains 3-15% CO2 

(depending on the fuel used), as well as steam, nitrogen, SOx, NOx and 

particulates. These post-combustion CO2 capture technologies can be 

retrofitted to existing plants, i.e. the CO2 capture processes can be placed 

downstream of the flue gas treatment of an already built power generation unit 

[16]. There are various technologies that can be deployed in such systems 

including: chemical or physical absorption, membrane separation or adsorption. 

The main disadvantage of these processes is the energy penalty associated 

with the low CO2 partial pressure in the flue gas (~0.1 MPa) after combustion 

[14, 17]. On the other hand, it is important to highlight that these capture 

methods can be retrofitted to existing units, which even if it means pre-investing 




















































































































































































































































































































































































































































































































































