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Abstract: The migration and emission of mercury (Hg) were studied for three 410t/h 

circulating fluidized bed (CFB) boilers co-firing petroleum coke and coal. Both the Ontario 

Hydro Method (OHM) and EPA Method 30B were employed to sample gas phase emissions 

of mercury from the flue gas, and to compare the agreement for different measurement 

methods in industrial application. Concurrent with flue gas sampling, solid and liquid samples 

like fuel, bottom ash, fly ash and gypsum, waste water, etc. were also collected to determine 

the total mass balance and map the mercury migration and emission from the power plant. 

The results showed that the mass balance rates ranged from 83.92%-122.68%, which can be 

considered to be acceptable and reliable. The vast majority of mercury emitted was distributed 

into fly ash and stack gas, accounting for 61.36%-67.71% and 22.22%-33.35%, respectively. 

The total Hg concentration measured by OHM is comparable with that by EPA Method 30B, 

while EPA Method 30B shows large advantages over the flexibility. The total Hg removal 

efficiencies of electrostatic precipitator (ESP)+wet flue gas desulfurization (WFGD) and 

fabric filter (FF)+WFGD are 81.8% and 73.4%-76.4%, respectively. The FF has better Hg
0
 

and Hg
2+

 removal efficiencies than the ESP. The landfilling of bottom ash, fly ash and 

gypsum appears likely to have little environmental effect on soil and the main emphasize 

should be focussedd on the wastewater treatment. The mercury emission factors in this study 

are in the range of 0.69 g/TJ-0.80 g/TJ. The CFB boilers equipped with ESP/FF +WFGD 

appears to have the potential to significantly reduce the Hg emission to atmosphere.   

Keywords: Hg; circulating fluidized bed; co-firing of petroleum coke and coal; migration; 

emission. 

Introduction 

Mercury (Hg) and its compounds from anthropogenic sources has raised public 

environmental concerns because of its potential to cause persistent damage, biological 

accumulation and because of its extensive mobility(Zhou et al., 2015). Presently, Coal-fired 

power plants are considered to be the main anthropogenic source for Hg emissions into the 

atmosphere (Pacyna et al., 2010; Wang et al., 2013). It was reported that in 2010, about 24% 

of total global anthropogenic mercury emission were emitted from coal-fired power plants 

(AMAP/UNEP, 2013). To cope with the serious Hg pollution, the “Minamata Convention,” an 

international, legally-binding treaty to prevent Hg emissions and release was signed by 86 

countries including China on October 2013 (Pudasainee et al., 2016). The Chinese 

government also established the latest emission standard of air pollutants for thermal power 
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plants (GB 13223-2011 (National Standard of P.R. China), 2011), which requires emission 

values of Hg be limited to 30 μg/m
3
.  

The Hg in the flue gas mainly occurs in three forms: gaseous elemental mercury (Hg
0
), 

gaseous oxidized mercury (Hg
2+

) and particulate bound mercury (Hg
p
). Of these forms, Hg

p
 

can be effectively removed by particulate matter (PM) control devices such as electrostatic 

precipitator (ESP) and fabric filter (FF). Hg
2+

 can be easily captured by wet flue gas 

desulfurization system (WFGD) due to its high water solubility. In contrast, Hg
0
 is the most 

stable species and its residence time is estimated to be several months to one year in the 

atmosphere (Fu et al., 2012; Wu et al., 2010). Moreover, Hg
0
 cannot easily be removed by 

existing air pollution control devices (APCDs) because of its low water solubility and high 

volatility (Gao et al., 2013; Pavlish et al., 2003; Tan et al., 2004). Therefore, in order to meet 

the increasingly stringent mercury emission limits, it is necessary to analyze the distribution 

of Hg speciation in the flue gas from practical combustion systems.  

In terms of measurement, there are mainly three methods for onsite mercury 

measurement: the Mercury Continuous Emission Monitoring System (Hg-CEMS), a wet 

chemistry based on the Ontario Hydro Method (OHM) and the sorbent trap method based 

EPA Method 30B. The Hg-CEMS is mainly used for monitoring real-time Hg emission from 

the stack(US EPA, 2010). The OHM is considered to be the standard and reference mercury 

speciation measurement method in flue gas employs this method but its complexity in 

operation and the potential for errors in solution preparation and analysis are 

non-negligible(Laudal, 1999). Recently, the EPA Method 30B which uses chemical-treated 

activated carbon (AC) as the sorbent has begun to be gradually accepted worldwide. It is seen 

as an effective alternative to OHM because of its convenient operation, high precision and 

low cost(Cheng et al., 2009a). However, the high price of imported sorbent traps and AC 

remains a problem for its wide industrial application in China.  

Recently, the majority of Chinese power plants have been equipped with advanced 

APCDs, such as selective catalytic reduction (SCR)/selective non-catalytic reduction (SNCR), 

ESP/FF, WFGD with an aim to reduce the emission of nitrogen oxides (NOx), particulate 

matter (PM) and sulfur dioxide (SO2), respectively. However, the increase in the application 

of these APCDs not only increases the production of coal combustion byproducts (e.g., 

gypsum and WFGD wastewater), but also affect the partitioning behavior and emission of 

mercury. The concentration of Hg
2+

 in the flue gas increased and the Hg
0
 concentration 

decreased after ESP (Lu et al., 2007) and chlorine in coal and unburned carbon in ash appears 

to be the primary component responsible for enhancement of mercury oxidation and capture 

in practical systems (Gale et al., 2008). The abatement capacity of WFGD for Hg ranges from 

30.4%-78.4% and most of the Hg removed by WFGD was found in the WFGD gypsum 

(ÁLvarez-Ayuso et al., 2006; Cheng et al., 2009b; Meij et al., 2002). However, there is 

concern that disposal (e.g., landfill and deposit outdoor) and utilization of fly ash and gypsum 

(e.g., production of concrete) may have harmful impacts on environment and human health. 

Thus, the understanding of partitioning and redistribution behavior and of Hg across APCDs 

will help us to develop promising Hg emission control technologies in power plant.  

Petroleum coke is a solid byproduct derived from petroleum refining process (Gross et 

al., 2003). As an alternative energy to traditional fossil fuel, the production of petroleum coke 

has been increasing with the rapid development of heavy oil processing. Petroleum coke 



possesses high fixed carbon, high sulfur and low volatiles content, so it has serious potential 

pollutant emission like SO2 and NOx when burning it (Jia et al., 2002; Wang et al., 2004). Due 

to its high combustion efficiency, low pollutant emission and excellent fuel flexibility, 

circulating fluidized bed (CFB) technology appears to be an effective way to burn petroleum 

coke (Belin, 2002; Chen and Lu, 2007; Duan et al., 2008). Previous studies have mainly 

focused on mercury migration and emission in CFB boilers when burning fuels like coal, 

sewage, biomass, coal gangue and etc., and there is little research on mercury emission from 

burning mixed fuel of petroleum coke and coal (Åmand and Leckner, 2004; Li et al., 2012; 

Van de Velden et al., 2008; Zhang et al., 2015). In order to ensure the clean and effective use 

of petroleum coke, it is essential to study the migration and emission of mercury in CFB 

boilers co-firing petroleum coke and coal. 

In this paper, field tests on mercury migration and emission characteristics were carried 

out at three 410t/h CFB boilers burning mixed fuel of petroleum coke and coal. The Hg 

concentration and speciation distribution was simultaneous sampled at the both inlet and 

outlet of ESP/FF, WFGD. The main objectives of this study are as follow: (1) mercury mass 

balance and its distribution; (2) determination of mercury concentration and speciation across 

APCDs based on both OHM and EPA Method 30B; (3) determination of mercury removal 

rate from APCDs; (4)the measurement of mercury contamination to the environment and 

emission factor.  

2. Material and Methods 

2.1 Utility boilers description  

The migration and emission of Hg were studies at three CFB utility boilers. The detailed 

configurations of these units are shown in Table 1. The boilers rated capacities are 410 t/h. All 

tested boilers are installed with SNCR, ESP/FF and WFGD in series as APCDs to control the 

emission of NOx, particulate matter and SO2. The SNCR use urea as its denitrification reagent. 

The WFGD is a typical vertical spray tower based on limestone-gypsum, which consists of 

circulating pump, spray nozzles, spray layer, oxidation zone and demister. 

Table 1  

Configuration of tested boilers 

Item Boiler type Capacity/(t·h
-1

) APCDs 

#1 

#2 

#3 

CFB 

CFB 

CFB 

410 

410 

410 

SNCR+ESP+WFGD 

SNCR+FF+WFGD 

SNCR+FF+WFGD 

Of these units, boilers #1 burns 100% coal, both boiler #2 and boiler #3 burn mixed fuel 

of petroleum coke and coal with a blending ratio of 1:2. The proximate and elemental analysis 

of the fuels are shown in Table 2. According to the National Coal Classification Standard of 

China (GB/T 7562-2010), the mixed fuel sample can be classified as a bituminous coal when 

co-firing petroleum coke.  Here, the fixed carbon and sulfur content in mixed fuel sample 

(boiler #2, boiler #3) are higher than those in coal sample (boiler #1), while the ash content in 

mixed fuel sample is lower than that in coal sample. The mercury content in coal and mixed 

fuel are 0.084 mg/kg and 0.066 mg/kg, respectively. Chlorine in coal is considered to be an 

important factor influencing mercury partitioning behavior. In this study, the chlorine content 

in coal and mixed fuel are 110 mg/kg and 77 mg/kg, respectively, which is significantly lower 



than most of the coals used commercially in China (260mg/kg) and the United States of 

American (614mg/kg)(Zhang et al., 2012).    

 

Table 2  

Proximate and elemental analysis of tested fuels 

Item 

Proximate analysis 
Qar,net 

Elemental analysis  

Mar Aar Var FCar Car Har Oar Nar Sar Cl Hg 

% % % % MJ/kg % % % % % mg/kg mg/kg 

#1 

#2 

#3 

11.18 

10.14 

10.14 

16.80 

11.41 

11.41 

22.40 

18.07 

18.07 

49.62. 

60.38 

60.38 

23.40 

26.15 

26.15 

59.39 

66.48 

66.48 

3.55 

3.48 

3.48 

6.59 

4.99 

4.99 

1.38 

1.37 

1.37 

1.11 

2.12 

2.12 

110 

77      

77 

0.084 

0.066 

0.066 

2.2 Sampling process 

During the field test, the total mercury concentration in the flue gas was sampled based 

on the Ontario Hydro Method (OHM) and EPA Method 30B, respectively. The mercury 

speciation in the flue gas was analyze by OHM. Both sampling methods were tested 

simultaneously at three points, namely both the inlets and outlets of ESP/FF and WFGD. 

Detailed sampling locations of configuration of power plant were shown in Fig. 1.  

 

Fig.1. Schematic of sampling points across APCDs 

The sampling equipment for two sampling methods was by means of an Apex mercury 

instrument made in USA. The flue gas sample was firstly extracted from gas duct 

isokinetically by a probe with a quartz fiber filter maintained at 120 
o
C to prevent the 

condensation of water vapor and the absorption of Hg vapor to the inner face of filter. The 

Hg
p
 was collected on a quartz fiber filter. Then for the OH method, the flue gas sample 

subsequently flows through a series of impingers placed in an ice bath. The Hg
2+

 was 

collected by the first three impingers containing 1mol/dm
3
 KCl solution, and Hg

0
 was 

collected in the fourth impingers containing 5% V/V H2O2-10% V/V HNO3 solution and the 

three impingers with a solution of 4% W/V KMnO4-10% V/V H2SO4. The eighth impinger 

containing silica gel, which was used to remove the moisture from the previous impingers 

train before enter the following auxiliary equipment such as thermometer, vacuum gauge, 

air-tight pump, gas metering console and etc.  

For EPA Method 30B, the flue gas sample after filtration will subsequently flow through 

the paired traps filled with potassium iodide-treated activated carbon (AC-KI) to capture the 

gaseous mercury. The AC-KI sorbents trap was derived from US Ohio Lumex Inc, which is 

made of Pyrex (heat-resistance glass) to prevent the condensation Hg vapor on the inner face. 



Each trap consisted of two sorbent sections, the front section is for Hg collection and the rear 

section is there to allow for Hg break through. Each section contains 0.5 g sorbents and were 

separated by mercury-free fiberglass. Then the flue gas was dried before entering the 

following auxiliary equipment similarly to those used by OHM. The total gaseous Hg was 

calculated using the following equation: 

𝐶𝐻𝑔 =
𝑚1 + 𝑚2

𝑉𝑡
      (1) 

Where 𝐶𝐻𝑔 is the total gaseous Hg, μg/Nm
3
; 𝑚1 and 𝑚2 are the mass of Hg in the Hg 

collection section and Hg break through section, respectively, μg; and 𝑉𝑡 is the total volume 

of dry gas measured during the sampling process, m
3
.        

The whole sampling process lasted for 2 h measured by OHM and 1h measured by EPA 

Method 30B, respectively. All sampling tests were conducted in twice to obtain duplicate 

results. The boiler conditions were kept stable during the field test. The schematic of the 

OHM and EPA method 30B sampling devices are shown in Figure 2 and Figure 3.  

 

Fig.2. Schematic of the OHM sampling device 

 

 
Fig.3. Schematic of EPA Method 30B sampling device 

Concurrent with flue gas sampling, samples of feed fuel, bottom ash, ESP/FF ash, 



limestone slurry, flush water, gypsum and WFGD wastewater were also collected every 0.5 h. 

Then the solid samples were preserved in self-sealed bag and the liquid samples were store in 

high boron silicon bottle for waiting lab Hg analysis. 

2.3 Elementary analysis 

The gaseous mercury including Hg
0
 and Hg

2+
 in the absorbed solution was analyzed by 

the U.S. Leeman Hydra AA cold vapor atomic absorption spectrometer (CVAAS) after 

recovery and digestion, which is based on the ASTM D22.03.01. Solid samples like sorbents 

in traps, feed fuel, bottom ash, ESP/FF ash and gypsum were initially air-dried to constant 

weight, and then milled and pulverized to below 200 mesh. The mercury in pulverized 

samples was determined by Milestone DMA-80 Direct Mercury Analyzer, which is based on 

the ASTM D6722-01. Mercury in liquid samples like limestone slurry and wastewater was 

determined by atomic fluorescence spectrometry (AFS) based on HJ694-2014, which is a 

national standard for China. All mercury analysis was carried out at least twice to produce 

duplicate results and reduce experimental uncertainties. 

3. Results and Discussion 

3.1 Mercury mass balance and distribution 

The mass balance rate was calculated as the output in all forms of combustion 

byproducts including bottom ash, fly ash, gypsum, WFGD wastewater and flue gas to the 

input from feed fuel, flush water and limestone slurry. The Hg mass balance rates at three 
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Fig.4. Hg mass balance rate at three sampling locations 

 

sampling locations are shown in Fig. 4. Due to the fluctuation of boiler operating conditions 

and the uncertainties in sampling and analysis procedure, it is acceptable for these values to 

be in the range of 70%-130%(Wang et al., 2009). For all of the tested boilers, the mass 

balance rates ranged from 83.92%-122.68%, which confirms reliability and validity of 

mercury field test data in power plant. 

Base on the mercury mass balance ratio, the mercury distribution in all forms of 

combustion byproducts for the whole system was shown in Fig.5. As shown in Fig.5, the vast  



 

(a)                                  (b) 

(c)  

Fig.5. mercury distribution in all forms of combustion byproducts for the whole system (a) boiler #1 (b) 

boiler #2 (3) boiler #3 

(1 fly ash, 2 stack gas, 3 WFGD wastewater, 4 bottom ash, 5 WFGD gypsum) 

bulk of the mercury output was distributed into the fly ash and stack gas, accounting for 

61.36%-67.71% and 22.22%-33.35%, respectively. The proportion of mercury in bottom ash 

is extremely low, only accounting for only 0.07%-0.09% of the total Hg emissions. This is 

due to the fact that given the high temperature in furnace, most of the Hg in the coal will be 

vaporized and released to flue gas, and as a result, only a tiny fraction of the mercury remains 

in the bottom ash. When the flues gas flow through WFGD, about 3.49%-7.32% of Hg was 

removed by gypsum, and 0.85%-3.07% of Hg was removed by WFGD wastewater, 

respectively. This arises because the dissolved Hg
2+

 in the slurry can react with sulfide or 

sulfur oxides in the flue gas to form insoluble mercury sulfide or sulfate. A portion of mercury 

sulfide or sulfate can be absorbed by the gypsum, while the rest will remain in the wastewater 

because of the vacuum dewatering effect.   

3.2 Mercury concentration and speciation across APCDs 

The total mercury concentration across APCDs measured by OHM and EPA Method 30B 

is shown in Table 3. It can be seen from the Table 3 that at the outlet of boilers and WFGD, 

the mercury concentration in the flue gas was in the range of 9.58-12.07 μg/m
3 
and 2.20-2.84 

μg/m
3
, respectively. The Hg concentration in the flue gas at both sampling locations is far 

lower than the mercury limit value of 30 μg/m
3
 specified by GB 13223-2011. By comparison 

for these two sampling methods, the relative deviation between the OHM and EPA Method 

30B was in 

Table 3 

Hg concentration across APCDs of CFB power plant measured by OH Method and EPA Method 30B 

(on the basis of standard dry flue gas, 6% O2 normalized) 

Item Sampling method Inlet of ESP/FF Outlet of ESP/FF Outlet of WFGD 



μg/Nm
3
 μg/Nm

3
 μg/Nm

3
 

#1 

 

 

#2 

 

 

#3 

OHM 

EPA Method 30B 

RD
a 
(%) 

OHM 

EPA Method 30B 

RD
a 
(%) 

OHM 

EPA Method 30B 

RD
a 
(%) 

12.07 

11.71 

3.1 

9.58 

10.07 

4.9 

9.85 

9.73 

1.2 

3.82 

4.19 

8.8 

2.72 

2.86 

4.9 

2.96 

3.23 

8.4 

2.20 

2.34 

6.0 

2.26 

2.47 

8.5 

2.62 

2.84 

7.7 

a
RD: relative deviation of the total mercury concentration measured by OHM and EPA Method 30B. 

the range of 1.2%-8.8%. Due to the fluctuation of boilers parameters and differences of 

sampling and analysis methods, some relative deviation between these two methods is 

inevitable and but given their low levels the RD can be considered acceptable. Thus, the total 

Hg concentration measured by OHM is quite comparable with that by EPA 30B. Moreover, 

because of its simple operation, high precision and rigorous quality assurance procedures, 

EPA Method 30B can currently be considered to be the most likely alternative to the 

cumbersome OHM method(Laudal, 2009).  

The concentration and proportion of mercury speciation in the flue gas across each 

APCD are shown in Table 4. These APCDs are installed to remove NOx, PM and SO2 , but 

will also have a co-beneficial effect on Hg capture. It can be seen from Table 4 that Hg
p
 is the 

main Hg form at the inlet of ESP/FF namely the outlet of the boilers, with proportional values 

ranging from 48.02%-59.82%. Several studies found that the proportion of Hg
p
 in the flue gas 

from CFB boilers is generally higher than that from pulverized-coal (PC) boilers. This can be 

explained by the fact that the CFB boilers generally has a higher unburned carbon (UBC) 

content in fly ash, and withmore sufficient contact between gaseous mercury and fly ash, 

this  will enhance the absorption of Hg on fly ash (Yin et al., 2013; L. Zhang et al., 2016; Y. 

Zhang et al., 2016). In addition, the proportion of Hgp at the outlet of boiler #1 (59.82%) is 

higher than that seen at the outlet of boiler #2 and boiler #3 (ranged from 48.02%~49.69%), 

which is consistent with the higher mercury and chlorine content in the coal of boiler #1 (as 

shown in Table 2).  

Table 4 

Mercury speciation and concentration across each APCD of CFB power plant (on the basis of standard 

dry flue gas, 6% O2 normalized) 

Item Hg speciation 
Inlet of ESP/FF Outlet of ESP/FF Outlet of WFGD 

μg/Nm
3
 % μg/Nm

3
 % μg/Nm

3
 % 



#1 

 

 

   

#2 

 

 

 

#3 

Hg
0
 

Hg
2+

 

Hg
p
 

Hg
T
 

Hg
0
 

Hg
2+

 

Hg
p
 

Hg
T
 

Hg
0
 

Hg
2+

 

Hg
p
 

Hg
T
 

3.55 

1.30 

7.22 

12.07 

3.33 

1.49 

4.76 

9.58 

4.03 

1.09 

4.73 

9.85 

29.41 

10.77 

59.82 

100 

34.76 

15.55 

49.69 

100 

40.91 

11.07 

48.02 

100 

2.45 

0.83 

0.54 

3.82 

2.17 

0.51 

0.04 

2.72 

2.50 

0.41 

0.05 

2.86 

64.14 

21.73 

14.14 

100 

79.70 

18.73 

1.57 

100 

84.51 

13.86 

1.63 

100 

2.01 

0.10 

0.09 

2.05 

2.22 

0.04 

0.00 

2.26 

2.58 

0.04 

0.00 

2.49 

91.36 

4.55 

4.09 

100 

98.23 

1.77 

0.00 

100 

98.47 

1.53 

0.00 

100 

3.2.1 ESP/FF 

ESP/FF are widely utilized in power plants in China to remove the PM from the flu gas. 

Unlike ESP, where performance may vary significantly depending on electrical conditions 

and physical property of particle (e.g. particle size and dust specific resistance), the FF system 

has the capacity to remove submicron particles with the removal efficiency of 99% (Wang et 

al., 2008; Zhang et al., 2008).  As shown in Table 4, the proportion of Hg
p
 reduced from 

48.02%-59.82% to 1.57%-14.14% after through ESP/FF, indicates that most of Hg
p
 can be 

removed by ESP/FF along with particulate matter removal. Compared with gaseous Hg
0
, the 

concentration of gaseous Hg
2+

 decreased more sharply when flue gas passes through ESP/FF. 

Because of their differences in property and reactivity, gaseous Hg
2+

 can be absorbed on the 

fly ash more effectively and thus would be expected to be removed by ESP/FF (Srivastava et 

al., 2006; Y. Zhang et al., 2016). In addition, the total gaseous mercury (including Hg
0
 an Hg

2+
) 

concentration decreased 32% and 44% on average when flue gas pass through ESP and FF 

unit, respectively, indicating that the FF has better Hg
0
 and Hg

2+
 removal efficiencies than the 

ESP. Previous studies found that the filter dust cake layer can facilitate the oxidation of Hg
0
, 

and ensure more contact between gaseous mercury and fly ash occurred when flue gas flows 

through filter medium inside the FF system (Gao et al., 2013; Wang et al., 2016).   

3.2.2 WFGD  

The WFGD is used in power plant for SO2 control, and uses a lime or limestone slurry as 

reagent to react with the SO2. As shown in Table 4, the Hg
2+ 

concentration decreased sharply 

across the WFGD, with the proportion of Hg
2+

 ranging from 13.86%-21.73% to 1.53%-4.55%. 

This is due to the fact that Hg
2+

 is highly water-soluble and can react with dissolved sulfides 

(e.g. H2S) in the flue gas to form insoluble mercury sulfide, which are ultimately removed by 

WFGD (Liu et al., 2013; Rallo et al., 2010). This could be interrupted by reactions (2) and 

(3). 

H2S→ H
+
 + HS

-
 (2) 

Hg
2+ 

+ HS
-
→ HgS↓+ H

+
 (3) 

In addition, the concentration of Hg
p
 decreased by 83%-100%, which indicates the Hg

p
 

can be captured by WFGD effectively. Interestingly, the Hg
0
 concentration deceased when 

flue gas pass through WFGD at boiler #1, while it increased slightly at boiler #2 and boiler #3. 

The decrease of Hg
0
 concentration, can be explained as due to part of Hg

0
 being oxidized to 

Hg
2+

. For the increase of Hg
0
 concentration, the reasons are more complex, but can be 



explained as following (Córdoba et al., 2011; Ochoa González et al., 2012): here, the Hg
2+

 

and Hg
0
 in the flue gas can react to form Hg

2+

2 , and subsequently the Hg
2+

2  will react with 

active OH
-
 in the slurry to form Hg

0
 and HgO. The HgO can further be reduced by SO2 in the 

flue gas to form Hg
0
. The above process can be represented by reactions (4)-(6). The other 

factor, is that there is sulfite or sulfate generated from the reaction between SO2 in the flue gas 

and aqueous slurry. These species can react with dissolved Hg
2+

 in the slurry to form mercury 

sulfite (HgSO3) and mercury sulfate (HgSO4), both of which are unstable. In this case, a 

portion of mercury sulfite and mercury sulfate decomposes into Hg
0
 via reactions (7) and (8):          

Hg
2+ 

+ Hg
0
→ Hg

2+

2  (4) 

Hg
2+

2 + 2OH
-
→ H2O + HgO +Hg

0
 (5) 

HgO
 
+ SO2→ Hg

0
+ SO3 (6) 

Hg
2+ 

+ SO
2-

3→ HgSO3 → Hg
0
 (7) 

Hg
2+ 

+ SO
2-

4→ HgSO4 → Hg
0
 (8) 

In general, the re-volatilization of Hg
0
 is influenced by multiple factors such as flue gas 

and slurry composition, slurry pH, flue gas temperature and limestone injection rate (Ancora 

et al., 2015; Ochoa González et al., 2012; Schuetze et al., 2012). A previous study (Chang and 

Ghorishi, 2003) found that when the pH of slurry decreased, according to reaction (9) and (6), 

the SO2 concentration in the gas phase will increase, which will enhances the reemission of 

Hg
0
. (Zhang et al., 2016) compared the flue gas temperature at the inlet of WFGD in two 

power plants and found that the increase of flue gas temperature in the scrubber might also 

result in the increase of Hg
0
 reemission.  

H2O + SO2 ⇄H2SO3⇄H
+
 +HSO

- 

3  ⇄ 2H
+
+SO

2-

3  (9) 

3.3 Mercury removal efficiency of APCDs 

The Hg removal efficiencies across each APCDs and the entire system are summarized 

in Fig.6. As shown in Fig.6, the total Hg removal efficiencies across ESP and FF are 68.3% 

and 70.0%-71.6%, respectively. These results are similar to values measured in Chinese and 

American plants with value of 62.2%-76.4% for ESP and 67%-91% for FF (Pavlish et al., 

2003; Pudasainee et al., 2016; Yueyang et al., 2014). The total Hg removal efficiencies across 

WFGD from boiler #2 and boiler #3 (ranged from 11.32%-16.92%) are lower than that from 

boiler #1 (42.41%), and this can be attributed to the reemission of Hg
0
 and the relative lower 

proportion of Hg
2+

 presented at the inlet of WFGD from boiler #2 and boiler #3. Previous 

studies (Senior, 2007; Tang et al., 2016) found that the use of high-chlorine coal, SCR and 

halogen addition can increase the Hg
2+

 proportion in flue gas before WFGD, which will 

enhance the overall mercury removal efficiency of WFGD. The total Hg removal efficiencies 

of ESP+WFGD and FF+WFGD are 81.8% and 73.4%-76.4%, respectively, which indicates 

that CFB+ESP/FF+WFGD have a remarkable co-beneficial effect on mercury capture.  
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Fig.6. Hg removal efficiencies of APCDs 

3.4 Environmental implication 

3.4.1 Hg contamination on environment 

The application of APCDs can significantly increase the production of combustion 

byproducts (e.g. bottom ash, fly ash, WFGD wastewater and gypsum). During coal 

combustion process, a large portion of Hg can be removed by APCDs and then be 

transformed into solid and liquid combustion byproducts. As a result, the disposition of 

combustion byproducts (e.g. landfilling) and reutilization (e.g. construction) should be paid 

more attention. Table 5 presents the Hg concentration in combustion byproducts and limit 

values for soil and surface water proposed by the State Technical Supervision Bureau and 

National Environmental Protection Agency of China (GB 15618-1995 (National Standard of 

P.R. China), 1995; GB 3838-2002 (National Standard of P.R. China), 2002). For the solid 

combustion byproducts, the Hg concentrations, are below limit value specified by 

GB15618-1995, indicating that the landfilling of bottom ash, fly ash and gypsum will have 

little environmental effect on soil. However, the reutilization of fly ash and gypsum in 

applications such as cement and wall board production respectively, can cause Hg reemission 

into atmosphere during any calcining process (Liu et al., 2013; Rallo et al., 2010). For liquid 

combustion byproducts, the Hg concentration in the WFGD wastewater significantly exceeds 

the limit value, which indicates that great emphasizes should be put on the wastewater 

treatment.    

Table 5 

Hg concentration in combustion byproducts (on the wet basis)   

Item #1 #2 #3 Limit value 

Bottom ash (μg/kg) 

Fly ash (μg/kg) 

Gypsum (μg/kg) 

Wastewater (μg/L) 

1.76±0.14 

375.81±9.87 

50.15±4.23 

25.68±1.25 

1.94±0.17 

389.76±10.25 

34.92±2.76 

10.05±0.56 

2.37±0.21 

401.35±13.64 

22.34±1.58 

6.27±0.27 

500
a 

500
a
 

500
a
 

0.1
b
 

a
 Environmental quality standard for soils (secondary level standard), GB15618-1995 

b
 Environmental quality standard for surface water (third level standard), GB3838-2002 



3.4.2 Atmospheric mercury emission factor 

A mercury emission factor (MEF) is a significant parameter that evaluates the intensity 

of Hg emission into the atmosphere from power plant. In this study, the MEF is expressed as 

follow: 

MEF=
Ms

F×LHV
         (10) 

Where MEF is Hg mercury emission factor, g/TJ; Ms is the amount of Hg released to the 

air, t/h; LHV is the lower heating value of fuel, MJ/kg. The MEF of three tested boilers are 

0.69 g/TJ for boiler #1, 0.70 g/TJ for boiler #2 and 0.80 g/TJ for boiler #3, respectively. The 

US EPA has determined the MEF of 80 power plants burning different type of coals (U.S. 

Environmental Protection Agency, 2004). The average emission factors of these power plants 

burned bituminous, subbituminous and lignite were 1.63 g/TJ, 2.08 g/TJ and 6.79 g/TJ, 

respectively. In a previous study (Zhang et al., 2016) reported the MEF of Chinese power 

plants with ultra-low emission APCDs was in the range of 0.39g/TJ-0.81g/TJ. It can be 

concluded that the emission factors obtained in this study are significantly lower than the 

values of US plants, but are close to the values of Chinese ultra-low emission power plants, 

which indicates that CFB boilers equipped with ESP/FF +WFGD have the potential to 

significantly reduce the Hg emission to atmosphere. However, the MEF is affected by the 

variation of boiler type, fuel type, equipment of APCDs, components in the flue gas and etc. 

Therefore, more onsite investigations are needed to obtain a comprehensive understanding of 

Hg emission characteristics in CFB power plants. 

4. Conclusions 

Studies on migration and emission of Hg were carried out on three circulating fluidized 

bed boilers power plants co-firing petroleum coke and coal and the following results were 

obtained: 

(1) The mass balance rates ranged from 83.92%-122.68%, which can be considered to be 

acceptable and reliable values. The vast majority of output mercury was distributed into fly 

ash and stack gas, accounting for 61.36%-67.71% and 22.22%-33.35%, respectively. Hg in 

bottom ash represents the smallest ratio with 0.07%-0.09%. 

(2) The total Hg concentration in the flue gas measured by OH method was comparable 

with that measured by EPA method 30B. Particulate-bound Hg is the main from existing at 

the inlet of ESP/FF, with a values ranging from 48.02%-59.82%. 

(3) The FF has better Hg
0
 and Hg

2+
 removal efficiencies than the ESP system. Hg

2+
 can 

be captured by WFGD but Hg
0
 reemission has a negative effect on the Hg removal by WFGD. 

Overall, the total Hg removal efficiencies of ESP+WFGD and FF+WFGD are 81.8% and 

73.4%-76.4%, respectively. 

(4) The landfilling of bottom ash, fly ash and gypsum is likely to have little 

environmental effect on soil and great emphasizes should be placed on the wastewater 

treatment. The mercury emission factors in this study are in the range of 0.69 g/TJ-0.80 g/TJ, 

which is significantly lower than the values seen for US plants. 

Acknowledgement 

References 



ÁLvarez-Ayuso, E., Querol, X., Tomás, A., 2006. Environmental impact of a coal 

combustion-desulphurisation plant: Abatement capacity of desulphurisation process and 

environmental characterisation of combustion by-products. Chemosphere 65, 2009–

2017. 

Åmand, L.E., Leckner, B., 2004. Metal emissions from co-combustion of sewage sludge and 

coal/wood in fluidized bed. Fuel 83, 1803–1821. 

AMAP/UNEP, 2013. Technical Background Report for the Global Mercury Assessment. Arct. 

Monit. Assess. Program. 263. 

Ancora, M.P., Zhang, L., Wang, S., Schreifels, J., Hao, J., 2015. Economic analysis of 

atmospheric mercury emission control for coal-fired power plants in China. J. Environ. 

Sci. (China) 33, 125–134. 

Belin, E., 2002. Babcock & Wilcox CFB boilers — design and experience. Fuel Energy Abstr. 

43, 272. 

Chang, J.C.S., Ghorishi, S.B., 2003. Simulation and Evaluation of Elemental Mercury 

Concentration Increase in Flue Gas Across a Wet Scrubber. Environ. Sci. Technol. 37, 

5763–5766. 

Chen, J., Lu, X., 2007. Progress of petroleum coke combusting in circulating fluidized bed 

boilers-A review and future perspectives. Resour. Conserv. Recycl. 49, 203–216. 

Cheng, C.M., Chen, C.W., Zhu, J., Chen, C.W., Kuo, Y.W., Lin, T.H., Wen, S.H., Zeng, Y.S., 

Liu, J.C., Pan, W.P., 2009a. Measurement of vapor phase mercury emissions at 

coal-fired power plants using regular and speciating sorbent traps with in-stack and 

out-of-stack sampling methods. Energy and Fuels 23, 4831–4839. 

Cheng, C.M., Hack, P., Chu, P., Chang, Y.N., Lin, T.Y., Ko, C.S., Chiang, P.H., He, C.C., 

Lai, Y.M., Pan, W.P., 2009b. Partitioning of mercury, arsenic, selenium, boron, and 

chloride in a full-scale coal combustion process equipped with selective catalytic 

reduction, electrostatic precipitation, and flue gas desulfurization systems. Energy and 

Fuels 23, 4805–4815. 

Córdoba, P., Font, O., Izquierdo, M., Querol, X., Tobías, A., López-Antón, M.A., 

Ochoa-Gonzalez, R., Díaz-Somoano, M., Martínez-Tarazona, M.R., Ayora, C., Leiva, 

C., Fernández, C., Giménez, A., 2011. Enrichment of inorganic trace pollutants in 

re-circulated water streams from a wet limestone flue gas desulphurisation system in 

two coal power plants. Fuel Process. Technol. 92, 1764–1775. 

Duan, L., Chen, X., Cai, L., Li, Y., 2008. SO2 emission characteristics of circulating fluidized 

bed boiler co-firing coal and petroleum coke. J. Chem. Ind. Eng. (in Chinese) 728–734. 

Fu, X., Feng, X., Sommar, J., Wang, S., 2012. A review of studies on atmospheric mercury in 

China. Sci. Total Environ. 421–422, 73–81. 

Gale, T.K., Lani, B.W., Offen, G.R., 2008. Mechanisms governing the fate of mercury in 

coal-fired power systems. Fuel Process. Technol. 89, 139–151. 

Gao, Y., Zhang, Z., Wu, J., Duan, L., Umar, A., Sun, L., Guo, Z., Wang, Q., 2013. A critical 

review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. 

Environ. Sci. Technol. 47, 10813–23. 

GB 13223-2011 (National Standard of P.R. China), 2011. Emission standard of air pollutants 

for thermal power plants. 

GB 15618-1995 (National Standard of P.R. China), 1995. Environmental quality standard for 



soils. 

GB 3838-2002 (National Standard of P.R. China), 2002. Environmental quality standard for 

surface water. 

Gross, R., Leach, M., Bauen, A., 2003. Progress in renewable energy. Environ. Int. 29, 105–

122. 

Jia, L., Anthony, E.J., Charland, J.P., 2002. Investigation of vanadium compounds in ashes 

from a CFBC firing 100% petroleum coke. Energy and Fuels 16, 397–403. 

Laudal, D.., 1999. Field Validation of the Ontario Hydro Mercury Speciation Sampling 

Method At Site E-29. hnical Inf. Tech. Reports. 

Laudal, D.L., 2009. Conducting a RATA of continuous mercury monitors using EPA Method 

30B. Fuel Process. Technol. 90, 1343–1347. 

Li, L., Yu, C., Bai, J., Wang, Q., Luo, Z., 2012. Heavy metal characterization of circulating 

fluidized bed derived biomass ash. J. Hazard. Mater. 233–234, 41–47. 

Liu, X., Wang, S., Zhang, L., Wu, Y., Duan, L., Hao, J., 2013. Speciation of mercury in FGD 

gypsum and mercury emission during the wallboard production in China. Fuel 111, 

621–627. 

Lu, Y., Rostam-Abadi, M., Chang, R., Richardson, C., Paradis, J., 2007. Characteristics of fly 

ashes from full-scale coal-fired power plants and their relationship to mercury 

adsorption. Energy and Fuels 21, 2112–2120. 

Meij, R., Vredenbregt, L.H.J., te Winkel, H., 2002. The fate and behavior of mercury in 

coal-fired power plants. J. Air Waste Manag. Assoc. 52, 912–917. 

Ochoa González, R., Díaz-Somoano, M., López Antón, M.A., Martínez-Tarazona, M.R., 

2012. Effect of adding aluminum salts to wet FGD systems upon the stabilization of 

mercury. Fuel 96, 568–571. 

Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, 

F., Maxson, P., 2010. Global emission of mercury to the atmosphere from anthropogenic 

sources in 2005 and projections to 2020. Atmos. Environ. 44, 2487–2499. 

Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., 

Benson, S.A., 2003. Status review of mercury control options for coal-fired power 

plants. Fuel Process. Technol. 82, 89–165. 

Pudasainee, D., Seo, Y.-C., Sung, J.-H., Jang, H.-N., Gupta, R., 2016. Mercury Co-beneficial 

Capture in Air Pollution Control Devices of Coal-fired Power Plants. Int. J. Coal Geol. 

170, 6–11. 

Rallo, M., Lopez-Anton, M.A., Perry, R., Maroto-Valer, M.M., 2010. Mercury speciation in 

gypsums produced from flue gas desulfurization by temperature programmed 

decomposition. Fuel 89, 2157–2159. 

Schuetze, J., Kunth, D., Weissbach, S., Koeser, H., 2012. Mercury vapor pressure of flue gas 

desulfurization scrubber suspensions: Effects of pH level, gypsum, and iron. Environ. 

Sci. Technol. 46, 3008–3013. 

Senior, C., 2007. Review of the Role of Aqueous Chemistry in Mercury Removal by Acid 

Gas Scrubbers on Incinerator Systems. Environ. Eng. Sci. 24, 1129–1134. 

Srivastava, R.K., Hutson, N., Martin, B., Princiotta, F., Staudt, J., 2006. Control of mercury 

emissions from coal-fired electric utility boilers. Environ. Sci. Technol. 40, 1385–1393. 

Tan, Y., Mortazavi, R., Dureau, B., Douglas, M.A., 2004. An investigation of mercury 



distribution and speciation during coal combustion. Fuel 83, 2229–2236. 

Tang, S., Wang, L., Feng, X., Feng, Z., Li, R., Fan, H., Li, K., 2016. Actual mercury 

speciation and mercury discharges from coal-fired power plants in Inner Mongolia, 

Northern China. Fuel 180, 194–204. 

U.S. Environmental Protection Agency, 2004. Proposed National Emission Standards for 

Hazardous Air Pollutants; and, in the Alternative, Proposed Standards of Performance 

for New and Existing Stationary Sources: Electric Utility Steam Generating Units; 

Proposed Rule. Fed. Regist. 69, 4652–4752. 

US EPA, 2010. Specification and Test Procedures for Total Vapor Phase Mercury Continuous 

Emission Monitoring System in Stationary Sources(EPA Performance specification 

12A). Washington D.C. 

Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P., 2008. The distribution of 

heavy metals during fluidized bed combustion of sludge (FBSC). J. Hazard. Mater. 151, 

96–102. 

Wang, F., Wang, S., Meng, Y., Zhang, L., Wu, Q., Hao, J., 2016. Mechanisms and roles of fly 

ash compositions on the adsorption and oxidation of mercury in flue gas from coal 

combustion. Fuel 163, 232–239. 

Wang, J., Anthony, E.J., Abanades, J.C., 2004. Clean and efficient use of petroleum coke for 

combustion and power generation. Fuel 83, 1341–1348. 

Wang, S., Zhang, L., Li, G., Wu, Y., Hao, J., Pirrone, N., Sprovieri, F., Ancora, M.P., 2009. 

Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. 

Phys. Discuss. 9, 24051–24083. 

WANG, Y., DUAN, Y. feng, YANG, L. guo, JIANG, Y. man, WU, C., WANG, Q., YANG, 

X., 2008. Comparison of mercury removal characteristic between fabric filter and 

electrostatic precipitators of coal-fired power plants. J. Fuel Chem. Technol. 36, 23–29. 

Wang, Y., Huang, J., Hopke, P.K., Rattigan, O. V., Chalupa, D.C., Utell, M.J., Holsen, T.M., 

2013. Effect of the shutdown of a large coal-fired power plant on ambient mercury 

species. Chemosphere 92, 360–367. 

Wu, Y., Streets, D.G., Wang, S.X., Hao, J.M., 2010. Uncertainties in estimating mercury 

emissions from coal-fired power plants in China. Atmos. Chem. Phys. 10, 2937–2946.  

Yin, L., Gao, Y., Xu, Q., Zhu, Z., Du, W., An, Z., 2013. Mercury Emission From Coal-fired 

Power Plants in China. Proc. CSEE 33, 1–9. 

Yueyang, X., Jianming, X., Hongliang, W., Bing, L., Yiming, G., Jun, L., 2014. Research on 

Mercury Collaborative Control by Conventional Pollutants Purification Facilities of 

Coal-fired Power Plants. Proc. CSEE 34, 3924–3931. 

Zhang, L., Wang, S., Meng, Y., Hao, J., 2012. Influence of mercury and chlorine content of 

coal on mercury emissions from coal-fired power plants in China. Environ. Sci. Technol. 

46, 6385–6392. 

Zhang, L., Wang, S., Wu, Q., Wang, F., Lin, C.J., Zhang, L., Hui, M., Yang, M., Su, H., Hao, 

J., 2016. Mercury transformation and speciation in flue gases from anthropogenic 

emission sources: A critical review. Atmos. Chem. Phys. 16, 2417–2433. 

Zhang, L., Zhuo, Y., Chen, L., Xu, X., Chen, C., 2008. Mercury emissions from six coal-fired 

power plants in China. Fuel Process. Technol. 89, 1033–1040. 

Zhang, Y., Nakano, J., Liu, L., Wang, X., Zhang, Z., 2015. Trace element partitioning 



behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation. 

Environ. Sci. Pollut. Res. 22, 15469–15478. 

Zhang, Y., Yang, J., Yu, X., Sun, P., Zhao, Y., Zhang, J., Chen, G., Yao, H., Zheng, C., 2016. 

Migration and emission characteristics of Hg in coal-fired power plant of China with 

ultra low emission air pollution control devices. Fuel Process. Technol. 158, 272–280.  

Zhou, C., Sun, L., Zhang, A., Wu, X., Ma, C., Su, S., Hu, S., Xiang, J., 2015. Fe3-xCuxO4 as 

highly active heterogeneous Fenton-like catalysts toward elemental mercury removal. 

Chemosphere 125, 16–24. 

 


