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Abstract: Understanding the distribution, behaviour and interactions of complex chemical mixtures

is key for providing the evidence necessary to make informed decisions and implement robust

remediation strategies. Much of the current risk assessment frameworks applied to manage land

contamination are based on total contaminant concentrations and the exposure assessments

embedded within them do not explicitly address the partitioning and bioavailability of chemical

mixtures. These oversights may contribute to an overestimation of both the eco-toxicological effects

of the fractions and the mobility of contaminants. In turn, this may limit the efficacy of risk

frameworks to inform targeted and proportionate remediation strategies. In this review we analyse

the science surrounding bioavailability, its regulatory inclusion and the challenges of incorporating

bioavailability in decision making process. While a number of physical and chemical techniques

have proven to be valuable tools for estimating bioavailability of organic and inorganic

contaminants in soils, doubts have been cast on its implementation into risk management soil

frameworks mainly due to a general disagreement on the interchangeable use of bioavailability and

bioaccessibility, and the associated methods which are still not standardised.

This review focuses on the role of biotic and abiotic factors affecting bioavailability along with soil

pysicochemical properties and contaminant composition. We also included advantages and

disadvantages of different extraction techniques and their implications for bioavailability

quantitative estimation. In order to move forward the integration of bioavailability into site-specific

risk assessments we should (1) account for soil and contaminant physicochemical characteristics

and their effect on bioavailability; (2) evaluate receptor’s potential exposure and uptake based on

mild-extraction; (3) adopt a combined approach where chemical-techniques are used along with

biological methods; (4) consider a simplified and cost-effective methodology to apply at regulatory

and industry setting; (5) use single-contaminant exposure assessments to inform and predict

complex chemical mixture behaviour and bioavailability.
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1 Introduction

Contaminated sites are often impacted by a wide range of organic and inorganic chemical mixtures,

for example, heavy metals, polycyclic aromatic hydrocarbons (PAHs), phenols or chlorinated

hydrocarbons (CHC) (European Environment Agency, 2012). These contaminants will often form

complex mixtures in soil that complicate the assessment of risk and the achievement of site-specific

remediation objectives (Renoux et al. 2013). Unlike single contaminants, the physico-chemical

interactions of mixed contaminants are not well understood as the additive, synergistic or

antagonistic effects of mixtures will often yield bioavailability values that differ from those of

individual contaminants (Ramakrishnan et al. 2011). Poor understanding about the fate and

behaviour of contaminant mixtures in soil limits the effectiveness of risk-based contaminated land

management decisions.

Risk assessment is an established methodology that is employed to assess the potential impacts of

contaminants on human and ecological health (Vegter et al. 2002). Reflecting regional legislation,

expertise, and socio-economic issues, several risk-based contaminated land management

frameworks have been published to support environmental management decisions (Brassington et

al., 2010, Kabari et al., 2016). Typically, these frameworks use tiered assessment approaches. A

limitation of such frameworks, similar to that of exposure assessment methods, is the inability to

assess the risk posed by complex chemical mixtures. In fact, these frameworks are based on

conservative risk screening levels and therefore tend to overestimate the risk, as they do not take

into account the amounts of chemicals potentially bioavailable in soil and bioaccessible to

organisms. Determining appropriate site specific measures and remedial objectives depends on our

understanding of contaminant partitioning and interaction with the soil matrix over time. Measuring

the total concentration of contaminants in soil does not provide a useful basis for the evaluation of

the potential risks to humans and the environment. The variety of physical–chemical properties, and

thus differences in the migration and fate of individual compounds, as well as the toxicity of

different fractions and compounds must be taken into account in risk assessments.

Over the last 30 years, accounting for the bioavailable nature of soil contaminants has received

increasing attention. As a result, a great amount of scientific literatures have reported on the

development of methods to estimate the bioavailable fraction of these contaminants. Despite this

progress, implementation of these methods into contaminated land decision-making processes has

not yet been statutorily defined, and uncertainties remain on how bioavailability should be assessed

and integrated into existing risk based management frameworks (Ortega-Calvo et al. 2015; Wu et

al., 2013; Harmsen & Naidu 2013; Naidu et al. 2015)



In this review we will highlight the factors that influence the bioavailability of chemical in soil and

will discuss the challenges that complex chemical mixtures pose. We will critically review the

extant literature to assess the use of bioavailability in contaminated land risk assessments. Finally,

we will offer suggestions for how bioavailability could be integrated into existing contaminated

land risk assessment frameworks.

2 Bioavailability concept

Defined from a chemical perspective, bioavailability is the fraction of freely available (not sorbed

or sequestrated) contaminant in the environment that is mobile and thus most likely to lead to

human exposure (Dean and Scott, 2004; Ruby et al., 1996). Similarly, Semple et al. (2004) defined

bioavailability as the contaminant fraction “freely available” in a medium and able to reach the

cellular membrane of an organism over a given time. Thus, for a contaminant to be bioavailable it

must be mobile and there must be a likelihood for exposure with a biological membrane.

2.1 Factors affecting bioavailability

Managing risk associated with chemical mixture in the environment requires an understanding of

how contaminants are released, transported, and taken up by a target receptor. The different

transportation and uptake pathways that affect the quantitative estimation of bioavailable fractions

of metals and oil-derived products in soil depends on both the physicochemical characteristics

(Table 1), the receptors (Table 2), and other additional factors (Table 3). Among the

physicochemical factors, soil characteristics (pH, soil composition, organic carbon percentage, and

salinity), compound properties (hydrophobicity, aqueous solubility, and acid dissociation constant)

and transformation/degradation processes are generally responsible for interactions occurring

between the soil matrix and the chemical compounds (Table 1). Biological processes (e.g.

bioaccumulation, biotransformation) whereby contaminants are transported into an organism, are

highly dependent on the type of organism and its biology (Table 2). It is important to recognize that

any combination of individual physicochemical and biological processes will affect contaminant

bioavailability and exposure of receptors.

Soil matrix heterogeneity will also affect bioavailabilty (Farmer 1997). Among physicochemical

factors, sorption is the main factor influencing the biotic and abiotic transformations happening over

time (i.e ageing) in solid environmental matrices, which normally yield to a more stable solid-



associated compound and therefore a decrease in bioavailability (Zhang et al., 2014; Moyo et al.,

2014; Dube et al., 2001; Kleber et al., 2007) .

Sorption, which includes absorption and adsorption, is the process whereby a chemical compound

adheres (reversibly or otherwise) to the surface of a soil particle (Olu-Owolabi et al., 2014).

The sorbed substance is referred to as the sorbate (compound) and the material that it is sorbed to is

referred to as the sorbent (solid phase). When contaminants are released in the soil, the chemistry of

the particles and the equilibrium between phases will influence the pathways and interactions

between sorbate and sorbent.

Contaminants will interact with both the mineral and organic content of soil, either sorbing to

surfaces, or migrating within the porous structure of soil compartments (Reid et al. 2000).

Contaminants can also dissolve into the pore water of a soil matrix, making it available for

biodegradation Figure 1(). The interaction between contaminant and soil particle will lead to

different degrees of desorption (1) rapid — compounds can easily desorb and return to the pore

water; (2) slow — reversible but over a longer timeframe(Ren et al. 2018); (3) non reversible —

rate of contaminant removal is low and compounds are bound (sequestrated) to the soil

(Kuppusamy et al. 2017). The non-reversible fraction is generally believed not to be relevant for

bioavailability assessment.

Partitioning of a contaminant at the solid-water interface will depend on the chemical structure of

the contaminant. For example, small organic contaminants and low molecular weight PAHs could

dissolve into the soil pore water, or could be rapidly sorbed onto the particle surface (Vicent et al.

2013; Abdel-Shafy & Mansour 2016). PAHs with high molecular and larger organic molecules with

non-polar structures, on the other hand, tend to sorb onto the non-polar, condensed organic domains

of soils (Loibner et al., 2000). These fraction resist degradation and will persistent. However, even

small molecules can become persistent environmental pollutants, for example, chloro-organic

compounds show a great stability and recalcitrance due to their C–Cl bond (Nikel et al., 2013).

Metals also sorb to soil particles, particularly iron hydroxides, clays, and carbonate minerals, and

can form solid stable compounds with oxygen and sulphur, becoming irreversibly enclosed and

thus, not bioavailable.



Table 1 : Physicochemical factors influencing bioavailability of metals and oil-derived products in soil (similarities and differences)1

Factors Metals
Implication for element

behaviour and
bioavailability

Reference of
special interest Oil derived product

Implication for oil
compounds behaviour

and bioavailability

Reference of
special
interest

Contaminant
characteristics

Present in
different
elemental forms
(metal
speciation)

Metals’ bioavailability can
increase or decreased
depending on the chemical
form. Formation of sulphide
cause low solubility (low
bioavailability).

(Violante et al.
2010)
(Rinklebe et al.
2016)
(Liu et al. 2016)
(Shahid et al.
2017)

Molecular weight , polarity
hydrophobicity , solubility
octanol partitioning
coefficient (KOW)
sorption coefficients (KOC,
Kd), acid dissociation
constant (pKa)

Highly complex chemical
mixture and concentration
constantly changing due
to transformation and
interactions with
environmental media over
time

(Duan &
Naidu 2013)
(National
Research
Council 2014)
(Trellu et al.
2017)

Soil characteristic
and
Sorption
Desorption

Influenced by
both
geochemical
processes (e.g.,
redox/pH) and
soil
characteristics
(e.g particle size,
organic content).

High pH form insoluble
metal (decrease in
bioavailability), low pH
form free ionic species or
organo-metals (increase in
bioavailability). The
presence of mineral
phosphates and carbonates
decreases bioavailability.

(Lomaglio et al.
2017)
(Wang et al.
2016)
(Pauget et al.
2011)
(Pan et al. 2016)
(Tahervand &
Jalali 2016)

Quantity and type/quality of
organic carbon, clay content,
organic content (condensed
humic material, soot
particles), and soil organic
matter can influence
bioavailability.

Binding of PAHs to
condensed organic
domains rend these
compounds less
bioavailable. Adsorption
can be also influenced by
pH, depending on the
presence or absence of
intrinsic positive or
negative charges on the
compounds functional
groups.

(Cecchin et al.
2016)
(Lukić et al. 
2016)
(M. Zhang et
al. 2014)
(Sabljic &
Nakagawa
2014)
(Wu et al.
2013)
(Chen et al.
2017)
(Yu et al.
2018)

Transformation
Degradation
(biological/chemical)

No degradation

Metal cannot be degraded;
inorganic contaminants can
only be bio accumulated or
sequestrated (Olaniran et
al., 2013). Their
bioavailability depends on
the partitioning and
distribution across soil
substrates.
However presence of metals
(if bioavailable) can inhibit
organic compound

(H.-Y. Yu et al.
2016)
(Palleiro et al.
2016)
(Young 2013)

Both biotic (microbial
degradation), and abiotic
degradation (volatilisation
leaching, photodegradation)
can lead to transformation
and degradation of organic
compounds in soil.

Bioavailability of organic
compounds over time
tends to decrease due to
diffusion into soil
particles, formation of
stabile complexes, and to
microbial degradation.

(Sihag et al.
2014)
(Vila et al.
2015)
(Ghosal et al.
2016)
(Marquès et al.
2016)
(Alegbeleye et
al. 2017)



degradation interfering with
microbial processes.

Oxidation/Reduction
Cation exchange
capacity, and soil pH

Influenced by the
presence of
organo-mineral
colloids
(adsorption).
Complexation
with humus,
precipitation in
presence of clay
mineral and Fe,
Mn, Al oxides
and carbonates.

Reducing conditions due to
a high content of organic
carbon and/or sulphide can
cause formation of less
soluble species e.g Cr(III)

(Ashraf et al.
2012)
(H. Y. Yu et al.
2016)
(An et al. 2015)
(Schneider et al.
2016)
(Kunhikrishnan
et al. 2016)

Changes in pH can influence
mostly ionizable organic
compounds, impacting
sorption and removal of
organic solutes from solution
(Naidu, 2011). Changes in
redox potential and pH can
accelerate oxidation of
organic contaminants
(Eggleton and Thomas,
2004).

Both mineral and humic
substances can impact
bioavailability of organic
pollutants via oxidative
and reductive
transformation processes.

(Ling et al.
2015)
(Xiao et al.
2014)
(Zhang & Fan
2016)
(Zhang et al.
2015)



Table 2 : Biological factors influencing bioavailability of metals and oil-derived products in soil (similarities and differences)2

Factors Metals
Implication for element

behaviour and bioavailability

Reference of
special
interest

Oil derived product

Implication for oil
compounds

behaviour and
bioavailability

Reference of
special
interest

Uptake

Metals uptake is typically
based upon bioassay
exposures to a dissolved
chemical, therefore highly
dependent on the metals
solubility in solution, and
oxidation states.

Highly dependent on the system
considered for example in plants
the bioavailability of a certain
metal in the water phase, depends
on root structure, but also
presence/absence of organic acids
exudate (such as citrate and
oxalate). For aquatic species
bioavailability depends on both
ingestion of metal-enriched
sediment during feeding, and
uptake of metal suspended
particles from solution (du Bray
1995).

(Wyszkowska
et al. 2012)
(Seshadri et al.
2015)
(Tangahu et
al. 2011)
(Rüdel et al.
2015)

Depend on multiple
factors such as
concentration in soil,
its chemical form, soil
pH, biological species,
and uptake pathways
of specific species.

Depend on where
and how an
organism lives and
feeds in the soil or
sediment.

(Peters et al.
2016)
(Juhasz et al.
2014)
(Beriro et al.
2016)
(Lal et al.
2015)
(Rostami &
Juhasz 2011)

Bio concentration,
bioaccumulation,
and
biotransformation

Metal bioaccumulation (in
bacteria, fungi, and plants)
can happend throught
biosorprion or absorption and
uptake. Metal can potentially
interact and affect funtion of
enzymes involved in
biodegradation of chlorinated
organic compounds.

Depend on uptake, levels of fats
(lipids) within the organism,
metabolism, age, growth life
stage, and gender.

(Berthelot et
al. 2008)
(Jaishankar et
al. 2014)
(Tchounwou
et al. 2012)
(Khan et al.
2015)

Strong correlations
between the bio-
concentration factor,
bioaccumulation
factor and the octanol:
water partition
coefficient (KOW)

Depend on uptake,
levels of fats
(lipids) within the
organism,
metabolism, age,
growth life stage,
and gender.

(Fantke et al.
2016)
(McLachlan
et al. 2011)
(Pampanin
2017)
(Vasseur &
Bonnard
2014)

3
4



Table 3 : Additional factors influencing bioavailability of metals and oil-derived products in soil (similarities and differences)5

Factors Metals
Implication for element

behaviour and
bioavailability

Reference of
special interest Oil derived product

Implication for oil
compounds behaviour and

bioavailability

Reference of
special interest

Ageing

A rapid uptake via
electrostatic adsorption
is usually followed by a
secondary
transformation that
form a more stable
complex.

Ageing can have an effect
on inorganic contaminant,
where metal precipitation
can occur rapidly causing a
decrease in bioavailability
and toxicity. However is
less clear how
stable/reversible is the
process (Hamon,
McLaughlin, and Lombi
2006).

(Wijayawardena
et al. 2015)
(Liang et al.
2014)
(Wang et al.
2017)
(Romero-Freire
et al. 2017)
(Jiang et al.
2017)

Different processes might
occur: incorporation into
natural organic matter
(absorption), slow
diffusion into small pores
(soil intraparticle).

Overall a decrease in
bioavailability has been
observed during time due to
different factors (dilution,
dispersion biodegradation,
volatilisation, and irreversible
sorption).

(Duan et al.
2014)
(Duan et al.
2015)
(An et al. 2017)
(An et al. 2017)
(Smith et al.
2011)
(Liu &
Haderlein 2013)

Co-
contaminant
interaction

Metal-metal interaction
is mostly competitive
affecting affinity for
soil-surface and
sorption. For instance
Zn is a competitor for
Cd and Pb sorption
sites .
Metal-organic joint
interaction such as: Cu-
pyrene (Chigbo et al.
2013) can significantly
henance heavy metals
concentration in shoot
and roots.

Heavy metals transport
can be henanced by the
presence of organic
contaminants due to :
association with mobile
colloids, formation of
metal-organic

Metals that compete for the
same sorption sites can
trigger the release of the
competitor metal,
enhancing its
bioavailability.

Necessity of addressing
contaminant as a mixture

(Sun & Zhou
2010)
(Van Genderen
et al. 2015)
(Meyer et al.
2015)
(Zhao et al.
2016)
(Chigbo et al.
2013)

Organic-metal
interaction: high
concentration of
inorganic might influence
mobility of PAHs.

Organic-organic
interaction: competitive
displacement, co-
solvency. Molecules with
similar structure are
highly competitive for
sorption sites because of
their interchangeability.

As for metals, the organic-
organic interactions might
challenge bioavailability
predication. The
sorption/desorption rate can be
altered by competitive
displacement processes and
therefore manifest a non-linear
behaviour. In addition some
natural compounds might also
share a similar structure and
therefore displace
anthropogenic compounds
increasing their bioavailability.
Necessity of addressing
contaminant as a mixture

(Olaniran et al.
2013)
(Gauthier et al.
2014)
(Biswas et al.
2015)
(Wuana et al.
2014)



complexes that are not
sorbed onto the surface
(competitive sorption).
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7

Figure 1: Process of sequestration of the compounds in soil, adapted from (Reid et al., 2000), bold8

textbox indicates the non-desorbing fraction (irreversible processes), dashed textbox indicates the9

rapidly-desorbing fraction (reversible processes), and the highlighted textbox represent the10

dissolved fraction (bioavailable).11

12

Contaminant retention is largely regulated by soil particle size distribution (Table 1). Smaller13

particle sizes provide a greater surface for interactions with hydrophobic organic chemicals (Capri14

et al., 2004). Clays and fine-grained sediments have the greatest surface area and therefore a high15

capacity to retain organic and inorganic compounds. Further to this, the presence of oxides (Fe and16

Al oxides, hydroxides, and oxyhydroxides) along with reactive calcium carbonate (CaCO3) can17

enhance organic and inorganic contaminants retention (Loibner et al., 2006) and therefore favour18

the biological stabilization of organic carbon (encapsulation) (Heng et al., 2010). Such mechanisms19

will however hinder microbial degradation of the compounds of concern due to reduced20

accessibility (Krull et al., 2001).21

22

Hard- and soft-organic matter are also associated with retention and ageing processes (Table 3).23

Soil organic matter (SOM) is formed from natural organic matter (e.g. vegetal decomposed24

material), animal residues at various stages of decomposition, fulvic acids, and humic acids25

(Sharma et al., 2010). Generally, SOM is thought to be composed of “soft carbon” (amorphous or26

hydrolysable carbon), and “hard carbon” (condensed or non-hydrolysable carbon) constitute of27



kerogen, black carbon, and lignin (Weber et al., 1992). Black carbon and kerogen, in particular, can28

bind tightly the organic contaminants reducing their solubility and/or dissolution rate, and thus29

bioavailability (Stroud et al. 2007; van Elsas et al. 2006; Berkowitz et al. 2008). Large amounts of30

organic matter in the soil have also been shown to effect the residence time of organic matter-31

associated metals. For example, when organic matter is oxidized, the associated metals are likely to32

be released, becoming more bioavailable. Conversely, soil with low organic matter content will33

often accumulate oxide minerals (e.g. clay) that favour the complexation of both metals and34

metalloids, thus reducing the bioavailable fraction (John & Leventhal 1995). Soil properties are site35

specific and will vary from one site to another, therefore, if two sites contain equivalent amounts of36

a certain contaminant, their bioavailability may still vary significantly, depending on how tightly37

the chemical is bound to the soil.38

39

The ratio between bioavailable and non-bioavailable fractions is shown in Figure 2. Over time, the40

proportion of bioavailable contaminant will decrease, relative to the non-bioavailable fraction.41

Pollutants in soil and sediment do not disperse quickly and the desorption and remobilization of42

metals and oil-derived products in soil are considered long-term processes. For example, heavy43

metals associated with fluvial sediments can display a residence time from days to years, on the44

order of 100 – 1000 years (depending on stream-flow dynamics) (Ciszewski & Grygar 2016;45

Coulthard & Macklin 2003). Heavy metals also have a long residence time in soil (Sayadi et al.46

2017), ranging from 500 to 3000 years (Lepp 2012; Jørgensen 2000; Ayres 1992; Alloway 1995).47

The process of aging can enhance the amount of absorbed heavy metals in soil, where a48

redistribution from weakly bound fractions to more strongly bound fractions can be observed49

(Settimio et al. 2014; Wang et al. 2015). Recent metal contamination tends to be more reactive and50

prone to dissolution compared to older contamination where the elements might be in crystalline51

forms (Lynch et al. 2014), which presents a lower environmental risk (Baran et al. 2015;52

Environmental Agency 2008).53

54

Sediment and soil-bound organic contaminants can persist over decades without significant55

concentration reductions. Chlorinated or hydrophobic contaminants, in particular, tend to desorb56

very slowly over time with a desorption rate on the order of years, due to their ydrophobicity57

(Eggleton & Thomas 2004). Though oil derived products tend to persist in soil, the PAH58

bioavailable fraction will decline exponentially over time (Yang et al. 2016). Weathered59

hydrocarbon residues pose negligible risks to human health, and this is reflected in post-treatment60

remedial objectives (Coulon et al., 2010; Jiang et al., 2016). When bioavailable fractions are high61

(despite being below risk-based clean-up levels) further treatment and more stringent clean-up62



levels should be mandated to reduce the elevated risk of exposure that is present (Cipullo et al.,63

2017).64

65

66

Figure 2: Relationship between the percentage of bioavailable and non-bioavailable contaminants67

in soil, exposure risks and risk based clean-up level (adapted from Reid et al., 2000; Tri-Service68

Ecological Risk Assessment Workgroup, 2003).69

70

The necessity of collecting case-specific parameters can challenge the development of a unified 71

methodology to assess the bioavailable fraction, and to determine the risks to human and72

environment in a straightforward way. A number of analytical methods to assess readily (bio)73

available compounds in soil and sediments are available, and we discuss these in the following74

sections.75

76

2.2 Methods for estimating bioavailability of heavy metals77

Metals can be present in soil as either free metal ions, forming various soluble complexes with78

inorganic or organic ligands; or associated with colloidal and mineral materials (McLean and79

Bledsoe, 1992) becoming strongly incorporated with the soil matrix (inert). Most of the divalent80



heavy metal cations (e.g., Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) share a relatively similar structure81

and therefore display similar behaviour in soil (Olaniran et al., 2013).82

Total metal concentration estimated with acid digestion (e.g aqua regia) mobilizes all forms of83

metal in soils and sediment. This measure refers to both metal content in particulate (sorbed +84

precipitated), and dissolved (inorganic complexes + organic complexes + free ionic forms)85

fractions. Particulate metals do not contribute to the solid-solution distribution (potentially86

bioavailable), and may only become available through very slow desorption processes. This fraction87

does not provide appropriate basis for expressing metal bioavailable (labile) concentration in soil,88

thus presumably not readily available for receptor uptake.89

90

Several approaches are used to determine the pool of labile metals (concentration and distribution)91

in soils and sediments; including exchange resins, diffusive gradient in thin films (DGT),92

conventional single-step extractions, and sequential extractions (Table 4). Passive samplers (e.g93

exchange resins) act as ion sinks and are used to quantify free ion activities, solution fractions, and94

labile pool concentrations of metals in soils (Qian and Schoenau, 2002; Ge et al., 2005). Free ion95

activity in solution represents the most relevant parameter for assessing bioavailability and toxicity96

of metals in contaminated soils. The use of exchange resins has been successfully applied to predict97

uptake of metal in the environment (e.g. in plants (Peijnenburg et al., 2007)).98

To date, no standard technique has been validated. Diffusive gradients in thin films (DGT), is a99

relatively cost-effective technique, based on a layer of hydrogel and resin gel. The DGT devices100

allow for the passive accumulation of labile species from a solution (in real time), and have been101

used to assess in situ the fraction of metals dissolved in water (Zhang 1998; Hooda et al., 1999;102

Parker et al., 2016).103

104

As an in situ sampling technique, DGT can be also used in soil to determine the labile (bioavailable)105

fraction of elements, and to understand how this fraction changes in the environment. However,106

continuous depletion of metals from pore water can limit the diffusion of analytes to the DGT107

sampler, affecting the estimation of the available pool of metals (Peijnenburg et al. 2014). In108

addition, development and validation of a DGT method to establish accumulation in biological109

endpoints remains a challenge, due to the complexity of the uptake by model organisms and110

inconsistent results (Menegário et al. 2017).111

112

Single-step extraction (Table 4) uses a wide range of extractants including: salt solutions (CaCl2,113

NaNO3, NH4NO3, Ca(NO3)2, AlCl3, MgCl2), acid solutions (HNO3, CH3COOH , HCl) and chelating114

agents (EDTA, DTPA). These tests were initially designed to predict nutrient deficiency in soil, and115



generally contain organic chelates and acids in order to mimic plant metals uptake (National116

Research Council 2003). Single-step extraction were lately adapted to measure the labile117

concentration of metals in soil and sediments, potentially available for ecological receptors uptake118

(Alvarez et al. 2011).119



Table 4 : Methods to characterize labile fraction and bioavailability of metals in contaminated soils120

Method Advantages Disadvantages Reference

Passive
sampler

• Passive samplers are relatively low-cost,
can be used for insitu measuraments
(Menegário et al. 2017), can achieve low
detection limits (Peijnenburg et al. 2014),
and allow long-term trends assessments.

• DGT was found to be a good tool for
measuring in situ metal bioavailability in
sediments (Ren et al. 2015).

• DMG is a relevant tool for in situ
assessment of environmental risks posed
by metals (Perez et al. 2016)

• Passive sampler measurement can be
translated into fugacity models and
equilibrium studies to understand
chemical potential acrivity and estimate
potential risk (Amiard-Triquet et al.
2015).

• Little attention is given to the effects that
water chemistry and method of field
deployment may have on uptake kinetics
(Mills et al. 2014).

• In some cases require a time-consuming
elution step, with acids, in order to
retrieve the analyte from the solid
sorbent phase (Almeida et al. 2014).

• DGT and DMT not yet considered
suitable for routine analysis due to poor
detection limit, time-consuming
procedures, and a lack of validatation
(Brand et al. 2009)

• Deployment of DGT samplers where
nanoparticles are high may result in an
overestimation of dissolved metal
concentrations (Pham et al. 2015)

Exchange resins

(Cantwell et al. 1982)
(Holm et al. 1995)
(Lorenz et al. 1997)
(Christensen & Christensen 1999)

Diffusive gradient
thin film (DGT) and
Donnan membrane
technique (DMT)
Diffusive Milli-Gels
(DMG)

(Davlson & Zhang 1994)
(Agbenin & Welp 2012)
(Koopmans et al. 2008)
(Pampura et al. 2006)
(Weng et al. 2005)
(Perez et al. 2015)

Stripping
voltammetry

• High sensitivity, higih reproducibility, and
mainly used for the detection of trace
levels of heavy metal ions (Almeida et al.
2014).

• Found to be suitable for assessment of
heavy metals bioavailability to plants
(Dytrtova et al. 2008).

• Limitations for on field measurements,
sample perturbations due to sample
handling and storage (Rurikova &
Kudrava 2006)

• Adsorption effects of humic and fulvic
acids in soil accompanied by the metal
complexation can limit the successo of
this method (Rurikova & Kudrava 2006)

Anodic (or cathodic)
stripping
voltammetry

(Sauvé et al. 1997)
(Zima & van den Berg 1994)
(Davidson & Smyth 1979)

Competitive
chelation

• Method has good sensitivity and can
provides reliable estimates of ion activities
(Amacher 1984)

• Equilibrium between chelate and soil can
be take a long time to be attained
(Norvell & Lindsay 1972; Norvell &
Lindsay 1969)

• The success of the metod depend on
abundancy of metal of interest and the
selected competing metal(Workman &
Lindsay 1990)

(Xue et al. 1995)

Ion exchange
• Ion exchange results were comparable to

ion selective electrode, and anodic
stripping voltammetry (Ge et al. 2005).

• Simple, cost-effective, relatively easy to

• Requires a characterization of the resin
adsorption properties (Weng et al.
2005).

• Soil solution composition need to be

Cation exchange
resin

(Sunda 1984)
(Apte & Batley 1995)
(Qian & Schoenau 2002)
(Ge et al. 2005)



use, and applicable to different soil type
(Qian & Schoenau 2002)

• Possibility of simultaneous multimetal

• measurement (Weng et al. 2005)

considered during speciation analysis
(Fotovat & Naidu 1997)

Single
extraction
salt solutions

• Single extractions can be used to perform
fast screening analysis of the labile pool of
elements in soils and sediments (Sakan et
al. 2016).

• Significant positive correlations between
the single extractions methods results and
lettuce shoot content were obtained for
several metals (Pinto et al. 2015).

• CaCl2 extraction has been reported as
being a good proxy for bioavailabilityof
metals in soils to plants (Houben et al.
2013) and was correlated with
concentrations of potential harmful
element in plant (Qasim et al. 2015)

• Leaching test employing a neutral salt
solution (CaCl2 or NH4NO3) is considered
to be sufficient to measure the
bioavailable fraction of mobile metals (in
particular Cd, Ni, and Zn) (Kim et al.
2015).

• The single extraction method involving
EDTA presented good precision (Sahito et
al. 2015).

• Using the single-step extraction (EDTA or
acetic acid) allows to predict metal
extractable content (bioavailable) in
vineyard soil-grapevine system (Vázquez
Vázquez et al. 2016)

• Chemical extractions can hardly account
for the complex processes involved in
metals uptake by plants therefore not
sufficient for estimating soil metal
bioavailability to plants (Krishnamurti et
al. 2015).

• Complexing and chelating extractants
(EDTA and DTPA) showed poor
colrelation with phes concentrations in
plant (Qasim et al. 2015)

• No consensus on best single step
extraction conditions to extract maintain
integrity of arsenic species (Sun et al.
2015)

• At low reactive element to organic
matter ratios, dilute nitric acid extraction
(0.43 M) can underestimates
concentration of geochemically reactive
elements with a particularly high affinity
for organic matter or oxides
(Groenenberg et al. 2017)

0.01-1 M CaCl2

(Houba et al. 2000)
(Young et al. 2000)
(Novozamsky et al. 1993)
(Ure 1996)

0.1 M NaNO3 (Gupta & Aten 1993)
NH4NO3 (Novozamsky et al. 1993)

0.1 M Ca(NO3)2 (Meers et al. 2007)

0.3M AlCl3 (Hughes & Noble 1991)

0.02-0.1 M MgCl2 (Makino et al. 2006)

Single
extraction
acid solutions

different
concentrations of
HNO3

(Tipping et al. 2003)
(Almås et al. 2007)
(Novozamsky et al. 1993)

CH3COOH (Ure 1996)

HCl (Novozamsky et al. 1993)

Single
extraction
Chelating
agents:

EDTA
(Ure 1996)
(Cappuyns 2012)

DTPA
(Leggett & Argyle 1983)
(Lindsay & Norvell 1978)

Sequential
extractions

• These methods are simple, low cost,
applicable to different soil type, and
results are often comparable (Rosado et al.
2016).

• BCR method provide relevant information
on the relationships between soil
characteristics and metal potential
fractions for uptake by the plant (Sungur
et al. 2014).

• Sequential extraction are inadequate for
determining the extraction kinetics, and
subjected to high risk of bias due to re-
adsorption processes (Rosas-Castor et al.
2015)

• BCR method drawbacks includes lacks
of specificity and difficulty in
interpreting results (Huang et al. 2014),

• BCR method results tedious and time-

BCR extraction (Ure et al. 1993)
modified BCR
extraction

(Rauret, López-Sánchez,
Sahuquillo, Barahona, et al. 2000)

four-step chemical
fractionation
procedure

(Tessier et al. 1979)

four-step chemical
fractionation

(Elliott et al. 1990)



• BCR method showed correlations between
available metal and the plant uptake
(Fernández-Ondoño et al. 2017).

• The modified version of the three-step
procedure proposed and validated by the
BCR (Community Bureau of Reference)
could potentially be accepted as the
standard method(Ahmadipour et al. 2014)

• CISED method can provide a powerful
tool for understanding metal fractionation
in soils (Cave et al. 2015)

• CISED is a valuable methodology for
srudying the solid-phase fractionation of
potential harmful element in soil and
potential bioavailability (Reis et al. 2014;
Palumbo-Roe et al. 2013; Cox et al. 2013)

• Sequential leaching studies can help
understanding leachability, solubility, and
mobility of heavy metal;,therefore
allowing to make assumptions on metal
bioavailability for risk assessment
(Kaakinen et al. 2015)

consuming due to long shaking time and
filtration requirements (Matong et al.
2016).

• Interpretation of data from the CISED
extraction may more challenging than
selective chemical extractions (Reis et
al. 2014)

• Main limitation associated with
sequential extraction procedures is the
long time associated extraction (Khan et
al. 2013).

• Limitations associated with sequential
extraction methods includes;
redistribution of analytes among phases,
incomplete extraction, non-selectivity of
reagents, and precipitation of other
minerals (Selim 2015)

• Laborious and time-consuming
techniques, results often of difficult
interpretation (Domini et al., 2011).

•

procedure

five-step chemical
fractionation
procedure

(Mclaren and Crawford 1973)

six-step chemical
fractionation
procedure

(Miller et al. 1986)

seven-step chemical
fractionation
procedure

(Krishnamurti et al. 1995)

non-specific
sequential extraction
(CISED)

(Cave et al. 2004)



Complex organic reagents (EDTA, DPTA) are also used to mimic the organic exudates produced by121

plants, and have been positively correlated with metal concentration found in plants (Domínguez122

2008) and further exploited to mimic the bioavailable fraction. Chelating agents, due to their high123

affinity for metal ions, are used to enhance the solubilization of metal(loids) through the formation124

of soluble chelates (Bolan et al. 2014). Caution is needed, however, because studies have shown125

that results are not consistent and robust across different types of soil (National Research Council126

2003), and are highly dependent on extraction conditions and trace elements speciation (Cappuyns127

2012).128

129

Single-step extraction techniques widely vary in type of extractant used, its concentration, soil:130

solution ratio, and extraction time. They can partially dissolve trace elements associated with131

different fractions (e.g pore water and exchangeable), which provides useful information about132

metals behaviour (Alvarez et al. 2011).Though relatively simple to use (minor sample handling), in133

single-step extraction mode the non-labile metal fraction might also become solubilized, which134

might cause an overestimation of the labile pool of several metals (Moreno et al. 2005; Qasim et al.,135

2015).136

137

While passive samplers and single-step sequential extraction have been used to measure labile138

metals, these methods do not provide information on the fate and behaviour of contaminants over139

time. Sequential extraction, however, can be used to quantify the distribution of metals and assess140

the mobility of potentially harmful elements over time (Sungur et al. 2015). The procedure involves141

leaching successive fractions of metal by increasing the strength of an acid solution (HNO3, HF-142

HClO4, HClO4, HCl, CH3COOH) or other reagents (such as Na4P2O7, NH2OH) used for each143

phase association (Zimmerman and Weindorf, 2010). The number of step may vary from 3 to 7144

(Table 4). Sequential extraction has been used for over 30 years (Tessier et al., 1979) and has been145

modified to create the community Bureau of reference method (BCR) (Rauret, López-Sánchez,146

Sahuquillo, Muntau, et al. 2000) and the Chemometric Identification of Substrates and Element147

Distribution (CISED) method (Cave, et al., 2004), which overcome non-selectivity and148

redistribution of trace elements. The BCR method has been validated against a sediment reference149

material (BCR-701) and provides extractable concentrations for several metals (Rodgers et al,150

2015). The non-specific sequential extraction CISED has been validated against a sediment151

reference material (BGS-102) and uses chemometric data processing to provide mechanistic152

information about metal-soil phase associations (Gál et al., 2006). Results from CISED could be a153

powerful tool to understand how mineralogical forms might affect bioavailability, yet considerably154

more chemometric and geochemistry information need to be applied (Giacomino et al., 2011).155



Despite the large amount of information that sequential approaches can provide the standardisation156

and application of these technique in commercial laboratories is limited because of the laborious157

and time-consuming nature of these techniques and the difficulty of interpreting the results (Alvarez158

et al., 2011).159

160

2.3 Methods for estimating bioavailability of oil-derived products161

Estimating the bioavailability of organic compounds and integration into decision processes162

remains a scientific and regulatory challenge. Research into the bioavailability of oil-derived163

contaminants has received considerable attention in the last 20 years (Thompson 2016). In the164

context of implementing bioavailability into regulatory frameworks it is important to both quantify165

the (potentially) bioavailable fraction, but to also understand the mobility and behaviour of166

contaminants in soil in order to assess potential effects of complex contaminations on receptors.167

Empirical approaches are often used to predict contaminant toxicity or assess the effectiveness of168

remediation treatments (Environment Agency 2006; Environment Agency 2010) Computational169

methods to integrate the multitude of compounds and molecular structures has proven most170

challenging, for example, crude oil and its composition of several hundred different organic171

compounds, each of which possesses chemical characteristics that influence the rate and efficacy of172

degradation (Weng et al., 2015). Molecular weights have been shown to most strongly affect a173

compound’s persistence in soil (Atlas, 1995). Moreover, complex physico-chemical interactions174

between different compounds can lead to unexpected or poorly understood reactions (e.g. co-175

solvency), which might alter the bioavailable nature of a compound in mixture.176

A wide range of analytical procedures have been used to estimate the bioavailable fractions of177

organic contaminants in mixtures (e.g. oil constituents) (see for review Brand et al., 2012; Ortega-178

Calvo et al., 2015). These procedures can measure different fractions: freely dissolved fraction179

(passive samplers), which measure the dissolved (actual) concentration in a matrix, and rapidly180

desorbed fraction (non-exhaustive techniques), which uses extractants to recover compounds from181

soil (Table 5).182

183



Table 5 : Extraction methods in relation to bioavailability of organic compounds184

Type Method advantages disadvantages

Passive
sampler
(solid
phase)

• Polydimethylsiloxane(PDMS)
• Solid-Phase Microextraction

(SPME)
• Polyoxymethylene solid phase

extraction (POM-SPE)
• Triolein embedded cellulose

acetate membrane (TECAM)
• C18 membrane disks
• Diffusive gradients in thin films

(DGT)
• Semipermeable membrane

devices

• Consistent relationship between chlorobenzenes levels
in biota and in the PDMS-SPME fibers (van der Wal et
al., 2004)

• SPME can accurately measure freely dissolved pore
water concentrations to estimates earthworms uptake
(Van Der Wal et al. 2004)

• PDMS is very sensitive and able to detect PAHs freely
dissolved pore water concentrations (ng/L) (Laak et
al., 2006).

• SPME shows good correlation between
bioaccumulation of organic contaminants on a wide
range of organisms (You and Landrum, 2006)

• SPME and POM-SPE generally are able to predict
PAHs concentrations in earthworms (Gomez-Eyles et
al., 2011)

• SPME and POM-SPE tended to under predict PAHs root
concentrations (Gomez-Eyles et al., 2011)

• SPME measures truly dissolved concentrations but it is
not able to measure compounds associated with
dissolved organic matter (ECETOC, 2014).

• Poor correlation between availability of PAHs in soil
and bio concentration factors in earthworms (Bergknut
et al., 2007)

Fluid-
phase
extractions

• Subcritical Water Extraction
(SWE), superheated water
technique (SWAT)

• supercritical fluid extraction
(SFE) , sequential supercritical
fluid extraction (SSFE)

• Good correlation between SWE extraction of 14C-
activity fraction mineralized by catabolically active
Pseudomonas (Latawiec et al., 2008)

• Successfully used to predict rates of long-term release
of organic compounds (Weber, 2001; Hawthorne et al.,
2000; Miller and Hawthorne, 1998)

• SWE selectively extracts the PAHs relative to the
readily extracted fraction (Smith 2002)

• SFE recoveries of the ‘‘mobile’’fraction of PAHs were
greater than 90% (Librando and Aresta, 2004)

• The amount of PCBs extracted by SFE was very close
to the estimated bioavailable fraction in earthworms
(Hallgren et al., 2006)

• Potential degradation of analytes subjected to high
temperatures.

• Lack of significant correlation between the amounts
desorbed/amount assimilated by earthworms (Weber et
al., 2002).

• Contaminants with high molecular weight ((in
decreasing polarity and increasing Kaw-coefficients)
showed reduced recoveries when applying SSFE
(Loibner et al., 2000)

• Mild SFE was not able to differentiate pyrene
availability in unaged soils (Sun and Li, 2005).

• using SFE for predicting bioavailability can be limited
due to great variability of soil matrix (Cajthaml and
Väclav, 2005)

non-
exhaustive
extraction
techniques

• Mild solvent (butanol,
methanol, n-propanol, or ethyl
acetate)

• combination of solvent and
CaCl2 solution

• surfactants (Triton X-100)

• Methanol-water and n-butanol extraction of chemical
mixtures were correlated with uptake by earthworms
(Elsey and Lexander, 1997)

• Good correlation between extractable fraction/ uptake
earthworms (Kelsey et al., 1997; Tang et al., 1999)

• Good correlations between extractable fractions/
bacterial genotoxicity assay (Alexander and Alexander
2000; Tang et al., 2002)

• Little consistency among different soils (Chung and
Alexander, 1998).

• High variability in technical operation (type of mixture,
shaking time) limit the comparability of data (Cachada
et al., 2014).

• PAHs extracted by mild solvent extraction show a
similar composition to the total soil PAHs (Bergknut et
al., 2007)

• Mild solvent extractions consistently over predicted



PAHs biotic concentrations (Gomez-Eyles et al., 2011)
• PAHs bioavailability (estimated with butanol) and

earthworm bioavailability were found to be non-related
(Johnson et al., 2002).

• Triton X-100 failed to predict PAHs bioavailability in
contaminated sediments because extracted both readily
and poorly bioavailable PAHs (Cuypers et al., 2002).

• Tenax

• Tenax was found to be a matrix-independent, cheap
and less time-consuming chemical method of
estimating bioavailable fraction in PCB-contaminated
field sediments (Trimble et al., 2008)

• Successfully used to assess the bioavailability of
aromatic compounds in sediment (Morrison et al.,
2000; Cal et al., 2008; Harwood et al., 2012).

• good correlation between “bioavailable” fraction in the
sediment and quantity measured by Tenax extraction
(You and Pehkonen, 2007)

• Rapidly desorbing fractions of PAHs measured by
Tenax have been linked to biodegradation rate (Braida
et al., 2004; Shor et al., 2003; Cornelissen et al., 1998)

• Tenax extraction of PAHs, PCBs and organochlorine
pesticides were correlated to bioavailability to worms
(Hulscher et al., 2003)

• The Tenax extraction is a good technique to predict
bioavailability to earthworms of aged PAHs in soil (Lu
et al., 2011)

• The process involves a lot of steps in order to estimate
the rapidly desorbing fraction (Xing et al., 2011)

• Contaminant desorbing fractions in river sediments
extracted by Tenax overestimated the bioavailable
fraction of benthic invertebrates (Leppanen et al., 2003)

• Few studies where correlations between Tenax
extractable amount and biota-sediment accumulation
were not related (Sormunen et al., 2008 and 2009; Leppa
and Kukkonen, 2006)

• The Tenax measure of rapidly desorbing fraction is not
the only factor contributing to the bioavailability. A
number of ecological factors (species and feeding habits)
can affect the bioavailable fraction in model organisms,
and remain undetected by Tenax extractions (Akkanen et
al, 2007)

• Aqueous hydroxypropyl-B-
cyclodextrin (HPCD)

• 1:1correlation phenantrene extracted/degraded by
microorganisms ( Reid et al. 2000a)

• HPCD was successfully used to predict PAHs
bioavailability in contaminated sediments (Cuypers et
al. 2002).

• HPCD was successfully used to predict the microbial
bioaccessibility and mineralisation rate of aliphatic
hydrocarbon (Stroud et al., 2008)

• A significant relationship (p < 0.01) between HPCD
extractability /mineralization (Rhodes et al., 2008)

• HPCD β was  found to be a good estimation of 
bioavailable fraction in both single, and multiple
contaminants conditions (Stroud et al., 2009)

• HPCD ease in sample handling and that no additional
device is needed (Cui et al., 2013)

• Predictability of HPCD extraction decreased for higher
organisms such as earthworms (Barthe and Pelletier
2007; Hartnik et al., 2008)

• Poor indicator of PAH accumulation in benthic
invertebrates (Barthe & Pelletier 2007).

• Cyclodextrin size and structure can limit the
complexation of some PAHs (size dependent)
(Villaverde and Pe 2012; Stokes et al., 2005)

• Cyclodextrin extractions consistently over predicted
PAHs biotic concentrations (Gomez-Eyles et al., 2011)



2.3.1 Passive sampler methods (PSMs)185

Passive sampler methods (PSMs) (Table 5), commonly defined as biomimetic extractions186

(ECETOC 2014), are used to measure the freely dissolved concentration (Cfree) of contaminants187

(Parkerton et al., 2012) in equilibrium with the rapidly desorbing fraction. These techniques are188

based on the molecular diffusion principle, and often use polymer materials such as189

polydimethylsiloxane, polyethylene, polyoxymethylene, and ethylvinylacetate (Parkerton et al.,190

2012). Passive sampler methods have been used to predict PAH bioavailability, and have been191

shown to correlate well with model organism PAH uptake and bioaccumulation (Jonker et al., 2007;192

Gomez-Eyles et al., 2011; Muijs and Jonker, 2011). Although PSMs are valuable tools for193

providing weight of evidence and informing regulatory decision-making, there exists a lack of194

consensus about its implementation and standardization. The following issues were identified and195

need to be overcome in order to further develop and implement these techniques: (1) PSM has been196

applied to only a limited number of target compounds; (2) the complexity of the equilibrium197

sampling methods requires better characterization of potential errors when applied in situ; (3)198

adoption of robust quality assurance and control strategies are needed (Mayer et al. 2014).199

200

Correlation with in-vivo measurements and bioaccessibility data are not fully validated, and the201

complexity of (bio)accumulation mechanisms (Cachada et al., 2014) that govern toxicity responses202

are not yet fully understood. More information and guidance on the application of passive sampling203

for the management contaminated sediment sites can be found in the SERDP and ESTCP national204

guidance documents (Burgess and Driscoll, 2016; Driscoll and Thompson, 2016).205

206

Supercritical Fluid Extraction (SFE) (Table 5) uses supercritical fluids (e.g. CO2, combination with207

solvents) to extract a compound from a soil matrix. This technique used to study208

sorption/desorption processes and to estimate bioavailability of organic pollutants in sediment. Data209

obtained from SFE can be can be fit to a prediction model to obtain information about the210

bioavailable fraction for PAHs (bioavailable). Different experiments found the amount of organic211

compounds (PCBs) extracted by SFE to represent the readily extracted fraction (Smith, 2002) and212

the bioavailable fraction uptake by earthworms (Hallgren et al. 2006). SFE was also found to213

recover over 90% of the mobile fraction of PAHs from soil and sediments samples (Librando and214

Aresta, 2004).215

216

Though SPE can measure the freely dissolved fraction, it is likely to underestimate the217

concentration/uptake in benthic organisms (with other uptake routes) and its use can be limited due218



to great variability of soil matrix (Cajthaml and Väclav, 2005). In addition, SFE was found to be219

able to predict degradation for low molecular weigh PAHs (three and four ring), with a good220

correlation between biodegradability and bioavailability (Naidu 2011), but often overestimated221

bioavailability of high molecular weight PAHs due to their different extractability.222

223

2.3.2 Non-exhaustive techniques224

Non-exhaustive techniques to assess the bioavailability of organic compounds in soil (Table 5)225

include mild solvent extraction (Kelsey et al., 1997; Liste and Alexander 2002), solid sorbents (e.g.226

Tenax) (Cornelissen et al., 2001; Hulscher et al., 2003 ,Lydy et al. 2015) and hydroxypropyl-β-227

cyclodextrin (HPCD) (Reid et al., 2000; Cuypers et al., 2002; Stokes et al., 2005).228

229

Mild solvent extraction consists of adding a polar solvent or mixture of solvent and water (e.g.230

butanol, ethanol, methanol, methanol-water) to a sediment or soil sample, agitating the mixture, and231

then analysing the extract for contaminants (Cui et al., 2013). This technique has shown good232

correlation between extractable fraction and uptake in earthworms (Kelsey et al., 1997) and233

bacterial genotoxicity assay (Alexander and Alexander 2000; Liste and Alexander 2002). Mild234

solvent extraction could also be used as a proxy to estimate the contaminant bioaccessible fraction,235

however it shows little consistency between different soil types (Chung & Alexander 1998).236

237

Tenax is a polymer resin that, when mixed with contamianted sediment, will recover target238

compounds. Sorbed compunds are eluted from the resin with a solvent and fresh polymeric beads239

can be added several times (multiple steps) and harvested to measure the recoverable hydrocarbons240

(Cui et al., 2013). Tenax has been used to assess the bioavailability of aromatic compounds in241

sediment (Morrison et al. 2000; de la Cal et al. 2008; Harwood et al. 2012).242

243

Hydroxypropyl-cyclodextrin (HPCD) is a cyclic oligosaccaride formed by α-D-glucopyranoside 244

units linked 1-4 and bound together in a ring (Riding et al. 2013). This structure is highly soluble245

(hydrophilic outside), and creates a hydrophilic cavity, capable of forming inclusion complexes246

with hydrophobic compounds such as organic contaminants (Bardi et al. 2000). In these inclusion247

complex formations, water molecules are released from the HPCD cavity through displacement by a248

more hydrophobic molecule in solution (Del Valle 2004). HPCD vary  in size (α , β, γ) depending 249

on the number of glucose monomers (generally six to eight units) present in the ring. Generally, an250

aqueous solution of HPCD is mixed with soil or sediment (1:20 ratio) and then the aqueous phase251

recovered via centrifugation and the supernatant is analysed for the presence of target contaminants252



(Cui et al., 2013). Alternatively, the supernatant is discarded and the soil pellet resuspended and253

extracted using exhaustive solvents (total extraction), and cyclodextrin uptake measured by254

substraction (comparing the sum totals of PAHs extracted by HPCD against the total amount255

extracted by exhaustive solvent) (Papadopoulos et al. 2007). Reid et al. (2000b) showed a reliable256

prediction of the microbial available concentration of PAHs in soil compared to classical methods257

based on Soxhlet extraction. Positive correlation has been observed between the amount of HPCD258

extracted and microbial mineralization in activated carbon-amended soils (Rhodes et al. 2008).259

Potential of HPCD for indicating bioavailable organic contaminant has been recognized, but no260

clean-up thresholds for CD-extractable PAHs have been implemented yet (CCME, 2006). Main261

limitations associated with of HPCD extraction are the reduction of potential for indicating262

bioavailable fraction in higher organisms (earthworms, benthic invertebrates) (Barthe and Pelletier263

2007; Hartnik et al., 2008) and the size of the HPCD cavity that might prevent PAHs complexation,264

owing to steric constraints, which would result in poor extraction efficiencies (Stokes et al., 2005).265

266

In summary, while passive samplers can be used to estimate the readily-available (pore water267

concentration) for most soil organisms (Brand et al. 2013), bioavailable concentrations measured by268

Tenax and HPCD correspond to the sum of the fraction dissolved in pore water and the269

concentration that could become available on a longer term (i.e. rapid and slow desorbing fraction).270

Methods to estimate potential bioavailable concentrations can be considered more conservative;271

therefore we believe that both Tenax and HPCD could be more suitable compared to PSMs for the272

evaluation of receptor’s potential exposure and implementation into the risk assessment. Overall the273

number of laboratory studies and publications on less exhaustive techniques is promising but they274

require further efforts to obtain an optimised and enhanced procedure that can be applied across275

different soil samples and a wider range of contaminants. Such methods could assist in evaluating276

exposure of ecological receptors and facilitate a more proportionate definition of risk. In addition,277

these measurements may have implication when establishing remediation endpoints.278

279

3 Challenges in assessing complex chemical mixtures bioavailability280

Methods to assess bioavailability predominantly focus on assessments carried out on individual281

substances, or a limited number of substances. Humans and ecological receptors, however, are282

exposed to a wide variety of chemicals and therefore understanding the potential adverse effects of283

interactions between these chemicals in mixture is fundamental to assessing risk. We can284

summarise the challenges of assessing the bioavailability of complex chemical mixtures in three285

key points (1) standards for mixed-pollutants are absent; (2) combination effects studies on complex286

chemical mixtures are limited; (3) bioavailability is often neglected.287



In co-contaminated sites, the presence of both inorganic and oil-derived products, in mixture288

compositions of near infinite character can produce unpredictable effects (Borgert 2004).289

Uncertainty in the behaviour of these mixtures reflects not only the complexity of the soil matrix,290

but also the heterogeneous nature of contaminants in soil, as well as temporal variations in chemical291

structure and concentration. Conventional risk assessments apply risk-based criteria (guideline292

values) to deterministic models to make decisions about soil remediation, and establish clean-up293

standards. However, exposure-risk relationships are established on specific quantitative values294

(maximum acceptable risk), which can largely vary among different countries (Aqeel et al. 2014),295

depending on the assumption made when modelling exposure. Whereas conventional exposure296

assessment relied on the measurable effects of individual chemical species, (de Zwart & Posthuma297

2005), predictive models for exposure assessment, are unlikely to account for (and interpreted) the298

combatorial effects of chemical mixtures (Cornelis et al., 2010). Regulatory frameworks address299

chemical mixtures based on the contribution of each individual compound present in the mixture, if300

individual compound toxicity does not exceed the threshold, the overall mixture is considered non-301

toxic (Heys et al. 2016). Over the last decade, the increasing interest in complex chemical mixtures302

has been reflected by legislative developments and scientific improvement in understanding of the303

role of bioavailability of single (Elgh-Dalgren, 2009; Bradham et al., 2015; Chen et al., 2015;304

Fadaei et al., 2015; Henry et al., 2015; Juhasz et al., 2015; Ortega-Calvo et al., 2015; Stegemeier et305

al., 2015; Tao et al., 2015) and multiple contaminants (Allan et al., 2012; Gouliarmou and Mayer,306

2012; Cain et al., 2013; Liu et al., 2013; Kuhn & Maurice., 2014; Amato et al., 2014; Jia et al.,307

2014; Arp et al., 2014) however, to date, potential risks of combined chemicals are rarely examined308

in risk assessment (Kienzler et al. 2016).309

310

311

312

Only a few laboratory based studies have attempted at studying complex chemical mixtures toxic313

effect on in vitro or biological systems (Environment 2002) more data are required on synergistic314

and antagonistic interactions of these compounds. While the concepts of mixture toxicity have been315

discussed for decades, their use has been limited by the absence of toxicological data associated316

with specific substances, the lack of bioavailability data, and generally the uncertainty associated317

with knowledge on mixtures of compound. The greatest knowledge gap at the present time is the318

lack of understanding regarding the mode of action of mixture of compounds which limits the319

definition of a set of criteria, and therefore requires a careful case-by case approach (EU 2011).320

321



Cumulative risk assessment (CRA) is a relatively new approach that aims to quantify the health or322

environmental risk by estimating the level of exposure to multiple contaminants (U.S.323

Environmental Protection Agency (EPA) 2003). CRA represents a conceptual innovation in the324

decision making process by moving from a single effect approach to a multiple ecological and325

human approach to the effects caused by multiple exposure of contaminants (Fox, 2002). Although326

cumulative risk assessment appear to be pragmatic, few ecotoxicological specific guidelines (e.g.327

pesticides regulations) account for it (European Environment Agency, 2012). At present, CRA may328

be the best way to add a health dimension to basic contaminant concentration evaluation. It also329

might support the decision making process creating a more comprehensive understanding of330

chemicals behaviour in the environment. Further development and additional studies to verify if331

CRA is a fair representation of the combine risk for compounds that might not be equal in toxicity,332

ecotoxicity and chemical behaviour are needed. Ultimately, CRA should not be the only measure of333

risk, but a valuable support to other analytical tools for investigating environmental risk.334

Bioavailability is often not well understood and therefore neglected in the risk assessment process.335

Bioavailability is influenced by a wide range of physicochemical (including both soil and nature of336

contaminant) (Table 1) and biological factors (Table 2) and it can greatly differ among different337

organisms, therefore designing suitable one-fit-all extraction approach can be challenging. In order338

to estimating the bioavailable fraction we should question which of these method provide a good339

representation for the specific species we intend to protect. Several chemical analytical methods340

have been developed to assess the bioavailability of inorganic and organic compounds, yet few of341

them were found to correlate with uptake in model organisms. As such, none of these techniques342

have been applied to complex chemical mixtures (Muijs and Jonker, 2011a).343

344

4 Conclusions345

Given the multiple variables affecting the availability of chemicals in soil, we should look at346

bioavailability not as a fixed value (concentration), but as a dynamic process between an organism347

and the chemical-uptake over time (ageing). Methods to estimate bioavailability are still not348

sufficiently cost-effective and standardised. While a great deal of studies and results have been349

achieved in regards to estimating bioavailability of inorganic contaminants, there are still more350

work to be done for organic contaminants. Bioavailability and bioaccessibility estimations are seen351

as useful means to inform human health risk assessment and improving cost-effective management352

of contaminated land. For instance, when the exceedance of the guideline values is minor,353

bioaccessibility become the main driver on large site investigations where costs associated with soil354

removal are considerably high. Nevertheless, lack of information regarding other potential routes of355

exposure (dermal contact and inhalation) contributes in limiting our confidence in integrating these356



findings into risk assessment. Similarly, bioavaliability is still not fully understood and357

implemented in existing frameworks, because of both multiple definition across different disciplines358

and lack of standardised test to measure it. Also, a large number of studies and chemical methods359

have shown that bioavailable fractions can be positively correlated with uptakes in model organisms360

and microbial mineralization; obtained data are however inconsistent among different type of361

contaminants and across different receptors tested. An approach based on weigh of evidence should362

apply chemical-techniques to measure the bioavailable and bioaccessible fraction, along with363

biological methods (bioassays) to better understand effects of contaminants uptake and related364

bioavailability in humans. Bioassays provide a direct measure of contaminant’s (bioavailable)365

concentration for a specific organism over time and are able to quantify and detect a wide range of366

toxins at relatively low cost.367

368

Understanding and implementing site-specific bioaccessibility and bioavailability data mean being369

able to represent more realistically the on-site conditions. Implementation of bioavailability can370

help the revision of exposure estimate, reducing the cost of remediation, and bringing a greater371

degree of judgment when assessing risk, and allowing greater levels of contamination left safely in372

soil. However, in order to provide increased confidence in using bioavailability, further373

investigation is needed on how to incorporate it into risk assessment. Moreover new approaches are374

required to tackle the complexity of chemical mixtures and the likely effect of exposure. The375

challenges are understanding the potential risk connected to a complex chemical mixture, and376

assessing how the physico-chemical interactions, such as co-solvency, sorption, desorption, and377

saturation, can affect the potential toxicological response. Understanding which chemicals are378

effectively bioavailable may be the key for future risk assessment.379
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