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ABSTRACT  

Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective range-
resolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing 
four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the 
vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz 
interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional 
vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the 
structure under test.  

 
Keywords: Range-Resolved Interferometry, Shape Sensing, Curvature Sensing, Bend Sensing, Fibre Segment 
Interferometry, Laser Vibrometry 

1. INTRODUCTION  
Fibre optic curvature sensing [1-5] (FOCS), sometimes referred to as bend or shape sensing, allows the curvature of the 
fibre, and therefore the curvature of the structure to which the fibre or fibre arrangement is attached, to be followed 
through space and permits the inference of lateral displacements directly from the curvature measurements. FOCS 
techniques are generally based on the evaluation of the differential strain that results from the curvature of a fibre/fibre 
arrangement. Optical fibre techniques to-date have predominantly used in-fibre Bragg (FBG) [1,3,5] or long-period 
gratings [2]. Quasi-distributed FBG-based approaches, where a large number of FBG sensors are interrogated using 
frequency domain reflectometers, have also become popular [3] in areas such as structural health monitoring and surgical 
instrument tracking [5], mainly due to their capability for high density deployment. Interferometric approaches [4] have 
also been investigated for FOCS but, while potentially offering fast and highly sensitive measurements, practical 
applications appear to have been limited by difficulties in multiplexing arrays of sensors.  

Importantly, in FOCS the curvature sensitivity scales proportionally with the lateral fibre core distance [4]. Therefore, 
a fibre arrangement mounted onto a flexible support structure that can follow the shape of the object under test, with 
lateral fibre core spacing of typically several millimetres, offers orders of magnitude increased curvature sensitivity 
compared to previous implementations using multicore fibres [4], where the lateral core spacing is typically 50	μm. In 
this paper, the optical configuration is introduced and the details of the sensor arrangement provided, before the two-
dimensional tip displacement sensitivities of the device are evaluated using a cantilever test object. Finally, 
measurements of the cantilever tip vibrations are shown, demonstrating the suitability of this approach for directional 
vibration measurements. 

The approach proposed in this paper employs fibre segment interferometry (FSI) [6] and allows the multiplexing of 
many interferometric sensor segments using range-resolved interferometry (RRI) [7], where the use of RRI exploits the 
potential that robust and cost-effective laser diodes originating in the telecoms industry offer to sensing applications. We 
have previously applied RRI to multiple-surface laser vibrometry [8], allowing multiple surfaces to be interrogated 
simultaneously, in a free-space setup similar to regular laser vibrometry [9].  The FOCS approach presented in this paper 
demonstrates a fundamentally different concept for vibration measurements. It is thought that the capability to measure 
lateral vibrations internally within structures at high bandwidths, using cost-effective and robust hardware originating 
from the telecom industry, could be very useful in many applications of structural vibration analysis, both for one-off 
investigations and for permanent data logging. This complements traditional laser vibrometry, which, while offering 
resolutions in the nanometre range and being a contactless method, requires lateral access to the structure under test and 
therefore might not be suitable for a number of structural vibration analysis problems, for example within complex 
machinery or engineering structures. 
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